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      This numerical study explains the eddy formation and disappearance in a slow steady 

axisymmetric air-water flow in a vertical truncated conical container, driven by the rotating top 

disk.  Numerous topological metamorphoses occur as the water height, Hw, and the bottom-

sidewall angle, α, vary.  It is found that the sidewall convergence (divergence) from the top to 

the bottom stimulates (suppresses) the development of vortex breakdown (VB) in both water and 

air.  At α = 60°, the flow topology changes eighteen times as Hw varies. The changes are due to 

(a) competing effects of AMF (the air meridional flow) and swirl, which drive meridional 

motions of opposite directions in water, and (b) feedback of water flow on AMF.  For small Hw, 

the AMF effect dominates.  As Hw increases, the swirl effect dominates and causes VB.   The 

water flow feedback produces and modifies air eddies.  The results are of fundamental interest 

and can be relevant for aerial bioreactors. 

1. Introduction  

      The conical geometry is beneficial for vortex devices.  Examples are hydrocyclones (Schultz, 

Gorbach & Piesche 2009) and vortex tubes (Secchiaroli et al. 2009).  Their large length-to-radius 

ratio causes that swirl significantly decays downstream due to friction at the sidewall.  Since the 

angular momentum, rʋ, is nearly conserved in a fast flow, where ʋ is the swirl velocity and r is 

the distance from the rotation axis, the reduction of r in a conical part of a vortex device results 

in increasing ʋ that helps sustain the strong centrifugal force.   

      This effect of conical geometry can also be useful for bioreactors.  Aerial vortex bioreactors 

are a rapidly developing technology.  They employ air-water flows for the efficient growth of 

tissue culture.  A rotating disk (Liow et al. 2009) or a propeller (Ramazanov et al. 2007), located 

in the air part of flow, induces a swirling motion.  The swirling air converges toward the reactor 

axis near the interface and drives a slow rotation and the meridional circulation of water. The air 
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meridional circulation delivers to the interface oxygen required for the tissue culture growth. The 

water circulation enhances mixing of the dissolved oxygen with other ingredients.   The tissue 

growth is a time-consuming process requiring a slow motion of ingredients and small shear 

stresses.  The air driving satisfies these requirements.  

      The commercial aerial bioreactors are cylindrical (Ramazanov et al. 2007).  The study by 

Herrada & Shtern (2014) revealed a non-trivial topology of a creeping air-water flow in a 

vertical sealed cylinder driven by the rotating top disk.  As the volume fraction of water 

increases, eddies develop and multiple topological changes occur in both air and water motions 

despite the fact that the flow being extremely slow.  Such paradoxical complexity of a creeping 

flow is caused by competing effects of the swirl and meridional motions.  This makes the fluid 

mechanics of aerial bioreactors of fundamental interest.    

      The swirl rapidly decays from the rotating top toward the bottom of aerial bioreactor due to 

friction at walls and viscous diffusion dominating in a slow motion.  The conical geometry can at 

least partially compensate the swirl decay.  This potentially beneficial effect is a practical 

motivation of our study.   

      Another motivation is fundamental: the VB (vortex breakdown) physics.  The conical 

geometry strongly affects the development of local circulation regions in swirling flows which 

are often referred to as VB bubbles.  To better understand the VB nature, numerous studies have 

been performed since 1957, motivated by the VB relevance for delta-wing aircraft, vortex 

combustors and tornados (Escudier 1988; Shtern 2012a).  Among many VB explanations, 

Benjamin’s theory (1962), interpreting VB as an inertial wave roll-up, seems to be the most 

popular, having more than 550 citations, but unfortunately the theory is not consistent with the 

observed important VB features (Shtern & Hussain 1999).  The authors follow the definition by 

Leibovich (1978) that VB is a reversal of the axial velocity.  For the reversal, only the swirl-to-

meridional-motion strength ratio is important and therefore VB can occur in a slow motion as 

well (Herrada & Shtern 2014).   

      The breakthrough in the understanding of the VB nature was achieved due to fundamental 

research of swirling flows in sealed containers.  In particular, it was shown that the container 

conical shape can help suppress the near-axis VB while it can induce a local circulation region 

near the sidewall (Escudier, O’Leary & Pool 2007).  These effects of conical geometry are a 
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motivation for our study which generalizes the results of Escudier et al. (2007) to air-water 

flows.    

      In contrast to the one-fluid case, VB occurs even in a creeping air-water motion. There the 

water fraction, Hw, replaces the Reynolds number, Re, as a key parameter, controlling the flow 

topology.  Fоr small Hw, the air meridional motion effect dominates the swirl effect in water.  

With increasing Hw, the water rotation speeds up and causes VBs first in water and then in air.   

      The nature of the VB development in water is the same as that in the single-fluid flows where 

VB occurs via the swirl decay mechanism (Herrada et al. 2015).  The results described in §7 

reveal that as Re increases, the VB in air disappears, but the VB in water does not.  The water 

VB bubble in the creeping flow eventually transforms in the water VB bubble in the high-Re 

flow (Herrada et al. 2013).   

       The feature that VB and other topological metamorphoses occur in a very slow flow is 

counterintuitive.  It might be superficially believed that a creeping flow, dominated by viscous 

diffusion, should have a simple topology.  However, the Moffatt (1964) discovery of an infinite 

set of eddies in a creeping flow between two inclined walls destroyed this illusion. 

      Numerous studies, following the Moffatt finding, revealed that the cellular creeping motions 

are wide-spread, occurring in a plane cavity (Moffatt 1964, Shankar & Deshpande 2000), cone 

(Wakiya 1976), cylinder (Blake 1979, Hills 2001), in cavities with oppositely moving walls 

(Gurcan et al. 2003, Wilson et al. 2005), between concentric cones (Hall et al. 2007) and coaxial 

cylinders (Shtern 2012b).   

      The topology of two-fluid flows is more complicated than that of one-fluid flows.  Herrada & 

Shtern (2014) revealed nine topological changes in the creeping air-water flow in a sealed 

cylinder as the water volume fraction, Hw, increases.  Our paper demonstrates that this number is 

indeed larger for air-water flows in both cylindrical and conical containers and focuses on the 

effects of conical geometry.    

      In the rest of this paper, we formulate the problem (§2), describe the numerical technique 

(§3), explore the flow pattern for small Hw (§4), investigate how the pattern changes as Hw grows 

in cones converging (§5) and diverging (§6) from the rotating lid to the stationary bottom disk, 

study the effect of increasing rotation (§7), summarize the results in §8.  
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2. Problem formulation 

2.1. Flow geometry 
 

                                                                                      
Figure 1. Schematic of the problem. 

      Figure 1 is a problem schematic.  The lower part, 0 < z < hw, of the conical container is filled 

with water, the upper part, hw < z < h, is filled with air; h is the truncated-cone height; α is the 

angle between the bottom and the sidewall; g is the gravitational acceleration.  The interface is 

depicted by the thin horizontal line, z = hw.  The top disk (at z = h) rotates with angular velocity 

ω. The rotation strength can be characterized by the Reynolds number, Re = ωR2/νw; R is the 

bottom-disk radius, and νw is the kinematic viscosity of water.  The other control parameters are 

aspect ratio H = h/R and the water volume fraction characterized by Hw = hw/h.  Since the aspect 

ratio of aerial bioreactors is typically close to one (Ramazanov et al. 2007, Liow et al. 2009), 

here H = 1 is fixed while Hw varies.   

      Our study is limited to the case where the wall material does not change the angle between 

the interface and wall.  The obtained results can be useful as a reference for further studies of the 

wall material effects.  In a creeping flow the interface is undisturbed.  Herrada et al. (2013) and 

Herrada & Shtern (2014) found that the interface deformation also is negligibly small for 

moderate Re typical of bioreactor flows.  No significant deformation of the interface was 

observed in the experiment of Lo Jacomo et al (2009).  The physical reason is the small air-to-

water density ratio.  Based on this reason and prior results, the interface is considered 

undisturbed in this study: z = zi = Hw. The full problem is formulated and used in Herrada et al 

(2013) where the change in the interface height is less than 2% at Re = 2000.   
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2.2. Governing equations 

The governing equations are the same as in the paper by Herrada and Shtern (2014).  They are 

rewritten below for convenience of a reader.  Using R, ωR, and ρwω2R2 as scales for length, 

velocity, and pressure, respectively, renders all variables dimensionless.  We consider steady 

axisymmetric flows of air and water both governed by the Navier-Stokes equations for a viscous 

incompressible fluid, 

        r−1∂(ru)/∂r + ∂w/∂z = 0,                                                                      (1) 

 u∂u/∂r + w∂u/∂z = v2/r −ρn∂p/∂r +νnRe−1(∇2u − u/r2),   (2) 

   u∂v/∂r + w∂v/∂z + uv/r = νnRe−1(∇2v −v/r2),                  (3) 

u∂w/∂r + w∂w/∂z = −ρn∂p/∂z+νnRe−1(∇2w),                           (4)                    

where ∇2 ≡ r−1∂(r∂/∂r)/∂r+∂2/∂z2, (u, v, w) are the velocity components in the cylindrical 

coordinate, (r, φ, z), and p is pressure reduced by the hydrostatic contribution.  The coefficients, 

ρn and νn, both equal 1 for n = 1 (in water) while ρn = ρw/ρa and νn = νa/νw for n = 2 (in air); νw = 

10−6 m2/s and νa = 15×10−6 m2/s are the kinematic viscosities; ρw = 1000 kg/m3 and ρa = 1.22 

kg/m3 are the densities; subscripts “a” and “w” are abbreviations for “air” and “water”.  This air 

density value corresponds to the atmospheric pressure and the room temperature.   

2.3. Boundary conditions 

      Equations (1)-(4) are solved under the following boundary conditions:       

 (i) Regularity at the axis, 0 < z < 1, r = 0:  u = v = 0, ∂w/∂r = 0. 

 (ii) No-slip at the walls: u = v = w = 0 at the still disk, 0 < r < 1, z = 0, and at the sidewall, 

0 < z < 1, r = 1−zcotα; u = w = 0, v = r at the rotating disk, 0 < r < 1−cotα, z = 1.   

 (iii) Continuity of all the velocity and stress components at the air-water interface, z = Hw.  

The normal-to-interface velocity is zero: w = 0 at z = Hw.   

2.4.  Reduced problem 

     As Re → 0, the motion becomes very slow and the nonlinear terms become negligibly small 

compared with the linear terms in equation (3), which reduces to 

∇2v −v/r2 = 0.       (5) 
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This equation has a nonzero solution due to the boundary condition at the top disk: v = r at z = 1.  

At all other walls, the swirl velocity is zero, v = 0.  At the interface, v and the swirl shear stresses 

are continuous: vw = va and ∂vw/∂z = µr∂va/∂z at z = Hw.  Thus the problem for the swirl velocity 

becomes separated from the problem for the meridional motion in the limiting case as Re → 0, 

similar to that in the one-fluid problem studied by Hills (2001).  We first solve this linear 

problem for swirl. 

      Next, we address the problem for the meridional motion.  Since the boundary conditions are 

uniform, the meridional motion is only driven by the centrifugal force corresponding to term v2/r 

in equation (2).  This term must be preserved, while the other nonlinear terms can be omitted in 

the limiting case as Re → 0.  Then introducing u* = u/Re and w* = w/Re reduces equations (1), 

(2), and (4) to 

        r−1∂(ru*)/∂r + ∂w*/∂z = 0,                                                                       (6) 

 ρn∂p/∂r − v2/r = νn(∇2u* − u*/r2),       (7) 

   ρn∂p/∂z = νn∇2w*.                               (8)     

      It is interesting that the entire problem formally is nonlinear despite the fact that the motion 

being creeping, but can be divided into the two linear problems: one for the swirl velocity (5) and 

the other for the meridional motion (6)-(8).  After solving problem (5), the “source” term, v2/r in 

equation (7), is prescribed, so the problem for the meridional motion also is linear.  This feature 

is also similar to that in the one-fluid flow studied by Hills (2001).   

 

3. Numerical procedure  

3.1. Transformation of equations 

      For the Re ranges addressed in this work, the interface deformation is negligibly small and r 

= ri = Hw is a good approximation for the interface. The number of variables involved in the 

problem is reduced by introducing a stream-function-vorticity-angular-momentum form.  System 

(1)-(4) is transformed into three equations for the Stokes stream function Ψ, u = − r−1∂Ψ/∂z, w = 

r−1∂Ψ/∂r,  the azimuthal vorticity component, η = ∂u/∂z-∂w/∂r, and circulation, Γ = rv: 

 
    ∇2Ψ−2r−1∂Ψ/∂r = − rη,                                                                   (9)  
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            u∂η/∂r + w∂η/∂z  -uη/r =  2r−3 Γ ∂ Γ /∂z.+νnRe−1(∇2η − η/r2),                         (10) 

   u∂ Γ/∂r + w∂ Γ /∂z  = νnRe−1(∇2 Γ −2r−1∂ Γ /∂r ),                  (11) 

These equations are solved applying the boundary conditions for Ψ, η  and Γ  which follows 

from those listed in §2.3. 

3.2. Linear problem 

In the limiting case as Re → 0, introducing η* = η/Re and Ψ* = Ψ/Re reduces equations (9)-

(11) to         

             ∇2Ψ*−2r−1∂Ψ*/∂r = − rη*,                                                                   (9a)  

                  2r−3 Γ ∂ Γ /∂z.+ νn(∇2η* − η*/r2) = 0,                            (10a) 

         ∇2 Γ −2r−1∂ Γ /∂r = 0.                                                                     (11a) 

3.3. Discretization 

      A boundary-fitted coordinate system is used to calculate the problem.  Both the water and air 

regions are mapped onto the fixed rectangular domains (a) 0 ≤ ϕ ≤ 1, 0 ≤ ξw ≤ Hw, and (b) 0 ≤ ϕ 

≤ 1, Hw ≤ ξa ≤ 1.  To this end, we perform the coordinate transformations:  (a) ϕ = 

r/(1−zcotα), ξw = z and (b) ϕ = r/(1−zcotα), ξa = z.  These domains are discretized by using a 

set of nξw and nξa Chebychev spectral collocation points in the ξ direction. The ϕ interval is 

discretized using a set of nϕ Chebychev spectral collocation points.  

3.4. Nonlinear problem 

      The Newton iterative procedure is used to solve the discretized non-linear problem derived 

from (9)-(11) and their corresponding boundary conditions. Given an initial solution guess, a 

new approximate solution is found by solving the system of 3(nξw+nξa)×nϕ linear algebraic 

equations for Ψ, η and Γ at the collocation points resulting from the Newton linearization.  For a 

prescribed geometrical configuration, the simulation is started with a small value of the Reynolds 

number and the flow at rest.  Once the approximate solution has converged, the converged 

solution is used as a new guess for a new run with a higher Reynolds number.    

3.5. Advantages of Chebyshev grid 

      In the reduced problem, the discretized problem consists of (i) system of (nξw+nξa)×nϕ linear 

algebraic equations for Γ  and (ii) system of 2(nξw+nξa)×nϕ  linear algebraic equations  for Ψ* and 
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η* which are solved sequentially.  All linear systems, in the full and reduced problems, are 

solved directly applying the standard procedure of matrix inversion. 

      For the presented results, the simulations are done mostly with nξw = 40, nξa = 30, and nϕ = 50 

(standard grid).  In order to verify the grid independence, some runs have been carried out at nξw 

= 50, nξa = 40, and nϕ = 60 (fine grid).   

      Since the Chebyshev grid points concentrate near the interface from both sides, the approach 

is adequate to resolve thin circulation layers, located near the interface, even using moderate 

values of nξw and nξa.  The Chebyshev grid points concentrate near the walls as well, that helps to 

better resolve the Moffatt and other corner eddies, even using a moderate value of nϕ.  The 

Chebyshev grid points also concentrate near the axis that helps resolve small vortex breakdown 

bubbles emerging near the axis-bottom and axis-interface intersections as Hw increases.  

   

4. Shallow water spout  

4.1.  Cylindrical geometry 

 

         

Figure 2.  Merging of regions CR4 and ME as Hw decreases from 0.1 (a) to 0.072 (b). 

                    

Figure 3.  Details of merging depicted in figure 2: Hw = 0.074 (a) and 0.073 (b). 
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      It is convenient to start with the cylindrical-container creeping flow and to discuss a 

topological transformation, as Hw decreases from 0.1 to zero, which was not described by 

Herrada & Shtern (2014).  [Though we use the word ‘decreases’ and similar words, denoting a 

time-dependent process, the paper only deals with steady flows established after changing a 

control parameter, e.g., Hw.]  Figure 2 depicts the streamline patterns of meridional flow near the 

bottom-sidewall intersection at α = 90°, H = 1 and (a) Hw = 0.1 and (b) Hw = 0.072.  The results 

for Hw = 0.1 (Fig. 2(a)) coincide with those obtained by Herrada & Shtern (2014).   

      As Hw decreases, the water circulation region CR4 and the outmost ME (Moffatt eddy) 

shown in figure 2(a) merge into a circulation cell again marked as CR4 in figure 2(b).  As Hw 

further decreases down to zero, no topological transformation occurs, just the water layer shrinks 

to the bottom.  

 

 

    

 

    

  

 

 

 

 

 

 

 

Figure 4.  Schematics showing merging of saddle points S1 and S2 (a) into S12 (b), separation of 

S12 from sidewall (c) and merging of  S12 and center C2 (c) into cusp point CS (d) which then 

disappears (e) .   
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      Figure 3 depicts streamline patterns at Hw = 0.074 (a) and 0.073 (b) which are intermediate 

snapshots illustrating the merging of CR4 and ME.  Figure 4 shows schematics explaining this 

topological transformation.  The arrows in figure 4 indicate the flow directions. Figure 4(a) 

corresponds to figure 2(a) and emphasizes the saddle stagnation points of the water meridional 

motion, S1 and S2, and the center point C2 of the outmost Moffatt eddy.  The smaller Moffatt 

eddy is also depicted in figure 4 near the bottom-sidewall intersection.  The smaller Moffatt 

vortices and all smaller vortices in regions CR3 and CR4 are not resolved by our numerical 

simulations.  These vortices are not involved in bifurcations discussed in this paper.  

      As Hw decreases, S1 and S2 approach each other and merge into saddle point S12 (figure 4b). 

Then S12 separates from the sidewall, see the schematic in figure 4(c) which corresponds to the 

flow pattern in figure 3(a).  As Hw further decreases, S12 and center C2 merge into cusp point CS, 

see figure 4(d) which nearly corresponds to figure 3(b).  Then these saddle points disappear and 

the streamline pattern becomes as shown in figures 4(e) and 2(b).  This bifurcation was 

systematically studied by Brøns (2007).  Thus, figure 2(b) represents the flow pattern, P1, which 

first develops as a small amount of water is added in the water-free container.  Figure-eight 

streamline patterns, like shown in figure 4(c), appear (bifurcation A8) and disappear (bifurcation 

D8) in the topological scenarios, described below, where the notations, A8 and D8, are used for 

brevity.   

 

  
 

Figure 5.  Profile of meridional shear stress at the sidewall in water at Hw = 0.076 (1), 0.08 (2) 

and 0.1 (3). 
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      Figure 5 depicts the dependence of the meridional stress, dw/dr, on z at the sidewall, r = 1, in 

water at Hw = 0.076 (curve 1), 0.08 (curve 2) and 0.1 (curve 3). The interval near z = 0, where 

dw/dr > 0, corresponds to the Moffatt eddy ME, the interval near z = Hw, where dw/dr > 0, 

corresponds to the near-interface eddy CR4, and the in-between interval, where dw/dr < 0, 

corresponds to circulation region CR2 (figure 2(a)).  Figure 5 illustrates how region CR2 touches 

the sidewall and expands at the sidewall as Hw increases.  Interpolation yields that ME and CR4 

meet at Hw = 0.078. 

 

4.2. Conical geometry, α increases 

 

 

           

           

Figure 6.  Transformation of near-interface eddies as cone angle increases: α = 90° (a), 98° (b), 

100° (c), and 120° (d); Hw = 0.05.     

      Now we explore how pattern P1 (figure 2(b)) varies with α.  Figure 6 depicts streamlines of 

the meridional motion at fixed Hw = 0.05 and α = 90° (a), 98° (b), 100° (c), and 120° (d).   As α 

varies from 90° to 98°, circulation region CR2 expands up to the sidewall and region CR4 splits 

into the two parts: (i) the near-interface eddy, again denotes as CR4 in figure 6(c), and (ii) the 

Moffatt eddy (figure 6(c)) which, being very small, is not visible in figure 6(d).  The character of 
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this topological transformation, i.e., the transition from the pattern, shown in figure 6(c), to the 

pattern, shown in figure 6(a), is similar to that illustrated by figure 4 and discussed in §4.1.  

      The pattern, shown in figure 6(d) for α = 120°, is topologically identical with that at α = 

100° (figure 6(c)), but the dimension of ME becomes too small to be visible in figure 6(d).  Also 

the vertical extension of CR4 and the size of CR3 become too small to be visible in figure 6(d).    

 

      

Figure 7.  Distribution of radial velocity u at the interface, z = Hw = 0.05, for α = 90° (1), 100° 
(2), 110° (3), 120° (4), and 130° (5); (b) is a close-up of (a) near the sidewall, r = ris.  

       However, these small regions do exist in this range of α as the u > 0 ranges indicate in figure 

7, where the distribution of radial velocity, u, at the interface. Hw = 0.05, is plotted.  We use u1/5 

in figure 7 in order to better observe the near-sidewall ranges of small positive u.   Figure 7(a) 

depicts the u distributions for α = 90° (curve 1) and 100° (curve 2) at the entire interface, 0 < r < 

ris = 1−Hwcotα, where ris is the radial coordinate of the interface-sidewall intersection.  The u < 0 

intervals correspond to the boundary between regions CR1 and CR2 while the u > 0 intervals 

correspond to the boundary between regions CR3 and CR4 (figure 6a).  Figure 7(b) depicts the u 

distributions for α = 90° (curve 1), 100° (2), 110° (3), 120° (4), and 130° (5) in the vicinity of the 

sidewall.   Figure 7(b) reveals that the radial extent of CR3 and CR4 decreases as α increases, 

but remains nonzero even at α = 130°.  According to Moffatt (1964), ME should exist up to α = 

146°.  Figure 7 agrees with the theory of Moffatt eddies near the interface-wall intersection 

(Shtern 2014).  ME and CR4 merge at Hw = Hw1, whose value decreases as α increases, e.g., Hw1 

= 0.078 at α = 90° and Hw1 = 0.05 at α = 98°.     
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4.2. Conical geometry, α decreases 

 

  

Figure 8. Distribution of radial velocity u at the interface, z = Hw = 0.05, for α = 90° (1), 70° (2) 

and 60° (3).  

 

Figure 9.  Pattern of meridional flow in bottom-sidewall corner at Hw = 0.05 and α = 70°. 

      In contrast to the case, where α increases and the near-sidewall eddies shrink (§4.2), the 
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by our standard grid, as it follows from figure 8 depicting the u distributions at the interface for α 

= 90° (curve 1), 70° (curve 2), and 60° (curve 3).  Figure 9 shows the streamline pattern near the 

bottom-sidewall intersection at α = 70° and Hw = 0.05. 

5. Topological metamorphoses of air-water flow in the α = 120° cone as Hw increases 

      The first topological transformation, (i), as Hw increases from 0 to 1, is similar to that 

described in §4.1.  However, the splitting of region CR4 (as in figure 2(b)) into two eddies (as in 
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figure 2(a)) occurs at very small Hw.  In contrast, the second topological metamorphosis, (ii), is 

large-scale as described below. 

5.1. Development of clockwise circulation near the bottom center 

  

Figure 10.  Vortex breakdown in water as Hw increases: Hw = 0.52 (a) and 0.58 (b); α = 120°.   

      Figure 10(a) depicts the streamline pattern at Hw = 0.52. This pattern is topologically the 

same as that shown in figure 2(a), but eddies ME, CR3 and CR4 are too small to be visible in 

figure 10.  Figure 11 depicts the velocity, w, at the axis, r = 0, at Hw = 0.52 (curve1) and 0.58 

(curve 2). We plot w1/3 in figure 11 to better observe small values of w in the water region, 0 < z 

< Hw.  The w > 0 range, 0 < z < zs, corresponds to region CR5 in figure 10(b); the w < 0 range, zs 

< z < zi, corresponds to region CR2 in figure 10(b); and the w > 0 range, zi < z < 1, corresponds 

to region CR1 in air. 

 

Figure 11. Distribution of velocity w at the axis at α = 120°; Hw = 0.52 (1) and 0.58 (2).    
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      Interpolation yields that, as Hw decreases from 0.58, zs becomes zero at Hw = Hww = 0.563. 

Therefore at Hw = Hww, vortex breakdown occurs in the water flow at the axis-bottom 

intersection point, resulting in the emergence of region CR5.  This second topology 

transformation, (ii), as Hw increases, is an example of a corner bifurcation, studied by Brøns 

(1994), being similar to that occurring in the cylindrical container (Herrada & Shtern 2014). 

 

5.2. Merging of near-bottom cells 

 
Figure 12. Merging of regions CR5 and ME, observed at Hw = 0.608 (a), into region CR5 at Hw 

= 0.61 (b) at α = 120°.   

     As Hw increases, region CR5 enlarges.  Initially, region CR5 mostly extends in the radial 

direction and merges with the outmost Moffatt eddy; see ME in figure 12(a) (note that ME is 

visible here in contrast to figure 10).  This is the third change in the flow topology, (iii), at Hw = 

0.609. The bifurcation details are similar to those described by Brøns (2007) and Herrada et al. 

(2013b, figure 5).  They include bifurcation D8 (iv) in the merged region CR5.  

5.3. Development of thin circulation layer in air 

       Next, region CR5 expands upward, reaches the interface at Hw = Hwa = 0.648, and extends 

along the interface, reversing velocity u at the interface near the axis.  The water flow, 

corresponding to the u > 0 range, drives the anticlockwise circulation of air in a thin circulation 

region, CR6.  The CR6 emergence (VB in air) is the fifth change in the flow topology, (v).  

Figure 13 depicts the corresponding transformation of streamline pattern. 

      Region CR2 topologically is a bubble at Hw = 0.63 (figure 13(a)), becomes a bubble-ring at 

Hw = Hw4 = 0.648 (figure 13(b)), and is a ring in figures 13(c) (Hw = 0.65) and 13(d) (Hw = 0.7).  

Region CR6 is very thin at Hw = 0.65 and clearly visible at Hw = 0.7 (figure 13(d)).  Regions 

CR2 and CR6 touch each other at the saddle point, S, where regions CR1 and CR5 also touch 

each other; S is a stagnation point of the meridional motion where u = w = 0, but v ≠ 0.  As Hw 
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increases, region CR6 rapidly expands in the radial direction as figure 14 illustrates where the u 

> 0 (u < 0) ranges correspond to region CR6 (CR2). 

         
 

          
  

Figure 13. Emergence of vortex breakdown bubble (region CR6) in air at α = 120° as Hw 

increases: Hw = 0.63 (a), Hw = Hw4 = 0.648 (b), Hw = 0.65 (c) and 0.7 (d). 

 

 
Figure 14. Distribution of radial velocity u at the interface at  α = 120° and Hw = 0.64 (1), 0.65 

(2), 0.7 (3), 0.8 (4) and 0.9 (5). Saddle S separates regions CR6 and CR2.  
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      The emergence of region CR6 is a topological metamorphosis similar to that which occurs in 

the cylindrical container (Shtern & Herrada 2014), but here the development of CR6, as Hw 

further increases, is very different: the z-extent of CR6, zs−zi, monotonically grows with Hw, as 

figure 15 depicts.  In figure 15, velocity w at the axis is presented at Hw = 0.7 (1), 0.8 (2), and Hw 

= Hw5 = 0.867 (3).  To better observe small w < 0 intervals, zi < z < zs, corresponding to region 

CR6, we plot w1/3 in figure 15.  The w > 0 interval, 0 < z < zi (zs < z < 1) corresponds to region 

CR5 (CR1). 

 
Figure 15. Distribution of velocity w on the axis at  α = 120° and Hw = 0.7 (1), 0.8 (2), and Hw = 

Hw5 = 0.867 (3). The w < 0 range corresponds to region CR6.  

5.4. Separation of region CR1 from the axis 

      As the expanding region CR6 reaches the rotating top disk at Hw = Hw5 = 0.867, the sixth 

change of the flow topology, (vi), occurs.  Region CR1 separates from the axis and topologically 

becomes a ring as figure 16 illustrates depicting streamline patterns at Hw = 0. 86 (a), Hw = Hw5 = 

0.867 (b), Hw = 0.87 (c) and 0.9 (d).  This is again an example of a corner bifurcation (Brøns 

2007).  After the separation from the axis, region CR1 shrinks toward the sidewall-top-disk 

corner as Hw further increases (figure 16(d)).  No further changes in the flow topology occur as 

Hw approaches 1. 

      It is an interesting physical feature that the air mostly circulates in the anticlockwise direction 

(figure 16(d)) despite the fact that the centrifugal force, induced by the rotating disk, tends to 

move air in the clockwise direction.  The feedback of the rotating water flow overcomes the 

direct effect of the centrifugal force which pushes the air to the periphery near the disk.     

w1/3 

z 

1 

2 

3 

CR6 

CR5 
CR1 



18 
 

        

 

        

Figure 16. Separation of region 1 from the axis at α = 120° as Hw increases: Hw = 0.86 (a), Hw = 

Hw5 = 0.867 (b), Hw = 0.87 (c) and 0.9 (d).  

      The topological transformations, reported in this Section, significantly differ from those in 

the cylindrical device (Shtern & Herrada 2014).  As Hw increases from 0 to 1, six (ten) changes 

of flow topology occur in the conical (cylindrical) container.  Vortex breakdowns in the water (at 

Hw = 0.563) and in the air (at Hw = 0.648) occur at smaller values of Hw than those in the 

cylindrical case.  These features are due to the sidewall here converges from the rotating disk to 

the stationary disk and thus strengthens the effect of swirl on the water and air motions.  Now we 

explore the effect of a diverging sidewall.  

 

6.  Topological flow metamorphoses in the α = 60° cone as Hw increases 

6.1. Expansion of region CR2 up to the sidewall 

      Figure 17(a) is a streamline pattern at Hw = 0.15.  This pattern is topologically the same as 

shown in figure 9.  No topological change occurs as Hw decreases from 0.15 down to zero.  In 

contrast as Hw increases, numerous changes occur in the flow topology.  To clarify the 
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transformations shown in figure 17, we explore the dependence on Hw of the distribution of 

radial velocity u on the interface.  To better observe the u > 0 region where u is small, figure 

18(a) depicts u1/3.  

 

               

Figure 17. Expansion of region CR2 up to sidewall and separation of region CR3 from the 

interface as Hw increases: Hw = 0.15 (a), 0.21 (b) and 0.4 (c); α = 60°. 

 

      
 

Figure 18.  (a) Profile of radial velocity u at the interface and (b) dependence of dw/dr on z at the 

sidewall in water at Hw values shown in the picture. Saddle Si separates the u < 0 and u > 0 

ranges.  

      The u < 0 (u > 0) range in figure 18(a) corresponds to the boundary between regions CR1 

and CR2 (CR3 and CR4), see figure 17(a).  It follows from figure 18(a) that regions CR1, CR2, 

CR3, and CR4 meet at one point Si (figures 17(a) and 18(a)) which is a saddle stagnation point of 

meridional motion as figure 19(a) schematically shows.  [The accuracy of drawing in  figure 
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17(a) is not sufficient to clearly show that regions CR2 and CR3 touch each other only at a single 

point—Si.]  Figure 18(a) also shows that Si shifts toward the sidewall as Hw increases, i.e., the 

radial coordinate rs of Si approaches ris.    
 

 
Figure 19.  Schematics showing transformation of figure 17(a) into figure 17(c). For clarity, 

figure-eight structures are not shown. 

      Figure 17(b) depicts streamlines at Hw = 0.21 near the bottom-sidewall intersection and 

reveals that the water flow has a figure-eight pattern in region CR4, as figure 19(b) schematically 

shows.  Therefore as Hw increases and CR4 shrinks to the sidewall, (i) center C2 and saddle S2 

(figure 17(b)) both emerge via a cusp catastrophe (A8).  Then saddle S2  moves to the sidewall, 

reaches it at Hw = Hw2 (figure 19(c)), and (ii) splits into two saddles S21 and S22 (figure 19(d)).  

As a result, region CR2 extends up to the sidewall and region CR4 becomes divided into CR4u 

and ME (figure 19(c)).  This occurs at Hw = Hw1 = 0.219 at α = 60° (compare with Hw1 = 0.078 

at α = 90°).      

      Figure 18(b) confirms this bifurcation scenario by depicting the dependence of dw/dr on z at 

the sidewall in water at a few Hw values shown in the picture.  At Hw = 0.218 and 0.2185, dw/dr 

is positive in the z range corresponding to region CR4 in figure 19(a).  The local minimum of 

dw/dr near the sidewall decreases and becomes negative as Hw increases.  At Hw = 0.219 and 
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0.22, the z range near the interface, z/Hw = 1, where dw/dr < 0, corresponds to region CR2 in 

figure 19(d).  The physical reason for the splitting of region CR4 into two parts (figures 19(a-d)) 

is that the water flow in region CR2 intensifies, as Hw increases, and pushes region CR4 to the 

sidewall.   In region CR1 near the interface, the air flow also intensifies, pushes region CR3 to 

the sidewall, and splits it in two parts as described below.   

6.2. Separation of region CR3 from the interface 

      Though saddle Si is pressed to the sidewall by the strengthening flow (figure 18(a)), the 

presence of the interface-sidewall eddies (Shtern 2014) decelerates the Si shift.  Since the 

boundary between regions CR1 and CR3 is less resistant, the air flow makes it concave, resulting 

in (iii) the development of the figure-eight streamline pattern in CR3 (figure 19(e)) via the cusp 

catastrophe (A8).  Next, the figure-eight saddle S3 approaches the sidewall, touches it (figure 

19(f)) and (iv) splits into saddles S31 and S32 (figure 19(g)).  As a result, region CR3 becomes 

divided into regions CR3 and CR3l (figures 19(f) and 19(g)).    

      The vortices CR3l and CR4u (figure 19) shrink to the interface-sidewall intersection point 

and become unresolved (figure 19(h)) with our grid as Hw further increases (figures 17(c) and 

19(h)).  However they should exist according to the theory of interface-sidewall eddies (Shtern 

2014).       

             
       

Figure 20. Appearance of region CR5 and its mergence with region ME as Hw increases: Hw = 

0.81115 (a) and 0.81119 (b); α = 60°. 

      Just after region CR3 separates from the interface, a part of region CR1 has a thin “neck” 

located between the interface and region CR3 (see figures 17(c) and 19(g)).   Therefore the 
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figure-eight pattern develops in region CR1 in the vicinity of the sidewall between the interface 

and region CR3 (figure 19(g)).  This occurs via (v) the cusp catastrophe (A8).  With increasing 

Hw, the gap between the interface and region CR3 becomes larger and a pattern reversal occurs at 

Hw ≈ 0.37: the figure-eight pattern disappear (figure 19(h)) via (vi) a cusp catastrophe (D8).  This 

event finalizes the streamline transformation from that shown in figure 17(a) to that shown in 

figure 17(c).  

6.3. Vortex breakdown in the water flow 

      The streamline pattern, depicted in figure 17(c), remains topologically invariant as Hw 

increases until it reaches a value around 0.81.  At Hw slightly smaller than 0.81, a cell with 

clockwise circulation emerges near the axis-bottom intersection (region CR5 in figure 20(a)), 

i.e., vortex breakdown occurs in the water flow.  

     Since region ME significantly expands as Hw increases from 0.4 to 0.81 (compare figures 

17(c) and 20(a)), regions CR5 and ME merge just after CR5 appearance, as figure 20(b) 

illustrates. The merged region is again named CR5.  Note that region CR3 shrinks but remains 

observable in figure 20.  

      The transformations from figure 17(c) through the patterns shown in figure 20 consists of the 

following topological events: (vii) VB emergence near the axis-bottom intersection, (viii) 

merging of the near-axis saddles at the bottom, followed by separation of the merged saddle from 

the bottom, and (ix) D8 in region CR5. 

      6.4. Vortex breakdown in the air flow 

      Interpolation yields that region CR5 emerges at Hw = 0.8098, where zs = 0. Region CR5 

rapidly expands upward as Hw increases and touches the interface, z = zi = Hw, at Hw being very 

close to 0.85 where zs = zi.  The function zs(Hw) is nearly linear in the vicinity of Hw = 0.81 and 

therefore the interpolation works well.   

      Figure 21 depicts the streamline patterns for (a) zs < zi (Hw = 0.84) and (b) zs > zi (Hw = 0.85).  

As the clockwise circulation in region CR5 reaches the air, it reverses the radial velocity at the 

interface, which becomes positive, and drives an anticlockwise circulation in the thin air region 

CR6 (figure 21(b)).  Figure 22 presents the distribution of radial velocity u at the interface for Hw 

= 0.84 (curve 1), 0.85 (curve 2), 0.86 (curve 3), 0.87 (curve 4), 0.88 (curve 5) and 0.89 (curve 6).   
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Figure 21. Streamline patterns for zs close to zi: (a) zs < zi (Hw = 0.84) and (b) zs > zi (Hw = 0.85); 

α = 60°. 

Figure 22 depicts u1/3 in order to better observe regions, where |u| is small.  For the abscissa, the 

ratio, r/ris, is used.  This allows for convenient comparison of curves in figure 21.   

      At Hw = 0.84, u < 0 for 0 < r < ris, which means that region CR2 is attached to the entire 

interface as it appears from curve 1 in figure 22(a).  For all Hw > 0.84, there is a region 0 < r < rs, 

where u > 0.  Therefore there must be a new region CR6 in the air.  This region is attached to the 

interface and the air circulation in CR6 is clockwise.   Here rs is the radial coordinate of saddle 

point S5 (see figures 21(b), 22 and 24(a)) where regions CR2 and CR6 meet.  A striking feature 

is that region CR6 is a very thin layer. For example at Hw = 0.87, its radial extent is rs/ris = 0.56 

while its axial thickness is zs−zi = 0.0017.   

      The physical reason for the VB development in the air and the shrinking of region CR2 in the 

water is the strengthening of water swirl as the interface approaches the rotating top disk.  The 

growing centrifugal force intensifies the clockwise circulation in region CR5 and suppresses the 

anticlockwise circulation in region CR2.  The air flow is affected by the water flow feedback. 

This causes further topological metamorphoses in both water and air flows. 

      The CR6 emergence is the tenth (x) topological event.  Curve 4 in figure 22 also has the u > 0 

range near the sidewall, r = ris.  This feature indicates more topological transformations discussed 

below.  
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Figure 22. Distribution of radial velocity u at the interface at  α = 60° and Hw = 0.84 (1), 0.85 

(2), 0.86 (3), 0.87 (4), 0.88 (5), and 0.89 (6). Saddle S5 separates regions CR6 and CR2.  

6.5. Reattachment of region CR3 to the interface 

      Figure 23, being a close up of figure 22 near the sidewall, reveals a local reversal of u at the 

interface as Hw increases.  The dotted curve (Hw = 0.86161) in figure 23 has a local maximum 

near r/ris = 0.975.  As this maximum approaches the line u = 0 in figure 23, (a) the adjacent water 

flow decelerates causing (xi) A8, i.e. the appearance of a figure-eight pattern in region CR2, and 

(b) the adjacent air flow decelerates causing (xii) A8, i.e. the appearance of a figure-eight pattern 

in region CR1 between the interface and region CR3.  Figures 24(a) and 24(b) schematically 

show the corresponding transformations of the flow pattern.   

 

Figure 23. Distribution of radial velocity u on the interface near the sidewall for Hw values 

shown in the picture.     
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      Figure 23, being a close up of figure 22 near the sidewall, reveals a local reversal of u at the 

interface as Hw increases.  The dotted curve (Hw = 0.86161) in figure 23 has a local maximum 

near r/ris = 0.975.  As this maximum approaches the line u = 0 in figure 23, (a) the adjacent water 

flow decelerates causing (xi) A8, i.e. the appearance of a figure-eight pattern in region CR2, and 

(b) the adjacent air flow decelerates causing (xii) A8, i.e. the appearance of a figure-eight pattern 

in region CR1 between the interface and region CR3.  Figures 24(a) and 24(b) schematically 

show the corresponding transformations of the flow pattern.   

 

 

Figure 24. Schematics showing reattachment of region CR3 to the interface and collapse of 

region CR2. 

      A small increment of Hw to 0.86163 (solid curve in figure 23) yields an internal part of the 

interface with u > 0 and a streamline pattern as shown schematically in figure 24(g).  The narrow 

range, 0.86161< Hw < 0.86163, has not been numerically resolved. It is not possible to transform 

pattern (b) into (g) through a single bifurcation. The scenario, we propose in figure 24 is the 

simplest one possible and is based on the theoretical analysis by Brons (1995, figure 5) and the 
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physical reason that the water (air) can (cannot) easily reverse the air (water) flow.  This suggests 

the following steps:  The figure-eight saddle in the water touches the interface at Hw = 0.86162 

and region CR2s emerges from a part of CR2 (figure 24(c)).  As Hw further increases, the saddle 

splits into two saddles both located at the interface (xiii) and region CR7 emerges in the air 

(figure 24(d)).  Next, (xiv) regions CR3 and CR7 touch each other at the figure-eight saddle 

(figure 24(e)) and merge (figure 24(f)).  We denote the merged region again as CR3.  

       After the merging, CR3 has the eight-figure pattern in its neck part (figure 24(f)). Next, the 

figure-eight saddle and the lower center point merge and disappear via (xv) cusp catastrophe D8 

(figure 24(g)).  As Hw further increases, regions CR1s and CR2s together shrink toward the 

interface-sidewall intersection point and becomes unresolved by our grid (as figure 24(h) 

schematically illustrates) though they should exist (Shtern 2014). 

6.6. Collapse of region CR2 

      Next, (xvi) saddles S5 and S6 (figure 24(h)) merge into saddle S56 (figure 24(i)) which 

separates from the sidewall and (xvii) disappears via D8 resulting in mergence of regions CR3 

and CR6 into one region again named as CR6 (figure 24(j)). These tranformations make region 

CR6 adjacent to the entire interface and region CR1 separated from the interface (figure 24(j)). 

6.7. Separation of region CR1 from the axis 

      After region CR6 extends up to the sidewall (figure 24(j)), CR6’s thickness at the axis, zs−zi, 

remarkably increases with Hw, and zs reaches 1 (i.e., the rotating disk) at Hw = 0.95.  This (xviii) 

corner bifurcation results in the separation of region CR1 from the axis as figure 25 illustrates 

depicting the streamline pattern at (a) Hw = 0.94 (before the bifurcation) and at Hw = 0.951 (after 

the bifurcation).  Finally, region CR6 shrinks to the rotating-disk-sidewall intersection point as 

Hw approaches 1.  

      The topological transformations, reported in §6, also significantly differ from those in the 

cylindrical device (Shtern & Herrada 2014).  As Hw increases from 0 to 1, eighteen (ten) changes 

of flow topology occur in the conical (cylindrical) container.  Vortex breakdowns in the water (at 

Hw = 0.81) and in the air (at Hw = 0. 85) occur at larger values of Hw than those in the cylindrical 

case.  These features are due to that the sidewall divergence from the rotating disk to the still 

disk weakens the effect of swirl on the water and air motions.  
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Figure 25. Streamline patterns at (a) Hw = 0.94 and (b) Hw = 0.951; α = 60°. 

7.  The effect of increasing the value of the Reynolds number 

       To explore in what range of the Reynolds number, Re, the flow topology remains the same 

as that for the creeping flows, we come back from the reduced equations (§2.4) to the full 

equations (§2.2 and §2.3) and use numerical techniques for the nonlinear problem (§3). 

      To characterize the strength of air flow, we introduce the Reynolds number based on the air 

viscosity, Rea =   ωR2/νa = Re/νn, because the rotating top disk directly (indirectly) drives the air 

(water) flow; here we take νn = 15.   From the top disk down to the interface, the swirl velocity 

significantly drops.  Therefore, to characterize the strength of water flow, we introduce the 

Reynolds number, Rew, based on the maximal swirl velocity at the interface, vim;  Rew = vimRe.  

7.1. Topological flow metamorphoses in the α = 60° cone as Re increases 

  

Figure 26. Streamline patterns at Re = 10000 (a) and 20000 (b), Hw = 0.86; α = 60°. 

      Figure 26 depicts the streamline patterns at Re = 10000 (a) and 20000 (b) for Hw = 0.86 and α 

= 60°.  At Re = 10000 (figure 26(a)), the flow topology is the same as in the creeping flow (figure 
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21(b)). The quantitative difference is that the radial extent, rS, of layer CR6 becomes smaller at 

Rea = 666 than those for Rea << 1.  The first change in the flow topology occurs as increasing Rea 

passes Rea = 934: rs, becomes zero, i.e., layer CR6 vanishes, and region CR2 (figure 21(b)) 

extends from the axis to the sidewall for Rea > 934 (figure 26(b)).   

7.2. Topological flow metamorphoses in the α = 120° cone as Re increases 

  

Figure 27. Streamline patterns at Re = 1000 (a) and 2000 (b), Hw = 0.65; α = 120°. 

      Figure 27 depicts the streamline patterns at Re = 1000 (a) and 2000 (b) for Hw = 0.65 and α = 

120°.  At Re = 1000 (figure 27(a)), the flow topology is the same as in the creeping flow (figure 

13(c)). The quantitative difference is that the radial extent, rS, of layer CR6 becomes smaller at 

Rea = 67 than that for Rea << 1.  The first change in the flow topology occurs as increasing Rea 

passes Rea = 130: rs, becomes zero, i.e., layer CR6 vanishes, and region CR2 (figure 13c) extends 

from the axis to the sidewall for Rea > 130 (figure 27(b)).  

      Thus, the flow topology, described for the creeping flows, remains unchanged until Rea 

exceed 130.   

 

8.  Concluding remarks 

      This paper describes effects of a conical sidewall on an air-water motion, driven by the top 

rotating disk, in a bioreactor and reveals a variety of flow patterns as the water level, Hw, grows 

from 0 to 1.  In contrast to the single-fluid flow (Escudier et al. 2007), vortex breakdown (VB) 

and other topological metamorphoses occur in this two-fluid flow even if it is very slow.   

8.1. Merging of the interface and Moffatt eddies 

      First, our study revealed a new topological transformation in the shallow-water flow (§4).   

Similar to the corner eddies (Moffatt 1964), unbounded sets of eddies develop near the sidewall 
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above and below the interface (Shtern 2014).  As Hw decreases, the outmost Moffat and lower-

interface eddies merge into a peripheral ring cell (§4.1).  The corresponding Hw value diminishes 

(grows) as bottom-sidewall angle α increases (decreases) as shown in §4.2 (§4.3).  The 

clockwise water circulation at the periphery is driven by the outmost air eddy while the 

anticlockwise circulation of water near the axis is driven by the bulk air flow (figure 6(a)). 

 

8.2. Effect of the cone angle on vortex breakdown 

      Second, we found the effects of α on VB occurrence in the water and air flows (at α = 120° 

in §5 and α = 60° in §6) summarized in table 1.  There Hww is the Hw value at which VB occurs 

in the water flow, Hwa is the Hw value at which VB occurs in the air flow, and N is a number of 

topological changes in the flow pattern as Hw varies from 0 to 1.  The revealed multiple changes 

are due to competing effects of AMF (the air meridional flow) and swirl on the water motion and 

due to the water-flow feedback to the air motion as explained below.  

 

α Hww Hwa N 

60° 0.81 0.85 18 

90° 0.64 0.705 10 

120° 0.563 0.648 6 

 

Table 1. As water level Hw increases, VB develops in water (air) at Hw = Hww (Hwa).  N is a 

number of topological transformations, as Hw varies from 0 to 1, and α is the bottom-sidewall 

angle.  

8.3. Physical reasons for the changes in flow topology 

      The rotating top disk induces a centrifugal force which pushes air to the periphery near the 

disk and thus develops a clockwise meridional circulation, e.g. as shown in Fig. 10(b).  

Therefore, air converges toward the axis near the interface and drives the bulk anticlockwise 

circulation of water.  In addition, the air circulation induces a set of the Moffatt eddies near the 

interface-sidewall intersection which generate slave eddies in water.  This scenario works for 
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small Hw where the direct effect of centrifugal force in water is negligible compared with the air 

meridional flow effect, because swirl drastically decays from the top to the bottom.    

      As Hw increases, the effect of swirl becomes first dominating near the axis-bottom 

intersection (Herrada & Shtern 2014) and causes the emergence of clockwise circulation (vortex 

breakdown bubble, VBB) in water.  With increasing Hw, the clockwise (anticlockwise) water 

circulation expands (shrinks).  After VBB reaches the interface, it reverses the radial velocity of 

adjacent air developing a TCL (thin circulation layer) attached to the interface.  This TCL is 

narrow due to the small air-to-water density ratio.   

      As Hw approaches 1, the effect of swirling water overcomes the direct effect of swirling air, 

resulting in that the TCL expands up to the sidewall and up to the rotating disk while the 

clockwise circulation in air shrinks to the sidewall-lid intersection.  Interaction of these bulk air 

and water circulations with the Moffatt and interface eddies enriches the variety of topological 

transformations.  This bifurcation diversity of the creeping air-water flow also remain valid for 

finite values of the Reynolds number up to Rea around 100, depending on α (§7).  

      The multi-cell flow patterns can be beneficial for bioreactors, because they provide fine and 

soft mixing, which is necessary for the tissue growth, and do not destroy the tissue culture since 

shear stresses are small in a slow motion.  Thus, the obtained results are of both fundamental and 

technological interest.   
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