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Field renormalization in photonic crystal waveguides
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A novel strategy is introduced in order to include variations of the nonlinearity in the nonlinear Schrödinger
equation. This technique, which relies on renormalization, is in particular well adapted to nanostructured optical
systems where the nonlinearity exhibits large variations up to two orders of magnitude larger than in bulk
material. We show that it takes into account in a simple and efficient way the specificity of the nonlinearity in
nanostructures that is determined by geometrical parameters like the effective mode area and the group index.
The renormalization of the nonlinear Schrödinger equation is an occasion for physics-oriented considerations
and unveils the potential of photonic crystal waveguides for the study of new nonlinear propagation phenomena.

DOI: 10.1103/PhysRevA.92.013827 PACS number(s): 42.65.Wi, 42.65.Tg, 42.70.Qs

I. INTRODUCTION

Nanostructured optical systems offer great plasticity be-
cause most of their optical properties can be engineered
through design [1–13]. Thus the control by the geometry
allows one to get on-demand properties, precisely adapted
to the phenomena one wants to investigate [7,14–16]. This is
both interesting for applications where it is then possible to
optimize all optical functions to a large extent [17] and for
fundamental investigations where the experimental conditions
could be precisely set to maximize a given effect.

This plasticity comes usually with large variations of the
optical properties over a small bandwidth because effects of
geometry depend highly on the actual wavelength size. For
instance, in photonic crystal waveguides, variations of the non-
linear effective Kerr effect up to 100% can occur over a 10-nm
bandwidth [18]. Consequently, the modeling of the nonlinear
propagation of optical pulses in such structures is essential
for understanding precisely the interplay between the different
effects taking place; such a task is challenging [19–21].

The use of the generalized nonlinear Schrödinger equa-
tion (GNLSE) is usually preferred to direct nonlinear finite
difference time domain (FDTD) simulations, though the
latter are more accurate [22,23], because it has very low
computational burden and also provides a direct link between
the effective coefficient in the GNLSE and the phenomena that
are observed. Namely, it is straightforward to add phenomena
specifically found in semiconductor optics, like, for instance,
the effect of nonlinear absorption and free carriers [24–27].
Moreover, discussion and interpretation are made easier as
the coefficients in the GNLSE are derived into effective
lengths like the dispersion length Ld = T 2

0 /β2, the nonlinear
length LNL = 1/(γP0), or the shock formation length Lshock =
0.43LNL/|τNL| [28]. The effective lengths [29] provide a rapid
overview on the relative strength of the different competing
effects. However, because the GNLSE relies on several
approximations, it is important to check that the physics
governing the optical system is still correctly described.

Higher order nonlinear effects, for weak perturbations, are
taken into account by adding successive corrective terms to
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the initial NLSE. Here we focus on the inclusion of variations
of the nonlinear Kerr response with the angular frequency.
Using the transformation �ω → ı∂t [30], the Taylor expansion
of the Kerr coefficient (hence its variation in the frequency
domain) can be included into the GNLSE (time domain). Such
decomposition—limited to the first order—takes into account
self-steepening effects and can be used to model the formation
of an optical shock front [29,31].

Despite being easy to implement, such a technique suffers
from two major limitations.

First, it uses the derivation of an aggregated effective
parameter computed for a given frequency, whereas by essence
nonlinearity involves also the interactions between several
waves at different frequencies. Notably, not only the effective
mode area but also the variations of the modes overlap—
directly related to cross-phase modulation (XPM)—which is
important in integrated optics. A simple Taylor expansion of
the aggregated Kerr coefficient cannot take into account that
latter effect. This issue was addressed in Ref. [32] where it was
demonstrated that the physics related to variations of the mode
area overlap could be in principle retrieved by the addition of
extra operators and that such corrections could actually have a
noticeable impact on pulse propagation.

The second limitation is due to the nature of the Taylor
expansion itself: it is intended for weakly varying functions
and convergence tends to be slow as soon as the functions
exhibit large or nonmonotonic variations. In the case of
large variations of the nonlinear effective coefficients, the
best option would then be to split the total bandwidth into
subdomains wherein variations of the nonlinear properties
are negligible [21,33]. Thus each subdomain is described
with good accuracy using a GNLSE; then the different
equations are connected through ad hoc parameters that
describe with precision effects like cross-phase modulation
(XPM) or four-wave mixing (FWM). This method is especially
well suited to describe FWM because for most practical
applications pumps, signal and idler spectra are well sepa-
rated; moreover, the small number of beams involved allow
setting up a set of coupled-mode equations with only a few
equations. However, if the spectrum is continuous over a
large bandwidth, splitting the initial simulation domain into
several pieces is complex because there is no obvious choice
for the separation frequency between the subdomains and
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FIG. 1. (Color online) Schematic of the two methods used here
to compute the nonlinear pulse propagation in PhC waveguide. (a)
Standard method: the GNLSE is solved for the energy flux. (b) Input
conditions (and the GNLSE) are renormalized, and the nonlinear
propagation is solved for a pseudoelectric � field.

numerical artifacts might appear at the junction between two
subdomains.

Consequently, neither of the two methods gives satisfactory
results in the case in which the single-pulse bandwidth extends
over large variations of the nonlinear effective parameters.
This is especially true for dispersion-engineered photonic
crystal waveguides (PhCWGs) [18] where the nonlinearity
arises mainly from the slow light enhancement [19]. Indeed,
any changes of the group index are immediately reported
through the slow light factor S2 = (ng/n0)2 [34] on the Kerr
nonlinearity, which is expressed as γeff = ωn2I /(cAeff)S2.
Variations of the modal area are also important in PhCWGs, but
are still much weaker than those associated with the slow light
variation. Note that while S ranges from 2 to 10 in PhCWGs
[24], its effect is less sensitive in nanowires on silicon, which
in contrast are much more impacted by variations of the modal
area. The slow light effect in nanowires is roughly S ≈ 1.2
[35] and is in fact already implicitly taken into account in the
expression of the effective area [36].

The method we present here consists in defining and solving
the GNLSE for another field than the power flux (cf. Fig. 1).
The point is to find the pseudofield that leads to the GNLSE
exhibiting minimal variation of the nonlinear coefficient.
This technique is especially well suited for nanostructured
optical systems where the nonlinearity is defined by the
effective area and the group index. Previous studies focused
on the ab initio definition of the effective parameters of the
propagating equation once the eigenmode profile is known.
It was demonstrated that the presence of slow light must be
taken into account in the normalization in order to guarantee
that the correct energy flow through the medium is preserved
despite the presence of strong material dispersion or slow
light [37]. This first normalization step is crucial. However,
the resulting nonlinear propagation equation will contain also
a few prefactors; this aspect is not important for few-mode
problems like FWM or parametric generation where one can
define a set of coupled equations, but becomes problematic
for continuous-mode problems. For example, the propagation
equation can be turned back into the form of a classical
NLSE, but at the cost of extra approximations which ultimately
alter the accuracy of the numerical solution. The second step
consists then in the renormalization of the energy flow into a
variable whose nonlinear propagating equation has a simpler
form. Our finding is that instead of computing the propagation
of the power flux, it is better to weight it by the photonic
density of states. The group index plays then an important role

in this second normalization step because the group velocity
corresponds in fact to the first derivative of the band diagram
that is directly linked to the optical density of state. To be more
precise, the optical density of state is proportional to the inverse
of the group velocity and to the inverse of the volume occupied
by the photons [38,39]. Considering that the effective area in
PhCWGs does not vary much compared to the group index, a
variation of the group index could be interpreted directly as a
variation of the optical density of state.

First, we will review how the slow light effect is introduced
into the nonlinear propagation equations and thus insist on the
two contributions of slow light on the nonlinear enhancement.
We will then introduce our renormalization technique and
apply it to the computation of nonlinear pulse propagation
in dispersion-engineered PhCWGs.

II. NLSE

We start from Maxwell’s equations. As we are dealing with
unidirectional guided propagation (i.e., waveguides), we have
split the spatial coordinates into transverse coordinates �r⊥ and
z along the waveguide direction:

�∇ × �E( �r⊥,z,t) = −μ0∂t
�H ( �r⊥,z,t), (1)

�∇ × �H ( �r⊥,z,t) = ε( �r⊥,z)∂t
�E( �r⊥,z,t) + ∂t

�PNL( �E). (2)

When �PNL = 0, the above equations accept a set of
eigensolutions in the frequency domain:

�e( �r⊥,z,ω) = �ebloch(r⊥,z − na,ω)e−ıωt+ıK(ω)z, (3)

�h( �r⊥,z,ω) = �hbloch(r⊥,z − na,ω)e−ıωt+ıK(ω)z, (4)

with n ∈ Z and a being the PhC lattice parameters. K(ω)
corresponds to the propagation constant at the frequency ω. For
periodic waveguides like PhCWGs, the electric and magnetic
field distribution is determined by a Bloch mode, which is a
periodic function with periodicity a. Hereafter, the dependence
on ( �r⊥,z) of the eigen and Bloch modes is implicitly assumed
and we will use the short notation �e(ω), �h(ω), �eBloch(ω),
�hBloch(ω).

As detailed in Ref. [40], the forward-propagating equation
is obtained by multiplying Eqs. (1) and (2) by the solution
of the unperturbed (PNL = 0) system (i.e., e(ω)∗ and h(ω)∗).
Subtracting these two new equations from each other leads,
after some algebra including the identity �A · �∇ × �B = �∇ ·
( �A × �B) + �B · �∇ × �A, to [41]

�∇ · ( �E × �h(ω)∗ − �H × �e(ω)∗)

= −�e(ω)∗∂t
�PNL( �E) − ∂t (ε0ε �E · �e(ω)∗ + μ0 �H · �h(ω)∗).

(5)

We will now look for a perturbative solution, in the
frequency domain, of the form

�E( �r⊥,z,�ω) = A(z,�ω)e−ı�ωt �eBloch(ω)e−ıωref t+ıK(ωref )z, (6)

�H ( �r⊥,z,�ω) = A(z,�ω)e−ı�ωt �hBloch(ω)e−ıωref t+ıK(ωref )z,

(7)

we define �K(ω) = K(ω) − K(ωref) and �ω = ω − ωref .
Note that the phasor term in Eqs. (6) and (7) is different
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from the one found in Eqs. (3) and (4); hence we would
like to compute directly the evolution of the pulse envelope
centered at frequency ωref . Also we assume the envelope
∂zA/A << 1/a varies slowly, so ∂zA(z,ω) is constant over
a single PhC lattice. We inject Eqs. (6) and (7) into Eq. (5) and
integrate over a unit PhC cell; this leads to

(∂zA(z,�ω) − ı�K(ω)A(z,�ω))
∫∫∫

cell �z · (�e∗
Bloch(ω)

×�hBloch(ω) − �h∗
Bloch(ω) × �eBloch(ω))dr3

= ıω
∫∫∫

cell �e∗
Bloch(ω) · �PNL(�ω, �E)dr3. (8)

A(z,�ω) is defined with regard to a central frequency
reference ωref . Thus Eq. (8) gives direct access to the envelope
of the pulse, without the fast oscillations in space and time
{ωref,K(ωref)}. The integral in the left-hand side of Eq. (8)
corresponds to twice the integral of the Poynting vector �
ω

over the PhC cell. The link between the Poynting vector and
the Bloch mode energy is set through the relationship∫∫∫

cell
�z · Re(�e∗

ω × �hω)dr3 =
∫∫

Surface
�z · �
ωdr2a

= vg(ω)Wω. (9)

Wω is a normalization factor, which corresponds to the Bloch
mode energy 1/2

∫∫∫
cell ε|eBloch(ω)|2 + μ|hBloch(ω)|2dr3. Fi-

nally we have

∂zA(z,�ω) = ı�K(ω)A(z,�ω) + ı
ω

2vg(ω)Wω

×
∫∫∫

cell
�eBloch(ω)∗ · �PNL(�ω, �E)dr3. (10)

Before going further into details, let us focus an instant
on the peculiar normalization choice for both A(z,ω) and
Wω. In the linear regime, the choice is to preserve the
power flux, so the computed field directly corresponds to
the energy flowing though the medium. Using Eq. (9), one
finds that the total energy transiting through the waveguide at
frequency ω is P (z,ω) = |A(z,ω)|2vg(ω)Wω/a. As a result,
the Bloch modes are normalized such as vg(ω)Wω/a = 1, so
one gets directly from the NLSE P = |A|2. However, such
normalization is done independently of the nonlinear problem
which is considered; consequently it may not necessarily be
the best choice from a pure numerical point of view.

Regarding the nonlinear polarization PNL, we
assume that it is due to the χ (3) response expressed as
�PNL(r,ω0) = 3/2ε0χ

(3)
111

∫
( �E∗(r)ω1 · �E(r)ω2 ) · �E(r)ω3 )δ(ω2 +

ω3 − ω1 − ω0)dω3
i={1,2,3}, where δ stands for the Dirac δ

function. The exact form of PNL is directly related to the
nonlinear tensor [42] and consequently will have a different
formulation depending on the material that is actually
considered. However, the conclusions presented here are
general and could be easily extended to any peculiar form of
PNL. Finally, we obtain

∂zA(z,ω0) = ıK(ω0)A(ω0) + ıω0n2I

cAeff(ω0)

√
ngω0

n2
0

×
∫

E(z,ω1)∗E(z,ω2)E(z,ω3)ghω0(ω1,ω2,ω3)

× δ(ω2 + ω3 − ω1 − ω0)dω3
i (11)

We have defined n2I = 3χ (3)/(4cε0n
2
0). We also introduced

the error function ghω which takes into account the fact that
the mode overlap integrals may deviate from Aeff(ω0) for
frequency ωi different than ω0. Hence

Aeff(ω0) =
(∫∫∫

Cell ε(r)|eω0|2dr3
)2

an4
0

∫∫∫
NLmat. |eω0|4dr3

, (12)

ghω0(ω1,ω2,ω3) =
∫∫∫

NLmat.(�e∗
ω0 · �eω2)(�e∗

ω1 · �eω3)dr3∫∫∫
NLmat. |eω0|4dr3

. (13)

NLmat indicates that the integral is performed over the
nonlinear material in the PhC unit cell. At this point, one
notes that the nonlinearity depends on the intensity of electric
field E while in Eq. (11) the nonlinear pulse evolution is set
for the power flux P = |A|2 [19]. Equation (9) is then used
once more and one finally gets

∂zA(z,ω0) = ıK(ω0)A(ω0) + ı
ω0n2I

cAeff(ω0)

√
ngω0

n2
0

×
∫

A(z,ω1)∗A(z,ω2)A(z,ω3)ghω0(ω1,ω2,ω3)

× √
ng(ω1)ng(ω2)ng(ω3)

× δ(ω2 + ω3 − ω1 − ω0)dω3
i . (14)

Unfortunately, the
√

ng(ωi=1,2,3) and ghω0(ω1,ω2,ω3)
terms in the right-hand side depend on ωi=1,2,3; hence these
prefactors cannot be set as global prefactors to the integral.
However, the formulation of a standard NLSE equation—
expressed in the frequency domain—can be retrieved assuming
that ghω = 1 and that

√
ng(ωi) do no vary:

∂zA(z,ω0) = ıK(ω0)A(z,ω0) + ı
ω0n2I

cAeff(ω0)

n2
gω0

n2
0

×
∫

A(z,ω1)∗A(z,ω2)A(z,ω3)

× δ(ω2 + ω3 − ω1 − ω0)dω3
i . (15)

Note that Eq. (15) could have also been directly obtained
through the derivation of Eq. (14) for a monochromatic
wave propagation. In fact, most of the time this is how
the effective nonlinear coefficients of the NLSE are derived,
but the purpose here is precisely to point out explicitly the
frequency dependence of the different effective parameters
and the approximations done in regard to it. The propagating
equation corresponding to Eq. (14) in the time domain is

∂zA(z,t) = ıD(ı∂t )A(z,t) + ıγ0|A(z,t)|2A(z,t). (16)

Here γ0 = γ (ωref) is the effective Kerr nonlinearity with
γ (ω) = n2Iω/(cAeff(ω)) · (ng/n0)2. The dispersion operator
D(ı∂t ) = ∑

n�2(∂n
ωk)(ı∂t )n/n accounts for dispersion at all

orders, with t being the retarded time in the moving frame at ve-
locity c/ng−ω0 . This NLSE does not include any variations of
the effective nonlinearity over the simulation domain. Effects
related to the dispersive nonlinearity are then reintroduced
using the first-order perturbation γ1 which is accordingly
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defined as γ1 = ∂ωγ (ωref):

∂zA(z,t) = ıD(ı∂t )A(z,t)

+ ı(γ0 + γ1ı∂t )|A(z,t)|2A(z,t). (17)

Equation (17) is derived thanks to the fact that the different√
ng(ωi={1,2,3}) factors in Eq. (14) are set outside the integral

sign. Such an operation is only valid if the group index ng

does not depend on the different frequencies ωi that contribute
to the nonlinear effect. This (mathematical) approximation is
equivalent to the hypothesis according to which the strength of
nonlinearity only depends on the angular frequency at which
the nonlinear effect takes place, not on the different frequencies
contributing to the nonlinear effect. There is no evidence that
this assumption is valid in general. Especially when it comes
to nanostructures, one may think that the photons that are the
most confined contribute the most to the nonlinearity. Although
the equicontribution hypothesis does not hold in general, it can
happen that the

√
ng(ω1)ng(ω2)ng(ω3) prefactor depends only

on ω0. Indeed, the different frequencies ωi are not independent
but must satisfy the energy conservation condition ω0 + ω1 =
ω2 + ω3. In such a case the equicontribution approximation
still describes the nonlinear photon dynamics with accuracy;
and we will refer to such photons as being dispersive photons.

III. RENORMALIZATION

As depicted in Fig. 1 we try to circumvent the problem
caused by fluctuations of the nonlinear effective parameters in
Eq. (14) by finding a proper referential wherein the nonlinear
response is flat. Looking back at Eq. (14) shows us that this is
indeed the key in order to obtain a time-domain propagation
equation like Eq. (16): the different frequencies should have an
equicontribution to the nonlinear process; hence no frequency-
dependent prefactor must appear inside the integral sign of
Eq. (14). To do so, we decided to weight the frequencies by an
ad hoc m(ω) contribution.

Note that we neglect at first any variation of the mode
field distribution over the pulse bandwidth (ghω0(ωi) = 1∀ω0).
The reason for this is that variations of the group index in
PhCWGs account for about 75% of the total variation of the
effective nonlinear coefficients [18,21]. Consequently, dealing
with the variations of the slow light factor would be the first
step. Moreover, this simplified case is a good test case for the
renormalization technique. We will show in the next section
how the variations of the mode field distribution can be taken
as well into account by this technique.

It appears that a natural choice would be to solve the
propagation equation for the field �(ω) = √

ng(ω)/n0A(ω)
so Eq. (14) becomes

∂z�(z,ω0) = ıK(ω0)�(z,ω0) + ı
ω0n2I

cAeff(ω0)

ngω0

n0

×
∫

�(z,ω1)∗�(z,ω2)�(z,ω3)

× δ(ω2 + ω3 − ω1 − ω0)dω3
i . (18)

Instead of solving the nonlinear propagation of the power
flux P = |A|2, we are now solving the propagation of a
pseudofield �. Looking at the details of the differences
between Eqs. (18) and (15), we see that the slow light

enhancement factor enhancement S2 = (ng/n0)2 has been
replaced by S. Interestingly, if we had introduced higher order
nonlinear effects such as three-photon absorption (ThPA),
which are associated with a slow light enhancement of S3, then
the slow light prefactor would have been turned into S as well.
A first feature is that the strength of the nonlinearity appears
to be much weaker. Besides if we consider the variations of
the Kerr effect ∂ωγ (ω), the contribution of the slow light to the
characteristic self-steepening time [18] τNL = ∂ωγ (ω)/γ (ω)
has been halved. Consequently, Eq. (18) exhibits weaker
nonlinearity and even weaker relative nonlinear dispersion
than Eq. (15). Weaker relative variations of the nonlinearity
mean that the actual nonlinear variations could be taken
into account with more accuracy by Eq. (18), which could
also include second-order perturbative corrections. Note that
although the nonlinearity appears much weaker, the input field
has been renormalized as well and is now much stronger.
Consequently global parameters like the soliton number are
preserved.

Usually, such a strategy is not convenient because it
requires additional transformation back and forth between
computed quantities (� �= A) and measured ones (power flux
P = |A|2); cf. Fig. 1. Also, one could wonder whether such a
renormalization would not simply lead to unphysical solutions,
and hence simpler equations, but not describing correctly the
physics. Any renormalization could be applied to Eq. (14),
as long as it is done in consistency with the math [e.g.,
the integral sign in Eq. (14)], but would not actually lead
to a simpler formulation. Regarding the specific choice of
m(ω) = √

n(ω)/n0, Eq. (9) shows us that because ng|A|2 ∝
|E|2, then the pseudofield � is actually directly proportional
to the Bloch mode electric field. This is consistent with the
fact that the electric field density is the physical quantity that
matters for nonlinearity, not the power flux. Because the group
velocity governs most of the physics (slow light enhancement)
in PhCWGs, it is not surprising that it plays a role both in
the initial normalization of the Bloch field and also here in
the renormalization of the computed power flux. In brief, the
renormalization technique poses the question of whether the
natural choice that is usually made to compute the evolution
of the power flux is right. We think it is not for nanostructured
systems.

A. Implementation and comparison

Nonlinear pulse propagation can now be dealt with in two
different ways. On one hand, one can use Eq. (17), expanding
eventually the Taylor series of the nonlinearity beyond the
first order in order to get a better match; on the other hand,
Eq. (18) will also provide an accurate result and might be
easier to implement. The outcome of both equations should be
about the same, given that they are indeed describing the same
physical system.

To investigate the differences between Eqs. (17) and (18),
we take as a test case the nonlinear pulse propagation exper-
iment performed in conditions similar to those in Ref. [16].
A 2.3-ps Fourier limited pulse is send close to the zero
group velocity dispersion (ZVD) wavelength of a 1.5-mm-long
dispersion-engineered PhC waveguide. The pulse peak power
is 8 W and corresponds to a soliton number of N = 2.1.

013827-4



FIELD RENORMALIZATION IN PHOTONIC CRYSTAL . . . PHYSICAL REVIEW A 92, 013827 (2015)

For consistency with real systems, the equations have been
adapted to include the specificity of optical semiconductor
nanostructures, mainly the effect of nonlinear absorption and
the presence of free carriers [24–27]. The power flux prop-
agation is computed by means of the following generalized
Schrödinger equation [43]:

∂A

∂z
= − α

2
A − α3|A|4A − D(ı∂t )A

+ ı(γ0 + G(ı∂t ))|A|2A − (σ + ik0δ)NA. (19)

α0 = 2 dB/mm and α3 = 25/(W2 mm) [26] stand for
the linear propagation loss and three-photon absorption
(ThPA). The dispersion operator D(ı∂t ) = ∑

n�2(∂n
ωk)(ı∂t )n/n

accounts for dispersion at all orders, with t being the retarded
time in the moving frame at velocity c/ng (calculated at the
input wavelength). Besides, we introduce the Kerr operator
G(ı∂t ) = ∑

n�1(∂n
ωγ )(ı∂t )n/n! to take into account the disper-

sion of the Kerr coefficient with the angular pulsation (higher
order shock terms). Such expansions are intended to provide
accurate numerical results, though it limits the insight into
the physical parameters that govern the pulse propagation. σ

and δ account for the free carrier absorption and dispersion
respectively. Owing to the fact that we are considering here a
high-bandgap material like GaInP that exhibits solely 3PA and
no two-photon absorption, the self-generated plasma does not
impact much the overall dynamics. Practical details related to
the way the free-carrier effects are computed and added to the
NLSE are found in Refs. [43–45].

As a guideline we have β2 = −6.7 ps2/mm, β3 =
−1.7 ps3/mm, γ0 = 2200/(W m), and γ1/γ0 = −170 fs; the
waveguide dispersion and the variation of the nonlinear
coefficients (Kerr and 3PA) with the angular frequency are
shown in Fig. 2.

Briefly, the renormed NLSE equation is obtained from
Eq. (17) by (i) expressing it in the frequency domain, (ii)
dividing the nonlinear coefficient by m(ω)n where n = 2 for
χ (3) effect (e.g. Kerr) and n = 4 for χ (5) (e.g., three-photons
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(c) Effective three-photon absorption (3PA) coefficient. The square
mark indicates the position of the input wavelength in Fig. 3.
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without renormalization. λ0 indicates the position of the zero group
velocity dispersion point (ZVD).

absorption), and (iii) multiplying the initial input field A(ω)
by m(ω) to obtain the input field � .

Comparison between the results of Eq. (17) (gray) and its
counterpart solved for the pseudoelectric field � (thick black)
are shown in Fig. 3. The input soliton has undergone a blue
soliton-self-frequency shift (SSFS) of a few nanometers and
dispersive waves are generated in the normal dispersion region
[46,47]. In the temporal domain the complex interplay [18] of
the dispersive nonlinearity [48], free carrier effects [45], and
the SSFS results in a pulse advance of a few picoseconds. We
see the spectral position of the dispersive wave (in the normal
dispersion region) and the time advance (10 vs 15 ps) differ
between the two models. Indeed after the initial generation, the
dispersive wave interacts with the soliton through cross-phase
modulation and cascaded four-wave mixing [49]; therefore its
amplitude and position depends greatly on the exact form of
the Kerr nonlinearity. The amplitude of the dispersive waves
grows much stronger when the renormalization procedure is
employed; and because the spectral recoil appears in reaction
to the emission of the dispersive wave, the SSFS is much
stronger for the renormalized case. Divergences between the
two numerical models are clearly visible.

B. Comparison with an analytic solution

Now that we have shown that the two approaches (the
nominal GNLSE and its renormalized counterpart) lead to
different results, we must determine which model is (the most)
correct. The case that we just discussed corresponds to a
realistic case where both the medium (dispersion, nonlinearity,
absorption) and the input parameters (power, duration) are
within reach of current experiments, so it would be in principle
possible to perform such an experiment and compare the
two models with the experimental results. However, such
measurements are not available yet. Another way would be
to confront directly the results of the two models with an
analytic case.
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Recent work by Erkintalo et al. [49] demonstrated that
nonlinear pulse propagation (continuous spectrum) and cas-
caded FWM (discrete spectrum) are closely related and that
the nonlinear pulse dynamics can be described as a cascade
of FWM events. This means that the capacity of an equation
to accurately reproduce the reality is intrinsic to its capacity
to deal correctly with FWM. Although no analytic solution
exists for the exact case we just studied we can still simplify
our problem to the propagation in a lossless and L = 100 μm
short PhCWG of a P0 = 8 W single continuous wave beam
of the same central frequency (ωref) as previously. In such a
situation the short length of the waveguide and the absence of
propagation loss render the undepleted pump approximation
valid. The FWM conversion efficiency [7] depending on the
pump-signal detuning (δω) is then expressed through the
analytic formulation:

η(δω) = (γFWM (δω)P0L)2

(
sinh(g(δω)L)

g(δω)L

)2

, (20)

g2(δω) = (γFWM (δω)P0)2

− (�KLωRef (δω) + �KNLωRef (δω))2/4, (21)

�KLωRef (δω) = 2K(ωref) − K(ωref + δω)

− K(ωref − δω), (22)

�KNLωRef (δω) = 2P0(γXPM (δω) + γXPM (−δω)

− γSPM (ωref)). (23)

γFWM , γXPM , and γSPM account respectively for the FWM
nonlinear coupling coefficient, the cross-phase modulation
(XPM) between the strong pump and the weak signal-idler,
and the self-phase modulation (SPM) of the pump [21]. In
particular, it takes into account the overlap of the different
mode fields. According to the notation used previously, these
effective nonlinear coefficients are expressed as

γSPM (ωref) = ωrefn2I

cAeff(ωref)
ghωref(ωref,ωref,ωref)

×
(

ng(ωref)

n0

)2

, (24)

γXPM (ω) = ωn2I

cAeff(ω)
ghω(ωref,ω,ωref)

×
(

ng(ωref)ng(ω)

n2
0

)
, (25)

γFWM (δω) = (ωref + δω)n2I

cAeff(ω + δω)
ghωref+δω(ωref−δω,ωref,ωref)

×
(

ng(ωref)
√

ng(ωref − δω)ng(ωref + δω)

n2
0

)
.

(26)

These coefficients are computed for each pump-signal
detuning δω; as a result we get the FWM gain curve as shown
in thick plain black in Fig. 4. We compare now this analytic
curve to the results given by the different models.

First we see that the GNLSE (thick dashed line) does
not appear to converge any better than the standard NLSE
(light dashed line). The NLSE does not take into account any
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FIG. 4. (Color online) η = Pidler(L)/Psignal(0) for various pump-
signal detunings after a propagation of L = 100 μm. Thick line
(black): analytic model. Thin dashed line (blue): results of the
NLSE. Thick dashed line (green): GNLSE. Plain line (gray): GNLSE
renormalized wherein only the group index variations are taken into
account. Dots (cyan): GNLSE wherein both slow light and effective
area variations are included in the renormalization.

variations of the nonlinearity; hence γSPM = γXPM = γFWM .
While the NLSE tends to overestimate the FWM bandwidth,
the GNLSE underestimates the FWM gain. Thus the inclusion
of self-steepening (i.e., the dispersion of the nonlinearity) does
not appear as a great improvement. One must note that the
GNLSE is still essential to model effects specifically related
to self-steepening like the formation of a shock front or to
explain the energy-dependent time advance of the nonlinear
pulse [18,48]. We see that the renormalization of the slow light
enhancement factor (plain gray line) improves the convergence
of the GNLSE: for small detuning (δλ < 2 nm) the GNLSE
and the analytic model converge; for larger detuning some
discrepancies still remain, but the overall error is still weaker
than for the unrenormalized GNLSE or the simple NLSE. The
remaining error is due to the fact that the effect of the variation
of the effective modal area is neglected at first. We see that if we
then renormalized the GNLSE to take as well into account the
latter effect (dots), we obtain a very good agreement between
the analytic model and the renormalized GNLSE. We present
in the last section how the renormalization technique is general
and can take into account variation of the modal area.

This demonstrates that the renormalization technique that
we present here really constitutes an improvement compared
to previous formulations. More generally, our technique could
also be seen as a generalization of Ref. [21] that deals in a
seamless way with the generation of multiple signal and idler
orders and hence is not only limited to a discrete set of a few
(usually four) beams.

C. Discussion

The differences between the two models (with or without
the renormalization) indicate that the physics governing the
nonlinear pulse is necessarily different. One of the largest
changes between Eqs. (17) and (18) lies in the ratio of SPM
to XPM intensity. Usually the XPM is twice as strong as
the SPM for a given frequency. After the renormalization of
the slow light variations, the photons are weighted by the
quantity m(ω)2 = ng(ω)/n0 and they do not have the same
contribution to the nonlinear index change. The weight factor
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corresponds to the increase of the photonic density of states in
the PhCWGs compared to the bulk material. As said earlier, the
first derivative of the band diagram could be both interpreted
as the group velocity or the density of states photons with a
higher density of states will have a higher probability to interact
with the nonlinear medium. By analogy, the inclusion of the
variations of the effective modal area would correspond to
dividing the photon eigencontribution by an effective volume.
Thus, the enhancement of the nonlinearity due to the slow
light and the tight confinement of light can be seen as an
enhancement caused by the increase of the optical density of
states. The photons with a high density of states are also less
influenced by the other photons with a lower density of states
(SPM < 2XPM).

Another interesting effect lies in the magnitude of the
shock term: as this term is stronger, the pulse forms a shock
front more quickly. The formation of an optical shock—more
precisely, the presence of the Kerr shock term—might play
a very important role in the generation of dispersive linear
waves (DSW) that could then be generated without strong
dispersion requirements; for instance, the presence of a
ZVD point is not mandatory [50]. The intensity of the
XPM and its dependence with the angular frequency play
predominant roles. After the renormalization, the dispersive
nonlinearity (γ1/γ0) in PhCWGs is only about one third of its
nominal value in Eq. (17), while at the same time the weight
of the photons has been strongly modified. Consequently
the behavior of PhCWGs with regards to this new DSW
generation scenario is different than what is found in other
systems. More generally, the renormalization redefines in
a nontrivial way the interaction, mediated by the material
nonlinearity, between the photons. Consequently, in the
laboratory reference frame (i.e., considering only the power
flux and no renormalization) the PhCWG behavior would be
different than what is a priori expected.

IV. IMPACT OF MODE AREA

Thus far, we only presented how to include the variations
of the slow light factor in the renormalization process. The
main reason is that the slow light is responsible for most
of nonlinearity variations in PhCWGs. However, the change
in the effective modal area still accounts for about 25%
of the dispersive nonlinearity, and we have shown through
comparison with an analytic test case that it has a noticeable
impact on the overall nonlinear dynamics. Consequently we
now show how the renormalization method is also able to
include variations of the effective modal area.

By analogy with what has been done in the previous
section, the renormalization procedure is applicable as well
for the modal area subject that ghω0 can be decomposed
as ghω0 (ω1,ω2,ω3) = g(ω0)h(ω1)h(ω2)h(ω3). If such is the
case, then we define the renormalization function m(ω) =
h(ω)

√
ng(ω), and the propagation equation to solve becomes

∂z�(z,ω0) = ıK(ω0)�(z,ω0) + ı
ω0n2I

cAeff(ω0)

ngω0

n0
g(ω0)h(ω0)

×
∫

�(z,ω1)∗�(z,ω2)�(z,ω3)

× δ(ω2 + ω3 − ω1 − ω0)dω3
i . (27)

Consequently h(ω) weights the individual photons’ contri-
butions to the Kerr nonlinearity: it includes implicitly most
of the dispersive nonlinearity (in PhCWGs). In contrast,
g(ω0)h(ω0)/Aeff(ω0) stands for the dispersive part of the modal
area. The problem of the factor decomposition of ghω0 is
directly related to the question of whether the nonlinearity in
PhCWGs can be modeled accurately using an analytic function
[20]. It has been demonstrated that, for dispersion-engineered
PhCWGs like the one considered in the present paper, the
nonlinearity can be fitted by a Morse-type potential function
with four adjustable parameters. However, the decomposition
of such function in factor decomposition only gives an approx-
imate value. More generally, the best way to decompose the
variations of the effective modal area is still an open question.

In any case, it is always possible to choose a decompo-
sition that preserves the self-phase modulation (SPM(ω) ∝
g(ω)h(ω)3) and cross-phase modulation XPM(ωref,ω) ∝
g(ω)h(ωref)2h(ω). ωref is defined as the center of the frequency
domain:

h(ω) =
√

SPM(ω)

XPM(ωref,ω)
, (28)

g(ω) =
√

XPM(ωref,ω)3

SPM(ω)3
. (29)

If the decomposition is consistent—i.e., if ghωi can indeed
be decomposed in factors— h(ω) and g(ω) do not depend on
the central frequency ωref that is chosen. Otherwise, only the
XPM created by a pulse centered at ωref , as well as the SPM
for any frequency, are included correctly. Such approximation
could still be sufficient if the propagation is dominated by a
single strong pulse. Checking how h(ω) and g(ω) depend on
ωref is essential to assess the validity of the renormalization for
taking into account effects related to the effective modal area.
In Fig. 5(a), we show the value of h(ω) computed according
to Eq. (28), depending on the central frequency ωref (y axis).

We observe two main zones: one in the range
1525–1560 nm (anomalous dispersion) and the other one in
the range 1560–1610 nm (ranging from the first ZVD point to
the band edge). The two zones are separated by the first zero
group velocity dispersion (ZVD) point [cf. Fig. 2(a)]. Inside
each zone, g(ω)h(ω) and h(ω) do not depend on the central
reference frequency as seen in Figs. 5(b) and 5(c).

This brings forth two major conclusions. First, it appears
that inside each zone, the decomposition of gh(ωi) holds; and
it is therefore possible to describe correctly the pulse evolution
using the renormalization technique (of course, providing
that the simulation spectral domain is confined within one
zone). Second, the presence of two distinct and well-defined
zones indicates that there is actually a change in the physics
governing the photon evolution.

For high frequencies (small wavelengths), the photons have
a nonlinear dispersive behavior corresponding to the fact
that h(ω)g(ω)/Aeff(ω) varies while h(ω) is almost constant
[Fig. 5(b)]. This indicates that the photons have a quasi-
equal-contribution to the nonlinearity. On the contrary, for low
frequencies (long wavelengths), the individual contribution
of photons is more pronounced [Fig. 5(b)] and h(ω) exhibits
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FIG. 5. (Color online) (a) Color map: h(ω) computed for different ωref (y axis). (b) h(ω) averaged on the different ωref for the normal
dispersion region (blue, λref > 1560 nm); and the anomalous dispersion region (red, λref < 1560 nm). Shaded area indicates the standard
deviation of the average. (c) Same as panel (b) but showing the dispersive part of the nonlinearity g(ω)h(ω)/Aeff (ω).

variations up to 60% while h(ω)g(ω) remains flat. Weighting
the eigen-photon contribution to the nonlinearity is essential.

In dispersion-engineered PhCWGs, the slow light at long
wavelength (low frequency) is caused by the presence of a
complete photonic bandgap (PBG). Close to the band edge,
the physics is then similar to what is found in Bragg gratings
[51]. In contrast, the slow light obtained at higher frequency
through dispersion engineering has another nature and arises
thanks to the complex interferences occurring inside the Bloch
mode. Although the decomposition of gh(ω) into a product
of functions is not mathematically exact, we see here that it
could nevertheless be a useful metric to sort out slow light
[52] into categories depending on the equicontribution to the
nonlinearity that the photons have or do not have.

In the introduction, we disregarded the coupled set of
equations as a possible solution for modeling systems with
large variation of the nonlinear parameters. The fact that the
photons are split here into two well-defined domains tends to
rehabilitate a posteriori such strategy. Still, one must be careful
of the way photons are taken into account at the limit between
the two domains, especially considering that this point is
precisely the zero group velocity dispersion (ZVD) point.

Finally we focused on SPM and XPM in the factor
decomposition of gh(ωi). The photon weight h(ω) depends on
this peculiar choice. Therefore, a material exhibiting a different
nonlinear response, like the presence of a χ (2) nonlinearity or a
different form for the χ (3) tensor, would lead to a different h(ω).

V. CONCLUSION

We have presented a new method to incorporate in
an efficient way into the GNLSE the variations of the
nonlinearity that exist in systems with structured slow light:

Effects linked to variation of the slow light enhancement
factor could be taken into account through renormalization.
Fluctuations of the mode effective area can be dealt with
by this technique as well. This would be of importance
especially for system like nanowires, where variations of the
effective mode area are important. As a result this paper gives
practical hints regarding the way nonlinear pulse propagation
in nanostructured systems could be computed and what could
be the limitation of current models.

This is crucial as more studies are precisely focusing
on higher order nonlinear effects and their mutual interplay
[16,18,45,48,50]. Our model is consistent with an analytic
set of equations derived to model discrete FWM events [21]
and could be considered as a generalization of that article.
Besides, it is worth noting that our technique does not increase
the computational burden compared to the resolution of a
standard GNLSE.

This study was also the occasion for more fundamental
considerations. In particular, we found it relevant not to
compute directly the propagation of the power flux but to
weight first the photon contributions by an analogue to their
optical density of states. Although the modal area depends
on the considered nonlinear effect and its associated tensor,
we found two classes of slow light in dispersion-engineered
PhCWGs: engineered slow light with a normal nonlinear
dispersive behavior and a region close to the photonic band
gap where the weight factor of the photons contributes greatly.
Such study might change how we perceive and understand
slow light effects, which are in fact more related to the high
density of states light effect.

Usually, the improvement of the models which deal with
nonlinear pulse propagation comes along with the addition
of extra operators in order to describe the new effects. Here
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the renormalized equation keeps the formulation with no extra
terms added. Indeed, the new phenomena that are observed lie
inside the renormalization function m(ω), not in the GNLSE
itself. Namely, the imbalance between SPM and XPM could
be interpreted as inertial forces that appear because of the
nontrivial relationship between the laboratory referential and
the PhCWGs one, where some photons appear more immune to
perturbation or prone to perturb others. Within this new refer-
ence frame, all the semianalytic method and models developed
so far, like the momentum method, remain valid [53–58].

Finally, the present discussion focused only on PhCWGs,
a system where the nonlinear variations are extreme. Part of
our conclusions would also apply to other nano-structured
systems like nanowires where the relatively weaker nonlinear

variations must be seen in regards to the very large optical
bandwidth these systems support. In particular, we have shown
that variations of the effective area—which are dominant over
slow light in nanowires—can be taken into account by the
renormalization method and that this method can describe
with accuracy both self-phase and cross-phase modulation
effects.
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