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We theoretically examine the role of Kerr nonlinearities for graphene plasmonics in nanostructures, specifically
in nanoribbons. The nonlinear Kerr interaction is included semiclassically in the intraband approximation. The
resulting electromagnetic problem is solved numerically by self-consistent iteration with linear steps using a real-
space discretization. We derive a simple approximation for the resonance shifts in general graphene nanostructures,
and obtain excellent agreement with numerics for moderately high field strengths. Near plasmonic resonances
the nonlinearities are strongly enhanced due to field enhancement, and the total nonlinearity is significantly
affected by the field inhomogeneity of the plasmonic excitation. Finally, we discuss the emergence of a plasmonic
bistability which exists for frequencies redshifted relative to the linear resonance. Our results offer new insights
into the role of nonlinear interaction in nanostructured graphene and paves the way for experimental investigation.

Nonlinear optical effects,1,2 facilitated by strong light-matter
interaction, are indispensable in modern photonics. Indeed, a
host of phenomena and applications arise at sufficiently high
field-strengths, owing to superlinear photon-photon response
mediated by strong light-matter interaction, ranging from fre-
quency conversion, through all-optical phase-modulation, to
ultra-fast switching, and is pursued in a broad range of plat-
forms.3–5

A perennial challenge in the discipline is to achieve signif-
icant nonlinear interaction at ever smaller excitation powers
and interaction volumes, whilst maintaining in-situ tunability
and control. In achieving this goal, the field of plasmonics,
describing the strong hybridization of the free electromagnetic
field with collective oscillations of conduction electrons, sug-
gests several promising avenues.6 In particular, the extreme
local field enhancements inherent to plasmonic excitations
amplify intrinsic nonlinearities considerably, allowing large
effective nonlinearities.

Nevertheless, plasmonic field-enhancement is fundamen-
tally limited by intrinsic Ohmic losses even in noble metals.
The advent of the two-dimensional material graphene has gar-
nered significant interest in the plasmonic community,7,8 in
part due to extremely large electron mobilities9–11 and con-
comitant extraordinary plasmonic field-enhancements,12 ex-
ceeding even the very large enhancements known from metal-
plasmonics. Furthermore, graphene has attracted much inter-
est also for its exceptional intrinsic nonlinear properties both
theoretically13–16 and experimentally.17–19 Building on this
compound-fortuity, a body of research is rapidly emerging at
the crossroad of nonlinear plasmonics and graphene.20–26

Very recently, the role of Kerr nonlinearities in infinitely
extended graphene has been studied,24 notably establishing
the existence of bistable solutions. In this paper we study theo-
retically an analogous Kerr nonlinearity but in nanostructured
graphene, specifically in nanoribbons – wherein plasmons,
unlike in the extended counterpart, are readily excited with-
out momentum-matching concerns, e.g. by normally incident
plane waves. We report an induced nonlinearity which is
strongly affected by the degree of inhomogeneity of the elec-
tric fields of the plasmon – a feature which is absent in the
corresponding extended system. Furthermore, we derive a
simple perturbative expression for the nonlinear resonance
shifts in general graphene nanostructures, and show that it is in

excellent agreement with full self-consistent calculations for
moderately high field strengths. Finally, we discuss the emer-
gence of plasmonic bistability in nanoribbons under normally
incident plane-wave excitation. First, however, we introduce
the two basic components needed for a nonlinear treatment of
graphene nanostructures, namely a material response model
and an exposition of the resulting electromagnetic problem.

Material response. For photon energies ~ω low compa-
rable with the Fermi energy εf, the response of graphene is
reasonably approximated by neglecting interband transitions.
In this case, the intraband response can be derived from the
Boltzmann equation. To third order in the perturbing field the
Kerr-corrected conductivity, i.e. the response oscillating at the
perturbing frequency, is24

σ(r) = σ(1)

[
1 − |E(r)|2/E2

(3)

]
, (1)

expressed in terms of the linear intraband conductivity σ(1) =

ie2εf/π~
2(ω + iγ) with loss-rate γ, and a third-order charac-

teristic field E2
(3) ≡ (8$2

(3))/(9ω
2)E2

sat linearly related to the
saturation field Esat ≡ εfω/evf through a loss-modified fre-
quency $2

(3) ≡ (ω + 1
2 iγ)(ω − iγ). Since the Kerr correction

is of the self-focusing type,23 its usage in finite structures
with inhomogeneous fields must be augmented to include a
saturating mechanism, or else suffer nonphysical run-away
self-focusing.27 Here we adopt the well-known two-level satu-
ration model, or, in other words, the [0/2] Padé approximant
of σ(r) consistent with Eq. (1)

σ(r) '
σ(1)(r)

1 + |E(r)|2/E2
(3)

+ σ(3)2γ(r). (2)

This model reproduces the third-order result of Eq. (1) in the
|E(r)|/Esat � 1 limit, while crucially exhibiting a sensible
behavior beyond this limit as well.28 Lastly, we include in
Eq. (2) a term σ(3)2γ(r) to account for a high-field loss mecha-
nism through two-photon absorption via the phenomenological
prescription suggested by Gorbach,23 via the dissipative correc-
tion σ(3)2γ(r) = −iα2γσ(1)|E(r)|2/E2

sat with α2γ ≈ 0.1 estimated
from measurements.19

Before proceeding we briefly discuss the limitations of the
material response assumed in Eq. (2). Firstly, the disregard
of interband effects limits our consideration to energies suf-
ficiently below ∼2εf. Secondly, nonlocality,29 edge-states,30
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and more generally atomistic features25,26,31,32 are excluded,
though they are important at small feature sizes. Consequently,
we restrict our considerations to nanostructures of character-
istic dimensions & 25 nm where these effects only weakly
perturb the intraband approximation.

Interacting response. In the quasistatic limit, the interacting
response of graphene can be deduced from three elements;
the Coulomb law, the continuity equation, and the current-
field relationship as specified by a conductivity-model. For a
nanostructure defined by a two-dimensional domain Ω (e.g. at
z = 0), these elements combine to form an integro-differential
equation for either the induced density or the total potential
φ(r). Here we choose the latter8

φ(r) =
i

4πε0ωW

∫
Ω

d2r′ V(r, r′)∇′ ·
[
σ(r′)∇′φ(r′)

]
, (3)

expressed in dimensionless coordinates r(′) = [x(′), y(′), z]t

normalized by a characteristic length W, with the Coulomb
interaction V(r, r′) = |r − r′|−1, and with differential operators
∇′ = [∂x′ , ∂y′]t. The conductivity σ(r) implicitly depends
on frequency – and in a nonlinear treatment also on the total
field E(r). The spatial dependence of the conductivity can
be conveniently expressed via a dimensionless occupation
function f (r) ≡ σ(r)/〈σ(1)〉 with 〈σ(1)〉 denoting the average
linear conductivity across Ω. Introducing operators Vg(r) ≡∫

dr′ V(r, r′)g(r′) and Dg(r′) ≡ ∇′· [ f (r′)∇′g(r′)] casts Eq. (3)
as an eigenvalue problem for the composite operator VD

λφ(r) = VDφ(r), (4)

with eigenvalues λ ≡ 4πε0ωW/i〈σ(1)〉, dictating the permitted
eigenfrequencies ω. Operators V and D find simple matrix-
forms in a discretized real-space basis in both the general 2D
case as well as in the 1D ribbon case, see Supplemental Ma-
terial (SM). The operator D is constructed so as to account
explicitly for a boundary condition of vanishing normal cur-
rent (or, equivalently, for the conductivity-discontinuity) at
the boundary ∂Ω. In the presence of an external potential
φext, the eigenvalue problem in Eq. (4) becomes an inhomoge-
neous equation through the addition to the right-hand-side of
a source-term λφext(r). To solve the nonlinear problem, with
σ(r), and hence f (r) and D, depending on the total electric
field locally, we solve the nonlinear system iteratively until
self-consistency is reached, exploiting at each iteration-step
the computational efficiency associated with linear systems,27

see SM.
With the formal premise established, we next specialize to

the case of nanoribbons, translationally invariant along y and
of finite extent W along x; a system which has already attracted
much attention in the linear case.29,32–34 As a consequence of
translational symmetry, eigensolutions can be expanded in a
momentum basis according to φ(r) = φ(x, z) exp(ik‖y). Of key
interest is the evolution of the eigenenergies with momentum
k‖ (here dimensionless; conventional units via k‖/W), i.e. the
dispersion relation ~ωn(k‖) – and subsequently the response of
the system to external fields.

Eigenmodes and nonlinear dispersion. For low field
strengths, i.e. in the linear regime with f (r) independent of
E(r), the eigenmodes λn(k‖) of Eq. (4) are solely geometry

γ = 6 meV
ǫF = 0.2 eV

W = 50 nm
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FIG. 1 (color online). (a) Dispersion relation of a single nanoribbon.
Ribbon-averaged field strength 〈|E(r)|〉 ranges from negligible (black),
i.e. linear, through 1×105 V/cm to 4×105 V/cm (lightest blue) in steps
of 0.5 × 105 V/cm (increasing along arrow). For the first five 〈|E(r)|〉,
we indicate in dashed red the corresponding analytical estimate, see
Eq. (5). For the monopole, only the linear calculation is shown. The
region of significant interband-modification is illustrated in shaded
gray. Inset schematically depicts a single graphene nanoribbon. (b)
Field intensity, |E(r)|, contour maps for the case 〈|E(r)|〉 = 4 ×
105 V/cm and k‖ = 0. Colormap ranges from maximal (dark) to
minimal (light) logarithmically, with contours separated by factors of
1.5, 1.75, 2, and 2.25 for dipole, tripole, quadrupole, and pentapole
cases, respectively. Sparklines below maps depict the variation of
| f (r)| along the ribbon, with maximal and minimal values indicated.

dependent – but scale invariant – with associated eigenfrequen-
cies ωn(k‖) dictated by λn(k‖) = 4πε0ωn(k‖)W/i〈σ(1)〉, allowing
in the linear intraband approximation the simple scaling re-
lation ωn(k‖) ' (2π)−1

√
−λn(k‖)e2εf/ε0W.29,33 Under signifi-

cant nonlinear interaction, however, the eigenvalues λn(k‖) are
field-dependent, and, by extension, scale-dependent due to the
self-consistent nature of the problem. In Fig. 1(a) we investi-
gate the dispersion relation of the first few eigenmodes of a
single W = 50 nm nanoribbon for different ribbon-averaged
field strengths 〈|E(r)|〉 ≡ W−1

∫
Ω

dx |E(x)|. The most apparent
impact of nonlinearity is a redshift of all resonances. This
is readily appreciated from the negativity of the Kerr correc-
tion. Indeed, the shift can be well-approximated by perturba-
tion theory for any general structure: denoting by ~ω(0)

n and
E(0)

n the linear response eigenenergies and eigenfields [with
〈|E(0)

n (r)|〉 = 〈|E(r)|〉] the nonlinear eigenenergies are, to lowest
order, approximately (see SM)

ωn ' ω
(0)
n

√
1 −

9
8
〈|E(0)(r)|4〉
〈|E(0)(r)|2〉E2

sat
, (5)

with the averages taken over r ∈ Ω. The approximation is
excellent for moderately high fields, see dashed red lines of
Fig. 1(a), though, naturally, inaccurate for the largest con-
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sidered fields due to the disregard of the self-consistent as-
pects of the nonlinear perturbation. The approximation also
reveals the important role played by the inhomogeneity of
E(r), or equivalently f (r), for the nonlinear strength since
〈|E(0)(r)|4〉 , 〈|E(0)(r)|2〉2 for inhomogeneous fields.

In Fig. 1(b) we explore this point further, by depicting
the modal character and inhomogeneous nature of the plas-
monic modes. The modal labels are chosen from the per-
spective of the induced charge density, ρ(x), of the nth mode,
with the monopole, dipole, tripole, quadrupole, and pentapole
(n = 0, 1, 2, 3, and 4, respectively) exhibiting n nodes of ρ(x).
Modes of even n are optically dark, owing to a vanishing
dipole moment, and remain optically dark also under nonlin-
ear perturbations (which preserves the system symmetry). The
monopole violates charge conservation along x [but not along
(x, y) for k‖ , 0], is optically dark, and consistently does not
converge at higher fields; as a consequence, we depict only
its linear dispersion. The variation of the occupation function
f (r) under large fields is highlighted in the insets of Fig. 1(b).
The strong spatial variation of the conductive profile, up to
50% for the considered 〈|E(r)|〉, is a direct consequence of the
strongly inhomogeneous nature of plasmons. Despite these
significant spatial variations of f (r), the corresponding modal
profiles away from the ribbon are highly similar under linear
and nonlinear circumstances, since their character is dictated
chiefly by the nodal character of ρ(x).
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FIG. 2 (color online). Field enhancement 〈|E(r)|〉/E0 as a function
of energy ~ω, for varying incident field strengths E0 (as indicated
above each spectrum). Each spectrum is offset vertically by 5 units.
Two ribbon widths W = 25 nm and 50 nm are examined. Regions of
bistability are delimited by dashed arrows which indicate the ramping
direction. Material parameters are as in Fig. 1.

Plane-wave excitation and bistability. Having considered

the dispersion of eigenmodes, we next turn our attention
to the response of the system due to a normally incident
plane wave, polarized along x, i.e. Eext(z = 0) = E0x̂ and
φext(z = 0) = −E0xW, corresponding to vanishing k‖. In addi-
tion to the power absorbed from the incident wave, the induced
and total electric fields are of primary interest – here we focus
on the latter. For reasons of numerical efficiency, and as we
shall see, physical necessity, we compute for each separate en-
ergy the response by an initial linear calculation, followed by
a ramping of the incident field strength. Specifically, for fixed
~ω, we consider a ramp-array {E0,n}

N
n=1 with E0,n+1 > E0,n and

with E0,1 sufficiently small to be considered a linear perturba-
tion. Starting from E0,1 we compute associated solutions and
proceed, generally, to field strength E0,n+1 with initial guesses
on f and φ obtained from the nth solution. This defines the
upward ramp, corresponding to slowly turning the incident
intensity up. Upon reaching n = N we invert the procedure
and follow a downward ramp, in the pattern E0,n → E0,n−1,
corresponding to slowly turning the intensity down.

In Fig. 2 we examine the spectral response of ribbons of
widths W = 25 nm and 50 nm under different excitation
strengths, i.e. under varying E0. For moderately high E0
the linear Lorentzian resonance is asymmetrically perturbed,
slightly broadened, and redshifted. Furthermore, the upward
and downward ramps to E0 give identical spectra. As E0 is
increased further, these perturbations intensify. However, in
certain frequency ranges the response to upward and down-
ward ramps toward E0 differ (regions delimited by dashed
arrows); a trademark of bistability. Similar features were dis-
cussed for extended graphene in Ref. 24 using the Kerr model
of Eq. (1) and in Ref. 25 for finite systems using a phenomeno-
logical anharmonic model. The primary extension here is the
full self-consistent accounting of the inhomogeneous nonlinear
conductive profile arising in nanostructured systems. For com-
parison, we note that the bistability studied here is achievable
at much larger energies than in the extended system, where it
is restricted to ~ω <

√
4/3αfsεf under normal incidence (with

αfs ≡ e2/4πε0~c).24 Here, bistability is evident in the dipole
mode for both W = 25 nm and 50 nm, but also visible for
the quadrupole mode for W = 50 nm. In both cases, the area
traced by the bistable region initially increases with E0 and
then decreases due to saturation and increased absorption.

The history dependence of the response is further examined
in Fig. 3(b), depicting hysteresis curves of E0 vs. 〈|E(r)|〉
(normalized to the frequency-dependent saturation field) at a
selection of fixed frequencies as indicated in the linear spec-
trum of Fig. 3(a). At energies far from the linear resonance
at ~ω(0) the response 〈|E(r)|〉 relates linearly with E0. As the
energy is increased towards ~ω(0), a nonlinear discrepancy de-
velops with increasing E0 which eventually gives way to a
discontinuous jump at a critical field strength E↑0, indicated
for a selected energy in Fig. 3(b). As E0 is reduced on the
downward ramp, its response initially traces out that of the
upward ramp, but departs from its upward correspondent after
E↑0 and eventually undergoes a discontinuous jump at E↓0 after
which the initial path is retraced. The hysteresis area, indi-
cated by shaded areas, increases with positive ω(0) −ω (though
E↑0 similarly increases, delaying the onset of hysteresis), but
vanishes for ω & ω(0) due to the redshifting of the resonance
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FIG. 3 (color online). Hysteresis arising from bistable behavior in
a W = 25 nm nanoribbon excited by a plane wave E0x̂ (material
parameters are as in Fig. 1). (a) Linear response field-enhancement
spectrum versus energy. Selected energies are highlighted by colored
markers, and the linear resonance energy ~ω(0) is labeled explic-
itly. (b) Hysteresis curves at fixed energy [corresponding colorwise
to those highlighted in (a)] for total field 〈|E(r)|〉 versus incident
field E0. Bistable regions are indicated by shading and delimited by
energy-dependent low- and high-point field strengths E↓↑0 . (c) Inten-
sity maps of the induced electric field Re

[
Eind

x (x, z)
]
. Colorscale is

identical across the four maps, ranging from positive (red), through
zero (white), to negative (blue) in a symmetric range. Absolute mag-
nitudes are scaled logarithmically for intelligibility. Frame color
indicates association with energies in (a). Field strengths in the high-
field maps are specified by corresponding triangles in (b). Sparklines,
defined as in Fig. 1(b), indicate the range and variation of | f (r)|.

with E0. The onset of bistability is reached for incident field
strengths considerably below Esat; this fortuity is of course a
result of plasmonic field-enhancement of the total field.

Lastly, we comment on the field profiles of the excitations.
First we highlight the linear response at energies just below
and above ~ω(0), indicated by red and green markers in Fig. 3(a)
and 3(c). The field profile exhibits a well-known π phase-shift
between the two energies, a result which can be appreciated
e.g. by inspection of the linear harmonic-oscillator polarizabil-
ity α(ω) ∝ [(ω(0))2−ω(ω+ iγ)]−1 which exhibits a sign-change
of its real part asω traversesω(0): as a result, the induced dipole
p(ω) = α(ω)E0 changes sign forω ≶ ω(0), and correspondingly
so for the induced fields. A similar sign change is observed in
the bistable comparison, see black-framed modes in Fig. 3(c).
Again, the origin of the sign change can be appreciated from a
polarizability consideration by including a third-order anhar-
monic term to the harmonic oscillator model,25 see SM.

Summary and discussion. In this paper we have analyzed
the impact of Kerr nonlinearity on the plasmonic response of
graphene nanostructures, specifically for nanoribbons. The
key distinction of nanostructures compared to the correspond-
ing extended system arises from the strongly inhomogeneous
fields of localized plasmonic excitations, which in turn incur
an inhomogeneous conductive profile. We have derived a
simple analytic expression, Eq. (5), which approximates the
nonlinear resonance shifts, while accounting for both inhomo-
geneity and overall amplitude of the nonlinear perturbation.
The characteristic field of the Kerr nonlinearity in graphene is
the saturation field Esat. However, significant nonlinear interac-
tion can be achieved near plasmonic resonances even for much
weaker incident fields owing to plasmonic field enhancement.
Finally, we discussed the existence of a plasmonic bistability
in nanoribbons under normal incidence.

The applications of optical bistabilities are well-known
and long-pursued,1,2 with implications particularly in optical
switching. Indeed, a range of platforms have been scrutinized
for this purpose, in recent years e.g. in photonic crystal cavities
(PCC) where nonlinearities are enhanced by large Q-factors
and light-slowdown.3 Whether graphene can further the state-
of-the-art in this mature field remains to be seen.35 We expect,
however, that a very profitable avenue for progress exists in
hybrid approaches, utilizing e.g. PCC and graphene in unison
– as has in fact been explored experimentally,19 albeit with-
out taking advantage of the resonant plasmonic nonlinearity
described herein. A simultaneous tuning of both cavity and
plasmonic resonance should allow for maximal nonlinear man-
ifestation in such systems. Advances in this direction requires
improved understanding of nonlinearities in nanostructures;
the present work constitutes one such effort. Several features,
however, remain unexplored, underscoring the fertility and
richness of the field. For example, from a semiclassical per-
spective, barring atomistic approaches,25,26 questions remain
relating to the role of interband nonlinearities,16 nonlocality,
and the effective role of edge states.

In closing, we mention a final question of singular practical
relevance, namely damage thresholds. So far, to the best of
our knowledge, measurements do not exist in the infrared, but
in the optical domain36–38 the reported thresholds fall in the
rather broad range from ∼106 V/cm in fs-pulsed operation37

to just ∼104 V/cm for hour-long continuous wave operation.36

For comparison, the saturation field at ~ω = εf = 0.2 eV is
Esat ≈ 6.7 × 105 V/cm. Though direct comparison is impos-
sible, in part due to frequency range, pulse conditions, and
the uncertain impact of field enhancement, this highlights that
even resonantly enhanced nonlinearities in graphene walk a
narrow road – not unlike previous contenders for large nonlin-
earities. Given the promising results presented herein, how-
ever, we believe the journey will be worth the effort.
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SUPPLEMENTAL MATERIAL

I. ITERATIVE PROCEDURE FOR NONLINEAR PROBLEM

We here discuss an iterative approach to solving the nonlinear equation

λφ(r) = λφext(r) + VD
[
f [φ]

]
φ(r), (S1)

which is essentially just the driven correspondent of Eq. (4), and where we have emphasized the dependence
of D on φ(r) through f (r). The problem is evidently nonlinear, but can be solved efficiently by iteration
with only linear algebra at each step. We follow the usual iteration scheme, as e.g. also used previously in
the studies of bistability in dielectric waveguides:S1

1. Compute a linear solution based on an initial guess of f = fini, i.e. solve Eq. (S1) with D
[
f [φ]

]
→

D[ f = fini]. Denote the obtained solution as φ[0]. Set the iteration step m = 0.
2. Calculate the mth guess at the occupation function f [m] from the potential φ[m].
3. Compute the (m + 1)th iteration by solving the linear system λφ[m+1] = λφext + VD

[
f [m]]φ[m+1].

4. Iterate steps 2 and 3 until convergence, otherwise update iteration step m→ m + 1.

We impose convergence criteria corresponding to the simultaneous fulfillment of (with tol = 10−5)

max
r∈Ω

∣∣∣φ[m+1](r) − φ[m](r)
∣∣∣/ max

r∈Ω

∣∣∣φ[m](r)
∣∣∣ < tol, (S2a)

max
r∈Ω

∣∣∣ f [m+1](r) − f [m](r)
∣∣∣/ max

r∈Ω

∣∣∣ f [m](r)
∣∣∣ < tol, (S2b)

being of standard type for iterative approaches to nonlinearity.S1 In all considered cases the iterative
procedure converged after at most several hundred iterations. One exception should be mentioned however;
the dipolar eigenmodes at field strengths 3 × 105 V/cm and 3.5 × 105 V/cm failed to converge after 1250
iterations for k‖ & 5 and are consequently absent in Fig. 1 for these momenta. This could likely be
remedied by a more elaborate stepping procedure, though such investigations have not been pursued
further in this work.

Two additional extensions of the simple iterative scheme described above are employed. Firstly, for
numerical stability we apply a linear mixing scheme for updating guesses on f , specifically we use
D
[
f [m]
mix

]
with f [m]

mix = (1 − ξmix) f [m−1] + ξmix f [m] in step 2 (mixing parameter ξmix = 0.275) rather than
the unmixed D

[
f [m]]. Secondly, the initial guess fini is always taken from the previous field strength in

ramping scenarios. This provides a significant numerical speed-up and, crucially, allows us to investigate
hysteresis and bistability. The initial guess at the first field strength is naturally fini = 1.

For eigenmodal calculations where φext = 0, we normalize φn at each iteration to impose the desired
ribbon-averaged field strength 〈|E(r)|〉, and in addition determine ωn from λn(ωn) by numerically solving
the equation in the complex frequency-plane.

II. MATRIX REPRESENTATION OF V AND D IN A DISCRETIZED BASIS

We here elaborate the reduction of the differential and integral operators D and V to matrix representations
D and V using an equidistant discrete basis. Specifically, we discuss the 1D ribbon case, although the
generalization to general 2D restrictions is straightforward. Specifically, we imagine a system in the
xy-plane, translationally invariant along y and with finite extent along x. For simplicity, we assume just
a single ribbon, such that x is limited to the simple domain x ∈ [0, 1]. Furthermore, as the operators
necessarily act on a potential φ(r), we impose translational invariance along y by the decomposition
φ(r) = φ(x)eik‖y.

Starting with the differential operator D, we consider its operation onto φ(r), which takes the form
Dφ(r) = ∂x[ f (x)∂xφ(x)]eik‖y − k2

‖
f (x)φ(x)eik‖y. By extension, we define the operation of D onto the

single-variable function φ(x) through Dφ(x) ≡ ∂x[ f (x)∂xφ(x)] − k2
‖

f (x)φ(x). To proceed, we introduce
a discretization of the x-coordinates as {xj}

N
j=1 with associated values φj ≡ φ(xj) and fj ≡ f (xj) (we take



7

x1

φ1

x2

φ2 . . .

xj−1

φj−1

xj

φj

xj+1

φj+1 . . .

xN−1

φN−1

xN

φN

m0 m1 mj mj+1 mN−1 mN

FIG. S1 (color online). Sketch of the discretization approach applied to a single ribbon.

N = 150, being well-converged in all considered cases). Though not strictly necessary, we assume
equidistant xj with constant spacing xj+1 − xj = a, see Fig. S1.

The matrix elements Djl of the finite-element representation of D is then defined by Dφj =
∑

l Djlφl. The
elements can be deduced using finite differences at the midpoints. Specifically, using central differences
∂x[ f j∂xφj] ' a−1(mj − mj−1) where mj defines midpoint-values of the function m(x) ≡ f (x)∂xφ(x) such
that mj ' (2a)−1( fj+1 + fj)(φj+1 − φj), see Fig. S1. For all interior points, j ∈ [2,N − 1], this then allows a
decomposition of Djl as the tridiagonal matrix

Djl = 1
2a2

[
δj−1,l( fj−1 + fj) − δjl( fj−1 + 2 fj + fj+1) + δj+1,l( fj + fj+1)

]
− δjlk2

‖
fj. (S3a)

At the end-points j = 1 and j = N we explicitly account for boundary conditions. Specifically, we ensure
a vanishing of normal current, equivalent to the condition ∂xφ(x) = 0 for x = 0 and x = 1. In turn, this
forces m0 = mN = 0, allowing

D1l = 1
2a2 ( f1 + f2)(−δ1,l + δ2,l) − δ1,lk2

‖
f1, (S3b)

DNl = 1
2a2 ( fN−1 + fN)(δN−1,l − δN,l) − δN,lk2

‖
fN . (S3c)

As an alternative to taking explicit account of the boundary condition, one can allow a slightly larger
x-range, and explicitly include points with f (r) = 0 outside r ∈ Ω – the step in f (r) at r ∈ ∂Ω then mimics
an edge charge and accounts numerically for the boundary condition; such a procedure may be preferable
in finite structures without any geometric symmetries compatible with a square grid.

The integral operator V is similarly amenable to explicit expression on the equidistant grid. Specifically,
letting V operate on a function g(r) = g(x)eik‖y one findsS2,S3

Vg(r) = eik‖y
∫

dx′ 2K0(k‖|x − x′|)g(x′), (S4)

where k‖ > 0 is assumed and with K0 denoting the zeroth order modified Bessel function of the second
kind. Assuming a slowly varying g(x) and an equidistant {xj} then allows a matrix decomposition of V via
Vgj =

∑
l Vjlgj whereS4

Vjl = 2
∫ xl+a/2

xl−a/2
dx′ K0(k‖|xj − x′|) = π

∑
x̃=xjl±a/2

x̃
{
K0(k‖|x̃|)

[
L1(k‖|x̃|) + 2

π

]
+ K1(k‖|x̃|)L0(k‖|x̃|)

}
, (S5)

with xjl ≡ xj − xl and L0,1 denoting modified Struve functions of zeroth and first order.

A final detail which should be discussed is the special case k‖ = 0, where the kernel K0(k‖|x − x′|)
in Eq. (S5) diverges. Despite this divergence, finite and meaningful matrix elements can be retrieved
by invoking charge conservation. Specifically, we note the small argument expansion K0(k‖|x − x′|) ∼
− ln(|x−x′|)−ln(k‖)+αwhere α = ln(2)−γem (γem is the Euler–Mascheroni constant).S4 The x′-independent
term − ln(k‖) + α gives a contribution [− ln(k‖) + α]

∫
dx′ g(x′) to Eq. (S4) and appears divergent as k‖ → 0.

Nevertheless, this contribution vanishes for the functions g(r′) of relevance since they always represent
induced charges [as evident from Eq. (3)] and obey charge conservation

∫
dx′ g(x′) = 0. As such, the

k‖ = 0 case can be calculated by simply letting K0(k‖|x − x′|) → − ln(|x − x′|) in Eq. (S5),S3 yielding
Vjl = −2

∑
s=± s(xjl + s a

2 ) ln(|xjl + s a
2 |) for k‖ = 0.

This concludes the real-space discretization approach for reduction of the abstract operator equation of
Eq. (4) into a matrix equation λφ = VDφ with φ denoting the vector form of φj.
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III. PERTURBATION ESTIMATE OF THE NONLINEAR SHIFT OF EIGENFREQUENCIES

We here provide the derivations that allow the approximate result of Eq. (5). As we explain below, the
approach relies on the formulation of a Hermitian eigenproblem followed by application of standard
perturbation theory to a spatially inhomogeneous problem.

The compound operator VD defined in Eq. (4) is – though numerically practical – inconvenient for
analytical considerations, because it is not symmetric. However, the problem can (of course) be cast
as a Hermitian eigenproblem with eigenvalues λn [though, strictly speaking, only for real, positive
occupation functions f (r), which we restrict our analysis to here], as also noted recently in Refs. S5
and S6. Specifically, consider the application of the scaled gradient operation −

√
f (r)∇ onto Eq. (3):

− λ
√

f (r)∇φ(r) =
√

f (r)∇
∫

Ω

d2r′ V(r, r′)∇′ ·
{ √

f (r′)
[
−

√
f (r′)∇′φ(r′)

]}
. (S6)

Defining the scaled in-plane field ξ(r) ≡ −
√

f (r)∇φ(r) and manipulating further allows

λξ(r) =
√

f (r)∇
∫

Ω

d2r′ V(r, r′)∇′ ·
[ √

f (r′)ξ(r′)
]

a
=

√
f (r)∇

{∫
Ω

d2r′ ∇′ ·
[
V(r, r′)

√
f (r′)ξ(r′)

]
−

∫
Ω

d2r′
[
∇′V(r, r′)

]
·
[ √

f (r′)ξ(r′)
]}

b
= −

√
f (r)∇

∫
Ω

d2r′
√

f (r′)
[
∇′V(r, r′)

]
· ξ(r′)

c
= −

∫
Ω

d2r′
√

f (r) f (r′)
[
∇ ⊗ ∇′V(r, r′)

]
ξ(r′) (S7)

with associated steps a − c explicated below for convenience:

a. Application of chain rule to expand integrand.
b. The first integral term in step a vanishes, as can be deduced by application of the divergence theorem

which transforms the term to
∮
∂Ω

V(r, r′)
√

f (r′)
[
ξ(r′) · n′

]
. The integrand vanishes for all r′ ∈ ∂Ω

due to the no-spill boundary condition on the induced current which forces ξ(r′) · n′ = 0 on r′ ∈ ∂Ω.
c. The term

√
f (r)∇ is taken under the integral sign. ∇ operates on r and hence only on V(r, r′). The

operation ∇
{[
∇′V(r, r′)

]
·v(r′)

}
is rewritten in the equivalent outer-product form

[
∇⊗∇′V(r, r′)

]
v(r′)

with elements [∇ ⊗ ∇′]i j = ∂ri∂r′j .

We then define the operator M by its action on a field-ket |ξ〉 [where, as usual, 〈r|ξ〉 ≡ ξ(r)]

〈r|M|ξ〉 ≡
∫

Ω

d2r′
√

f (r) f (r′)
[
∇ ⊗ ∇′V(r, r′)

]
ξ(r′), (S8)

with associated eigenspectrum (−λn) and |ξn〉:

(−λn)|ξn〉 = M|ξn〉. (S9)

The operator M is evidently symmetric, positive semi-definite, and thus Hermitian. Aaccordingly, the
eigenspectrum {−λn} is non-negative and real; and the eigenkets |ξn〉 are orthogonal 〈ξn|ξn′〉 = δnn′〈ξn|ξn〉

and span the solution space for r ∈ Ω.

With these facts established, we can now discuss a perturbation treatment. Specifically, we consider the
simple case where f (r) = f (0) + δ f (1)(r) for r ∈ Ω with “groundstate” f 0 = 1 and perturbation f 1 with
strength δ. The corresponding expansion of M = M(0) + δM(1) + O(δ2) is found by expansion of Eq. (S8),
yielding

〈r|M(0)|ξ〉 =

∫
Ω

d2r′
[
∇ ⊗ ∇′V(r, r′)

]
ξ(r′), (S10a)

〈r|M(1)|ξ〉 =
1
2

∫
Ω

d2r′
[
f (1)(r) + f (1)(r′)

][
∇ ⊗ ∇′V(r, r′)

]
ξ(r′). (S10b)
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Since M is a Hermitian operator usual perturbation theory applies.S7 Specifically, for a “groundstate”
eigenspectrum {−λ(0)

n , |ξ
(0)
n 〉} the leading-order correction to the perturbed eigenvalue λn = λ(0)

n + δλ(1)
n +O(δ2)

is derivable by application of Eqs. (S10) [by using the (r, r′)-symmetry of the resulting equation]

λ(1)
n = −

〈ξ(0)
n |M1|ξ

(0)
n 〉

〈ξ(0)
n |ξ

(0)
n 〉

= λ(0)
n
〈ξ(0)

n | f (1)|ξ(0)
n 〉

〈ξ(0)
n |ξ

(0)
n 〉

.

For nonlinear purposes, we unfortunately do not know the exact perturbation f (1) as it should be determined
self-consistently with the total field |ξn〉. However, for low field-strengths this self-consistency can be
neglected and we can approximate f [|ξn〉] ' f [|ξ(0)

n 〉] with |ξ(0)
n 〉 referring to the electric field predicted by a

linear calculation (at the desired field strength). For the Kerr-type nonlinearity of Eq. (1) the resulting
correction is therefore [assuming vanishingly small loss and noting ξ(0)(r) = E(0)(r) for f (0) = 1]

λ(1)
n ' −λ

(0)
n

9
8

∫
Ω

d2r |E(0)(r)|4

E2
sat

∫
Ω

d2r |E(0)(r)|2
= −λ(0)

n
9
8
〈|E(0)(r)|4〉

E2
sat〈|E(0)(r)|2〉

, (S11)

with Esat similarly evaluated at the linear resonance frequency ω(0)
n associated with λ(0)

n . Finally, the result
of the main text, Eq. (5), is obtained by invoking the relation between eigenvalues λn and eigenfrequencies
ωn together with the lossless intraband conductivity σ(1)(ω) ' ie2εf/π~

2ω.

IV. QUALITATIVE ANHARMONIC OSCILLATOR MODEL

We review the basics of the simple anharmonic oscillator model,S8,S9 and discuss how it – in connection
with a polarizability consideration – explains the π phase-shift observed for the bistable solutions in
Fig. 3(c).

In this qualitative model, we represent the induced dipole by a single (time-dependent) coordinate x, which
obeys the simple equation of motion

mẍ + mγẋ = −e f E0(t) − ∂xU(x), (S12)

with an effective anharmonic restoring potential U(x) = 1
2 m(ω(0))2x2 − 1

4 max4, effective oscillator mass m,
linear resonance ω(0), anharmonic parameter a (note that a > 0 in our case cf. sign of Kerr conductivity),
and coupling factor f . We seek the solution that oscillates at e−iωt in response to a perturbation E0(t) =

E0(ω)e−iωt, i.e. the Kerr response; we denote this term by x(1ω)(ω)e−iωt. Working with Eq. (S12) one finds
(omitting declaration of ω-dependence)

m
[
(ω(0))2 − ω(ω + iγ) − 3a|x(1ω)|2

]
x(1ω) = −e f E0. (S13)

The polarizability α(1) is linked to x(1ω) via the induced dipole p(1ω) = −ex(1ω) = α(1ω)E0, allowing (ignoring
loss, being nonessential for the present considerations)[

(ω(0))2 − ω2 − 3ae−2|α(1ω)|2E2
0

]
α(1ω) = e2 f /m. (S14)

For the bistable scenarios the term (ω(0))2 − ω2 is always positive, see e.g. Figs. 2 and 3. Depending
on the magnitude of 3ae−2α(1ω)E2

0 relative to (ω(0))2 − ω2 it is then clear that polarizability-solutions of
opposing sign can arise, depending on the sign of the terms bracketed on the left-hand side of Eq. (S14).
Furthermore, if we denote the positive and negative solutions α(1ω)

+ and α(1ω)
− , respectively, it can then be

deduced by direct inspection of Eq. (S14) that |α(1ω)
+ | < |α

(1ω)
− |. In other words, the induced dipole – and

hence the induced fields – of the positive solution should be lower than its negative counterpart; upon
identifying the lower branches of Fig. 3(b) with α(1)

+ and vice versa for the upper branch, we see that this is
exactly the case. As such, the anharmonic model describes not only the phase-shift, but also the magnitude
interrelationship. Lastly, we mention for completeness that the anharmonic model describes also a third
solution, which, however, is physically irrelevant as it is unstable (and correspondingly is not found in the
iterative procedure employed in this study, nor in experimental investigation).

∗ asger@mailaps.org
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