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Don’t Plan for the Unexpected:

Planning Based on Plausibility Models

Mikkel Birkegaard Andersen Thomas Bolander
Martin Holm Jensen

October 10, 2013

Abstract

We present a framework for automated planning based on plausibility mod-
els, as well as algorithms for computing plans in this framework. Our plausibility
models include postconditions, as ontic effects are essential for most planning
purposes. The framework presented extends a previously developed framework
based on dynamic epistemic logic (DEL), without plausibilities/beliefs. In the
pure epistemic framework, one can distinguish between strong and weak epis-
temic plans for achieving some, possibly epistemic, goal. By taking all possible
outcomes of actions into account, a strong plan guarantees that the agent achieves
this goal. Conversely, a weak plan promises only the possibility of leading to the
goal. In real-life planning scenarios where the planning agent is faced with a
high degree of uncertainty and an almost endless number of possible exogenous
events, strong epistemic planning is not computationally feasible. Weak epis-
temic planning is not satisfactory either, as there is no way to qualify which
of two weak plans is more likely to lead to the goal. This seriously limits the
practical uses of weak planning, as the planning agent might for instance always
choose a plan that relies on serendipity. In the present paper we introduce a
planning framework with the potential of overcoming the problems of both weak
and strong epistemic planning. This framework is based on plausibility models,
allowing us to define different types of plausibility planning. The simplest type
of plausibility plan is one in which the goal will be achieved when all actions in
the plan turn out to have the outcomes found most plausible by the agent. This
covers many cases of everyday planning by human agents, where we—to limit our
computational efforts—only plan for the most plausible outcomes of our actions.

1 Introduction

Whenever an agent deliberates about the future with the purpose of achieving a goal,
she is engaging in the act of planning. Automated Planning is a widely studied area
of AI dealing with such issues under many different assumptions and restrictions. In
this paper we consider planning under uncertainty [11] (nondeterminism and partial
observability), where the agent has knowledge and beliefs about the environment and
how her actions affect it. We formulate scenarios using plausibility models obtained
by merging the frameworks in [5, 21].

Example 1 (The Basement). An agent is standing at the top of an unlit stairwell
leading into her basement. If she walks down the steps in the dark, it’s likely that she
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M M′ M′′

w:h v1:h v2:h u1:h u2:h

Figure 1: Three plausibility models.

will trip. On the other hand, if the lights are on, she is certain to descend unharmed.
There is a light switch just next to her, though she doesn’t know whether the bulb is
broken.

She wishes to find a plan that gets her safely to the bottom of the stairs. Planning
in this scenario is contingent on the situation; e.g. is the bulb broken? Will she trip
when attempting her descent? In planning terminology a plan that might achieve the
goal is a weak solution, whereas one that guarantees it is a strong solution.

In this case, a weak solution is to simply descend the stairs in the dark, risking life
and limb for a trip to the basement. On the other hand, there is no strong solution
as the bulb might be broken (assuming it cannot be replaced). Intuitively, the best
plan is to flick the switch (expecting the bulb to work) and then descend unharmed,
something neither weak nor strong planning captures.

Extending the approach in [2] to a logical framework incorporating beliefs via a
plausibility ordering, we formalise plans which an agent considers most likely to achieve
her goals. This notion is incorporated into algorithms developed for the framework in
[2], allowing us to synthesise plans like the best one in Example 1.

In the following section we present the logical framework we consider throughout
the paper. Section 3 formalises planning in this framework, and introduces the novel
concept of plausibility solutions to planning problems. As planning is concerned with
representing possible ways in which the future can unfold, it turns out we need a be-
lief modality corresponding to a globally connected plausibility ordering, raising some
technical challenges. Section 4 introduces an algorithm for plan synthesis (i.e. genera-
tion of plans). Further we show that the algorithm is terminating, sound and complete.
To prove termination, we must define bisimulations and bisimulation contractions.

2 Dynamic Logic of Doxastic Ontic Actions

The framework we need for planning is based on a dynamic logic of doxastic ontic
actions. Actions can be epistemic (changing knowledge), doxastic (changing beliefs),
ontic (changing facts) or any combination. The following formalisation builds on the
dynamic logic of doxastic actions [5], adding postconditions to event models as in [21].
We consider only the single-agent case. Before the formal definitions are given, we
present some intuition behind the framework in the following example, which requires
some familiarity with epistemic logic.

Example 2. Consider an agent and a coin biased towards heads, with the coin lying
on a table showing heads (h). She contemplates tossing the coin and realizes that it
can land either face up, but (due to nature of the coin) believes it will land heads up.
In either case, after the toss she knows exactly which face is showing.

The initial situation is represented by the plausibility model (defined later)M and
the contemplation by M′′ (see Figure 1). The two worlds u1, u2 are epistemically
distinguishable (u1 6∼ u2) and represent the observable non-deterministic outcome of
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the toss. The dashed directed edge signifies a (global) plausibility relation, where the
direction indicates that she finds u2 more plausible than u1 (we overline proposition
symbols that are false).

Example 3. Consider again the agent and biased coin. She now reasons about shuf-
fling the coin under a dice cup, leaving the dice cup on top to conceal the coin. She
cannot observe which face is up, but due to the bias of the coin believes it to be heads.
She then reasons further about lifting the dice cup in this situation, and realises that
she will observe which face is showing. Due to her beliefs about the shuffle she finds
it most plausible that heads is observed.

The initial situation is againM. Consider the modelM′, where the solid directed
edge indicates a local plausibility relation, and the direction that v2 is believed over
v1. By local we mean that the two worlds v1, v2 are (epistemically) indistinguishable
(v1 ∼ v2), implying that she is ignorant about whether h or ¬h is the case.1 Together
this represents the concealed, biased coin. Her contemplations on lifting the cup is
represented by the model M′′ as in the previous example.

In Example 2 the agent reasons about a non-deterministic action whose outcomes
are distinguishable but not equally plausible, which is different from the initial con-
templation in Example 3 where the outcomes are not distinguishable (due to the dice
cup). In Example 3 she subsequently reasons about the observations made after a
sensing action. In both examples she reasons about the future, and in both cases the
final result is the modelM′′. In Example 8 we formally elaborate on the actions used
here.

It is the nature of the agent’s ignorance that makeM′ andM′′ two inherently dif-
ferent situations. Whereas in the former she is ignorant about h due to the coin being
concealed, her ignorance in the latter stems from not having lifted the cup yet. In gen-
eral we can model ignorance either as a consequence of epistemic indistinguishability,
or as a result of not yet having acted. Neither type subsumes the other and both are
necessary for reasoning about actions. We capture this distinction by defining both
local and global plausibility relations. The end result is that local plausibility talks
about belief in a particular epistemic equivalence class, and global plausibility talks
about belief in the entire model. We now remedy the informality we allowed ourselves
so far by introducing the necessary definitions for a more formal treatment.

Definition 4 (Dynamic Language). Let a countable set of propositional symbols P
be given. The language L(P ) is given by the following BNF:

φ ::= p | ¬φ | φ ∧ φ | Kφ | Bφφ | Xφ | [E , e]φ
where p ∈ P , E is an event model on L(P ) as (simultaneously) defined below, and
e ∈ D(E). K is the local knowledge modality, Bφ the global conditional belief modality,
X is a (non-standard) localisation modality (explained later) and [E , e] the dynamic
modality.

We use the usual abbreviations for the other boolean connectives, as well as for the
dual dynamic modality 〈E , e〉φ := ¬ [E , e]¬φ and unconditional (or absolute) global

belief Bφ := B>φ. The duals of K and Bφ are denoted K̂ and B̂φ.

Kφ reads as “the (planning) agent knows φ”, Bψφ as “conditional on ψ, the (plan-
ning) agent believes φ”, and [E , e]φ as “after all possible executions of (E , e), φ holds”.
Xφ reads as “locally φ”.

1In the remainder, we use (in)distinguishability without qualification to refer to epistemic
(in)distinguishability.
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Definition 5 (Plausibility Models). A plausibility model on a set of propositions P is
a tuple M = (W,∼,≤, V ), where

• W is a set of worlds,

• ∼ ⊆W ×W is an equivalence relation called the epistemic relation,

• ≤ ⊆W ×W is a connected well-preorder called the plausibility relation,2

• V : P → 2W is a valuation.

D(M) = W denotes the domain of M. For w ∈ W we name (M, w) a pointed
plausibility model, and refer to w as the actual world of (M, w). < denotes the strict
plausibility relation, that is w < w′ iff w ≤ w′ and w′ 6≤ w. ' denotes equiplausibility,
that is w ' w′ iff w ≤ w′ and w′ ≤ w.

In our model illustrations a directed edge from w to w′ indicates w′ ≤ w. By
extension, strict plausibility is implied by unidirected edges and equiplausibility by
bidirected edges. For the models in Figure 1, we have v1 ∼ v2, v2 < v1 in M′
and u1 6∼ u2, u2 < u1 in M′′. The difference between these two models is in the
epistemic relation, and is what gives rise to local (solid edges) and global (dashed
edges) plausibility. In [5] the local plausibility relation is defined as E:=∼ ∩ ≤; i.e.
w E w′ iff w ∼ w′ and w ≤ w′. E is a locally well-preordered relation, meaning that it
is a union of mutually disjoint well-preorders. Given a plausibility model, the domain
of each element in this union corresponds to an ∼-equivalence class.

Our distinction between local and global is not unprecedented in the literature, but
it can be a source of confusion. In [5], ≤ was indeed connected (i.e. global), but in later
versions of the framework [6] this was no longer required. The iterative development in
[19] also discuss the distinction between local and global plausibility (named preference
by the author). Relating the notions to the wording in [5], ≤ captures a priori beliefs
about virtual situations, before obtaining any direct information about the actual
situation. On the other hand, E captures a posteriori beliefs about an actual situation,
that is, the agent’s beliefs after she obtains (or assumes) information about the actual
world.
M′′ represents two distinguishable situations (v1 and v2) that are a result of rea-

soning about the future, with v2 being considered more plausible than v1. These
situations are identified by restrictingM′′ to its ∼-equivalence classes; i.e. M′′ � {v1}
and M′′ � {v2}. Formally, given an epistemic model M, the information cells in M
are the submodels of the form M � [w]∼ where w ∈ D(M). We overload the term
and name any ∼-connected plausibility model on P an information cell. This use is
slightly different from the notion in [6], where an information cell is an ∼-equivalence
class rather than a restricted model. An immediate property of information cells is
that ≤=E; i.e. the local and global plausibility relations are identical. A partition
of a plausibility model into its information cells corresponds to a localisation of the
plausibility model, where each information cell represents a local situation. The (later
defined) semantics of X enables reasoning about such localisations using formulas in
the dynamic language.

Definition 6 (Event Models). An event model on the language L(P ) is a tuple E =
(E,∼,≤, pre, post), where

• E is a finite set of (basic) events,

2A well-preorder is a reflexive, transitive binary relation s.t. every non-empty subset has minimal
elements [6].
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E E ′ E ′′

e1:〈>, {h 7→ ⊥}〉

e2:〈>, {h 7→ >}〉

f1:〈>, {h 7→ ⊥}〉

f2:〈>, {h 7→ >}〉

g1:〈¬h, ∅〉

g2:〈h, ∅〉

Figure 2: Three event models.

• ∼ ⊆ E × E is an equivalence relation called the epistemic relation,

• ≤ ⊆ E × E is a connected well-preorder called the plausibility relation,

• pre : E → L(P ) assigns to each event a precondition,

• post : E → (P → L(P )) assigns to each event a postcondition for each proposi-
tion. Each post(e) is required to be only finitely different from the identity.

D(E) = E denotes the domain of E . For e ∈ E we name (E , e) a pointed event model,
and refer to e as the actual event of (E , e). We use the same conventions for accessibility
relations as in the case of plausibility models.

Definition 7 (Product Update). LetM = (W,∼,≤, V ) and E = (E,∼′,≤′, pre, post)
be a plausibility model on P resp. event model on L(P ). The product update of M
with E is the plausibility model denoted M⊗E = (W ′,∼′′,≤′′, V ′), where

• W ′ = {(w, e) ∈W × E | M, w |= pre(e)},
• ∼′′= {((w, e), (v, f)) ∈W ′ ×W ′ | w ∼ v and e ∼′ f},
• ≤′′= {((w, e), (v, f)) ∈W ′ ×W ′ | e <′ f or (e '′ f and w ≤ v)},
• V ′(p) = {(w, e) ∈W ′ | M, w |= post(e)(p)} for each p ∈ P .

The reader may consult [4, 5, 6, 21] for thorough motivations and explanations of
the product update. Note that the event model’s plausibilities take priority over those
of the plausibility model (action-priority update).

Example 8. Consider Figure 2, where the event model E represents the biased non-
deterministic coin toss of Example 2, E ′ shuffling the coin under a dice cup, and E ′′
lifting the dice cup of Example 3. We indicate∼ and≤ with edges as in our illustrations
of plausibility models. Further we use the convention of labelling basic events e by
〈pre(e), post(e)〉. We write post(e) on the form {p1 7→ φ1, . . . , pn 7→ φn}, meaning that
post(e)(pi) = φi for all i, and post(e)(q) = q for q 6∈ {p1, . . . , pn}.

Returning to Example 2 we see thatM⊗E =M′′ where u1 = (w, e1), u2 = (w, e2).
In E we have that e2 < e1, which encodes the bias of the coin, and e1 6∼ e2 encoding
the observability, which leads to u1 and u2 being distinguishable.

Regarding Example 3 we have thatM⊗E ′ =M′ (modulo renaming). In contrast
to E , we have that f1 ∼ f2, representing the inability to see the face of the coin due to
the dice cup. For the sensing action E ′′, we haveM⊗E ′⊗E ′′ =M′′, illustrating how,
when events are equiplausible (g1 ' g2), the plausibilities of M′ carry over to M′′.

We’ve shown examples of how the interplay between plausibility model and event
model can encode changes in belief, and further how to model both ontic change and
sensing. In [1] there is a more general treatment of action types, but here such a
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classification is not our objective. Instead we simply encode actions as required for
our exposition and leave these considerations as future work.

Among the possible worlds, ≤ gives an ordering defining what is believed. Given
a plausibility model M = (W,∼,≤, V ), any non-empty subset of W will have one or
more minimal worlds with respect to ≤, since ≤ is a well-preorder. For S ⊆ W , the
set of ≤-minimal worlds, denoted Min≤S, is defined as:

Min≤S = {s ∈ S | ∀s′ ∈ S : s ≤ s′}.

The worlds in Min≤S are called the most plausible worlds in S. The worlds of
Min≤D(M) are referred to as the most plausible of M. With belief defined via
minimal worlds (see the definition below), the agent has the same beliefs for any
w ∈ D(M). Analogous to most plausible worlds, an information cell M′ of M is
called most plausible if D(M′) ∩Min≤D(M) 6= ∅ (M′ contains at least one of the
most plausible worlds of M).

Definition 9 (Satisfaction Relation). Let a plausibility model M = (W,∼,≤, V ) on
P be given. The satisfaction relation is given by, for all w ∈W :

M, w |= p iff w ∈ V (p)
M, w |= ¬φ iff notM, w |= φ
M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ
M, w |= Kφ iff M, v |= φ for all w ∼ v
M, w |= Bψφ iff M, v |= φ for all v ∈Min≤{u ∈W | M, u |= ψ}
M, w |= Xφ iff M � [w]∼, w |= φ
M, w |= [E , e]φ iff M, w |= pre(e) implies M⊗E , (w, e) |= φ

where φ, ψ ∈ L(P ) and (E , e) is a pointed event model. We write M |= φ to mean
M, w |= φ for all w ∈ D(M). Satisfaction of the dynamic modality for non-pointed
event models E is introduced by abbreviation, viz. [E ]φ :=

∧
e∈D(E) [E , e]φ. Further-

more, 〈E〉φ := ¬ [E ]¬φ.3

The reader may notice that the semantic clause for M, w |= Xφ is equivalent to
the clause for M, w |= [E , e]φ when [E , e] is a public announcement of a characteristic
formula [17] being true exactly at the worlds in [w]∼ (and any other world modally
equivalent to one of these). In this sense, the X operator can be thought of as a
public announcement operator, but a special one that always announces the current
information cell. In the special case where M is an information cell, we have for all
w ∈ D(M) that M, w |= Xφ iff M, w |= φ.

3 Plausibility Planning

The previous covered a framework for dealing with knowledge and belief in a dynamic
setting. In the following, we will detail how a rational agent would adapt these concepts
to model her own reasoning about how her actions affect the future. Specifically, we
will show how an agent can predict whether or not a particular plan leads to a desired
goal. This requires reasoning about the conceivable consequences of actions without
actually performing them.

3Hence, M, w |= 〈E〉φ ⇔ M, w |= ¬ [E]¬φ ⇔ M, w |= ¬(
∧

e∈D(E) [E, e]¬φ) ⇔ M, w |=∨
e∈D(E) ¬ [E, e]¬φ⇔M, w |=

∨
e∈D(E) 〈E, e〉φ.
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M E M′

w1:mt

w2:mt

e1:〈¬m, {t 7→ ⊥}〉

e2:〈m, {t 7→ >}〉

e3:〈>, {t 7→ ⊥}〉

(w1, e1):mt

(w2, e3):mt

(w2, e2):mt

Figure 3: The situation before and after attempting to pay with a debit card, plus the
event model depicting the attempt. This illustrates that the most plausible information
cell can contain the least plausible world.

Two main concepts are required for our formulation of planning, both of which build
on notions from the logic introduced in the previous section. One is that of states,
a representation of the planning agent’s view of the world at a particular time. Our
states are plausibility models. The other concept is that of actions. These represent
the agent’s view of everything that can happen when she does something. Actions are
event models, changing states into other states via product update.

In our case, the agent has knowledge and beliefs about the initial situation, knowl-
edge and beliefs about actions, and therefore also knowledge and beliefs about the
result of actions.

3.1 Reasoning About Actions

Example 10 (Friday Beer). Nearing the end of the month, an agent is going to have
an end-of-week beer with her coworkers. Wanting to save the cash she has on hand
for the bus fare, she would like to buy the beer using her debit card. Though she isn’t
certain, she believes that there’s no money (m) on the associated account. Figure 3
shows this initial situation as M, where t signifies that the transaction hasn’t been
completed. In this small example her goal is to make t true.

When attempting to complete the transaction (using a normal debit card reader),
a number of different things can happen, captured by E in Figure 3. If there is money
on the account, the transaction will go through (e2), and if there isn’t, it won’t (e1).
This is how the card reader operates most of the time and why e1 and e2 are the most
plausible events. Less plausible, but still possible, is that the reader malfunctions
for some other reason (e3). The only feedback the agent will receive is whether the
transaction was completed, not the reasons why it did or didn’t (e1 ∼ e3 6∼ e2). That
the agent finds out whether the transaction was successful is why we do not collapse
e1 and e2 to one event e′ with pre(e′) = > and post(e′)(t) = m.
M ⊗ E expresses the agent’s view on the possible outcomes of attempting the

transaction. The modelM′ is the bisimulation contraction ofM⊗E , according to the
definition in Section 4.1 (the world (w1, e3) having been removed, as it is bisimilar to
(w1, e1)).
M′ consists of two information cells, corresponding to whether or not the transac-

tion was successful. What she believes will happen is given by the global plausibility
relation. When actually attempting the transaction the result will be one of the infor-
mation cells of M′, namely Mt =M′ � {(w1, e1), (w2, e3)} or Mt =M′ � {(w2, e2)},
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in which she will know ¬t and t respectively. As (w1, e1) is the most plausible, we
can say that she expects to end up in (w1, e1), and, by extension, in the information
cell Mt: She expects to end up in a situation where she knows ¬t, but is ignorant
concerning m. If, unexpectedly, the transaction is successful, she will know that the
balance is sufficient (m). The most plausible information cell(s) in a model are those
the agent expects. That (w2, e3) is in the expected information cell, when the globally
more plausible world (w2, e2) is not, might seem odd. It isn’t. The partitioning of M
into the information cells Mt and Mt suggests that she will sense the value of t (¬t
holds everywhere in the former, t everywhere in the latter). As she expects to find out
that t does not to hold, she expects to be able to rule out all the worlds in which t
does hold. Therefore, she expects to be able to rule out (w2, e2) and not (w2, e3) (or

w1, e1). This givesM′ |= BX(K¬t∧B¬m∧ K̂m): She expects to come to know that
the transaction has failed and that she will believe there’s no money on the account
(though she does consider it possible that there is).

Under the definition of planning that is to follow in Section 3.2, an agent has a
number of actions available to construct plans. She needs a notion of which actions can
be considered at different stages of the planning process. As in the planning literature,
we call this notion applicability.

Definition 11 (Applicability). An event model E is said to be applicable in a plausi-
bility model M if M |= 〈E〉>.

Unfolding the definition of 〈E〉, we see what applicability means:

M |= 〈E〉> ⇔ ∀w ∈ D(M) :M, w |= 〈E〉> ⇔
∀w ∈ D(M) :M, w |= ∨e∈D(E) 〈E , e〉> ⇔
∀w ∈ D(M),∃e ∈ D(E) :M, w |= 〈E , e〉> ⇔
∀w ∈ D(M),∃e ∈ D(E) :M, w |= pre(e) and M⊗E , (w, e) |= > ⇔
∀w ∈ D(M),∃e ∈ D(E) :M, w |= pre(e).

This says that no matter which is the actual world (it must be one of those considered
possible), the action defines an outcome. This concept of applicability is equivalent
to the one in [1]. The discussion in [9, sect. 6.6] also notes this aspect, insisting
that actions must be meaningful. The same sentiment is expressed by our notion of
applicability.

Proposition 12. Given a plausibility model M and an applicable event model E, we
have D(M⊗E) 6= ∅.

The product update M⊗ E expresses the outcome(s) of doing E in the situation
M, in the planning literature called applying E in M. The dynamic modality [E ]
expresses reasoning about what holds after applying E .

Lemma 13. Let M be a plausibility model and E an event model. Then M |= [E ]φ
iff M⊗E |= φ.

Proof. M |= [E ]φ ⇔ ∀w ∈ D(M) :M, w |= [E ]φ ⇔
∀w ∈ D(M) :M, w |=

∧
e∈D(E)[E , e]φ ⇔ ∀(w, e) ∈ D(M)×D(E) :M, w |= [E , e]φ ⇔

∀(w, e) ∈ D(M)×D(E) :M, w |= pre(e) implies M⊗E , (w, e) |= φ ⇔
∀(w, e) ∈ D(M⊗E) :M⊗E , (w, e) |= φ ⇔ M⊗ E |= φ.
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M0

flick desc

w1:tlbsu w2:tlbsu

f1:〈t ∧ ¬s ∧ b, {l 7→ >, s 7→ >}〉

f2:〈t ∧ (s ∨ ¬b), {l 7→ ⊥, s 7→ ¬s}〉

e1:〈t, {t 7→ ⊥}〉

e2:〈t ∧ ¬l, {t 7→ ⊥, u 7→ ⊥}〉

Figure 4: An information cell, M0, and two event models, flick and desc.

M0 ⊗ flick

M0 ⊗ desc

(w1, f1):tlbsu (w2, f2):tlbsu

(w1, e1):tlbsu (w2, e1):tlbsu(w1, e2):tlbsu (w2, e2):tlbsu

Figure 5: The models resulting from applying the actions flick and desc in M0. Re-
flexive edges are not shown and the transitive closure is left implicit.

Here we are looking at global satisfaction, by evaluating [E ]φ in all of M, rather
than a specific world. The reason is that evaluation in planning must happen from
the perspective of the planning agent and its “information state”. Though one of
the worlds of M is the actual world, the planning agent is ignorant about which it
is. Whatever plan it comes up with, it must work in all of the worlds which are
indistinguishable to the agent, that is, in the entire model. A similar point, and a
similar solution, is found in [13].

Example 14. We now return to the agent from Example 1. Her view of the initial
situation (M0) and her available actions (flick and desc) are seen in Figure 4. The
propositional letters mean t: “top of stairs”, l: “light on”, b: “bulb working”, s :
“switch on” and u: “unharmed”. Initially, inM0, she believes that the bulb is working,
and knows that she is at the top of the stairs, unharmed and that the switch and light
is off: M0 |= Bb ∧K(t ∧ u ∧ ¬l ∧ ¬s).

flick and desc represent flicking the light switch and trying to descend the stairs,
respectively. Both require being at the top of the stairs (t). f1 of flick expresses that
if the bulb is working, turning on the switch will turn on the light, and f2 that if
the bulb is broken or the switch is currently on, the light will be off. The events are
epistemically distinguishable, as the agent will be able to tell whether the light is on
or off. desc describes descending the stairs, with or without the light on. e1 covers the
agent descending the stairs unharmed, and can happen regardless of there being light
or not. The more plausible event e2 represents the agent stumbling, though this can
only happen in the dark. If the light is on, she will descend safely. Definition 11 and
Lemma 13 let us express the action sequences possible in this scenario.

• M0 |= 〈flick〉> ∧ 〈desc〉>. The agent can initially do either flick or desc.

• M0 |= [flick] 〈desc〉>. After doing flick, she can do desc.

• M0 |= [desc] (¬ 〈flick〉> ∧ ¬ 〈desc〉>). Nothing can be done after desc.

Figure 5 shows the plausibility models arising from doing flick and desc in M0. Via
Lemma 13 she can now conclude:

9



• M0 |= [flick] (Kb ∨K¬b): Flicking the light switch gives knowledge of whether
the bulb works or not.

• M0 |= [flick]BKb. She expects to come to know that it works.

• M0 |= [desc] (K¬t ∧ B¬u). Descending the stairs in the dark will definitely get
her to the bottom, though she believes she will end up hurting herself.

3.2 Planning

We now turn to formalising planning and then proceed to answer two questions of
particular interest: How do we verify that a given plan achieves a goal? And can we
compute such plans? This section deals with the first question, plan verification, while
the second, plan synthesis, is detailed in Section 4.

Definition 15 (Plan Language). Given a finite set A of event models on L(P ), the
plan language L(P,A) is given by:

π ::= E | skip | if φ then π else π | π;π

where E ∈ A and φ ∈ L(P ). We name members π of this language plans, and use
if φ then π as shorthand for if φ then π else skip.

The reading of the plan constructs are “do E”, “do nothing”, “if φ then π, else π′”,
and “first π then π′” respectively. In the translations provided in Definition 16, the
condition of the if-then-else construct becomes a K-formula, ensuring that branching
depends only on worlds which are distinguishable to the agent. The idea is similar to
the meaningful plans of [9], where branching is allowed on epistemically interpretable
formulas only.

Definition 16 (Translation). Let α be one of s, w, sp or wp. We define an α-
translation as a function [·]α : L(P,A)→ (L(P )→ L(P )):

[E ]α φ := 〈E〉> ∧


[E ]XKφ if α = s

K̂ 〈E〉XKφ if α = w

[E ]BXKφ if α = sp

[E ] B̂XKφ if α = wp

[skip]α φ := φ

[if φ′ then π else π′]α φ := (Kφ′ → [π]αφ) ∧ (¬Kφ′ → [π′]αφ)

[π;π′]αφ := [π]α([π′]αφ)

We call [·]s the strong translation, [·]w the weak translation, [·]sp the strong plausibility
translation and [·]wp the weak plausibility translation.

The translations are constructed specifically to make the following lemma hold,
providing a semantic interpretation of plans (leaving out skip and π1;π2).

Lemma 17. Let M be an information cell, E an event model and φ a formula of
L(P ). Then:

1. M |= [E ]sφ iffM |= 〈E〉> and for each information cell M′ of M⊗E :M′ |= φ.

2. M |= [E ]wφ iffM |= 〈E〉> and for some information cellM′ ofM⊗E :M′ |= φ.

3. M |= [E ]spφ iff M |= 〈E〉> and for each most plausible information cell M′ of
M⊗E :M′ |= φ.
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4. M |= [E ]wpφ iff M |= 〈E〉> and for some most plausible information cell M′ of
M⊗E :M′ |= φ.

5. M |= [if φ′ then π else π′]αφ iff
(M |= φ′ implies M |= [π]αφ) and (M 6|= φ′ implies M |= [π′]αφ).

Proof. We only prove 4 and 5, as 1–4 are very similar. For 4 we have:

M |= [E ]wp φ ⇔ M |= 〈E〉> ∧ [E ] B̂XKφ ⇔Lemma 13

M |= 〈E〉> and M⊗E |= B̂XKφ ⇔

M |= 〈E〉> and ∀(w, e) ∈ D(M⊗E) :M⊗E , (w, e) |= B̂XKφ ⇔Prop. 12

M |= 〈E〉> and ∃(w, e) ∈Min≤D(M⊗E) :M⊗E , (w, e) |= XKφ ⇔
M |= 〈E〉> and ∃(w, e) ∈Min≤D(M⊗E) :M⊗E � [(w, e)]∼, (w, e) |= Kφ ⇔
M |= 〈E〉> and ∃(w, e) ∈Min≤D(M⊗E) :M⊗E � [(w, e)]∼ |= φ ⇔
M |= 〈E〉> and in some most plausible information cell M′ of M⊗E , M′ |= φ.

For if-then-else, first note that:

M |= ¬Kφ′ → [π]αφ ⇔ ∀w ∈ D(M) :M, w |= ¬Kφ′ → [π]αφ ⇔
∀w ∈ D(M) :M, w |= ¬Kφ′ implies M, w |= [π]αφ ⇔M is an info. cell

∀w ∈ D(M) : if M, v |= ¬φ′ for some v ∈ D(M) then M, w |= [π]αφ ⇔
if M, v |= ¬φ′ for some v ∈ D(M) then ∀w ∈ D(M) :M, w |= [π]αφ ⇔
M 6|= φ′ implies M |= [π′]αφ.

Similarly, we can prove:

M |= Kφ′ → [π]αφ ⇔ M |= Kφ′ implies M |= [π′]αφ.

Using these facts, we get:

M |= [if φ′ then π else π′]αφ ⇔ M |= (Kφ′ → [π]αφ) ∧ (¬Kφ′ → [π′]αφ) ⇔
M |= Kφ′ → [π]αφ and M |= ¬Kφ′ → [π′]αφ ⇔
(M |= φ′ implies M |= [π]αφ) and (M 6|= φ′ implies M |= [π′]αφ).

Using XK (as is done in all translations) means that reasoning after an action is
relative to a particular information cell (as M, w |= XKφ ⇔ M � [w]∼, w |= Kφ ⇔
M � [w]∼ |= φ).

Definition 18 (Planning Problems and Solutions). Let P be a finite set of proposi-
tional symbols. A planning problem on P is a triple P = (M0,A, φg) where

• M0 is a finite information cell on P called the initial state.

• A is a finite set of event models on L(P ) called the action library.

• φg ∈ L(P ) is the goal (formula).

A plan π ∈ L(P,A) is an α-solution to P if M0 |= [π]αφg. For a specific choice
of α = s/w/sp/wp, we will call π a strong/weak/strong plausibility/weak plausibility-
solution respectively.
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replace r1:〈t ∧ ¬b, {b 7→ >, u 7→ ¬s}〉

Figure 6: Event model for replacing a broken bulb.

Given a π, we wish to check whether π is an α-solution (for some particular α) to
P. This can be done via model checking the dynamic formula given by the translation
[π]α φg in the initial state of P.

A strong solution π is one that guarantees that φg will hold after executing it (“π
achieves φg”). If π is a weak solution, it achieves φg for at least one particular sequence
of outcomes. Strong and weak plausibility-solutions are as strong- and weak-solutions,
except that they need only achieve φg for all of/some of the most plausible outcomes.

Example 19. The basement scenario (Example 1) can be formalised as the planning
problem PB = (M0, {flick, desc}, φg) withM0, flick and desc being defined in Figure 4
and φg = ¬t ∧ u. Let π1 = desc. We then have that:

M0 |= [desc]w (¬t ∧ u)⇔M0 |= 〈desc〉> ∧ K̂ 〈desc〉XK(¬t ∧ u)⇔desc is applicable

M0 |= K̂ 〈desc〉XK(¬t ∧ u)⇔ ∃w ∈ D(M0) :M0, w |= 〈desc〉XK(¬t ∧ u).

Picking w1, we have

M0, w1 |= 〈desc〉XK(¬t ∧ u)⇔M0 ⊗ desc, (w1, e1) |= XK(¬t ∧ u)⇔
M0 ⊗ desc � [(w1, e1)]∼ |= (¬t ∧ u)

which holds as seen in Figure 5. Thus, π1 is a weak solution. Further, Lemma 17
tells us that π1 is not a s/wp/sp solution, as u does not hold in the (most plausible)
information cell M⊗ desc � {(w1, e2), (w2, e2)}.

The plan π2 = flick; desc is a strong plausibility solution, as can be verified by
M0 |= [π2]sp (¬t ∧ u). Without an action for replacing the lightbulb, there are no
strong solutions. Let replace be the action in Figure 6, where post(r1)(u) = ¬s signifies
that if the power is on, the agent will hurt herself, and define a new problem P ′B =
{M0, {flick, desc, replace}, φg). Then π3 = flick; (if ¬l then flick; replace; flick); desc is a
strong solution (we leave verification to the reader): If the light comes on after flicking
the switch (as expected) she can safely walk down the stairs. If it does not, she turns
off the power, replaces the broken bulb, turns the power on again (this time knowing
that the light will come on), and then proceeds as before.

Besides being an sp-solution, π2 is also a w- and a wp-solution, indicating a hi-
erarchy of strengths of solutions. This should come as no surprise, given both the
formal and intuitive meaning of planning and actions presented so far. In fact, this
hierarchy exists for any planning problem, as shown by the following result which is a
consequence of Lemma 17 (stated without proof).

Lemma 20. Let P = (M0,A, φg) be a planning problem. Then:

• Any strong solution to P is also a strong plausibility solution:
M0 |= [π]s φg ⇒M0 |= [π]sp φg.

• Any strong plausibility solution to P is also a weak plausibility solution:
M0 |= [π]sp φg ⇒M0 |= [π]wp φg.

• Any weak plausibility solution to P is also a weak solution:
M0 |= [π]wp φg ⇒M0 |= [π]w φg.
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4 Plan Synthesis

In this section we show how to synthesise conditional plans for solving planning prob-
lems. Before we can give the concrete algorithms, we establish some technical results
which are stepping stones to proving termination of our planning algorithm, and hence
decidability of plan existence in our framework.

4.1 Bisimulations, contractions and modal equivalence

We now define bisimulations on plausibility models. For our purpose it is sufficient
to define bisimulations on ∼-connected models, that is, on information cells.4 First
we define a normal plausibility relation which will form the basis of our bisimulation
definition.

Definition 21 (Normality). Given is an information cellM = (W,∼,≤, V ) on P . By
slight abuse of language, two worlds w,w′ ∈W are said to have the same valuation if
for all p ∈ P : w ∈ V (p)⇔ w′ ∈ V (p). Define an equivalence relation on W : w ≈ w′ iff
w and w′ has the same valuation. Now define w � w′ iff Min≤([w]≈) ≤Min≤([w′]≈).
This defines the normal plausibility relation. M is called normal if � = ≤. The
normalisation of M = (W,∼,≤, V ) is M′ = (W,∼,�, V ).

Definition 22 (Bisimulation). Let M = (W,∼,≤, V ) and M′ = (W ′,∼′,≤′, V ′) be
information cells on P . A non-empty relation R ⊆W ×W ′ is a bisimulation between
M and M′ (and M,M′ are called bisimilar) if for all (w,w′) ∈ R:

[atom] For all p ∈ P : w ∈ V (p) iff w′ ∈ V ′(p).

[forth] If v ∈W and v � w then there is a v′ ∈W ′ s.t. v′ �′ w′ and (v, v′) ∈ R.

[back] If v′ ∈W ′ and v′ � w′ then there is a v ∈W s.t. v � w and (v, v′) ∈ R.

If R has domain W and codomain W ′, it is called total. If M = M′, it is called an
autobisimulation (on M). Two worlds w and w′ of an information cell M = (W,∼,≤
, V ) are called bisimilar if there exists an autobisimulation R onM with (w,w′) ∈ R.

We are here only interested in total bisimulations, so, unless otherwise stated, we
assume this in the following. Note that our definition of bisimulation immediately
implies that there exists a (total) bisimulation between any information cell and its
normalisation. Note also that for normal models, the bisimulation definition becomes
the standard modal logic one.5

Lemma 23. If two worlds of an information cell have the same valuation they are
bisimilar.

Proof. Assume worlds w and w′ of an information cellM = (W,∼,≤, V ) have the same
valuation. Let R be the relation that relates each world ofM to itself and additionally
relates w to w′. We want to show that R is a bisimulation. This amounts to showing
[atom], [forth] and [back] for the pair (w,w′) ∈ R. [atom] holds trivially since w ≈ w′.

4The proper notion of bisimulation for plausibility structures is explored in more detail by Ander-
sen, Bolander, van Ditmarsch and Jensen in ongoing research. A similar notion for slightly different
types of plausibility structures is given in [20]. Surprisingly, Demey does not consider our notion of
bisimulation in his thorough survey [10] on different notions of bisimulation for plausibility structures.

5We didn’t include a condition for the epistemic relation, ∼, in [back] and [forth], simply because
we are here only concerned with ∼-connected models.
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For [forth], assume v ∈ W and v � w. We need to find a v′ ∈ W s.t. v′ � w′ and
(v, v′) ∈ R. Letting v′ = v, it suffices to prove v � w′. Since w ≈ w′ this is immediate:

v � w ⇔ Min≤([v]≈) ≤ Min≤([w]≈)
w≈w′

⇔ Min≤([v]≈) ≤ Min≤([w′]≈) ⇔ v � w′.
[back] is proved similarly.

Unions of autobisimulations are autobisimulations. We can then in the standard
way define the (bisimulation) contraction of a normal information cell as its quotient
with respect to the union of all autobisimulations [8].6 The contraction of a non-
normal model is taken to be the contraction of its normalisation. In a contracted
model, no two worlds are bisimilar, by construction. Hence, by Lemma 23, no two
worlds have the same valuation. Thus, the contraction of an information cell on a finite
set of proposition symbols P contains at most 2|P | worlds. Since any information cell
is bisimilar to its contraction [8], this shows that there can only exist finitely many
non-bisimilar information cells on any given finite set P .

Two information cellsM andM′ are called modally equivalent, writtenM≡M′,
if for all formulas φ in L(P ): M |= φ⇔M′ |= φ. Otherwise, they are called modally
inequivalent. We now have the following standard result (the result is standard for
standard modal languages and bisimulations, but it is not trivial that it also holds
here).

Theorem 24. If two information cells are (totally) bisimilar they are modally equiv-
alent.

Proof. We need to show that if R is a total bisimulation between information cellsM
and M′, then for all formulas φ of L(P ): M |= φ⇔M′ |= φ. First we show that we
only have to consider formulas φ of the static sublanguage of L(P ), that is, the language
without the [E , e] modalities. In [5], reduction axioms from the dynamic to the static
language are given for a language similar to L(P ). The differences in language are our
addition of postconditions and the fact that our belief modality is defined from the
global plausibility relation rather than being localised to epistemic equivalence classes.
The latter difference is irrelevant when only considering information cells as we do
here. The former difference of course means that the reduction axioms presented in [5]
will not suffice for our purpose. [21] shows that adding postconditions to the language
without the doxastic modalities only requires changing the reduction axiom for [E , e] p,
where p is a propositional symbol. Thus, if we take the reduction axioms of [5] and
replace the reduction axiom for [E , e] p by the one in [21], we get reduction axioms for
our framework. We leave out the details.

We now need to show that if R is a total bisimulation between information cells
M and M′, then for all [E , e]-free formulas φ of L(P ): M |= φ ⇔ M′ |= φ. Since
R is total, it is sufficient to prove that for all [E , e]-free formulas φ of L(P ) and all
(w,w′) ∈ R: M, w |= φ ⇔ M′, w′ |= φ. The proof is by induction on φ. In the
induction step we are going to need the induction hypothesis for several different
choices of R, w and w′, so what we will actually prove by induction on φ is this: For
all formulas φ of L(P ), if R is a total bisimulation between information cells M and
M′ on P and (w,w′) ∈ R, then M, w |= φ⇔M′, w′ |= φ.

The base case is when φ is propositional. Then the required follows immediately
from [atom], using that (w,w′) ∈ R. For the induction step, we have the following

6More precisely, letM be a normal information cell and let R be the union of all autobisimulations
on M. Then the contraction M′ = (W ′,∼′,≤′, V ′) of M has as worlds the equivalence classes
[w]R = {w′ | (w,w′) ∈ R} and has [w]R ≤′ [w′]R iff v ≤ v′ for some v ∈ [w]R and v′ ∈ [w′]R.
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cases of φ: ¬ψ,ψ ∧ γ,Xψ,Kψ,Bγψ. The first two cases are trivial. So is Xψ, as
Xψ ↔ ψ holds on any information cell. For Kψ we reason as follows. Let R be a
total bisimulation between information cellsM andM′ with (w,w′) ∈ R. Using that
R is total and that M and M′ are both ∼-connected we get: M, w |= Kψ ⇔ ∀v ∈
W :M, v |= ψ

i.h.⇔ ∀v′ ∈W ′:M′, v |= ψ ⇔M′, w′ |= Kψ.
The case of Bγψ is more involved. Let M,M′,R, w and w′ be as above. By

symmetry, it suffices to prove M, w |= Bγψ ⇒ M′, w′ |= Bγψ. So assume M, w |=
Bγψ, that is, M, v |= ψ for all v ∈ Min≤{u ∈ W | M, u |= γ}. We need to prove
M′, v′ |= ψ for all v′ ∈ Min≤′{u′ ∈ W ′ | M′, u′ |= γ}. So let v′ ∈ Min≤′{u′ ∈ W ′ |
M′, u′ |= γ}. By definition of Min≤′ this means that:

for all u′ ∈W ′, if M′, u′ |= γ then v′ ≤′ u′. (1)

Choose an x ∈ Min≤{u ∈ W | u ≈ u′ and (u′, v′) ∈ R}. We want to use (1) to show
that the following holds:

for all u ∈W , if M, u |= γ then x ≤ u. (2)

To prove (2), let u ∈ W with M, u |= γ. Choose u′ with (u, u′) ∈ R. The induction
hypothesis implies M′, u′ |= γ. We now prove that v′ ≤′ Min≤′([u′]≈). To this end,
let u′′ ∈ [u′]≈. We need to prove v′ ≤′ u′′. Since u′′ ≈ u′, Lemma 23 implies that
u′ and u′′ are bisimilar. By induction hypothesis we then get M′, u′′ |= γ.7 Using
(1) we now get v′ ≤′ u′′, as required. This show v′ ≤′ Min≤′([u′]≈). We now have
Min≤′([v′]≈) ≤′ v′ ≤′ Min≤′([u′]≈), and hence v′ � u′. By [back] there is then a v
s.t. (v, v′) ∈ R and v � u. By choice of x, x ≤ Min≤([v]≈). Using v � u, we now
finally get: x ≤Min≤([v]≈) ≤Min≤([u]≈) ≤ u. This shows that (2) holds.

From (2) we can now conclude x ∈ Min≤{u ∈ W | M, u |= γ} and hence, by
original assumption, M, x |= ψ. By choice of x there is an x′ ≈ x with (x′, v′) ∈ R.
SinceM, x |= ψ and x′ ≈ x, we can again use Lemma 23 and the induction hypothesis
to concludeM, x′ |= ψ. Since (x′, v′) ∈ R, another instance of the induction hypothesis
gives us M′, v′ |= ψ, and we are done.

Previously we proved that there can only be finitely many non-bisimilar information
cells on any finite set P . Since we have now shown that bisimilarity implies modal
equivalence, we immediately get the following result, which will be essential to our
proof of termination of our planning algorithms.

Corollary 25. Given any finite set P , there are only finitely many modally inequiva-
lent information cells on P .

4.2 Planning Trees

When synthesising plans, we explicitly construct the search space of the problem as
a labelled and-or tree, a familiar model for planning under uncertainty [11]. Our
and-or trees are called planning trees.

Definition 26 (Planning Tree). A planning tree is a finite, labelled and-or tree in
which each node n is labelled by a plausibility model M(n), and each edge (n,m)
leaving an or-node is labelled by an event model E(n,m).

7Note that we here use the induction hypothesis for the autobisimulation on M′ linking u′ and
u′′, not the bisimulation R between M and M′.
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Planning trees for planning problems P = (M0,A, φg) are constructed as fol-
lows: Let the initial planning tree T0 consist of just one or-node root(T0) with
M(root(T0)) = M0 (the root labels the initial state). A planning tree for P is then
any tree that can be constructed from T0 by repeated applications of the following
non-deterministic tree expansion rule.

Definition 27 (Tree Expansion Rule). Let T be a planning tree for a planning problem
P = (M0,A, φg). The tree expansion rule is defined as follows. Pick an or-node n
in T and an event model E ∈ A applicable in M(n) with the proviso that E does not
label any existing outgoing edges from n. Then:

1. Add a new and-node m to T with M(m) =M(n)⊗ E , and add an edge (n,m)
with E(n,m) = E .

2. For each information cell M′ in M(m), add an or-node m′ with M(m′) =M′
and add the edge (m,m′).

The tree expansion rule is similar in structure to—and inspired by—the expansion
rules used in tableau calculi, e.g. for modal and description logics [12]. Note that the
expansion rule applies only to or-nodes, and that an applicable event model can only
be used once at each node.

Considering single-agent planning a two-player game, a useful analogy for planning
trees are game trees. At an or-node n, the agent gets to pick any applicable action E
it pleases, winning if it ever reaches an information model in which the goal formula
holds (see the definition of solved nodes further below). At an and-node m, the
environment responds by picking one of the information cells of M(m)—which of the
distinguishable outcomes is realised when performing the action.

Without restrictions on the tree expansion rule, even very simple planning problems
might be infinitely expanded (e.g. by repeatedly choosing a no-op action). Finiteness
of trees (and therefore termination) is ensured by the following blocking condition.

B The tree expansion rule may not be applied to an or-node n for which there exists
an ancestor or-node m with M(m) ≡M(n).8

Lemma 28 (Termination). Any planning tree built by repeated application of the tree
expansion rule under condition B is finite.

Proof. Planning trees built by repeated application of the tree expansion rule are
finitely branching: the action library is finite, and every plausibility model has only
finitely many information cells (the initial state and all event models in the action
library are assumed to be finite, and taking the product update of a finite information
cell with a finite event model always produces a finite result). Furthermore, condition
B ensures that no branch has infinite length: there only exists finitely many modally
inequivalent information cells over any language L(P ) with finite P (Corollary 25).
König’s Lemma now implies finiteness of the planning tree.

Example 29. Let’s consider a planning tree in relation to our basement scenario (cf.
Example 19). Here the planning problem is PB = (M0, {flick, desc}, φg) withM0, flick
and desc being defined in Figure 4 and φg = ¬t ∧ u. We have illustrated the planning
tree T in Figure 7. The root n0 is an or-node (representing the initial state M0), to

8Modal equivalence between information cells can be decided by taking their respective bisimula-
tion contractions and then compare for isomorphism, cf. Section 4.1.
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Figure 7: A planning tree T for PB . Each node contains a (visually compacted)
plausibility model. Most plausible children of and-nodes are gray, doubly drawn or-
nodes satisfy the goal formula, and below solved nodes we’ve indicated their strength.

which the tree expansion rule of Definition 27 has been applied twice, once with action
E = flick and once with E = desc.

The result of the two tree expansions on n0 is two and-nodes (children of n0) and
four or-nodes (grandchildren of n0). We end our exposition of the tree expansion rule
here, and note that the tree has been fully expanded under the blocking condition B,
the dotted edge indicating a leaf having a modally equivalent ancestor. Without the
blocking condition, this branch could have been expanded ad infinitum.

Let T denote a planning tree containing an and-node n with a child m. The node
m is called a most plausible child of n ifM(m) is among the most plausible information
cells of M(n).

Definition 30 (Solved Nodes). Let T be any planning tree for a planning problem
P = (M0,A, φg). Let α be one of s, w, sp or wp. By recursive definition, a node n in
T is called α-solved if one of the following holds:

• M(n) |= φg (the node satisfies the goal formula).

• n is an or-node having at least one α-solved child.

• n is an and-node and:

– If α = s then all children of n are α-solved.
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– If α = w then at least one child of n is α-solved.

– If α = sp then all most plausible children of n are α-solved.

– If α = wp then at least one of the most plausible children of n is α-solved.

Let T denote any planning tree for a planning problem P = (M0,A, φg). Below we
show that when an or-node n of T is α-solved, it is possible to construct an α-solution
to the planning problem (M(n),A, φg). In particular, if the root node is α-solved, an
α-solution to P can be constructed. As it is never necessary to expand an α-solved
node, nor any of its descendants, we can augment the blocking condition B in the
following way (parameterised by α where α is one of s, w, sp or wp).

Bα The tree expansion rule may not be applied to an or-node n if one of the following
holds: 1) n is α-solved; 2) n has an α-solved ancestor; 3) n has an ancestor or-
node m with M(m) ≡M(n).

A planning tree that has been built according to Bα is called an α-planning tree. Since
Bα is more strict than B, Lemma 28 immediately gives finiteness of α-planning trees—
and hence termination of any algorithm building such trees by repeated application of
the tree expansion rule. Note that a consequence of Bα is that in any α-planning tree
an α-solved or-node is either a leaf or has exactly one α-solved child. We make use
of this in the following definition.

Definition 31 (Plans for Solved Nodes). Let T be any α-planning tree for P =
(M0,A, φg). For each α-solved node n in T , a plan π(n) is defined recursively by:

• if M(n) |= φg, then π(n) = skip.

• if n is an or-node and m its α-solved child, then π(n) = E(n,m);π(m).

• if n is an and-node and m1, . . . ,mk its α-solved children, then

– If k = 1 then π(n) = π(m1).

– If k > 1 then for all i = 1, . . . , k let δmi denote a formula true in M(mi)
but not in any of the M(mj) 6≡ M(mi) and let π(n) =

if δm1 then π(m1) else if δm2 then π(m2) else · · · if δmk
then π(mk).

Note that the plan π(n) of a α-solved node n is only uniquely defined up to the
choice of δ-formulas in the if-then-else construct. This ambiguity in the definition
of π(n) will not cause any troubles in what follows, as it only depends on formulas
satisfying the stated property. We need, however, to be sure that such formulas always
exist and can be computed. To prove this, assume n is an and-node and m1, . . . ,mk its
α-solved children. Choose i ∈ {1, . . . , k}, and let mn1 , . . . ,mnl

denote the subsequence
of m1, . . . ,mk for which M(mnj

) 6≡ M(mi). We need to prove the existence of a
formula δmi

such that M(mi) |= δmi
but M(mnj

) 6|= δmi
for all j = 1, . . . , l. Since

M(mnj
) 6≡ M(mi) for all j = 1, . . . , l, there exists formulas δj such thatM(mi) |= δj

but M(mnj ) 6|= δj . We then get that δ1 ∧ δ2 ∧ · · · ∧ δl is true in M(mi) but none
of the M(mnj ). Such formulas can definitely be computed, either by brute force
search through all formulas ordered by length or more efficiently and systematically by
using characterising formulas as in [2] (however, characterising formulas for the present
formalism are considerably more complex than in the purely epistemic framework of
the cited paper).

Let n be a node of a planning tree T . We say that n is solved if it is α-solved for
some α. If n is s-solved then it is also sp-solved, if sp-solved then wp-solved, and if
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wp-solved then w-solved. This gives a natural ordering s > sp > wp > w. Note the
relation to Lemma 20. We say that a solved node n has strength α, if it is α-solved
but not β-solved for any β > α, using the aforementioned ordering.

Example 32. Consider again the planning tree T in Figure 7 for the planning problem
PB = (M0, {flick, desc}, φg) with φg = ¬t ∧ u. Each solved node has been labelled
by its strength. The reader is encouraged to check that each node has been labelled
correctly according to Definition 30. The leafs satisfying the goal formula φg have
strength s, by definition. The strength of the root node is sp, as its uppermost child
has strength sp. The reason this child has strength sp is that its most plausible child
has strength s.

We see that T is an sp-planning tree, as it is possible to achieve T from n0 by
applying tree expansions in an order that respects Bsp. However, it is not the smallest
sp-planning tree for the problem, as e.g. the lower subtree is not required for n0 to be
sp-solved. Moreover, T is not a w-planning tree, as Bw would have blocked further
expansion once either of the three solved leafs were expanded.

In our soundness result below, we show that plans of α-solved roots are always
α-solutions to their corresponding planning problems. Applying Definition 31 to the
sp-planning tree T gives an sp-solution to the basement planning problem, viz. π(n0) =
flick; desc; skip. This is the solution we referred to as the best in Example 1: Assuming
all actions result in their most plausible outcomes, the best plan is to flick the switch
and then descend. After having executed the first action of the plan, flick, the agent
will know whether the bulb is broken or not. This is signified by the two distinct
information cells resulting from the flick action, see Figure 7. An agent capable of
replanning could thus choose to revise her plan and/or goal if the bulb turns out to
be broken.

Theorem 33 (Soundness). Let α be one of s, w, sp or wp. Let T be an α-planning
tree for a problem P = (M0,A, φg) such that root(T ) is α-solved. Then π(root(T )) is
an α-solution to P.

Proof. We need to prove that π(root(T )) is an α-solution to P, that is, M0 |=
[π(root(T ))]α φg. SinceM0 is the label of the root, this can be restated asM(root(T )) |=
[π(root(T ))]α φg. To prove this fact, we will prove the following stronger claim:

For each α-solved or-node n in T , M(n) |= [π(n)]α φg.

We prove this by induction on the height of n. The base case is when n is a leaf (height
0). Since n is α-solved, we must have M(n) |= φg. In this case π(n) = skip. From
M(n) |= φg we can conclude M(n) |= [skip]α φg, that is, M(n) |= [π(n)]α φg. This
covers the base case. For the induction step, let n be an arbitrary α-solved or-node
n of height h > 0. Let m denote the α-solved child of n, and m1, . . . ,ml denote the
children of m. Let mn1

, . . . ,mnk
denote the subsequence of m1, . . . ,ml consisting of

the α-solved children of m. Then, by Definition 31,

• If k = 1 then π(n) = E(n,m);π(mn1
).

• If k > 1 then π(n) = E(n,m);π(m) where π(m) =
if δmn1

then π(mn1
) else if δmn2

then π(mn2
) else · · · if δmnk

then π(mnk
).

We here consider only the (more complex) case k > 1. Our goal is to prove M(n) |=
[π(n)]α φg, that is,M(n) |= [E(n,m);π(m)]α φg. By the induction hypothesis we have
M(mni

) |= [π(mni
)]α φg for all i = 1, . . . , k (the mni

are of lower height than n).
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Claim 1. M(mni
) |= [π(m)]α φg for all i = 1, . . . , k.

Proof of claim. Let i be given. We need to prove

M(mni
) |=

[
if δmn1

then π(mn1
) else · · · if δmnk

then π(mnk
)
]
α
φg.

Note that by using item 5 of Lemma 17 it suffices to prove that for all j = 1, . . . , k,

M(mni
) |= δmnj

implies M(mni
) |=

[
π(mnj

)
]
α
φg. (3)

Let j ∈ {1, . . . , k} be chosen arbitrarily. Assume first j = i. By induction hypothesis
we have M(mnj

) |=
[
π(mnj

)
]
α
φg, and hence M(mni

) |=
[
π(mnj

)
]
α
φg. From this

(3) immediately follows. Assume now j 6= i. By the construction of the δ-formulas,
either M(mnj

) ≡M(mni
) or M(mni

) 6|= δmnj
. In the latter case, (3) holds trivially.

In case ofM(mnj
) ≡M(mni

) we immediately getM(mni
) |=

[
π(mnj

)
]
α
φg, since by

induction hypothesis we have M(mnj
) |=

[
π(mnj

)
]
α
φg. This concludes the proof of

the claim.

Note that by definition of the tree expansion rule (Definition 27),M(m1), . . . ,M(ml)
are the information cells in M(m).

Claim 2. The following holds:

• If α = s (w), then for every (some) information cell M′ in M(m): M′ |=
[π(m)]α φg.

• If α = sp (wp), then for every (some) most plausible information cell M′ in
M(m): M′ |= [π(m)]α φg.

Proof of claim. We only consider the most complex cases, α = sp and α = wp. First
consider α = sp. Let M′ be a most plausible information cell in M(m). We need to
prove M′ |= [π(m)]α φg. Since, as noted above, M(m1), . . . ,M(ml) are the informa-
tion cells inM(m), we must haveM′ =M(mi) for some i ∈ {1, . . . , l}. Furthermore,
as M′ is among the most plausible information cells in M(m), mi must by definition
be a most plausible child of m. Definition 30 then gives us that mi is α-solved. Thus
mi = mnj for some j ∈ {1, . . . , k}. By Claim 1 we have M(mnj ) |= [π(m)]α φg, and
since M′ = M(mi) = M(mnj ) this gives the desired conclusion. Now consider the
case α = wp. Definition 30 gives us that at least one of the most plausible children of
m are α-solved. By definition, this must be one of the mni

, i ∈ {1, . . . , k}. Claim 1
gives M(mni

) |= [π(m)]α φg. Since mni
is a most plausible child of m, we must have

thatM(mni
) is among the most plausible information cells inM(m). Hence we have

proven that [π(m)]α φg holds in a most plausible information cell of M(m).

By definition of the tree expansion rule (Definition 27),M(m) =M(n)⊗E(n,m).
Thus we can replace M(m) by M(n) ⊗ E(n,m) in Claim 2 above. Using items 1–4
of Lemma 17, we immediately get from Claim 2 that independently of α the fol-
lowing holds: M(n) |= [E(n,m)]α [π(m)]α φg (the condition M(n) |= 〈E(n,m)〉>
holds trivially by the tree expansion rule). From this we can then finally conclude
M(n) |= [E(n,m);π(m)]α φg, as required.

Theorem 34 (Completeness). Let α be one of s, w, sp or wp. If there is an α-
solution to the planning problem P = (M0,A, φg), then an α-planning tree T for P
can be constructed, such that root(T ) is α-solved.
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Proof. First note that we have [skip;π]α φg = [skip]α ([π]α φg) = [π]α φg. Thus, we
can without loss of generality assume that no plan contains a subexpression of the
form skip;π. The length of a plan π, denoted |π|, is defined recursively by: |skip| = 1;
|E| = 1; |if φ then π1 else π2| = |π1|+ |π2|; |π1;π2| = |π1|+ |π2|.

Claim 1. Let π be an α-solution to P = (M0,A, φg) with |π| ≥ 2. Then there exists
an α-solution of the form E ;π′ with |E ;π′| ≤ |π|.

Proof of claim. Proof by induction on |π|. The base case is |π| = 2. We have two
cases, π = if φ then π1 else π2 and π = π1;π2, both with |π1| = |π2| = 1. If π is the
latter, it already has desired the form. If π = if φ then π1 else π2 then, by assumption
on π, M0 |= [if φ then π1 else π2]α φg. Item 5 of Lemma 17 now gives that M0 |= φ
implies M0 |= [π1]α φg and M0 6|= φ implies M0 |= [π2]α φg. Thus we must either
have M0 |= [π1]α φg or M0 |= [π2]α φg, that is, either π1 or π2 is an α-solution
to P. Thus either π1; skip or π2; skip is an α-solution to P, and both of these have
length |π|. This completes the base case. For the induction step, consider a plan π
of length l > 2 which is an α-solution to P. We again have two cases to consider,
π = if φ then π1 else π2 and π = π1;π2. If π = π1;π2 is an α-solution to P, then π1 is
an α-solution to the planning problem P ′ = (M0,A, [π2]α φg), asM0 |= [π1;π2]α φg ⇔
M0 |= [π1]α [π2]α φg. Clearly |π1| < l, so the induction hypothesis gives that there is
an α-solution (E ;π′1) to P ′, with |E ;π′1| ≤ |π1|. Then, E ;π′1;π2 is an α-solution to P
and we have |E ;π′1;π2| = |E ;π′1|+ |π2| ≤ |π1|+ |π2| = |π|. If π = if φ then π1 else π2 is
an α-solution to P, then we can as above conclude that either π1 or π2 is an α-solution
to P. With both |π1| < l and |π2| < l, the induction hypothesis gives the existence an
α-solution E ;π′, with |E ;π′| ≤ |π|. This completes the proof of the claim.

We now prove the theorem by induction on |π|, where π is an α-solution to P =
(M0,A, φg). We need to prove that there exists an α-planning tree for P in which the
root is α-solved. Let T0 denote the planning tree for P only consisting of its root node
with label M0. The base case is when |π| = 1. Here, we have two cases, π = skip
and π = E . In the first case, the planning tree T0 already has its root α-solved, since
M0 |= [skip]α φg ⇔ M0 |= φg. In the second case, π = E , we have M0 |= [E ]α φg as
π = E is an α-solution to P. By definition, this means that E is applicable inM0, and
we can apply the tree expansion rule to T0, which will produce:

1. A child m of the root node with M(m) =M0 ⊗ E .

2. Children m1, . . . ,ml of m, where M(m1), . . . ,M(ml) are the information cells
of M(m).

Call the expanded tree T1. Since M0 |= [E ]α φg, Lemma 17 implies that for ev-
ery/some/every most plausible/some most plausible information cell M′ in M0 ⊗ E ,
M′ |= φg (where α = s/w/sp/wp). Since M(m1), . . . ,M(ml) are the information
cells of M0 ⊗ E , we can conclude that every/some/every most plausible/some most
plausible child of m is α-solved. Hence also m and thus n are α-solved. The base is
hereby completed.

For the induction step, let π be an α-solution to P with length l > 1. Let T0
denote the planning tree for P consisting only of its root node with label M0. By
Claim 1, there exists an α-solution to P of the form E ;π′ with |E ;π′| ≤ |π|. As
M0 |= [E ;π′]α φg ⇔M0 |= [E ]α [π′]α φg, E is applicable in M0. Thus, as in the base
case, we can apply the tree expansion rule to T0 which will produce nodes as in 1 and
2 above. Call the expanded tree T1. SinceM0 |= [E ]α [π′]α φg, items 1–4 of Lemma 17
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implies that for every/some/every most plausible/some most plausible information
cell inM0⊗E , [π′]α φg holds. Hence, for every/some/every most plausible/some most
plausible child mi of m,M(mi) |= [π′]α φg. Let mn1

, . . . ,mnk
denote the subsequence

of m1, . . . ,ml consisting of the children of m for which M(mni) |= [π′]α φg. Then, by
definition, π′ is an α-solution to each of the planning problem Pi = (M(mni),A, φg),
i = 1, . . . , k. As |π′| < |E ;π′| ≤ l, the induction hypothesis gives that α-planning trees
T ′i with α-solved roots can be constructed for each Pi. Let T2 denote T1 expanded
by adding each planning tree T ′i as the subtree rooted at Mni

. Then each of the
nodes mni are α-solved in T , and in turn both m and root(T2) are α-solved. The
final thing we need to check is that T2 has been correctly constructed according to the
tree expansion rule, more precisely, that condition Bα has not been violated. Since
each T ′i has in itself been correctly constructed in accordance with Bα, the condition
can only have been violated if for one of the non-leaf or-nodes m′ in one of the T ′i s,
M(m′) ≡ M(root(T2)). We can then replace the entire planning tree T2 by a (node-
wise modally equivalent) copy of the subtree rooted at m′, and we would again have
an α-planning tree with an α-solved root.

4.3 Planning Algorithm

In the following, let P denote any planning problem, and α be one of s, w, sp or wp.
With all the previous in place, we now have an algorithm for synthesising an α-solution
to P, given as follows.

Plan(α,P)

1 Let T be the α-planning tree only consisting of root(T ) labelled by the
initial state of P.

2 Repeatedly apply the tree expansion rule of P to T until no more rules apply
satisfying condition Bα.

3 If root(T ) is α-solved, return π(root(T )), otherwise return fail.

Theorem 35. Plan(α,P) is a terminating, sound and complete algorithm for produc-
ing α-solutions to planning problems P. Soundness means that if Plan(α,P) returns
a plan, it is an α-solution to P. Completeness means that if P has an α-solution,
Plan(α,P) will return one.

Proof. Termination comes from Lemma 28 (with B replaced by the stronger condition
Bα), soundness from Theorem 33 and completeness from Theorem 34 (given any two
Bα-saturated α-planning trees T1 and T2 for the same planning problem, the root node
of T1 is α-solved iff the root node of T2 is).

With Plan(α,P) we have given an algorithm for solving α-parametrised planning
problems. The α parameter determines the strength of the synthesised plan π, cf.
Lemma 20. Whereas the cases of weak (α = w) and strong (α = s) plans have been
the subject of much research, the generation of weak plausibility (α = wp) and strong
plausibility (α = sp) plans based on pre-encoded beliefs is a novelty of this paper.
Plans taking plausibility into consideration have several advantages. Conceptually,
the basement scenario as formalised by PB (cf. Example 19) allowed for several weak
solutions (with the shortest one being hazardous to the agent) and no strong solutions.
In this case, the synthesised strong plausibility solution corresponds to the course of
action a rational agent (mindful of her beliefs) should take. There are also computa-
tional advantages. An invocation of Plan(sp,P) will expand at most as many nodes
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as an invocation of Plan(s,P) before returning a result (assuming the same order of
tree expansions). As plausibility plans only consider the most plausible information
cells, we can prune non-minimal information cells during plan search.

We also envision using this technique in the context of an agent framework where
planning, acting and execution monitoring are interleaved.9 Let us consider the case
of strong plausibility planning (α = sp). From some initial situation an sp-plan is
synthesised which the agent starts executing. If reaching a situation that is not covered
by the plan, she restarts the process from this point; i.e. she replans. Note that
the information cell to replan from is present in the tree as a sibling of the most
plausible information cell(s) expected from executing the last action. Such replanning
mechanisms allow for the repetition of actions necessary in some planning problems
with cyclic solutions.

We return one last time to the basement problem and consider a modified replace
action such that the replacement light bulb might, though it is unlikely, be broken.
This means that there is no strong solution. Executing the sp-solution flick; desc, she
would replan after flick if that action didn’t have the effect of turning on the light. A
strong plausibility solution from this point would then be flick; replace; flick; desc.

5 Related and Future Work

In this paper we have presented α-solutions to planning problems incorporating ontic,
epistemic and doxastic notions. The cases of α = sp/sw are, insofar as we are aware,
novel concepts not found elsewhere in the literature. Our previous paper [2] concerns
the cases α = s/w, so that framework deals only with epistemic planning problems
without a doxastic component. Whereas we characterise solutions as formulas, [1]
takes a semantic approach to strong solutions for epistemic planning problems. In
their work plans are sequences of actions, requiring conditional choice of actions at
different states to be encoded in the action structure itself. By using the L(P,A) we
represent this choice explicitly.

The meaningful plans of [9, chap. 2] are reminiscent of the work in this paper.
Therein, plan verification is cast as validity of an EDL-consequence in a given system
description. Like us, they consider single-agent scenarios, conditional plans, applica-
bility and incomplete knowledge in the initial state. Unlike us, they consider only
deterministic epistemic actions (without plausibility). In the multi-agent treatment
[9, chap. 4], action laws are translated to a fragment of DEL with only public an-
nouncements and public assignments, making actions singleton event models. This
means foregoing nondeterminism and therefore sensing actions.

Epistemic planning problems in [15] are solved by producing a sequence of pointed
epistemic event models where an external variant of applicability (called possible at)
is used. Using such a formulation means outcomes of actions are fully determined,
making conditional plans and weak solutions superfluous. As noted by the authors,
and unlike our framework, their approach does not consider factual change. We stress
that [1, 15, 9] all consider the multi-agent setting which we have not treated here.

In our work so far, we haven’t treated the problem of where domain formulations
come from, assuming just that they are given. Standardised description languages
are vital if modal logic-based planning is to gain wide acceptance in the planning
community. Recent work worth noting in this area includes [7], which presents a
specification language for the multi-agent belief case.

9Covering even more mechanisms of agency is situated planning [11].
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As suggested by our construction of planning trees, there are several connections
between our approach for α = s and two-player imperfect information games. First,
product updates imply perfect recall [18]. Second, when the game is at a node belong-
ing to an information set, the agent knows a proposition only if it holds throughout the
information set. Finally, the strong solutions we synthesise are very similar to mixed
strategies. A strong solution caters to any information cell (contingency) it may bring
about, by selecting exactly one sub-plan for each [3].

Our work relates to [11], where the notions of strong and weak solutions are found,
but without plausibilites. Their belief states are sets of states which may be partioned
by observation variables. The framework in [16] describes strong conditional planning
(prompted by nondeterministic actions) with partial observability modelled using a
fixed set of observable state variables. Our partition of plausibility models into infor-
mation cells follows straight from the definition of product update. A clear advantage
in our approach is that actions readily encode both nondetermism and partial observ-
ability. [14] shows that the strong plan existence problem for the framework in [2] is
2-EXP-complete. In our formulation, Plan(s,P) answers the same question for P (it
gives a strong solution if one exists), though with a richer modal language.

We would like to do plan verification and synthesis in the multi-agent setting.
We believe that generalising the notions introduced in this paper to multi-pointed
plausibility and event models are key. Plan synthesis in the multi-agent setting is
undecidable [1], but considering restricted classes of actions as is done in [15] seems a
viable route for achieving decidable multi-agent planning. Other ideas for future work
include replanning algorithms and learning algorithms where plausibilities of actions
can be updated when these turn out to have different outcomes than expected.
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