The Small Colony Variant Of Listeria Monocytogenes Is More Tolerant To Antibiotics And Grows Better Within Caco-2 Epithelial Cells Than The Wild Type - DTU Orbit (08/11/2017) The Small Colony Variant Of *Listeria Monocytogenes* Is More Tolerant To Antibiotics And Grows Better Within Caco-2 Epithelial Cells Than The Wild Type

Introduction: Small Colony Variants (SCV) of bacteria are a slow growing phenotype with a pinpoint colony morphology and several specific characteristics. In several pathogens they have been linked to recurrent and chronic infections. SCV of *Listeria monocytogenes* can be generated when exposed to sublethal concentration of triclosan, and in this study, we characterized their tolerance to antibiotics and ability to invade and survive in host cells. Results: Complementation assays showed that SCV E18 phenotype is caused by a mutation in the heme biosynthesis pathway. Although no difference in MIC, the SCV E18 survived significantly better than the wild type N53-1 (one and three log₁₀ higher CFU/ml) when exposed to super-MIC concentrations of most tested antibiotics, indicating a persister-like phenotype of the SCV. While SCV E18 displayed sensitivity towards oxygen, it was significantly more tolerant of 20mM H₂O₂ as compared to the wild type, with 6.3 log₁₀ CFU/ml and 3.7 log₁₀ CFU/ml, respectively. The SCV E18 had lower survival rate in unactivated macrophages, however, it was able to survive and multiply to almost 100-fold higher CFU/ml than the wild type in CaCo-2 epithelial cells. Conclusions: This study is the first to demonstrate that the persister-like SCV phenotype of *L. monocytogenes* potentially could complicate treatment by causing an increase in tolerance towards most of the clinically relevant antibiotics, while also enabling the bacteria to persist in the protected intracellular environment.

General information

State: Published Organisations: Department of Systems Biology, Bacterial Ecophysiology and Biotechnology Authors: Curtis, T. (Intern), Gram, L. (Intern), Knudsen, G. M. (Intern) Pages: 55-55 Publication date: 2015

Host publication information

Title of host publication: The Danish Microbiological Society Annual Congress 2015 : Programme & Abstracts Place of publication: Copenhagen

Main Research Area: Technical/natural sciences

Conference: The Danish Microbiological Society Annual Congress 2015, Copenhagen, Denmark, 09/11/2015 - 09/11/2015 Publication: Research - peer-review > Conference abstract in proceedings – Annual report year: 2015