
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 21, 2017

Inverse Problems and Data Fusion for crop production applications targeting optimal
growth - Fertilization

Kaur, Bipjeet; Owusu, Robert K. A.

Published in:
Proceedings of the 1st DEXA Workshop on Integrated Processing, Control and Knowledge Systems for
Sustainable Production in Farms and Forests

Publication date:
2015

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Kaur, B., & Owusu, R. K. A. (2015). Inverse Problems and Data Fusion for crop production applications targeting
optimal growth - Fertilization. In Proceedings of the 1st DEXA Workshop on Integrated Processing, Control and
Knowledge Systems for Sustainable Production in Farms and Forests IEEE.

http://orbit.dtu.dk/en/publications/inverse-problems-and-data-fusion-for-crop-production-applications-targeting-optimal-growth--fertilization(5c913f8d-2dd1-46cc-afef-d125ee2bc3b8).html


Inverse Problems and Data Fusion for crop
production applications targeting optimal growth -

Fertilization

Bipjeet Kaur
Center for Wireless Systems and Applications

Section for Information Technology
Technical University of Denmark

DK-2750 Ballerup
bika@dtu.dk

Robert K. A Owusu
Novitek Solutions ApS

DK-1660 Copenhagen V
Denmark

robert.owusu@novitek.dk

Abstract—This work in progress is a contribution to crop
growth systems for planning and monitoring of farm activities
and practices by farmers. The work outlines the initial findings
related to modelling, simulation and visualization techniques for
crop growth, specifically targeting the barley crop, such that
the crop yield is optimized with respect to several parameters
(e.g. high end user value and minimum environmental impact),
thus obtaining a sustainable production. The growth process
optimization is based on information, including sensor based
measurements with sensor quality monitoring, from previous
and the present growth season. Initially, references targeting
the importance of site specific management for obtaining the
objective of yield optimization under the constraint of minimizing
the environmental load is pointed to. This is followed by key
references on modelling, simulation and visualization of the
crop growth process based on information on soil quality, field
seeding, spraying/fertilization and environmental information
in general. Finally, references to software tools, which could
form the basis for an open source platform for a planning
and monitoring system for optimal crop growth in multiple
application areas are given. The contribution concludes with
proposals of research questions to be pursued in the near future.

I. INTRODUCTION

The agricultural sector is facing great challenges. The
biggest challenge is to feed the increasing population. FAO
predicts 9.6 billion people on earth planet in 2050, which
demands 70 percent increase in food production [8]. Another
challenge is soil sustainability. Crop production requires
various nutrients from the soil where the most important
are Nitrogen (N), Phosphorous (P) and Potassium (K).
Extensive research has been done to develop the requirement
specification with respect to nutrients of each crop. In this
paper we will consider the growth of barley. It is used as
animal fodder, as a source of fermentable material for beer
and certain distilled beverages, and as a component of various
health foods. It is widely grown among others in Finland for
brewing and beverages.

This contribution is divided into the following parts.
Initially the importance of the site specific growth process
is reviewed, then follows a section covering the modelling,
simulation and visualization of growth processes. It is

subdivided into the very important area of soil texture and
property modelling and simulation, then follows crop growth
modelling and simulation. The next section is targeting
software for open source platform for crop growth simulation
and finally is concluded with a selection of research questions
to be persued, with the final goal of obtaining a system for
practical use, among others, in relation to farming.

II. THE SITE SPECIFIC CROP GROWTH PROCESS

The constantly increasing constraints on the methods and
resources used within agricultural crop production for food and
fodder, originates in the societies’ requirements for continuous
higher production yields, such that the environmental impact
is at least not increasing or preferably decreasing, thus leading
to sustainable production.
Such a sustainable production with increasing yield through-

out the years is very difficult. It requires detailed, site specific
information of the variability of different soil attributes within
a field [1], [13] and [9] for the decision making in the produc-
tion process with respect to when to start seeding/fertilization,
when to carry out spraying (and possibly simultaneously carry
out a second fertilization) and finally when to harvest the
barley. The approx. 85 days production cycle of barley is exem-
plified [2]. One of the most critical aspects of characterizing
soil is actually to obtain, at a resonable precision and cost,
representative soil samples (i.e. collected with adequate spatial
density at the proper depth and during the appropriate time)
such that it can be used in the decision process.

III. THE MODELLING, SIMULATION AND VISUALIZATION
OF CROP GROWTH PROCESSES

A. Soil Texture and Property Modelling and Simulation

Inverse Modelling of Fertilization Process via a First Order
Fredholm Integral

The objective of inverse modelling technique of the fer-
tilization process for plant growth is to estimate optimum
values of model parameters from external controlled input
and other stochastic measured data including environmental
variables. Farm models are often complex non-linear dynamic
models which can include numerous input factors e.g., soil and



vegetation parameters, agricultural practices, meteorological
input data [5]. The variation in soil texture, surface moisture
or vertical soil moisture gradient in larger scale atmospheric
models may lead to significant variations in simulated surface
fluxes of water and heat. Techniques to scale and aggregate
the soil characteristics are presented in [10] and focuses on
direct and indirect use in large scale meteorological models.

Mathematical Model

Suppose that it has been determined that some mass of
fertilizer has been deposited at a particular location and at
a depth h beneath the surface of the earth in a farm. Our
objective is to compute the mass distribution of the fertilizer
deposit denoted f(t), along t-axis.

Fig. 1. Geometric illustration of the fertilization process problem in one
dimension. The measured signal g(s) is the injected mass of fertilizer
modelled as a one dimensional mass distribution f(t) at a depth h.

The description of the fertilization model from an inverse
problem perspective can be formulated via a first order Fred-
holm Integral equation of the first kind [4];

g(s) =

∫
Ω

Q(s, t) f(t) dt (1)

where Ω defines the limit of integration in n−dimensional
space, Q is the kernel, f is the unknown function we seek to
reconstruct and g is the output. The model (as shown in Fig.
1) assumes a 1-D mass distribution of fertilizer at a depth h
below a given land surface during a fertilization operation in a
farm. The system model assumes that the functions Q, f and g
are all identically zero outside the unit line. Thus, the limit of
integration Ω is confined to Ω ⊂ [0, 1] for a one dimensional
case1. The integral equation in Eqn. (1) can be viewed as a
linear operator, operating on the function f(t) to produce g(s).
However, the nature of the operator does not often allow it to
have a bounded inverse. This implies that an infinitesimal small
change dg in g at P can cause a corresponding arbitrarily large
change df in f . Hence, the ability to solve Eqn. (1) successfully
depends largely on the accuracy of g(s) and the shape of Q.

Derivation of Simulation Model

We consider a simplified one dimensional model. Suppose
during the fertilization process, an amount of fertilizer is
deposited for a given sampled plane stratum at the depth h
beneath the surface of the earth. The geometry and location of
the s and t axes are shown in Fig. 1. The s-axis represents the
surface of the earth and the line y = −h the position of the
injected mass of magnitude f(t). The function f(t) is what we

1For a unit square, we have Ω ⊂ [0, 1] × [0, 1] and for a unit hypercube
Ω ⊂ [0, 1]1 × [0, 1]2, . . .× [0, 1]n

wish to find. We are able to only measure g(s), the vertical
component the earth surface.

Based on the measurements at the surface of the vertical
component g(s), we want to compute the mass distribution
f(t), along the t-axis. Now at P , the value of g due the part
dt is

dg =
sin(θ)[√

h2 + (s− t)2
]2 f(t) dt (2)

where the angle θ is as shown in Fig. 1.
The total value of g(s) for any s is

g(s) =

∫ 1

0

h

[h2 + (s− t)2]3/2
f(t) dt (3)

By comparing Eqn. (3) with Eqn. (1), we have

Q(s, t) =
h

[h2 + (s− t)2]3/2
(4)

where the kernel Q defined as Q(s, t) = Q(s−t) is a function
of the difference between s and t. In this paper, we have chosen
the midpoint quadrature rule as our discretization scheme to be
used in constructing an approximation to the definite integral
for the interval (0, 1) of Eqn. (3) in the following manner;

tj =
j − 0.5

n
, wj =

1

n
j = 1, 2, ..., n (5)

resulting in the the approximation∫ 1

0

Q(s, t) f dt '
n∑
j=1

wjQ(s, tj) f̃(tj) = $(s) (6)

where the tj’s and wj’s are the abscissas and respective
weights of the midpoint quadrature rule chosen/used. Next,
a collocation method is used to fulfil the requirement for/on g
at the R.H.S for m (m ≥ n) given points satisfying;

$(si) = g(si) ; i = 1, 2, ...,m

In this paper, we will assume that m = n. By substitution of
$ into the collocation scheme, the system of linear equations
at n given points s1, s2, ..., sn becomes;
n∑
j=1

wjQ(si, tj) f̃(tj) =

n∑
j=1

wjQ(si − tj)f̃(tj) = g(si) (7)

which can be written in the form

Kf = g (8)

where Ki,j = wjQ(si − tj), fj = f̃(tj), gi = g(si),
∀ i, j = 1, 2, ..., n, and the naive solution denoted f̃ is given
by;

f̃ = K−1g (9)

Re-writing Eqn. (7) in a matrix-vector representation re-
sults in the following system equation;

k1,1 k1,2 . . . k1,n

k2,1 k2,2 . . . k2,n

k3,1 k3,2 . . . k3,n

...
...

...
...

kn,1 kn,2 . . . kn,n




f1
f2
f3
...

fn

 =


g1

g2

g3

...
gn

 (10)



where Ki,j = wjQ(si, tj) = ki,j ; fj = f̃(tj); gi = g(si) for
i, j = 1, 2, ..., n.
The system function K is then derived from Eqns. (2-10) as

Ki,j = wjQ(si− tj) =
n2 h

(n2 h2 + (i− j)2)3/2
, i, j = 1, ..., n

(11)
where h is the depth.

Higher Dimensions and Ill-Posed Inverse Problems in Fertil-
izer Applications

In higher dimension, it can happen that the matrix K
has many singular values of different magnitudes close to
the origin. This renders K to have an ill-determined rank.
The kernel K smooths out high frequency components of the
signal which results in loss of information at high frequency
components of f . Therefore, a least squares fit may not be able
to capture the relevant information contained in g.
Thus, at higher values of the discretization parameter n, the

naive (or exact) solution denoted f̃ (or K−1g) often gives a
poor representation of the true solution. This is when ε = 0.
This assumption is not realistic from a practical viewpoint
since the elements of the computed naive vector f̃ are, in
principle, mere approximations to the desired solution and they
do not reflect on the true solution. Hence, Eqn.(8) is infact
Kf+ε = g with the additive noise vector ε representing pertur-
bation of the exact/true data. A good representation of the true
solution is only attainable when ε is non-zero. By introducing
the matrix notations; Ki,j = wiκi,j and K−1i,j = Ξi,j , it
is easy to show that

f = K−1g + K−1ε (12)

and it explains the reason why the behavior of the kernel K
must be taken into consideration since f of Eqn. (12) is a linear
function of g and ε. By taking the partial derivatives of fi with
respect to either gj or εj is the inverse kernel Ξi,j ;

∂fi
∂gj

= Ξi,j =
∂fi
∂εj

; i, j = 1, 2, ..., n

In the situation where the dimension is high, the matrix K may
be rank deficient, hence a stable inverse does not exist. The
difficulties associated with such instability is often due to the
fact that in practice the specification of gi is usually inexact
because of the data at hand. This means that the actual (or
true) data g are often corrupted with some noisy samples at
certain discrete abscissas 1, 2, ..., n. This can lead to an ill-
conditioned inverse problem in contrast to a well-conditioned
inverse problem. Thus, we have

g = K f + ε = µ+ ε (13)

where g is the measurement data, ε is an arbitrary function
referred to as measurement noise which is measured based on
some condition about the size and µ = K f is an estimate
of g. The problem statement is often related to a functional
inequality | ε | bounded above such that

| ε | ≤M or
∫

Σ

w′(s)ε2(s)ds ≤ M̃

where w′ are weights.
The condition on the magnitude of ε is defined as

n∑
i=0

εi = ε2

where ε2 is a constant.

Fertilization Process Model

The fertilization process model of sampling each subpop-
ulation (stratum) of fertilizer deposits independently is given
by the linear model;

g = Kf + ε = µ+ ε (14)

where g ∈ Rn is the measurement data, K ∈ Rn×n is the
discretized kernel of rank n, µ ∈ Rn is an estimate of the
measurement data g, f ∈ Rn is the input, and ε ∈ Rn is
additive white Gaussian noise with mean zero and variance
σ2I . Our emphasis is on the case where the least squares do
not make sense when put into the context of the generator
of the measurement data g. Fig. (2) illustrates the sparse
representation of the fertilization process that adequately
represents the size of the population for ensuring credibility,
reliability and validity of information collected for the whole
monitoring framework and thus bring a big picture perspective
to the problem.
From Fig. (2) we can write the stratified sampled data of the

fertilization process as below,
g1 = [g(1,1) g(2,1) . . . g(m,1)]

T

g2 = [g(m+1,2) g(m+2,2) . . . g(2m,2)]
T

g3 = [g(2m+1,3) g(2m+2,3) . . . g(3m,3)]
T

...
gn = [gmn−n,n gmn−n+1,n gmn−n+2,3 . . . gmn,n]T

At a depth h set by the machinery operator, the amount/volume

Fig. 2. The fertilization process and vectorization transformation of fertilizer
deposits into an mn× 1 column vector obtained by stacking the columns of
the matrix g of data on top of one another

of fertilizer (in kg per hectare) deposited into the soil in the
sampled areas are measured and specified using an ordered set
of components in an mn-dimensional vector, vec(g) ∈ Rmn

g = [gT1 gT2 gT3 gT4 . . . gTn−1 gTn ] (15)



which can be viewed as a vector g ∈ Rmn. Our objective
is to determine an estimate of fertilizer deposited at a known
distance h beneath the in the soil surface.

Truncated SVD Regularization and Discrete Picard Condition
of the Fertilization Process Model

The general principle of rank reduction based on SVD is
treated in [6]. Given an integer k ≤ n, we partition K by SVD
according to

K = (Uk,U0)

(
Dk 0
0 D0

)
(Vk,V0)T (16)

where Dk = diag(d1,d2, ...,dk) and D0 =
diag(dk+1,dk+2, ...,dn) consists of the k largest and
(n − k) smallest singular values respectively. The matrix Kk

defined by
Kk = Uk DkV

T
k

is considered to be an approximation to the original matrix K
with a corresponding decrease in the rank from n to k. For
some large enough values of the discretization parameter n, the
sequence of true data values {uTi (g − ε)} goes to zero faster
than the sequence of singular values di. In this case, for some
terms greater than or equal to some parameter k, uTi (g− ε) ≈
∞. The effect of these errors is that the singular values di and
the coefficients uTi g also called the Fourier coefficients do not
decrease monotonically as expected.

From Eqn. (9), we decompose the naive solution f̃ =
K−1g by SVD and change the summation interval to a given
choice of k. For a given choice k, we have the solution fk
given by

fk =

k∑
i=1

uTi g

di
vi (17)

Hence, if there exists a square integrable solution f to the
integral equation in Eqn. (1), then the left-hand side g must
satisfy;

∞∑
i=1

(
ui,g

di

)2

< ∞

where ( , ) is defined by

(φ, ψ) =

∫
φ(t)ψ(t) dt

Tikhonov Based Regularization from Numerical Methodology
Viewpoint

The solution denoted fλn is obtained by minimizing the
weighted combination of the residual norm and the added
smoothness constraint. The Tikhonov solution fλn is given by

∇f

{
1

2
‖g −K f‖22 +

λ2
n

2
‖L (f − f0)‖22

}
= 0 (18)

where ∇ denotes the vector differential operator, del and λn
is the numerical regularization parameter used to control the
degree of smoothness of the solution. In this paper L = I
and that we are also unaware of any initial estimate f0 of the

solution. Hence f0 = 0.
The regularized solution fλn given by

fλn = (KT K + λ2
nI)−1KTg (19)

The parameter λn is the numerical methods approach regu-
larization parameter. The SVD of the regularized solution of
Eqn. 19

fλn =

n∑
i=1

(
d2
i

d2
i + λ2

n

)
uTi g

di
vi (20)

Statistical Bayesian Based Regularization from Maximum
aPriori (MAP) Methodology Viewpoint

We compute an estimate for the posterior probability of f
given g, σ2 and λ2

s via Bayes’ rule;

p(f |g, σ2, λ2
s) =

p(g|f , σ2) p(f |λ2
s)

p(g|λs, σ2)
(21)

where [p(g|λs, σ2) =
∫
p(g|f , σ2) p(f |λ2

s) df ] and the den-
sities p(g|f , σ2) and p(f |λ2

s) are the likelihood and prior
probability respectively. The logarithm of the posterior;

log p(f |g, σ2, λ2
s) = −1

2

{
1

σ2
‖g −Kf‖22 + λ2

s ‖ f ‖22
}

+ κ

(22)
where λs is the statistical MAP regularization parameter used
to control the smoothness of the solution and
κ is a constant given by

κ = log
{
C̃l(σ)C̃p(λs)[p(g|σ2, λ2s )]−1

}
C̃l(σ) is the normalizing factor of the least squares paradigm

given by
{∫

exp − 1
2σ2 ‖g − Kf‖22 df

}−1

and C̃p(λs) is

the normalization factor of the prior probability given by{∫
exp − λ2

s

2 ‖ f ‖22 df
}−1

. The regularized solution fλs lies

on the stationary point satisfying

fλs = (KTK + σ2λ2
sI)−1KTg (23)

The SVD of the regularized solution of Eqn. 23

fλs =

n∑
i=1

(
d2
i

d2
i + λ2

sσ
2

)
uTi g

di
vi (24)

By comparison of Eqns. (20) and (24), we have

λn = λs σ (25)

Precision Matrix of the Regularized Solution and Error Bars

We take the second order partial derivatives of the log-
posterior with respect to f to obtain the curvature information;

J(λs, σ) = −∇2
f log

[
p(f |g, σ2, λ2

s)
]

=
KTK

σ2
+ λ2

sI (26)

where J in (26) is independent of f and the expectation of J
denoted Σfλ is J .



The precision matrix which is the inverse matrix Σ−1
f and

the decomposition of Σ−1
f by SVD yields;

Σ−1
f =

(
KTK

σ2
+ λ2

sI

)−1

= V

(
D2

σ2
+ λ2

2I

)
V T (27)

The construction of the error bars on fλs and the corre-
sponding approximation is given by the expression

fλs ±
√

diag[ Σ̃fλs
] ' fλs ±

√
diag[ Σ−1

f

where Σ̃fλs
is the variance-covariance

Σ̃fλs
= σ2

n∑
i=1

vi

(
di

d2
i + λ2

sσ
2

)2

vTi (28)

We can choose to evaluate the parameters λs and σ using the
Evidence Framework [7] or choose to optimize the parameters
using Variational Methods [3] and [7]. Furthermore, we can
also choose to estimate/determine the parameter λn by either
using the L-Curve method or be calculated from Eqn. 25 using
the values obtained for λs and σ.

B. Data Fusion

Fig. 3. a) A functional overview of the farm production process architecture.
b) Data fusion function blocks for crop production process and application

As shown in Fig. 3, the architecture is built around a
Database management system (DBMS), which provides the
main repository for the data gathered from the Wireless Sensor
Network (WSN) comprising; a) static sensors at Location A,
b) Non-static machinery equipped with sensors at Location
B, and static telemetry systems with multiple-sensor readings
capabilities at location C. Includes, WSN operating rules,
and three applications of a specific programming language
(e.g., java): WSN manager, the Aggregation Engine and a
Real-time Alert System, RTAS. The WSN manager links the
WSN which produces the data, to the DBMS where the
data are stored or aggregated. The WSN are the producers
of the massive amounts of heterogeneous information. the

data aggregation engine takes the data produced by the WSN
and summarises them by aggregation and/or perform signal
processing. The Real-Time alert system (RTAS) reacts to both
real-time sensor readings stored in the DBMS and the data
produced by the aggregation engine. An integral part of the
RTAS’s job/functions is to check if the sensor readings are
within certain (programmable) limits.
Based on the description of the system architecture of Fig. 3,

complete sensor observations are available at a central location
and a classical hypothesis testing procedures are employed for
signal processing. The basic goal of data fusion is to improve
system performance, (e.g., reliability or speed).

Formulation of the Data Fusion Problem

Consider the detection of a known signal in additive
Gaussian noise with n sensors. We will formulate the problem
as a binary hypothesis testing problem with the following two
hypotheses:

H0 : yk = nk ; H1 : yk = xk + nk (29)

where H0 is the hypothesis when the signal is absent and H1

is the hypothesis when the signal is present [16].

C. Crop Growth Modelling, Simulation and Visualization

The articles [15] and [12], presents dynamical models for
crop growth. Especially [15] is interesting, because it presents
the models supplemented by a computational environment
based on the R language. Among others issues, it remains to
obtain parameter sets for barley growth in the geographical
region of interest. With respect to some data mining tools
and programming languages (such as R, WEKA, RapidMiner),
including visualization of data acquisitions, parameter esti-
mations/fusions/decisions and the corresponding sensitivities,
the articles [11] and [15] are of relevance. Furthermore, the
references [15] and [14], in addition to the above mentioned
modelling, might form a basis for further work in an open
source environment, because of the R package ZeBook, for
agricultural modelling and simulation.

IV. SIMULATION RESULTS

We will assume that some mass of fertilizer (e.g., N,P
or/and K) has been equally and evenly applied to a soil at a
depth h = 0.25 at a given farm location/area. The discretized
data sequence (ti); i = 1, 2, .., n (where, n = 60 and n = 100
are the two discretized parameter sequence to be used for the
simulation). Moreover, we assume that the mass of controlled
input of fertilizer is expected to be m(ti) = 5g ∀ti > 0.
We further make the assumption that a change in the mass of
the controlled input occurs for each input at any area/location
due to the flow patterns of the soil water and nutrients. For
this simulation, we will define the true input data f which is a
function of time t as a superposition of the constant mass m
and some additive noise;

f(t) = m(t) + 0.01 ∗ randn(n, 1)



We will also assume that the measurement data (or observation
data) g is given by

g = Kf + 0.5 ∗ randn(60, 1)

Fig. 4. Top) The output signal g. Bottom) The true signal/data f

The elements of the computed naive solution is

f̃ = K−1g

The Least Squares solution [6] denoted fls of g is computed
using the solution to the normal equation given by

fls = (KTK)−1KTg

Fig. 5. Top) The naive solution fnaive. Bottom) The least squares solution
fls.

From Fig. 4, it can be seen that the range of values of
the measurement signal/data g and its characteristics have no
similarity with the true signal f . The range of values of the
true signal f is between 4.5 and 5.5 (i.e., 4.5 < f < 5.6)
and the range of values of g is between 15 and 40 (i.e.,
15 < g < 40).
Fig. 5, shows the estimates (or the reconstructed signal) fnaive

and fls of g computed using K−1 g and (KT K)−1KT g.
It can be seen from Fig. 5 that the range of values of the
estimated signals fnaive and fls based on direct inversion
and the least squares solution gives a poor representation

of the true signal f of Fig. 4-Bottom). Thus, both figures
of fnaive and fls are no where near the true signal/data f .
Furthermore, the signal characteristics of both fnaive and
fls has no resemblance of the true signal f . The range of
values of fnaive and fls are of the order of 1016 and 1018

respectively. The results of the reconstructed signals fnaive
and fls shows that direct inversion methods and Least Squares
solution methods cannot be used to reconstruct (or find a good
estimate of) the true solution f . The reason is that the integral
equation is not square integrable due to the amplifications by
the singular values di of the matrix K. This explains why the
Least Squares solution and direct inversion methods cannot
be used to reconstruct or find a good estimate of the true
signal f . This can be seen from the Picard plot in Fig. 6.

Fig. 6, strongly shows that the Picard condition has
not been satisfied for the integral equation of the fertilization
process problemand that it is impossible to compute a
numerical solution. All the the coefficients |uTi g| decay
slower than the singular values di. The noise comes from
both rounding errors and additive noise.

Fig. 7, shows the estimates fλn obtained for two
different choices of the regularization parameters,
λ2
n = λ2

rls = 0.097843 and λ2
n = λ2

rls = 0.094469 for
the cases where n = 60 and n = 100 respectively using
Eqn. (19). It can be seen that the range of values of the
estimated signals for the two regularization parameters for
both n = 60 and n = 100 are within the range 4 < fλn < 5.6
of the original signal f . This shows that by computing the
optimal parameters using the L-Curve method or the Evidence
framework will definitely improve the estimates.

Fig. 6. Picard plot of the singular values di and the coefficients |uTi g| and

|u
T
i g

di
| for the fertilization process problem which has no square integrable

solution. All the the coefficients |uTi g| decay slower than the singular values
di. The noise comes from both rounding errors and additive noise.

V. CONCLUSION

The focus of this paper was ill-posed inverse problems in
crop and production systems, processes and related applica-
tions. We emphasized on the Tikhonovs functional form of
regularization from both numerical and Statistical methods
viewpoints. We extended the concept of regularization to
the Bayesian methods framework. The Bayesian paradigm



provides a general unified framework to the ill-posed inverse
problem. We showed that the conditional mean of the inverse
problem in the statistical maximum apriori (MAP) framework
is the same as that of the regularized normal equations in
the numerical framework if we are dealing with multivariate
Gaussian distribution. We can consider the regularized normal
equations in the numerical methods framework as a special
case of stochastic modelling theory when we are dealing with
Gaussian random variables. Furthermore, the tuning parameter
λn in the numerical methods framework is a product of the
Bayesian statistical regularization parameter λs and the noise
level σ. What remains to be treated are methods for computing
the noise level σ and regularization parameters λn and λs and
also be able to compute the error bars.

VI. FUTURE WORK

The near and medium future development and research efforts
will focus on the following areas

• Aim at reducing the problem of parameter estimation
in the Bayesian framework to an optimization problem
through the Variational methods approach by deriving
an optimization algorithm based on the Variational
Bayesian Inference approach for the inverse prob-
lem and show that any optimum of the Bayesian
framework will also correspond to an optimum of the
Variational Bayesian Inference algorithm.

• Aim at developing a new framework for Sequential
Bayesian estimation in sensor networks, which will
focus on measurements of localized sensors and fusion
of both received measurements and missing ones at the
fusion centre (FC).

• Aim at obtaining, for the present growth cycle, which
starts approximately April 2015, a stratified sampling
of a barley growth field such that a site specific char-
acterization is obtained, and can be used for planning
of the present and the future growth cycles.

• Aim at obtaining an initial model for deciding when
the spraying process is carried out in a barley produc-

Fig. 7. Estimates fλn of the Tikhonov’s based regularization for two different
choices of the regularization parameters, λ2n = λ2rls = 0.097843 and λ2n =
λ2rls = 0.094469 for the cases where n = 60 and n = 100 respectively
using Eqn. (19).

tion cycle and research if the spraying could/should be
augmented with a second simultaneous fertilization.

• Setting up an open source environment, which can
be used for future modelling, simulation, visualization
and statistical analysis and possibly also documenta-
tion, targeting a basis for Fig 3.

• Building a barley production cycle growth model,
e.g. using the R package [14] and the corresponding
models in [15] and [1].
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