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Introduction

Motivation

Potential for energy and economic optimisation in industrial plants and district heating systems by using
large scale heat pumps.

� Complex systems: economic optimum depends on both heat pump performance, investment, expected
operation hours, taxation and fuel cost.

� Pinch- or plant optimisation specialists are not necessarily experts on best available heat pump
technology, and may thus be assisted by decision support tools.
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Introduction

Motivation

Potential for energy and economic optimisation in industrial plants and district heating systems by using
large scale heat pumps.

� Complex systems: economic optimum depends on both heat pump performance, investment, expected
operation hours, taxation and fuel cost.

� Pinch- or plant optimisation specialists are not necessarily experts on best available heat pump
technology, and may thus be assisted by decision support tools.

Working domains

� Introduced in ”Comparison of the working domains of some compression heat pumps and a
compression-absorption heat pump” by Brunin et al. (1997)

� Economic feasibility integrated by including two physical constraints
� Technical constraints are similar to operating envelope for individual components

� Technical and economical working domains for single stage industrial heat pumps.
� R134a, R290, R600a, R717-LP, R717-HP and R744 in Ommen et al. (2015a)
� Ammonia-water hybrid absorption compression HP in Jensen et al. (2015)
� R600a and R717-HP in series in Ommen et al. (2015b)
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Introduction

Working domains in literature
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(a) Example of working domain with VHC and COP to
represent economic feasibility (Brunin et al., 1997)
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(b) Example of working domain with economic and
technical constraints (Ommen et al., 2015a).

3 DTU Mechanical Engineering 4th International Symposium on Advances in Refrigeration and Heat Pump Technology 19.11.2015



Method

Outline for Presentation

• Introduction
• Motivation

• Working domains in literature

• Method
• Vapour compression heat pump

• Economic assumptions

• Heat exchanger design and calculation

• Influence of key economic assumptions on NPV

• Examples of working domains
• Single stage vapour compression HP

• Ammonia-Water Hybrid Compression-Absorption HP

• Vapour compression HPs in series
• Vapour compression HPs in series

• COP and NPV

• Comparison with working domain for single stage VCHP

• Further steps
• A second economic case

• Two stage VCHP configurations

• Discussion
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Method

Vapour compression heat pump
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Method

Vapour compression heat pump in finite reservoirs

Typically used operational parameters for heat pump performance:

Type of data Value Unit Designation
Efficiency 0.8 / Compressor isentropic efficiency

0.8 / Compressor volumetric efficiency
0.95 / Electric motor efficiency

Temperature 5 K Evaporator superheat
5 K Minimum pinch point in heat exchangers
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Method

Economic assumptions

� Heat pump load: 1000 (kW)

� Operating time 3500 (h/year)

� Lifetime 15 (years)

� Natural gas burner efficiency 0.9 (-)

� Interest rate of 7 (%)

� Inflation rate of 2 (%)

� NPV and PBT based on gas boiler replacement

� Component investment cost based on Danish
prices

� Danish electricity and gas prices were used

� Natural gas burner investment and O&M not
considered

Correlations for component cost of the type: PECY = PECW

(

XY

XW

)α

:

Component type PECW (e) XW α(−) Source

Compressor R600a 19850 279.8 (m3 h−1) 0.73 trade business 1 2

R717-HP NDA NDA NDA manufacturer 4

Electrical motor R600a 0 0 0 incl. in compressor 1 2

R717-HP 10710 250 (kW) 0.65 trade business 1

Receiver R600a 1444 0.089 (m3) 0.63 trade business 1

R717-HP 1934 0.089 (m3) 0.66 trade business 1

Plate heat exchanger R600a 15526 42 (m2) 0.8 trade business 1 2 3

R717-HP NDA NDA NDA manufacturer 5

1 (H. Jessen Jörgensen A/S (2013)) 2 (FK Teknik A/S (2013)) 3 (Ahlsell Danmark ApS (2013))
4 (Johnson Controls, Inc. (2013)) 5 (SWEP International AB (2013))
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Method

Heat exchanger design and calculation

� All HEX are plate type with chevron corrugation

� Commercial plate sizes were applied

� Mass and liquid/vapour maldistribution was neglected

� Counter flow arrangement

� Heat transfer and pressure drop correlations from literature
was applied

Component Media Zone Heat transfer Pressure drop
Condenser H2O Martin (1996) Martin (1996)
Condenser Rxxx vapour only: Martin (1996) Martin (1996)

two-phase: Yan et al. (1999) Yan et al. (1999)
transcritical: Martin (1996) Martin (1996)
liquid only: Martin (1996) Martin (1996)

Evaporator H2O Martin (1996) Martin (1996)
Evaporator Rxxx two-phase: Yan and Lin (1999) Yan and Lin (1999)

vapour only: Martin (1996) Martin (1996)
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Method

Influence of key economic assumptions on NPV
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Examples of working domains

Outline for Presentation

• Introduction
• Motivation

• Working domains in literature

• Method
• Vapour compression heat pump

• Economic assumptions

• Heat exchanger design and calculation

• Influence of key economic assumptions on NPV

• Examples of working domains
• Single stage vapour compression HP

• Ammonia-Water Hybrid Compression-Absorption HP

• Vapour compression HPs in series
• Vapour compression HPs in series

• COP and NPV

• Comparison with working domain for single stage VCHP

• Further steps
• A second economic case

• Two stage VCHP configurations

• Discussion
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Examples of working domains

Examples of working domains for single stage vapour compression HP

Four different sink and
source temperature glides
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Examples of working domains

Examples of working domains for single stage vapour compression HP

Four different sink and
source temperature glides
investigated
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Examples of working domains

Ammonia-Water Hybrid Compression-Absorption HP
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Examples of working domains

Examples of working domains for Ammonia-Water Hybrid
Compression-Absorption HP

Four different sink and
source temperature glides
investigated
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Examples of working domains

Differences in investment cost for VCHP and HACHP
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Figure: Investment cost for VCHP and HACHP at ∆Tsink=10 K / ∆Tsource=10 K.
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Vapour compression HPs in series

Outline for Presentation

• Introduction
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Vapour compression HPs in series

Vapour compression HPs in series
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Vapour compression HPs in series

COP and NPV of VCHPs in series
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Figure: Changes to COP and NPV for four serial connected HP schemes with even heat load for serial
connected units. COP and NPV are calculated for R717-HP units in series.
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Vapour compression HPs in series

Load sharing for two vapour compression HPs in series
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Vapour compression HPs in series

Comparison with working domain for single stage VCHP

Two different serial
connected VCHP
investigated
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Further steps

Outline for Presentation

• Introduction
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Further steps

Two economic cases (industrial and DH)
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Further steps

Two stage HP configurations

� Individual models for each component

- A high amount of configurations
possible.

- Generic solutions to optimal
configurations are needed.

- High amount of free variables, eg.
oil integration only constrained to
intervals.

M

(a) Heat exchangers not fixed connection to heat sink
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Further steps

HP configurations in series

M M

(a) Possibilities for creating various two stage HP cycle layouts
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Discussion

Important findings from analysis

The analysis of working domains shows, that sink temperatures of up to 120 - 140 °C and temperature lifts
40 - 60 K may be obtained using VCHP and HACHP technologies.

� The NPV is favourable for the technologies utilising R717, but a technical constraint (the discharge
temperature) limited the applicability in terms of temperature lift.

� Serial connection of VCHP increases the COP, but at decreased NPV. If more than one heat pump is
needed due to capacity constriants, the increase in COP from serial connection of the considered units
should be included.

� VCHP in series increases the working domain of current technical and economic constraints. Either due
to reduction in resulting discharge temperature of compressor or mixed working fluids selection to
obtain combination of certain characteristics.

Further work and analysis is required to obtain generic tool, as a high amount of configurations are possible.

� Input are welcome for other HP configurations, changed temperature sets or economic cases.
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Thank you for your attention

� If questions, new ideas or interest in new projects: tsom@mek.dtu.dk

Work funded by:

� Copenhagen Cleantech Cluster

� Dong Energy

� DTI

� DTU

� EUDP
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