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ABSTRACT 

Numerical models generating actual fiber architecture by including parameters such as the fiber 

geometry and arrangement are a powerful tool to explore the relation between the fiber architecture 

and mechanical properties. The generation of virtual architectures of fibrous materials is the first step 

toward the computation of their physical properties. In this work, a realistic 3D model is developed to 

describe the architecture of a complex fiber structure. The domain of application of the model could 

include natural fibers composites, wood fibers materials, papers, mineral and steel wools and polymer 

networks. The model takes into account the complex geometry of the fiber arrangement in which a 

fiber can be modeled with a certain degree of bending while keeping a main fiber orientation. The 

model is built in two steps. First, fibers are generated as a chain of overlapping spheres or as a chain of 

overlapping sphero-cylinders. At the end of the first step, a system of overlapping fibers is obtained. In 

order to obtain a hard-core configuration where fibers cannot overlap other fibers, we use an iterative 

method called the force-biased algorithm. It applies virtual forces on each point of the fiber: a 

repulsion force to suppress the overlap between two fibers and a bending and stretching force to 

ensure that the fiber structure is kept unchanged. The model can be used as the geometrical basis for 

further finite-element modelling. 

 

1 INTRODUCTION 

The generation of a packing of objects in a space can either be designated as a soft-core or hard-

core process. In a soft-core model, the overlap of the packed object is allowed which is not realistic 

from a physical point of view. However the simplicity of implementation of those processes has made 

it a quite popular tool for the microstructure generation of complex materials. One of the first soft-core 

processes generating a packing of fibers was introduced by Matheron [1]. It made use of dilated 

Poisson lines to create straight infinite cylinders [1]. Later, lines were generated by a Poisson process 

in [2–5] to model respectively the microstructure of a nonwoven material, the gas diffusion layer of 

proton exchange membrane fuel cells and the fiber structure of thermal and acoustic materials. Soft-

core models were developed further to consider fibers with a more complex geometry. For example, to 

model curved fiber system, several soft-core processes include bending of the fibers through random 

walks whose direction are controlled by von Mises-Fischer distribution [6, 7]. Others have introduced 

bending of the fibers by interpolating points with B-splines [8, 9]. 

The random sequential adsorption (RSA) model is probably the most commonly used method to 

construct hard-core systems because its principle is relatively simple even though its implementation 

can be a bit tricky for objects with a complex geometry. The RSA scheme iteratively generates objects 

and tries to place them in such a way that they do not intersect. Initially created for the packing of 
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spheres, the process was then applied on cylinders by Feder [10].  Bezrukov and Stoyan proposed an 

algorithm for the generation of random packing of ellipsoids of revolution [11]. Contacts between 

ellipsoids are detected and a force biased algorithm is applied to translate and rotate the particles that 

overlap.  Both approaches achieve relatively low volume fraction (10 – 15 % for isotropic orientation 

with a fiber aspect ratio of 10).  Recently, Naddeo et al. used an RSA based microstructure generation 

method  with fibers shaped as cylinders but very little details on the overlap detection was provided 

[12]. On the other hand, in [13], the implementation of the contact detection of two cylinders is given. 

The problem of the RSA based method is that for fibers with an isotropic orientation distribution and 

high aspect ratio, only low volume fractions can be achieved as a jamming limit is reached when no 

new positions can be found. Modifications of the RSA algorithm can be made so that when a fiber 

position is rejected because it overlaps another fiber with a certain distance, a translation of this 

distance is applied to the fiber. Using this algorithm, microstructures with volume fractions up to 38 

and 29% and randomly oriented fibers with aspect ratios of 10 and 30, respectively, were generated 

[14].      

 

Another type of model based on the deposition of straight fibers can achieve hard-core configurations 

[15]. In that model, fibers are deposited in an iterative manner from the top of the cell and whenever 

they enter in contact with another fiber, they stop their falls. This approach gives high fiber volume 

fraction, but the fiber orientation is limited to the plane. The deposition technique is widely used for 

paper-like materials where the assumption of an in-plane fiber orientation distribution is quite realistic 

[16–18]. The fiber bending model was also included in [19]. When an overlap is detected, fibers are 

bent to accommodate the intersection with other fibers. Straight fibers are modelled as convex prism 

with two dodecagon end-faces while several convex irregular polyhedral are used in case of curved 

fibers. Wang et al. modeled non-woven fiber-webs by a similar deposition algorithm where the 

orientation was limited to a plane [20].  

Some other hard-core models took inspiration in molecular dynamics simulations. For example, 

Ghossein et al. used an event-driven molecular dynamics algorithm to generate spheres and ellipsoids 

with a very high aspect ratio (i.e.>10)  in a hard-core packing configuration [21, 22]. Recently, 

Altendorf et al. presented a model combining some of the ideas discussed previously [23]. Firstly, 

bended fibers are modelled as ball chains by a random walk [24]. Secondly, similar to Wirjadi [6] and 

Karkkainen et al. [7] the orientation distribution can be controlled in spite of the bending. Thirdly, the 

force-biased approach is applied for sphere packing [25] and [11] and fourthly, the design of energies 

in molecular dynamics is used to define the forces [25]. It produces a random hard-core fiber model 

with a controllable bending and high volume fraction. The level of bending is controlled by two 

parameters in the multivariate von Mises Fisher distribution. As mentioned earlier, the fibers are 

represented as chains of spheres with defined centers and radii. The spheres are connected through 

random walk paths. This first step gives a soft-core system of bending fibers. To produce a hard-core 

configuration, a force biased approach is used. Two kinds of forces are applied to the sphere centers: 

repulsion and recover forces. The repulsion force prevents the overlap of fibers and the recover force 

maintains the sphere chain structure. Gaiselmann et al. also represented the fibers by a chain of 

spheres but generated the fibers midpoints with a Poisson point process and the fibers by random 3D 

polygonal tracks [26]. The overlap of the fibers was suppressed using a force-biased algorithm as well 

[25]. 

 

In the present work, a modified version of the algorithm from Altendorf et al. [23] is implemented. 

The modification includes the use of a chain of sphero-cylinders for the fiber model, the possibility of 

modeling the fiber bending using spline interpolation and the introduction of more realistic forces for 

the transformation into a non-overlapping fiber network. 

 

2 GENERATION OF A SOFT-CORE FIBERS NETWORK 

2.1 Fiber model 

2.1.1 Chain of spheres 
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The first model studied in this work is the one adopted from [23, 27] where a fiber is modelled as a 

chain of overlapping spheres. The coordinates of the first sphere center of the chain are generated 

according to a uniform law in the intervals [0 − xmax], [0 − ymax] and [0 − zmax] where xmax, ymax 

and zmax are the length of the sides of the observation cell chosen for the generation. The coordinates 

of a point  i ∈ ℕ\{0} representing the center of a sphere belonging to the fiber are generated iteratively 

from the coordinates of their previous neighbor 𝐱𝐢−𝟏: 
 

 𝐱𝐢 = 𝐱𝐢−𝟏 + 𝛍𝐢 ∙
ri

2
 (1) 

 

ri and 𝛍𝐢 are respectively the fiber radius and the direction of the fiber at the point i. A realization of a 

fiber is shown in the figure below (Fig. 1). 

 
Figure 1: Fiber modelled as a chain of spheres 

 
2.1.2 Chain of sphero-cylinder 

A new discretization is proposed here where the fiber is modelled as a chain of overlapping sphero-

cylinders. The generation process is similar to the one proposed in section 2.1.1. The only difference is 

the length of the step between two points. The first spherical part of the sphero-cylinder overlaps with 

the spherical part of the previous sphero-cylinder. If μi designates the direction, li the height of the 

cylinder part and  xi−1 the position of its previous neighbour, then the position of the point i is: 
 

 𝐱𝐢 = 𝐱𝐢−𝟏 + 𝛍𝐢 ∙ li (2) 

 

The geometry of the sphero-cylinder and a fiber modelled by a walk of points obtained using the 

sphero-cylinder model are represented in the figure below (Fig. 2). 

 

 

Figure 2: Fiber modelled as a chain of sphero-cylinders 
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2.2 Models for the fiber orientation 

2.2.1 Main fiber orientation 

The distribution proposed in [2] was chosen to define the orientation of the fibers. The density 

associated to this distribution is a function pβ(θ, φ) of elevation θ ∈ [0, π) and azimuth φ ∈ [0, π) : 
 

 
pβ(θ, φ) =

1

4π

β sin θ

(1 + (β2 − 1) cos θ)3/2
 (3) 

 

β ∈  ℝ +\{0} is the anisotropy parameter. We can notice that the distribution is independent from φ. 

The angles definition and a plot of the probability density function for two values of  β is given in Fig. 

3. 

 

The case β = 1 describes an isotropic fiber system and results in the uniform distribution on the 

sphere. For increasing β the fibers tend to be more and more parallel to the xy-plane. For β → 0, the 

distribution concentrates around the z-axis.  

 

To sample directions selected from the distribution, the inverse cumulative distribution G(θ) is 

needed. Indeed, if u is a uniform variable on [0,1], then G−1(u) follows the distribution given by G.    

The cumulative distribution G(θ) is given by: 
 

 
G(θ) =

1

2
−

β

2√cos−2 θ + (β2 − 1)
 (4) 

 

And the inverse of G(θ) is: 
 

 
G−1(x) = cos−1 (

x

√x2 − βx2 + β2
) (5) 

 

The following procedure is applied: 

1) x1 and x2 are sampled from a uniform distribution in (0,1) 

2) Find θ such that x1 = G(θ): θ = G−1(x1) 

3) Find φ such that x2 =  F(φ): φ = 2πx2  

 

 

Figure 3: Angle definition and probability density function for the β distribution with β = 10 and 

β = 0.1  
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Figure 4 shows different realization of an overlapping fiber network with different values of β. 

 
Figure 4: Top: Realization with β = 0 (left), β = 100 (middle) and β = 1 (right). Bottom: 

corresponding directions on the unit sphere 

 

2.2.2 Fiber bending using von-Mises Fischer distribution 

 
The von-Mises Fischer (vMF) distribution is a well-known distribution used to describe the 

orientation of objects with a preferred direction and a reliability parameter. The probability density 

element of a vMF distribution for a vector u with a preferred direction vector μ and a reliability 

parameter κ is: 
 

 f(u|μ, κ) =
κ

2π(eκ − e−κ)
eκμTu (6) 

 

We present in table 1 the algorithm for sampling a vector from a vMF distribution. Details of the 

implementation can be found in [28, 29]. 

 

Kärkkainen et al. and later Altendorf and Jeulin have extended the univariate von Mises-Fischer 

distribution to a multivariate one in order to make use of two preferred directions and two reliability 

parameters [7, 23]. One of the preferred directions is the main fiber orientation while the other is set to 

be the direction of the previous element of the fiber.  

 

The probability density function of a bivariate von Mises-Fischer distribution for a sampled direction 

𝐮 with preferred directions 𝛍𝟏 and 𝛍𝟐 and corresponding reliability parameters , κ1 and κ2 is: 
 

 
f(u|𝛍𝟏, κ1, 𝛍𝟐, κ2) =

|κ1𝛍𝟏 + κ2𝛍𝟐|

2π(e|κ1𝛍𝟏+κ2𝛍𝟐| − e−|κ1𝛍𝟏+κ2𝛍𝟐|)
e(κ1𝛍𝟏

T𝐮+κ2𝛍𝟐
T𝐮)T𝐮 (7) 

 

To generate random directions following a bivariate von Mises-Fischer distribution, we use the same 

algorithm as presented before as the bivariate function can be written as a classical von Mises-Fischer 

distribution by setting: 
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 κ = |κ1𝛍𝟏 + κ2𝛍𝟐| and 𝛍 =
κ1𝛍𝟏+κ2𝛍𝟐

κ
 (8) 

Table 1: Sampling a vector from a vMF distribution 

Algorithm 1  

A. Define a vector 𝐰𝐤 with mean direction 𝛍 = (0,0,1)T distributed according to a vMF distribution 

B. 𝐰𝐤  = (√1 − W2V, W)T where 𝐕 and W are independent random variables, 𝐕 ∈ ℝ2 is a uniformly 

distributed vector on the unit circle, and W ∈ [−1; 1] follow the density: f(v|κ) =
κ

(eκ−e−κ)
eκv  

1. Compute the cumulative function of f: F(x) =
κ

(eκ−e−κ)
(

1

κ
eκx −

1

κ
e−κ) 

2. Compute the inverse of F: F−1(y) =
1

κ
log (e−κ + κ

eκ−e−κ

κ
y)  

3. Draw a scalar y from a uniform distribution in the interval (0,1)  

4. Compute W: F−1(y) = W 

5. Draw a variable 𝐕  from a uniform distribution on the unit circle 

6. Compute 𝐰𝐤 = (√1 − W2𝐕, W)T 

C. Apply a rotation matrix to generate a vector with a mean direction other than (0,0,1)T 

 

2.2.3 Bending introduced by splines 

In this approach, a line is generated in 3D using the orientation distribution defined in 2.2.1 and 

curvature points are added around this line by adding a deviation parameter to points belonging to the 

line. 
 

 

𝐩𝟐𝐢 = 𝐩𝟏𝐢 + ∆𝐬 = (

x1i

y1i

z1i

) + (

∆sx

∆sy

∆sz

) (9) 

 

The points are then used as control points to generate a cubic spline. The degree of curvature and 

tortuosity of a fiber can be controlled by adjusting the number of points that deviates from the line and 

the deviation parameter, ∆𝐬. 

 

2.3 Generation of a system with overlapping fibers 

A system with overlapping fibers is created using either the chain of spheres or chain of sphero-

cylinders approach. The bending and orientation of the chain is described by the distribution described 

in section 2.2. The algorithm for the generation of a system of overlapping fibers is given in table 2. 

 

Table 2: Generation of a system of overlapping fibers 

Algorithm 2:  

A. Ask for inputs for the fiber main orientation (β), the fibre bending (κ1, 𝛍𝟏, κ2, 𝛍𝟐 or ∆𝐬), the 

fibre aspect ratio, the fiber volume fraction (Vf) and the size of the cell  

B. Initialize variables (current volume  V, array containing the future fibre data points) 

C. WHILE ‖V − Vf‖ ≤ small number 

1. WHILE ‖desired aspect ratio − current aspect ratio‖ ≤ small number  
i. 𝐱𝐢 = 𝐱𝐢−𝟏 + 𝛍𝐢 ∙ li 

2. END WHILE 

3.  IF points exits through a face 

i. Create a periodic images 

ii. Delete element completely outside of the cell 

4. END IF 

D. END WHILE 
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At the end of this step, a periodic system with overlapping fibers is obtained with controlled 

orientation, bending and aspect ratio of the fibers. 

 

3 GENERATION OF A HARD-CORE FIBRE NETWORK  

To transform the overlapping system of fibers into a hard-core one, we use the force-biased 

algorithm first introduced by Moscinski et al. for the packing of hard spheres [25]. Virtual forces are 

applied on overlapping spheres until the overlap is completely prevented. Later, Altendorf and Jeulin 

extended the force-biased algorithm to fiber structure and added two additional forces that ensure that 

the fiber stretching and bending is constrained as well [23]. In this work, the expressions for the forces 

are expressed as a function of the material properties. The forces are applied by small increment until 

the total energy of the system reaches a minimum threshold level.  

 

3.1 Repulsion forces  

The force needed to repulse two objects overlapping is inspired from the Hertz contact between two 

hard surfaces where the overlap is treated as the deformation. 
 

 
Frepulsion = Kr (

r1r2

r1 + r2
) δ

3
2⁄  (10) 

 

The algorithm for the implementation of the repulsion force is presented in table 3. 

 

For a fast implementation of the repulsion force, the search of candidate points that are susceptible to 

overlap is optimized by using a near neighbor list [30]. The cell containing the fibers is divided into 

smaller sub-cells. The neighbors of a point are searched in the cell where the point belongs as well as 

the adjacent cells. 

 

Table 3: Repulsion force for two spheres or sphero-cylinders that overlaps 

Algorithm 3 

A. Compute distance between the two centers or minimal distance between the axis of the sphero-

cylinders di,j 

B. Calculate the overlap:  δ = max(0, ri + rj − di,j) 

C. Calculate the force and potential  

1. IF  di,j = 0 

ii. Create a unit random direction vector 𝐮 = 2 ∙ rand(3,1) − 1  

i. 𝐅𝐫𝐞𝐩𝐮𝐥𝐬𝐢𝐨𝐧 = Kr (
r1r2

r1+r2
) δ3/2𝐮  

2. ELSE 

ii. 𝐅𝐫𝐞𝐩𝐮𝐥𝐬𝐢𝐨𝐧 = Kr (
r1r2

r1+r2
) δ

3

2 ∙ (
xj−xi

‖xj−xi‖
) 

3. END IF 

 

3.2 Bending and tension forces 

To ensure that the fiber keeps its structure while being under the action of the repulsion forces, two 

forces are introduced that constraint the relative motion of the elements of the fibers. The first one is 

limiting the stretching of the fiber axis. It acts like a spring with a constant KS and is a function of the 

elongation: 
 

 
Fstretching =  

KS

l0

(
li − l0

l0

) (10) 

 

where l0 is the intial distance between two elements (spheres or sphero-cylinders) and  li is the current 
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distance after the application of forces. The forces are applied at the centers of the spherical parts of 

the sphero-cylinder or at the centers of the spheres depending on the elements chosen for the 

discretization of the fiber.  

 

Under tensile load, the strain and the stress can be expressed as: 
 

 ε =
l0−li

l0
 and σ =

F

S
=

KS

l0πr2
(

li−l0

l0
) (11) 

 

By analogy with Hooke´s law, we identify the spring constant KS as:  
 

 KS = EFl0πr2
 (12) 

 

The bending of the three consecutives elements of a fiber is also constrained by another force acting 

like a torsional spring with a constant KB: 
 

 Fbending =  KB(θi − θ0) (13) 
 

where θ0 the intial angles between three consectutives points and θi the current angle. A simple 

system with three consecitive points (i, j, k) that can be either the centers of overlapping spheres or the 

centers of the spherical parts of the sphero-cylinders is displayed in the figure below (Fig. 5). 

 

 
Figure 5:  Representation of the system considered for the application of the forces 

 

We also seek to express the constant KB as a material parameter. Consider a fiber discretized in N 

elements (spheres or sphero-cylinders) clamped in one end and loaded with a force F in the other end. 

Assuming that the work in tension/compression is negligible, we show that the potential energy E is: 
 

 

E = ∑ (
1

2
KB(θi − π)2)

N−2

i=1

− Fδ (14) 

 

where δ is the deflection (Fig. 6). 

 

We assume small strains and expressed the deflection as the sum of the displacement as a function of 

the current angles θi: 
 

 x𝑖

 l0
= sin (π − θi) ≈ π − θi ⇒

δ

 l0
= ∑(N − i − 1)

N−2

i=1

(π − θi) (15) 

 

 

The beam is in equilibrium when the energy reaches a minimal value. Thus we derive the energy and 

solve θi for the equation 
∂E

∂θi
= 0 
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 ∂E

∂θi
= KB(θi − π) + Fl0(N − i − 1) = 0 ⇔ π − θi =

Fl0

KB

(N − i − 1) (16) 

 

Replacing (θ0 − θi) in equ. (13) and using the expression of the sum of squares: 
 

 δ

l0
= ∑

Fl0

KB
∙ (N − i − 1)

N−2

i=1

(N − i − 1) =
Fl0

6KB

(N − 2)(N − 1)(2N − 3) (17) 

 

Normalizing with the diameter D of the fibre: 
 

 δ

D
=

F

3
(

L

D
)

3

∙ (
D2

KBl0
) (1 −

l0

L
) (1 −

l0

2L
) (18) 

 

By analogy with the beam theory, we obtain an expression for the bending constant depending on 

material parameters: 
 

 δ

D
=

FD2

3EfI
(

L

D
)

3

=
F

3
(

L

D
)

3

∙ (
D2

KBl0
) (1 −

l0

L
) (1 −

l0

2L
) ⇔ KB =

EfI

l0
(1 −

l0

L
) (1 −

l0

2L
) 

 

(19) 

 

And if the length of the elements is negligible compared to the length of the fiber, we obtain:  
 

 
KB ≈

EfI

l0
 (20) 

 

 
Figure 6: bending of a discretized fiber 

 

3.3 Examples of hard-core fibers network 

 

Figure 7 shows the realization of two hard-core fibers networks. Their main characteristics are defined 

in table 4. We control the fiber radius distribution by drawing the values from a lognormal law. By 

adjusting the value of the scale parameter σ of the lognormal law, the spread of the distribution can be 

tuned. Based on the radius and the aspect ratio we calculate the total length of the fiber and the number 

of discretization points for the fiber model. 

 

Table 4: Parameter for fibers network generation 

 Fiber model 
Fiber volume 

fraction 

Aspect 

ratio 

Main fiber 

orientation (β) 
Bending 

A Sphero-cylinders 10 % 50 50 mvMF (κ1 = 5 and  κ2 = 500) 

B Spheres 10 % 50 50 mvMF (κ1 = 5 and  κ2 = 500) 

C Sphero-cylinders 10 % 50 50 splines 

D Spheres 10 % 50 50  splines 
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 Figure 7: Realization of hard-core fibers systems  

 
4    DISCUSSION & CONCLUSION 

We present here a modification of the algorithm originally proposed by Altendorf and Jeulin for the 

generation of a system of hard-core fibers [23]. In the modified algorithm, the fiber is modeled as a 

chain of sphero-cylinders rather than a chain of spheres. This implementation reduces the 

computational effort for the transformation of the overlapping system into a non-overlapping one as 

fewer points are considered when applying the forces. The bending of the fibers can be controlled 

using either a multivariate von Mises-Fischer distribution or a cubic b-spline interpolation. A near-

neighbor list is built to determine which points are susceptible to overlap. This increases significantly 

the speed of the algorithm. The forces applied during the transformation of the system into a non-

overlapping one are expressed as a function of material parameters and geometry. 
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