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RESGen: Renewable Energy Scenario Generation
Platform

Emil B. Iversen, and Pierre Pinson, Senior Member, IEEE

Abstract—Space-time scenarios of renewable power generation
are increasingly used as input to decision-making in operational
problems. They may also be used in planning studies to ac-
count for the inherent uncertainty in operations. Similarly using
scenarios to derive chance-constraints or robust optimization
sets for corresponding optimization problems is useful in a
power system context. Generating and evaluating such space-
time scenarios is difficult. While quite a number of proposals
have appeared in the literature, a gap between methodological
proposals and actual usage in operational and planning studies
remains. Consequently, our aim here is to propose an open-source
platform for space-time probabilistic forecasting of renewable
energy generation (wind and solar power). This document covers
both methodological and implementation aspects, to be seen as
a companion document for the open-source scenario generation
platform. It can generate predictive densities, trajectories and
space-time interdependencies for renewable energy generation.
The underlying model works as a post-processing of point
forecasts. For illustration, two setups are considered: the case
of day-ahead forecasts to be issued once a day, and for rolling
windows with regular updates, with application to the western
part of the United States, with both wind and solar power
generation.

Index Terms—Spatio-temporal forecasting, Probabilistic fore-
casting, Scenario generation, Renewable energy, Quantile regres-
sion, Copula

I. INTRODUCTION

Energy generated from renewable sources has attracted
attention in recent years as a sustainable solution to the world’s
growing energy demand. While hydro is easily dispatched,
provided the reservoirs are full, wind and solar power are
intermittent and uncertain and thus provides challenges for
their successful integration into the energy system. To partly
offset or mitigate these issues, accurate forecasts of future
wind and solar power generation are required. For an efficient
utilization of wind and solar power, in terms of economic
costs as well as grid stability, forecasts providing the full
predictive density of wind and solar power generation are to
be preferred ([1], [2]). These types of forecasts are referred
to as probabilistic forecasts. They stand in contrast to point
forecasts, which are single-valued, typically informing about
the expected value of power generation per location, energy
type and lead time.

Energy systems are distributed in nature. Conventionally,
on the demand side, power is consumed at numerous distinct
locations ranging from households to factories, typically dis-
tributed over a large geographical area. Renewable energy gen-
eration is also distributed, ranging from rooftop photovoltaic
installations to wind turbines spread out across the countryside
or at sea. Further, renewable generation in adjacent locations
may be highly correlated as it is governed by the same weather
system [3]. Thus, in view of the distributed nature of supply

and demand, combined with network constraints, probabilistic
spatio-temporal forecasts comprise optimal input to decision-
making problems.

While probabilistic spatio-temporal forecasting of renew-
able energy generation is novel, quite a bit has been done
already on the basics of wind power forecasting. The propa-
gation of wind power forecast errors has been studied in [10]
and [11], where it is suggested that a spatio-temporal model
would allow producing better forecasts. In [12] an ellipsoidal
uncertainty set is used to capture correlation between wind
farms at different locations. Very-short-term forecasting of
wind power generation has been considered in [13] using
a sparse vector auto regressive model to forecast the power
production at 22 different sites. A vector auto regressive model
is also considered in [14], however, the focus is on providing
better point forecasts. Copula models were employed in [15],
forecasting densities of weather variables, in [16], where a
machine learning and copula based approach is used to predict
wind power, and in [17] where a copula approach is used
to model wind power prediction errors while reducing the
parameters needed through a precision matrix formulation.
The relevant challenges with probabilistic renewable energy
forecasting include (i) the dynamic and time-varying nature
of the weather, and (ii) the nonlinear and bounded nature of
the power conversion process. Spatio-temporal probabilistic
forecasting is further complicated by the large data sets and
the dimension of the models, which in turn can lead to large
parameter spaces and high computational costs.

In this work we describe a generic tool for obtaining
probabilistic spatio-temporal forecasts for renewable energy
generation, within a modular framework. The tool makes it
possible to extract predictive quantiles, moments, prediction
intervals, predictive densities and to simulate trajectories. The
prediction tool is coded in python as many non-statisticians
are more familiar with this language as opposed statistical
software such as R or SAS. This is intended to allow for people
with high programming skills to tweak and improve upon
the code without having an in-depth knowledge of statistics.
The code provided is open source and free to used under an
open source BSD 3-clause. The remainder of the document
is structured as follows. In section 2 the data used for this
study is detailed. Next, section 3 gives a brief introduction
to the mathematics underlying the prediction tool. Section
4 highlights how to run the code in python. In section 5
the outputs of the model are considered. Finally section 6
concludes the paper.

II. DATA

The data used in this study covers wind and solar power
generation for the Western Interconnection in the United
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States, which is shown in Figure 1.

Fig. 1. Interconnections, United States

Within the Western Interconnection a total of 39 load
regions exist. In Figure 2 the approximate location of these
different load regions are shown [18]. Only a subset of the
load regions are present in the wind or solar data sets.

Fig. 2. Load regions, Western Interconnection

The data contains aggregate power generation from wind
and solar. There are 22 load regions for wind and 26 load
regions for solar present in the data. Further the data also
contains various forecasts for power generation. These include
day-ahead forecasts with an hourly time resolution spanning
the next day and intra-day forecast spanning 15-min ahead to
5-hour ahead with a 15 minute time resolution. Each of the
data sets contain one year of data.

The data sets used in this study were of high quality. While
the quality of the data is high, the same conclusion cannot
be reached for the quality of the point forecasts used in this
study. This may to some degree be explain by the forecast
being computed before a market gate closure. It is clear that
the point forecasts do not make use of past observations of
generated power to predict the following day. Thus, there is
a clear avenue for improvements to yield a better predictive
performance.

III. MATHEMATICAL FOUNDATIONS

The forecasting tool provides a non-parametric approach to
spatio-temporal probabilistic forecasting. Quantile regression

is used to estimate marginal predictive densities and a copula
is subsequently applied to model the interdependence in time
and space. The implementation is not dependent on specific
data sets, time resolution, locations or forecast horizons and
the approach can be readily adapted to other data sets. In
this section a brief overview of the mathematics behind the
implementation is presented.

A. Quantile regression density estimation

Suppose X is a real valued random variable with cumulative
distribution function FX(x) = P (X ≤ x). The τ ’th quantile
of X is given as

QX(τ) = F−1X (τ) = inf {x : FX(x) ≥ τ} (1)

where τ ∈ [0, 1].
Next define the loss function as ρτ (x) = |x(τ − I(x<0))|,

where I is an indicator variable, that is one when the condition
is met and zero otherwise. A distinct quantile can be obtained
by minimizing the expected loss of X − u with regards to u:

min
u
E(ρτ (X − u)) (2)

= min
u

(τ − 1)

∫ u

−∞
(x− u)dFX(x)

+τ

∫ ∞
u

(x− u)dFX(x).

Set the derivative of the expected loss function to 0 and let qτ
be the solution of the following equation,

0 = (1− τ)

∫ qτ

−∞
dFX(x)− τ

∫ ∞
qτ

dFX(x). (3)

This equation reduces to

FX(qτ ) = τ. (4)

Thus qτ is τ ’th quantile of the stochastic variable X.
The τ sample quantile can be found by solving the mini-

mization problem:

q̂τ = arg min
q∈R

n∑
i=1

ρτ (xi − q) (5)

= arg min
q∈R

(1− τ)
∑
xi<q

(xi − q) + τ
∑
xi≥q

(xi − q)

 .
Solving this minimization problem for a suitable number

of quantiles the marginal cumulative density function and
its inverse can now be estimated. Notice here, however, that
this formulation does not allow for the density to depend
on external regressors. This is remedied by introducing the
conditional quantile regression.

B. Conditional quantile regression density estimation

Let the τ ’th conditional quantile function be given by
QX|Z(τ) = Zβτ . Given the distribution function of X , βτ
can be obtained by solving

βτ = arg min
β∈Rk

E(ρτ (X − Zβ)). (6)
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The sample analog can be solved, which yields the estimator
of βτ , i.e.,

β̂τ = arg min
β∈Rk

n∑
i=1

(ρτ (Xi − Zβ)). (7)

Solving this minimization problem for a suitable number of
quantiles we obtain estimates of parameter values in the model
for each specific quantile. Again, collecting these quantiles the
marginal cumulative density functions can be estimated. While
in this specific case QX|Z(τ) is linear this is in general not a
requirement.

C. Copula estimation

Consider a random vector (X1, X2, . . . , Xd). Suppose its
margins are continuous, i.e. the marginal CDFs Fi(x) =
P[Xi ≤ x] are continuous functions. By applying the probabil-
ity integral transform to each component, the random vector

(U1, U2, . . . , Ud) = (F1(X1), F2(X2), . . . , Fd(Xd)) (8)

has uniformly distributed marginals.
The copula of (X1, X2, . . . , Xd) is defined as the joint

cumulative distribution function of (U1, U2, . . . , Ud):

C(u1, u2, . . . , ud) = P[U1 ≤ u1, U2 ≤ u2, . . . , Ud ≤ ud]. (9)

The copula C contains all information on the depen-
dence structure between the components of (X1, X2, . . . , Xd)
whereas the marginal cumulative distribution functions Fi
contain all information on the marginal distributions.

The importance of the above is that the reverse of these steps
can be used to generate pseudo-random samples from general
classes of multivariate probability distributions. That is, given
a procedure to generate a sample (U1, U2, . . . , Ud) from the
copula distribution, the required sample can be constructed as

(X1, X2, . . . , Xd) =
(
F−11 (U1), F−12 (U2), . . . , F−1d (Ud)

)
. (10)

The inverses F−1i are unproblematic as the Fi were assumed
to be continuous. The above formula for the copula function
can be rewritten to correspond to this as:

C(u1, u2, . . . , ud) = P[X1 ≤ F−11 (u1), (11)
X2 ≤ F−12 (u2), . . . , Xd ≤ F−1d (ud)].

In this implementation a Gaussian copula is used. This
copula is particularly simple to estimate due to the fact that
it is completely characterized by the covariance matrix of the
associated multivariate normal distribution. We have that(

Φ−1(U1),Φ−1(U2), . . . ,Φ−1(Ud)
)
∼ NRd(0,Σ), (12)

where Φ−1 is the inverse cumulative density function for the
standard normal distribution and Σ describes the covariance
matrix that characterizes the Gaussian copula. Thus we can
estimate Σ with a method for estimating the covariance matrix
for a normal distribution. The sample covariance matrix is
given by

Σ̂ =
1

n− 1

n∑
i=1

(xi − x)(xi − x)T, (13)

where xi is the i-th observation of the d-dimensional random
vector, and

x =

 x̄1
...
x̄d

 =
1

n

n∑
i=1

xi, (14)

is the sample mean.

IV. PYTHON IMPLEMENTATION

The model implementation consists of two models, one
day-ahead model, predicting hourly power production for the
coming day, and one intra-day model, predicting 15 minute
power production up to the following 5 hours. The main
difference between the two models are that the day-ahead
model constructs a marginal density for every hour of the
comming day whereas the intra-day model de-seasons the
data and constructs the marginal densities for each lead time
instead. This section explains how to run the different models,
however further details of the code functionality is included in
the code as comments and the authors suggest looking through
these comments for further details of the actual functionality.

A. The Sample Data

The day-ahead model (either wind or solar power) uses
hourly observation of generated power along with day-ahead
forecasts of power generation. The forecasts consist of one
point forecasts for every location for every hour of the day.

The intra-day model (either wind or solar power) uses 15-
minute observations of generated power along with intra-day
forecasts of power generation. The forecasts for the intra-day
model overlap such that every 15 minutes point forecasts are
generated for the next 5 hours with a time resolution of 15
minutes.

B. The Day-Ahead Model

A short introduction to running the day-ahead model is
provided. Loading the data is done by the python script
ReadingData.py. The model is fitted to the data by the
python script ConditionalQuantileRegression.py.
The predictive quantiles for the generated power are estimated
and are then used to construct a predictive cumulative density
function and its inverse. To obtain uniform marginals, the
generated power observations are transformed by the predic-
tive cumulative density functions. These uniform marginals
are then converted to standard normal marginals and the
covariance matrix is estimated as the sample covariance. Thus
the model is specified.

In Figure 3 the estimated correlation between different
locations at different hours of the day are show for the day-
ahead solar model. The correlation matrix is ordered such that
location 1 hours 1-24 is in the top left. below that is location
2 hours 1-24 and so on.

The day ahead model can be simulated by the python script
SimulationConditionalQuantileRegression.py.
This is done by simulating normally distributed variables
with the estimated interdependence structure and reversing
the procedure specified above.
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Fig. 3. Correlation matrix describing the interdependence structure. Warmer
colors equal a high correlation.

C. The Intra-Day Rolling Model

A short introduction to running the intraday model
is provided. The data is loaded by the python script
ReadingDataRolling.py. The model is fitted to the data
by the python script RollingQuantileRegression.py.
First the observations and predictions are transformed to a
stationary domain. The predictive quantiles for the transformed
observations are estimated via quantile regression which in
turn are used to construct a predictive cumulative density
function and its inverse. To obtain uniform marginals, the
transformed observation on the stationary domain are trans-
formed once more by the predictive cumulative density func-
tions. These uniform marginals are then converted to standard
normal marginals and the covariance matrix is estimated as
the sample covariance. Thus the model is specified.

The day ahead model can be simulated by the python script
SimulationRollingQuantileRegression.py. First
the uniforms with the proper interdependence structure is
simulated. These are then converted to de-seasoned domain
by using the inverse predictive cumulative density functions
estimated via quantile regression. Further the predictions on
the de-seasoned domain are transformed to the original power
domain via a transformation. The intra-day model is different
from the day-ahead model in the sense that the forecasts are
overlapping. The simulated trajectories are further consider in
the model output section.

V. MODEL OUTPUTS

Model outputs that can be extracted from the models include
quantiles, moments, prediction intervals, predictive densities
and simulated trajectories. Here we focus on the simulated
trajectories.

A. Day-Ahead Trajectories

The day-ahead simulated trajectories span the next day with
an hourly time resolution. In Figure 4 such trajectories are
shown for wind power generation at the location APS. Along
with the 3 simulated trajectories in blue the predicted power is
shown in green. The actual realization is shown in red. Notice
how both the simulations and the realization deviate quite a

lot from the prediction already in the initial hour. This is most
likely due to the quality of the prediction, in that it does not
use past observations of power generation to predict the output
power. As such the models could be substantially improved by
a better point prediction of the generated wind power. Notice
also the auto-correlation in the residuals from the predicted
power which is an important feature for simulation tool as to
provide reliable multi-horizon trajectories.

Fig. 4. Day-ahead wind power generation is shown on vertical axis and hour
on horizontal axis. Prediction in green, scenarios in blue and realization in
red.

Similarly for solar power, Figure 5 represent simulated tra-
jectories for day-ahead solar power generation for the location
APS. Again the simulations are in blue, the prediction is in
green and the realization is in red. Notice here how the diurnal
effect is captured by the simulated trajectories. The yearly
seasonality enters indirectly into the model through the point
predictions of solar power generation.

Fig. 5. Day-ahead solar power generation is shown on vertical axis and hour
on horizontal axis. Prediction in green, scenarios in blue and realization in
red.
B. Intra-Day Trajectories

The intra-day simulated trajectories span the following 15
minutes to 5 hours with a time resolution of 15 minutes.
In Figure 6 simulate trajectories are shown for wind power
generation at the location APS. Three simulated trajectories
are shown in blue, the predicted power in green and the actual
realization is shown in red. As for the day-ahead models,
the simulations and the realization deviate quite a lot from
the prediction already in the first step, that is 15 minutes
ahead. Again the likely explanation is the quality of the point
prediction, in that it does not use past observations of power
generation to predict the output power nor is it post-processed
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in a statistical sense to correct for possible bias. As for the day-
ahead models, the intra-day models predictive performance
could be substantially improved by better point predictions
of generated power. Notice again the auto-correlation in the
residuals from the predicted power.

Fig. 6. Intraday wind power generation is shown on vertical axis and lead
time on horizontal axis. Prediction in green, scenarios in blue and realization
in red.

Simulations from the intra-day solar power model are shown
in Figure 7 for the location APS. Again the simulations are in
blue, the prediction is in green and the realization is in red.
In Figure 7 the trajectories simulation starts at 7:00 am and
spans the next 5 hours. We see that the diurnal variation is
captured nicely by the model.

Fig. 7. Intraday solar power generation is shown on vertical axis and lead
time on horizontal axis. Prediction in green, scenarios in blue and realization
in red.

VI. CONCLUSION

The work presented here provides a generic, accessible
and modular framework for providing probabilistic spatio-
temporal forecasts. From this model it is possible to extract
predictive quantiles, moments, prediction intervals, predictive
densities and to simulate trajectories, all in a setting that
preserves the distributions of and spatio-temporal dependence
in the observations. A versatile and state-of-the-art tool for
probabilistic spatio-temporal forecasting is provided. The tool
provides models for day-ahead as well as intra-day forecasts
for both wind and solar power. The model is provided along
with a data set pertaining to the Western Interconnection in the
United States. However, the implementation is not dependent
on specific data sets, time resolution, locations or forecast

horizons and the approach can be readily adapted to other
data sets. The code provided is open source and free to use
under an open source BSD 3-clause.
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