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Abstract 

The quantity of leachate is crucial when assessing pollution emanating from 

municipal landfills. In most cases, existing leachate quantification measures only 

take into account one source – precipitation, which resulted in serious 

underestimation in China due to its waste properties: high moisture contents. To 

overcome this problem, a new estimation method was established considering two 

sources: 1) precipitation infiltrated throughout waste layers, which was simulated 

with the HELP model, 2) water squeezed out of the waste itself, which was 

theoretically calculated using actual data of Chinese waste. The two sources 

depended on climate conditions and waste characteristics, respectively, which both 

varied in different regions. In this study, 31 Chinese cities were investigated and 

classified into three geographic regions according to landfill leachate generation 

performance: northwestern China (China-NW) with semi-arid and temperate climate 

and waste moisture content of about 46.0%, northern China (China-N) with 

semi-humid and temperate climate and waste moisture content of about 58.2%, and 

southern China (China-S) with humid and sub-tropical/tropical climate and waste 

moisture content of about 58.2%. In China-NW, accumulated leachate amounts were 

very low and mainly the result of waste degradation, implying on-site 

spraying/irrigation or recirculation may be an economic approach to treatment. In 

China-N, water squeezed out of waste by compaction totaled 22−45% of overall 

leachate amounts in the first 40 years, so decreasing the initial moisture content of 

waste arriving at landfills could reduce leachate generation. In China-S, the leachate 

generated by infiltrated precipitation after HDPE geomembranes in top cover started 

failing, contributed more than 60% of the overall amounts over 100 years of 

landfilling. Therefore, the quality and placing of HDPE geomembranes in the top 

cover should be controlled strictly for the purpose of mitigation leachate generation. 
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1. Introduction 

Due to its economic advantages, landfilling is still the most dominant treatment 

method used worldwide for municipal solid waste (MSW), especially in developing 

countries such as China (National Bureau of Statistics of China, 2012). Leachate 

from MSW landfills is a threat to the quality of groundwater and surface waters 

(Kelly, 1976; Mor et al., 2006; Reinhard et al., 1984). Even though a series of 

leachate control systems may be installed in a landfill site, their performance is 

associated significantly with the amount of leachate generated, which is often 

underestimated in landfills in China (Lan et al., 2012) and results in an increased 

water head above the liner system, due to insufficient design capacities for collection 

and treatment. Subsequently, the high water level in a landfill body may lead 
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potentially to leaching into the surrounding area and cause landfill instability. In 

addition, as the content of organic fractions in Chinese MSWs is usually high, the 

storage of water in a landfill may encourage the accumulation of acid and delay the 

arrival of the methanogenic phase, thereby making the landfill an “acid tomb” (He, 

2009). In an “acid tomb”, decaying carbon in the waste is most likely to be 

transferred into leachate rather than released as landfill gas, which aggravates the 

pollution loads and limits the energy recovery potential. Therefore, it is important to 

establish a leachate quantification method suitable for MSW landfills in China, to be 

able to control landfill pollution. 

In addition to the control of leachate contamination, estimating landfill leachate 

quantities is also important in life cycle assessments (LCAs) of landfilling 

technology, as leachate is the origin of one of the most serious local environmental 

impacts. In LCA modelling for decision support, environmental impacts are 

normally modelled as the impact caused by one unit of waste (Banar et al., 2009; 

Cherubini et al., 2009; Hong et al., 2010), e.g. one tonne of waste or the waste 

generated in a defined geographical region in a given time (e.g. 1 year). This type of 

LCA modelling of landfill is often used for comparisons with other technologies 

(incineration, composting, etc.). However, existing methods in previous research 

(ElFadel et al., 1997) and in the Chinese national standards for landfill construction 

(Ministry of Housing and Urban-Rural Development of the People's Republic of 

China, 2013) were developed mainly to estimate leachate amounts generated from 

the entire landfill and with all the waste buried, in order to design leachate collection 

and treatment systems. In addition, most of the conventional LCA models (specific 

waste LCA models the exception (Gentil et al., 2010)) estimate the leachate 

quantities with default values without considering spatial and temporal variations. 

However, leachate generation amounts in different regions could vary a great deal, 

due to different climate conditions, waste properties. 

Landfill leachate quantification is traditionally modeled based on water balance 
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principles by summing the amounts of water entering the landfill and subtracting the 

amounts of water consumed by degradation and lost as water vapour (Blakey, 1992; 

ElFadel et al., 1997; Kjeldsen and Beaven, 2011). Accordingly, several mathematical 

models have been developed, in which Hydrologic Evaluation of Landfill 

Performance (HELP) model is most widely used for hydrological modeling of 

precipitation (Schroeder et al., 1994). The validation of existing HELP models were 

conducted for cover systems in tested field (Berger, 2015), which indicated that “the 

sum of measured lateral drainage and liner leakage is close to the sum of the 

corresponding simulated values” (overestimation by HELP model for 1.4% of the 

precipitation). However, the HELP model was questioned for leachate quantification 

in recent years because it neglected the water balance of waste, which was proved to 

be important processes during leachate generation. For instance, Komilis and 

Athiniotou (2014), Pantini et al. (2014) and Sao Mateus et al. (2012) established 

their own water budget models and demonstrated that water which leached out by 

waste compression and biodegradation contributed to the leachate amounts to a large 

extent. In China, researchers (Lan, et al. 2012; Yang, 2012b) widely believed that the 

failure to include water leaching out from waste itself in the Chinese national 

standard (Ministry of Housing and Urban-Rural Development of the People's 

Republic of China, 2013) was the main reason for the underestimation of leachate 

generation amounts in landfills. 

In this study, an�estimation approach for leachate generation per tonne of waste 

landfilled in China is developed. The influences of waste properties, climate 

conditions and top cover types on leachate generation are investigated, and regional 

values are suggested accordingly. Finally, suggestions are provided, to mitigate the 

leachate amounts in different geographic regions of China. 

2. Data Sources and Model Assumptions 

The water balance approach of a landfill used in this study is shown 

schematically in Figure 1. Leachate generated from MSW landfills can be divided 
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into two sources: (1) precipitation infiltrated throughout waste layers (PI), which 

occurs in all types of landfill and lasts for the whole lifetime of the landfill, and (2) 

water squeezed out of waste itself by gravity and compaction, as well as degradation 

(WS), which occurs in the landfills receiving dumped waste with a high moisture 

and organics content. It should be notice that although water storage occurred in a 

real landfill, it was not considered in our simulation, as it is just the temporary 

situation for leachate in a long time scale (e.g. 100 years in this study). The amount 

of leachate can be calculated using eq.1. More details for each of the two parts can 

be found in Section 2.1 and Section 2.2. 

L=PI+WS         (1) 

where L is the sum total of leachate generation. L, PI and WS are leachate 

quantities in litres per tonne of landfilled waste wet weight, L·t−1ww. 

In order to verify the reliability of the leachate quantification method developed 

by this study, actual amounts of leachate – as measured in several landfill sites – 

were obtained and compared with the estimated values. 

2.1 Infiltration from precipitation 

Leachate generated from infiltrated precipitation can be calculated by eq.2, 

which was established according mass balance theory. 

∑
）n

c

cc

hρ

tIP
PI

×

×100(×
=      (2) 

where P is precipitation at a locality, at mm·year−1; c means the top cover type 

in a landfill; Ic is the ratio of precipitation infiltrated throughout waste layers with 

the top cover type of c, in % terms; tc is the time period a top cover type of c is 

utilised, in years; ρ represents waste density in landfill, at t·m−3; h is the waste height 

in the landfill, in metres. 

A generic landfill was established to calculate the amount of leachate 

associated with precipitation over a 100 year period after landfilling. In the landfill, 

a uniform height of 20 m of waste was assumed to be buried. After landfilling, waste 
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density changed along with time due to compaction and degradation. The density of 

fresh waste and old waste were set as 0.8 and 1.3 t·m−3, respectively (Qu et al., 

2005). According to current Chinese national standards (Ministry of Housing and 

Urban-Rural Development of the People's Republic of China, 2013), four top cover 

types were investigated: daily cover (DC), intermediate cover (IC), unplanted final 

cover (UFC) and planted final cover (PFC). Based on a field survey by Ecobalance 

Inc. (1999), the timescales for the four types of top cover were set as follows: during 

the first 2 years after landfilling, the proportion of DC decreased from 100% to 0%, 

whilst IC increased from 0% to 100%; during 3-10 years after landfilling, the 

proportion of IC decreased from 100% to 0%, whilst UFC increased from 0% to 

100%; over 10 years after landfilling, the top covers of the landfill were entirely set 

as PFC. The tensile strength of HDPE geomembranes decreases with its ageing, 

which may induce defects and influence the infiltration process. Accordingly, PFC 

were separated into two stages, i.e. with intact HDPE geomembranes (PFC-I) and 

with defective HDPE geomembranes (PFC-D). The service lifetime of HDPE 

geomembranes was likely more than 40 years according to Rowe (2011). To 

simulate the worst situation, PFC-I was assumed to be converted into PFC-D after 

40 years of landfilling in this study. 

The infiltration ratios of precipitation ending up as leachate (Ic) are critical 

parameters for calculating PI, which are closely associated with regional climate 

conditions and landfill structures. In current Chinese national standard (Ministry of 

Housing and Urban-Rural Development of the People's Republic of China, 2013), Ic 

are provided but are experience factors lacking practical verification. In this study, 

the specific Ic under typical climate conditions with five different landfill top covers 

were obtained using the HELP model (Schroeder et al., 1994) (Visual HELP 2.2 was 

used in this study) by assessing the fates of precipitation in a landfill, namely 

evapotranspiration, runoff, collected leachate (i.e. leachate collected by the lateral 

drainage layers in the bottom liner system) and fugitive leachate (i.e. leachate 
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percolated through the lowest layer of the bottom liner system). Considering the 

spatial variations in China, 31 locations were simulated, and each landfill was 

calculated using one city’s weather parameters (one city per province, to represent 

China overall; the locations are shown in Figure 2, (the main weather data are 

shown in Figure S1 in Supporting Information). For each location, five different 

sets of data were calculated – each one with different landfill structures, as shown in 

Table 1. Buried waste and material properties are summarised in Table S1 and 

Table S2 in Supporting Information, respectively. Note that the initial moisture 

content (IMC) of the waste was set to the same as field capacity because water 

squeezed from waste was discussed as the other source of leachate generation (i.e. 

WS). For the purpose of minimising temporal uncertainties of climate conditions for 

the parameter Ic, accumulated leachate amounts over 100 years were obtained and 

divided by accumulated precipitation. To test for the robustness of the results, 

analyses of the critical parameters, i.e. runoff area factor, high-density polyethylene 

(HDPE) geomembrane defects, and HDPE geomembrane placement quality, were 

also performed, as shown in Table S3. 

2.2 Squeezed water from waste 

MSW landfilled in Western countries is believed to have the potential capacity 

to absorb water (Kjeldsen and Beaven, 2011), because its IMC is lower than the 

initial field capacity (IFC). Without considering the influence of precipitation and 

degradation, Zornberg et al. (1999) summarised the free liquid generation 

mechanism in three stages as a result of waste compression (the first three stages of 

waste with low IMC in Figure 3). Unlike waste in Western countries, the IMC of 

MSW in most Chinese regions is higher than the IFC. This means that when waste is 

unloaded at landfills, the extra liquid contained therein will drain away as a result of 

gravity. After mechanical compaction, followed by waste placement, the field 

capacity of the waste will decrease to a lower level, which is herein referred to as 

“field capacity after compaction” (FCC). Next, waste will decompose in the landfill 
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body, during which time the field capacity of waste is reduced due to the decrease in 

dry matter of organic containing fractions. Finally, the “field capacity of aged waste” 

(FCA) is reached representing the final status of waste in landfills. Accordingly, 

waste undergoes four stages in total (see Stages “I/II/III/IV” in Figure 3) during 

landfilling. The differences between leachate mechanisms for waste with low and 

high IMCs are seen primarily between Stages I and II. 

The first two processes (i.e. the two “compaction” processes for waste with low 

IMC and “gravity” and “compaction” processes for waste with high IMC) usually 

occur in weeks or months after waste is landfilled, during which waste 

decomposition is of minor importance and dry matter content of the waste remain 

relatively unchanged. For the sake of uniformity, the combined amount of leachate 

generated by those two processes, namely water squeezed by compaction and 

gravity (WSC), could be calculated as the difference between the IMC and FCC (eq. 

3). 

1000×100100×= )/FCC-/(IMCIDMWS DMDMC     (3) 

where WSC is the amounts of water squeezed by compaction and gravity from 1 

tonne of raw waste, with a unit of L·t−1ww; IDM represents the initial dry matter 

weight in 1 tonne of raw waste, which could be calculated as IDM=1-IMC/100 with 

a unit of t·t−1ww; IMCDM is the initial moisture content based on the weight of dry 

matter, calculated by 
IMC/100-1

IMC
IMC DM =  with a unit of % of DM; FCCDM is 

field capacity after compaction based on the weight of dry matter, calculated by 

FCC/100-1

FCC
FCC DM =  with a unit of % of DM; IMC and FCC are with the unit 

of % of wet weight and 1000 is the constant used to convert the unit from tonne to 

litre, L·t−1. 

The degradation process usually last for years depending on landfill conditions 

and the fractional composition of the waste. In this stage, water is lost in two ways, 

one is via the degradation process itself and released as vapour in the landfill gas; 
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the remainder is released as leachate. For the former, the water loss was about 12.3 

L·t−1ww according to the following estimations: 100 m3 of landfill gas were 

generated per tonne of typical Chinese MSW (Yang et al., 2013); 0.1 L of water was 

used for degradation (Burton et al., 2004) and 0.023 L of water was released as 

water vapour (at a temperature of 20oC) (Kjeldsen and Beaven, 2011) for 1 m3 of 

landfill gas. These figures were negligible in comparison to the entire water loss 

during degradation, which is supported by Athinoitou et al. (2012). Therefore, 

leachate generation during degradation process, namely water squeezed by 

degradation (WSD), could be represented as the decrease of field capacity (or water 

holding capacity) calculated using eq.4. 

  1000×)100/×-100/×(= DMDMD FCADMAFCCIDMWS    (4) 

where WSD is the amounts of water squeezed by degradation from 1 tonne of raw 

waste, with a unit of L·t−1ww; DMA represents the dry matter weight of aged waste 

remaining from 1 tonne of raw waste, calculated by 

]×=∑
i

ii /100)DR-(1[IDMDMA  with a unit of t·t−1ww. With regard to degradation 

levels, waste fraction compositions could be divided into three groups represented 

by i: fast degradable (i.e. food waste), slow degradable (i.e. paper, wood and textile) 

and non-degradable (i.e. plastics, metal, slag and glass). IDMi is the initial dry 

matter weight of waste fraction i in 1 tonne of raw waste, with a unit of t·t−1ww. DRi 

represents the extent of degradation in relation to the three groups above, with a unit 

of % of wet weight. FCADM is the field capacity of aged waste on a dry basis, 

calculated by 
FCA/100-1

FCA
FCADM =  with a unit of % of DM. 

Waste properties used for the simulation of WS were summarised from a 

literature review (Table S4 in Supporting Information), including 1) initial moisture 

contents and composition fractions of MSWs in 16 Chinese cities (locations can be 

found in Figure 2) and 2) moisture contents of individual waste fractions in 10 of 

the aforementioned cities, which were used to calculate the dry basis distributions of 
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the waste fraction groups. According to the regional location of those cities, the 

average values for IMCs of MSW, and the dry basis distribution of three waste 

fraction groups (i.e. fast, slowly and non-degradable), were calculated for China-NW, 

China-N and China-S (Table 2), respectively. The degradation extents (DRi) for fast 

degradable, slowly degradable and non-degradable fractions of the MSW were 

assumed to be 84%, 39% and 0%, respectively, according to the study carried out by 

Barlaz (1998), where optimised anaerobic degradation processes were simulated 

individually for different degradable waste components. 

In terms of MSW field capacity, a number of studies have been conducted on 

the relevance between compression and the field capacity of MSW (Table S5 in 

Supporting Information). As the bulk density of waste varies along with 

compression, the correlation between field capacities (FC) and bulk densities (BD) 

can be obtained through linear regression (Figure S3 in Supporting Information) 

with the fitting equation of FC=(59.6±2.5)−(12.9±2.3)×BD. According to Chinese 

industrial standards (Ministry of Construction Development of the People's Republic 

of China, 2007), the bulk density of waste prior to the final top cover should be 

higher than 0.8 t·m−3, with the help of daily and final compaction. Thus, field 

capacity after the compaction (FCC) of MSW in a Chinese landfill can be calculated 

as 49.3±4.4% on the basis of regression. As no recommended bulk density or 

generic field capacity of waste after degradation were given in the literature, the 

field capacity of aged waste (FCA) was considered as the lowest value in the linear 

regression range, which was 39.0±6.2%. 

3. Results and Discussion 

3.1 Quantification of leachate generated by infiltrated precipitation 

Figure 4 presents the infiltration ratios of precipitation ending up as leachate (Ic, 

shortened as infiltration ratios) in 31 Chinese cities’ landfills with the five types of 

top cover. Considering the profiles of both infiltration ratios and geographic 

locations (Figure 5), the 31 cities can be classified into three groups: (1) cities with 
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annual precipitations of less than 400 mm, representing those located in 

north-western China (China-NW), (2) cities with annual precipitations between 400 

and 800 mm, located in northern China (China-N), and (3) cities with annual 

precipitations of more than 800 mm, located in southern China (China-S). The three 

geographic regions have different climate conditions: China-NW is semi-arid and 

temperate, China-N is semi-humid and temperate and China-S is humid with a 

sub-tropical/tropical climate. 

The infiltration ratios in the three geographic regions were calculated as the 

average values of the cities in specific regions (Table 3). In China-NW, infiltration 

ratios in this respect were generally lower than the values in China-N and China-S. 

Moreover, the variation extents of the infiltration ratios among different top cover 

types were smaller than those in China-N and China-S. Taking Lanzhou as an 

example (Figure S2 in Supporting Information), the above phenomenon can be 

explained by the fact that most of the precipitation was lost by evapotranspiration, 

due to low relative humidity and high solar radiation. In China-N and China-S, 

30.7% and 43.1% of precipitation would end up as leachate when DC are utilised in 

landfills, respectively, which is obviously higher than in China-NW. If IC is installed 

instead of DC, the infiltration ratios would decrease by around 10−24% in China-N 

and in China-S. UFC and PFC-I induced an additional 54−79% reduction for 

infiltration ratios in China-N, whilst the mitigation rates were as high as 84−95% in 

China-S. In contrast to the situations in China-N and China-S, landfills in China-NW 

with PFC-I as the top cover cause lower infiltration ratios than those with UFC 

indicating the importance of vegetation for mitigating leachate generation in 

China-NW. For the PFC-D, the infiltration ratios were 1.6−4.5 times and 5.8−13 

times higher than those for PFC-I in China-N and China-S, respectively. These 

figures imply that the installation and maintenance of HDPE geomembranes in 

landfills are important to mitigate leachate formation in China-N and China-S, and 

the mitigation effort was more effective in China-S than in China-N, directly 
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correlated to the precipitation level. 

According to current Chinese national standards (Ministry of Housing and 

Urban-Rural Development of the People's Republic of China, 2013), infiltration 

ratios were suggested for landfills covered by DC, IC and final covers. With regards 

to DC and IC, regional specific values were given on the basis of annual 

precipitations (Table 3). By contrast with the values simulated in this study, the 

infiltration ratios in China-NW (or the locations with the annual precipitation ≤ 

400 mm) were significantly higher in the Chinese national standard, which might 

overestimate the leachate quantities in China-NW. The infiltration ratios for the 

landfills with PFC-D in China-S were higher than the suggested values for final 

covers in the Chinese national standard. Since the placement and maintenance 

process for HDPE geomembranes have not been strictly operated so far, PFC-D may 

be common in many Chinese landfills. If a landfill site located in China-S was 

designed according to Chinese national standard, leachate generated from infiltrated 

precipitation would be underestimated due to the missing distinction of PFC-D from 

final covers. 

Sensitivity analyses of the primary parameters used in HELP modelling are 

shown in Table S3, assessing the influence of runoff area factor (i.e. 0%, 50% and 

100%), HDPE geomembrane defects (2, 20 and 200 defects ha-1), and HDPE 

geomembrane placement quality (i.e. good, poor and bad/worst case). The impact of 

runoff area factor on leachate generation ratio was insignificant except for the 

situations with IC, where the infiltration rate fell from as high as 42% to 15% in 

China-S. Regarding practical experience in landfill construction performance, an 

artificial gradient was usually first created when the final cover was established. 

Hence, a runoff area factor of 0% was used in the cases of DC and IC, and the runoff 

area factor were set as 100% with the top cover types of UFC, PFC-I and PFC-D. 

HDPE geomembranes with 20 holes·ha-1 performed similarly to those with 200 

holes·ha-1 in China-N and China-NW, whereas the infiltration doubled in China-S 
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when going to 200 holes·ha-1. To simulate the worst situations, we set the defect 

densities of HDPE geomembrane for PFC-D to 200 holes·ha-1. It should be noted 

that the infiltration ratios with the defect densities of 20 and 200 holes·ha-1 were 

significantly higher than the values suggested in the current Chinese national 

standard. The placement quality of HDPE geomembrane affected the infiltration 

ratio significantly for landfills with the top cover types of UFC and PFC-I. However, 

considering the practical installation conditions of HDPE geomembrane in most 

landfills in China, “poor” status wasset for all the profiles. 

3.2 Quantification of leachate generated by water squeezed out of the waste 

On the basis of eq. 3 and eq. 4, WSC and WSD were calculated for the cities for 

which it was possible to obtain waste properties (Table S4, Supporting Information) 

and the results are presented in Table 4. The regional specific values for the three 

geographical regions were calculated by applying the average waste property values 

in Table 2. For cities located in China-NW, landfilled waste may not drain away 

water during the compaction process, due to the low initial moisture content being 

below field capacity, while approximately 256 L of water can leach out for 1 tonne 

of raw waste during complete degradation. Conversely for China-N and China-S, 

175 L of water would leach due to the compaction, and an additional 250L of water 

due to the degradation of the waste, showing the importance of including the 

squeezed water. There  were just small differences between the regionals specific 

values for China-N and China-S, but there was a large regional variation in China-S 

(i.e. 62-349 L·t−1ww for WSC and 206-283 L·t−1ww for WSD), which could be due to 

diverse living habits and climate conditions in the cites located in China-S and 

subsequent various waste properties. 

3.3 Accumulated leachate amounts generated over 100 years 

The accumulated leachate amounts over 100 years for one tonne of MSW 

landfilled in the 31 cities are presented in Figure 6. To illustrate temporal 

distribution, PI was allocated to four time periods with relevant top cover types, i.e.  
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1 and 2 years (with top cover DC and IC), 3-10 years (with top cover IC and UFC), 

11-40 years (with top cover PFC-I) and 41-100 years (with top cover PFC-D). As for 

WSC and WSD, the city specific values could be used for the cities shown in Table 4, 

whilst the regional specific values were used for the other cities. The temporal 

distributions of WSC and WSD were not available due to the definition of eq.3 and 

eq.4. 

In China-NW, leachate accumulated over 100 years was less than 600 L·t−1ww, 

of which WSD made the dominant contribution. As degradation occurs over a long 

time after initial landfilling (usually in years), depending on the degradation 

condition in the specific landfill site, the management of WSD is difficult. Leachate 

quantities from PI were insignificant, as it may be absorbed by waste during 

compaction (WSC). Therefore, it may be unnecessary to construct leachate treatment 

facilities in a landfill site in China-NW. The most economical solution may be to 

drain leachate into nearby municipal wastewater treatment plants, spray/irrigate 

leachate on landfill surface or recirculate the leachate into the waste layers. 

In the case of China-N, leachates generated from WS were significant, 

accounting for 40−63% of the overall amounts over 100 years. Considering WSC, 

the values (22−45%) were significantly higher than those of PI (15−25%) in the first 

40 years. This implies that decreasing the initial moisture content of landfilled waste 

could be an effective approach to reducing leachate generation in China-N cities, 

especially at the beginning of landfilling. One of the approaches employed to 

mitigate waste moisture content could be avoiding food waste being disposed of in 

landfills, which is being tested in Shanghai (Shanghai Municipal People's 

Government, 2014) and Guangzhou (Guangzhou Municipal People's Government, 

2011) and can be extended to the cities in China-N. 

In China-S, the amounts of leachate from each individual source were higher 

than in China-N. Long-term (i.e. after 40 years of landfilling) generation potential 

could be a severe problem, since leachate generated during this period contributed 
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more than 60% of the overall amounts as a result of the ageing HDPE 

geomembranes in the top cover. This is worsened as the ageing of HDPE 

geomembranes in the liner system occurred at the same time or earlier, which led to 

more migration of leachate into groundwater. For example, 4−8% of the generated 

leachate after 40 years of landfilling could be released if this was the case (data were 

calculated by HELP modelling but are not included in this paper). Therefore, in 

China-S, the quality of HDPE geomembranes, either through manufacturing or 

placement, must be controlled strictly, in order to reduce leachate generation and 

release. 

3.4 Comparison with actual data in practical landfills 

To evaluate its reliability, the landfill leachate quantification method 

established in this study was applied to 20 real-world landfill sites (considered as 

“estimated” results) where on-site measured leachate amounts (considered as 

“actual” values) were available. The estimated values and the actual values were not 

the same by definition. The estimated values meant the accumulated leachate of one 

tonne of waste generated in the operating period from the first year to the year of 

gathering data (named “testing year”). The actual values represented the transient 

leachate amounts generated by waste with different ages in the landfill at the testing 

year. To achieve a data format consistent with the estimated values (i.e. leachate 

amounts generated by one tonne of waste), actual leachate amounts were computed 

by dividing the measured yearly leachate quantities by yearly waste disposal 

amounts in the testing year. In the case of estimated results, PI was computed as the 

accumulated values during operating period, whilst WS represented the overall 

amounts during the entire lifetime of the landfill (considered as 100 years). Since 

some locations of the 20 real-world landfills were not included in the 31 cities 

discussed above, the parameters of the cities located in the same province were 

utilised for estimation. 

The comparison between the estimated results and the actual values is shown 
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in Table 5. The actual values indicated that leachate amounts generated in landfills 

located at China-S were significantly higher than those located at China-N and 

China-NW with similar operating period, which confirmed the findings in Figure 6. 

In all of the 20 landfill sites investigated in this study, actual leachate amounts were 

higher than the estimated values of PI, which only accounted for precipitation 

associated leachate. This highlights the necessity of including squeezed water out of 

waste (WS) when estimating landfill leachate quantities in China. For the landfills 

located in China-N and China-NW, as well as those located in China-S with an 

operating period of more than 3 years, the estimated values of PI+WS were higher 

than the actual leachate amounts. This was reliable as the estimated WS represents 

the overall values during the entire lifetime of the landfill rather than the 

accumulated values during the operating period. In the case of the landfills located 

in China-S with an operating period of up to 3 years, this estimation method 

frequently underestimated leachate amounts, even taking WS into account. This may 

be attributed to the underestimation of Ic in the first years after landfilling assuming 

DC and IC were operated following the instructions of Chinese national standard. 

However, this assumption may not always be true. The failure of effective DC and 

IC could induce higher Ic, especially in China-S where precipitation amounts were 

extremely high. Since on-site measurements of leachate quantities (actual values) 

were rare in China, the statistical reliability for the above conclusions was limited by 

sample size. Therefore, validating the reliability of this method should be repeated 

as new actual data is made available. 

4. Conclusion 

In this study, a leachate quantification method was established for MSW 

landfilling in China. Two leachate sources were calculated separately in this method, 

which were precipitation infiltrated throughout waste layers (PI) and water squeezed 

out of waste itself (WS). By utilising this method, leachate amounts generated from 

one tonne of MSW, landfilled for 100 years, were estimated for 31 cities located all 
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over China. According to the results, Chinese cities were grouped into three 

geographic regions based on climate conditions, which were China-NW 

(northwestern China), China-N (northern China) and China-S (southern China). 

The contribution of WS to overall leachate quantities were significant, 

especially for the cities located in China-N. Therefore, WS is a non-ignorable part 

when quantifying leachate amounts in China. This could also be possible for other 

countries where the initial moisture contents of MSW were higher than the landfill 

field capacity. From the aspect of leachate mitigation, avoiding food waste being 

disposed of in landfills could be an effective approach in China-N. 

In China-NW, leachate quantities were significantly lower than those in other 

regions. Therefore, it may be unnecessary to construct leachate treatment facilities in 

a landfill site in China-NW. The possible solution may be to drain leachate into 

nearby municipal wastewater treatment plants, spray/irrigate leachate on landfill 

surface or recirculate the leachate into the waste layers. Another finding requiring 

special attention was that, the infiltration ratios of precipitation ending up as 

leachate for China-NW suggested by the current Chinese national standard were 

higher than the values obtained in this study. This may lead to the overestimation of 

leachate quantity in China-NW by utilising the current Chinese national standard. 

In China-S, leachate generation was aggravated dramatically after 40 years 

landfilling because of the increased defects for HDPE geomembranes in top cover 

layers. Since the placement and maintenance process for HDPE geomembranes have 

not been strictly operated so far, defective HDPE geomembranes may occur 

frequently in many Chinese landfills. However, this was not taken into account in 

the current Chinese national standard, which may lead to underestimation of the 

precipitation-associated leachate amounts (as “PI” in this study). In addition, the 

quality of HDPE geomembranes, either through manufacturing or placement, must 

be controlled strictly in China-S in order to limit leachate generation amounts 

effectively. 
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Tables 

Table 1 Setup parameters for the five datasets used in the HELP simulations a. 

Landfill cover 

types 
Top cover structures b 

Top 

cover 

slope 

Runoff 

area factor

Vegetatio

n class 

HDPE 

geomembranes 

defects c 

HDPE 

geomembrane 

placement quality

Waste layer Bottom liner systems a 

1) Daily Cover 

(DC) 
22.5 cm of loamy sand soil 0% 0% Bare soil 2 ha−1 poor 

10 m of crude 

waste 

10m of aged waste

30 cm of gravel 

1.5 mm of HDPE geomembrane 

30 cm of gravel 

1.5 mm of HDPE geomembrane 

30 cm of moderately compacted clay 

2) Intermediate 

Cover (IC) 
30 cm of clay 0% 0% Bare soil 2 ha−1 poor 

5 m of crude waste

15 m of aged waste

3) Unplanted 

Final Cover 

(UFC) 

60 cm of loamy soil 

30 cm of gravel 

1.0 mm of HDPE geomembrane 

25 cm of clay 

5% 

(60m)d
100% Bare soil 2 ha−1  poor 20 m of aged waste

4) Planted Final 

Cover – Intact 

 (PFC-I) 

Well-planted grass 

60 cm of loamy soil 

30 cm of gravel 

1.0 mm of HDPE geomembrane 

25 cm of clay 

5% 

(60m)
100% 

Good 

stand of 

grass 

2 ha−1 poor 20 m of aged waste

5) Planted Final 

Cover – 

Defective 

(PFC-D) 

Well-planted grass 

60 cm of loamy soil 

30 cm of gravel 

1.0 mm of HDPE geomembrane

5% 

(60m)
100% 

Good 

stand of 

grass 

200 ha−1 poor 20 m of aged waste
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25 cm of clay 
a Evaporative zone depth was set to the Visual HELP default values for each location. 

b Referring to Ministry of Housing and Urban-Rural Development of the People's Republic of China (2013). In this standard, geotextiles should be installed above and beneath the HDPE geomembrane for protection. As the 

geotextiles impact hardly on water percolation and drainage compared with other layers, geotextiles layers were not stated here for simplification. Additionally, this standard recommended two kinds of bottom liner systems, i.e. 

single liner system and double liner system. In this study, double liner system was utilised. 

c HDPE geomembrane defects represents two kinds of defects: pinhole density and installation defects density (see Table S2). In this study, the two kinds of defects were set to the same value and were described as one uniform term 

“HDPE geomembrane defects” for the sake of simplification. The values of “HDPE geomembrane defects” were set for the HDPE geomembranes liner in the top covers in the case of UFC, PFC-I and PFC-D, and in the bottom liner 

systems in all the five cases. 

d Data in parentheses represent the slope length of the landfill top cover..
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Table 2 Relevant waste properties in three geographical regions in Chinaa. 

 China-NW China-N China-S 

Initial moisture contents (% of ww) (n=3)b (n=5)b (n=8)b 

 46.0±1.5 58.2±4.1 58.2±4.6 

Dry basis distributions (% of DM)  (n=3)b (n=7)b 

Fast degradable 37.9±6.1c 37.9±6.1 43.9±4.1 

Slowly degradable 25.1±5.2c 25.1±5.2 16.3±6.5 

Non-degradable 37.0±45.8c 37.0±45.8 39.8±7.7 

a Data in this table were calculated on basis of data in Table S4, Supporting information 

b The numbers of datasets used to obtain the values. 

c The values refer to those in China-N due to a lack of data for China-NW.

Table 3 Infiltration ratios of precipitation ending up as leachate in three Chinese geographic areas 

(unit: %) 

 

This study Chinese national standard b 

China-NWa China-Na China-Sa APc<400mm 400≤AP<800mm AP≥800mm

Daily Cover (DC) 15.0±6.3 30.7±6.2 43.1±6.9 40−55d 50−70d 70−80d 

Intermediate Cover (IC) 14.4±6.8 25.5±5.8 36.6±6.6 16−33e 20−42e 28−48e 

Unplanted Final Cover 

(UFC) 
6.8±2.5 7.3±0.6 3.9±0.7

10−20 

Planted Final 

Cover-Intact (PFC-I) 
5.1±2.4 7.3±0.5 3.9±0.7

Planted Final 

Cover-Defective 

(PFC-D) 

6.9±5.7 23.5±6.5 35.8±6.1

a Annual precipitations in the cities located at China-NW, China-N and China-S were in the ranges of 178−429 mm, 415−631 mm, and 

886−1832 mm, respectively 

b Referring to Ministry of Housing and Urban-Rural Development of the People's Republic of China (2013). 

c AP represents “annual precipitation”. 

d The infiltration ratios of precipitation ending up as leachate for landfills with DC are the suggestions for waste with organic matter 

content less than 70%. 

e The infiltration ratios of precipitation ending up as leachate for landfills with IC are not given in the standard, but are suggested as 

40−60% of the values for DC.  

Table 4 Squeezed water from landfilled waste in Chinese cities due to gravity and compaction (WSC) 

and waste degradation (WSD) 
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Geographical 

regions 
Cities WSC (L·t−1ww) WSD (L·t−1ww) WS (L·t−1ww) 

China-NW 

Lanzhou -99 -- -- 

Urumqi -45 -- -- 

Lhasa -51 -- -- 

Regional specifica −65 321 256 

China-N 

Harbin 108 -- -- 

Beijing 276 212 488 

Qingdao 131 -- -- 

Shenyang 247 220 467 

Tianjin 111 283 394 

Regional specifica 175 247 423 

China-S 

Hefei 62 283 345 

Wuhan 82 266 348 

Chengdu 158 276 434 

Chongqing 349 206 555 

Shanghai 185 259 444 

Suzhou 225 -- -- 

Hangzhou 143 259 401 

Shenzhen 205 232 438 

Regional specific a 176 252 429 

a The regional specific values were calculated by applying the average waste property values in Table 2.
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Table 5 Comparison of the actual and estimated leachate generation amounts in practical landfill sites 

Number Regions City (Landfill site) 

Operating 

period 

(years) 

Actual values 

(L·t−1ww) 

Estimated values 

(L·t−1ww) 
Reference for actual 

values 

City with the 

parameters referred for 

estimated values PIa PI+WSb 

1 China-NW Yi’ning 5 70 8.2 284 (Lan, 2012) Urumqi 

2 China-N Beijing (Liulitun) 3 400 30 518 (Li et al., 2009) Beijing 

3 China-N Beijing (Beishenshu) 11 167 70 558 (Li et al., 2009) Beijing 

4 China-N Beijing (Anding) 3 490 30 518 (Lan, 2012) Beijing 

5 China-N Tangshan (Jianzigu) 2 280 13 440 (Lan, 2012) Shijiazhuang 

6 China-N Xi’an (Jiangcungou) 8 230 37 464 (Lan, 2012) Xi’an 

7 China-S Suzhou (Qizishan) 1 830 20 498 (Lan, 2012) Suzhou 

8 China-S Changzhou 8 380 110 588 (Lan, 2012) Suzhou 

9 China-S Shanghai (Laogang) 5 400 77 521 (Lan, 2012) Shanghai 

10 China-S Ningbo (Yinzhou) 4 400 105 507 (Lan, 2012) Hangzhou 

11 China-S Lishui (Wulinggen) 2 950 60 462 (Lan, 2012) Hangzhou 

12 China-S Nanchang (Maiyuan) 14 320 225 653 (Lan, 2012) Nanchang 

13 China-S Changsha (Qiaoyi) 8 290 144 573 (Yang, 2012a) Changsha 

14 China-S Guiyang (Gaoyan) 10 190 102 475 (Lan, 2012) Guiyang 

15 China-S Chongqing (Changshengqiao) 3 800 85 640 (He et al., 2007) Chongqing 

16 China-S Chengdu (Chang’an) 18 400 113 547 (Lan, 2012) Chengdu 

17 China-S Kunming (Xijiao) 5 154 78 507 (Wu, 2007) Kunming 

18 China-S Guangzhou (Xingfeng) 10 330 287 725 (Lan, 2012) Shenzhen 

19 China-S Shenzhen (Xiaping) 15 454 
299 736 (Shenzhen Habitation 

and Environmental 

Shenzhen 
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Committee, 2013) 

20 China-S Jiangmen (Datuicheshan) 7 356 243 680 (Zhang et al., 2009) Shenzhen 
a Leachate generation amounts estimated by the method established in this study, but only accounting for one source, i.e. “PI” representing. precipitation infiltrated throughout waste layers. 

b Leachate generation amounts estimated by the method established in this study, accounting for both sources, i.e. “PI” representing precipitation infiltrated throughout waste layers and “WS” representing water squeezed out of 

waste itself.
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Figures 

 

Figure 1 Schematic diagram of the water balance of a simulated landfill
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Figure 2 Cities where leachate generation by precipitation infiltration was simulated (red dots) and 

where waste compositions were obtained (blue circles)
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Figure 3 Schematic fate of water originally contained in waste during landfilling 

(IMC, Initial Moisture Content; IFC, Initial Field Capacity; FCC, Field Capacity after Compaction; 

FCA, Field Capacity of Aged waste. Stage I: The status of waste arriving at the landfill. Stage II: The 

status of waste when filled capacity is reduced to the same as the “IMC” through the compaction of 

waste with low IMC. The status of waste when its moisture content is reduced to the same as “IFC” 

by gravity for waste with high IMC; Stage III: The status of waste with the greatest physical 

compaction in the landfill body. Stage IV: The status of waste after complete degradation).
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Figure 4 The infiltration ratios of precipitation ending up as leachate in 31 Chinese cities 
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Figure 5 Geographic distributions of the infiltration ratios of precipitation ending up as leachate in 

China 
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Figure 6 Accumulated leachate from different sources over 100 years. (For cities with “**” in front of 

their names, we used the average values of WSC and WSD for the relevant geographic regions. For 

cities with “*” in front of their names, we used the average values of WSD for the relevant geographic 

regions.).
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Supplementary material 

Tables 

Table S1 Specific parameters for Chinese waste 

 Fresh waste Old waste Reference 

Total porosity (v·v−1) 0.80 0.70 (Cao, 2007) 

Saturated hydraulic conductivity 

(cm·s−1) 
1.45×10-3 a 3.1×10-4 a (Qu et al., 2005) 

Field capacity (w·w−1) 0.45 0.30 

(Ministry of Housing and 

Urban-Rural Development of the 

people's republic of China, 2012) 

Wilting point (v·v−1) 0.077 0.077 
Default value in HELP model 

(Schroeder et al., 1994) 

Initial moisture content (w·w−1) 0.45 0.30 Same as field capacity b 

a Median values of the six results for fresh waste and 3-year-old waste excavated from the Laogang landfill site, respectively. 

b In this section, no absorption or leaking of water by the landfilled waste was considered. 
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Table S2 Parameters of the materials used in the HELP model 

 Loamy sand soil Loamy soil Clay 
Moderately compacted 

clay 
Gravel 

HDPE 

geomembrane 

Total porosity (v·v−1) 0.437 0.463 0.475 0.451 0.397 -- 

Field capacity (v·v−1) 0.105 0.232 0.378 0.419 0.032 -- 

Wilting point (v·v−1) 0.047 0.116 0.265 0.332 0.013 -- 

Saturated hydraulic 

conductivity (cm·s−1) 
1.7×10−3 3.7×10−4 1.7×10−5 6.8×10−7 0.3 1×10−11 a 

Pinhole density (ha−1) -- -- -- -- -- 2/200 b 

Installation defects (ha−1) -- -- -- -- -- 2/200 b 

Placement quality -- -- -- -- -- poor 

Utilisation 

As the barrier 

layer in the daily 

top cover 

As the plant 

layer in the final 

covers 

As the barrier layer 

in the intermediate 

top cover 

As the barrier layer in the 

final covers and in the 

bottom liner system 

As the drainage layers 

in the final covers and 

in the bottom liner 

system 

As the 

geomembrane liner 

in the final covers 

and in the bottom 

liner system 
a Referring to (Ministry of Construction of the People's Republic of China, 2006). 

b The pinhole density and installation defect density of HDPE geomembranes were set to  the same value, and were described as HDPE geomembrane defects in Table 1. The pinhole density and installation defect density were set 

to 2 ha−1 during service life (the first 40 years) as default values in the Visual HELP model. However, after service life (in the last 60 years), the value will increase due to the ageing of HDPE geomembranes. According to the 

sensitivity analyses (see Table S3), HDPE geomembranes with defects between 20 and 200 ·ha-1 will induce similar leachate generation. To represent the worst situation in respect to aged HDPE geomembranes in this paper, the 

highest value 200 ·ha-1 was chosen.  
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Table S3 Sensitivity analyses of the parameters used in the HELP model 

 

Infiltration ratios of precipitation ending up as leachate 

Daily Cover 

(DC) 

Intermediate Cover 

(IC) 

Unplanted Final Cover 

(UFC) 

Planted Final Cover-Intact 

(PFC-I) 

Planted Final Cover-Defective 

(PFC-D) 

1. Runoff area factor  

 Lanzhou (China-NW) 

0% 14.3%* 13.5%* 9.9% 4.6% 4.8% 

50% 14.3% 10.9% 9.1% 4.5% 4.8% 

100% 14.3% 9.2% 8.4%* 4.5%* 4.8%* 

Beijing (China-N) 

0% 41.0%* 34.4%* 8.5% 8.4% 35.0% 

50% 41.0% 20.1% 7.5% 7.3% 34.1% 

100% 41.0% 12.0% 7.4%* 7.2%* 33.2%* 

 Shenzhen (China-S) 

0% 49.6%* 42.1%* 3.6% 3.6% 42.8% 

50% 49.6% 24.5% 3.1% 3.0% 41.7% 

100% 49.6% 14.9% 3.1%* 3.0%* 40.7%* 

2. HDPE geomembrane defects  

 Lanzhou (China-NW) 

2 ha−1    4.5%*  

20 ha−1    4.8%  

200 ha−1    4.8%  

 Beijing (China-N) 

2 ha−1    7.2%*  
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Infiltration ratios of precipitation ending up as leachate 

Daily Cover 

(DC) 

Intermediate Cover 

(IC) 

Unplanted Final Cover 

(UFC) 

Planted Final Cover-Intact 

(PFC-I) 

Planted Final Cover-Defective 

(PFC-D) 

20 ha−1    29.0%  

200 ha−1    33.2%  

 Shenzhen (China-S) 

2 ha−1    3.0%*  

20 ha−1    21.7%  

200 ha−1    40.7%  

3. HDPE geomembrane placement quality  

 Lanzhou (China-NW) 

good 14.3% 13.6% 3.0% 2.4% 4.5% 

poor 14.3%* 13.5%* 8.4%* 4.5%* 4.8%* 

bad/worst case a 14.3% 13.5% 8.8% 4.8% 4.8% 

 Beijing (China-N) 

good 41.0% 34.4% 1.8% 1.8% 31.8% 

poor 41.0%* 34.4%* 7.4%* 7.2%* 33.2%* 

bad/worst case a 41.0% 34.4% 19.2% 33.1% 33.4% 

 Shenzhen (China-S) 

good 49.6% 42.1% 0.7% 0.7% 30.6% 

poor 49.6%* 42.1%* 3.1%* 3.0%* 40.7%* 

bad/worst case a 49.6% 42.1% 22.8% 37.9% 40.9% 

* These values are the results in the baseline scenario. 

a In the Visual HELP online help, this status is called “bad placement quality”. While it is called “worst case” in the user’s manual. To avoid misunderstanding, these two terms are both shown here. 
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Table S4 Initial moisture content and fraction compositions of municipal solid waste in 16 Chinese cities 

Regions Cities 

Initial moisture 

contents, IMC (% 

of ww) 

Fraction compositions (% of ww)a 

Reference 
Food wastes Papers Plastics Wood Textiles Slags Glass Metals 

China-NW Lanzhou 44.3 36.5 9.7 11.3 1.4 2.1 37.8 0.9 0.2 (Ji, 2007) 

China-NW Urumqi 47.0 76.0 2.4 5.4 2.5 4.2 6.4 2.4 0.8 (Shao et al., 2009) 

China-NW Lhasa 46.7 57.0 6.0 12.0 14.0 7.0 3.0 0.0 1.0 (Jiang et al., 2009) 

China-N Harbin 54.8 44.8 13.4 3.3 0.0 4.7 24.5 6.6 2.7 (Xie, 2009) 

China-N Beijing 63.3 66.2(82) 10.9(29) 13.1(33) 3.3(22) 1.2(22) 3.9(12) 1.0(NA) 0.4(NA) (Wang and Wang, 2013) 

China-N Qingdao 56.0 69.0 9.5 8.4 2.3 3.0 6.8 2.2 0.9 (Jiang et al., 2011) 

China-N Shenyang 61.8 60.4(72) 7.9(32) 12.9(NA) 2.5(28) 3.6(44) 5.3(25) 5.4(NA) 2.1(NA) (Gao et al., 2007; Ma, 2010) 

China-N Tianjin 55.0 56.9(65) 15.3(48) 16.9(44) 1.6(40) 3.9(47) 2.9(14) 1.6(2) 0.7(9) (He et al., 2010) 

China-S Hefei 52.3 61.5(64) 1.9(61) 11.4(33) 0.9(27) 2.1(36) 21.7(34) 0.6(NA) 0.0 (Jin, 2006) 

China-S Wuhan 53.5 55.3(66) 1.5(43) 4.5(49) 8.3(49) 0.0 27.3(36) 2.0(NA) 1.1(NA) (Li, 2010) 

China-S Chengdu 55.2 65.7(68) 13(32) 12(14) 0.88(55) 2.5(92) 2.1(57) 0.8(55) 2.9(55) (Huang and Liu, 2012) 

China-S Chongqing 58.7 53.7(76) 13.6(68) 16.3(59) 4.9(73) 6.2(66) 0.0(NA) 3.8(13) 1.1(5) (Huang et al., 2003) 

China-S Shanghai 60.9 63.8(71) 11.1(36) 17.2(43) 1.1(48) 2.6(37) 1.1(25) 2.7(11) 0.4(7) (Zhang et al., 2009) 

China-S Suzhou 60.7 62.6 10.9 18.6 0.9 4.2 0.7 2.0 0.2 (He et al., 2008) 

China-S Hangzhou 56.5 64.5(71) 6.7(26) 10.1(13) 0.1(27) 1.2(43) 15.1(49) 2.0(0) 0.3(2) (Zhuang et al., 2008) 

China-S Shenzhen 49.9 51.6(64) 17.2(32) 21.8(52) 3.9(48) 2.7(48) 0.8(1) 2.1(2) 0.42(4) 
(Shenzhen Environmental 

Sanitary Management 
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Department, 2011) 

“NA” represents “not available.” a Values in parentheses represent the moisture content of the specific waste fractions in % of wet weight. 

Table S5 Summarisation for the field capacities of waste in the existing literature 

Waste types used for testing 
Initial bulk density 

(t·m−3) 

Initial moisture content 

(% of wet weight) 

Bulk density at field 

capacity (t·m−3) 

Field capacity 

(% wet weight) 
Reference 

4000 m3 crude MSW 0.66 25% NA 31.8% a, b 
(Campbell, 1982; Kjeldsen and 

Beaven, 2011) 

4000 m3 crude MSW 0.95 25% NA 28.0% a, b 
(Campbell, 1982; Kjeldsen and 

Beaven, 2011) 

4000 m3 crude MSW 1.00 25% NA 26.8% a, b 
(Campbell, 1982; Kjeldsen and 

Beaven, 2011) 

6 m3 crude MSW 0.40 15% NA 36.6% a, b 
(Campbell, 1982; Kjeldsen and 

Beaven, 2011) 

8 m3 pulverised MSW NA 40% NA 51.0% a 
(Kjeldsen and Beaven, 2011; 

Robinson et al., 1981) 

6 m3 crude MSW 0.5 35% 0.71 a 54.4% 
(Kinman et al., 1982; Kjeldsen and 

Beaven, 2011) 

0.2 m3 pulverised MSW 0.76 26% 0.98 a 42.6% a 
(Blakey, 1982; Kjeldsen and 

Beaven, 2011) 

Indoor lysimeter crude MSW 0.33 15% a 0.62 a 54.6% a 
(Fungarioli and Steiner, 1979; 

Kjeldsen and Beaven, 2011) 

9 m3 and 18 m3 crude MSW 0.33 56% a 0.45 a 68.0% a 
(Kjeldsen and Beaven, 2011; 

Rovers and Farquhar, 1973) 

0.2 m3 drums 17-year-old MSW 0.96 32% 1.07 a 38.6% (Holmes, 1980; Kjeldsen and 
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Beaven, 2011) 

0.2 m3 drums 17-year-old MSW 0.64 32% 0.84 a 47.6% 
(Holmes, 1980; Kjeldsen and 

Beaven, 2011) 

4 tonnes of crude domestic refuse 0.49 34% 0.79−1.16 a 50.3%−38.2% (n=9) (Beaven, 1999) 

2.4 tonnes of pulverised MSW 0.36 29% 0.55−0.94 a 52.8%−35.8% (n=10) (Beaven, 1999) 

6.5 tonnes of 20-year-old waste 0.91 42% 1.09−1.43 a 42.9%−33.6% (n=9) (Beaven, 1999) 

0.11 m3 of fresh waste 0.2−0.5 12.5% 0.36−0.85 a 51.2%−48.5% (n=3) a (de Velasquez et al., 2003) 

0.14 m3 of fresh waste 0.2−0.5 21.3% 0.6−0.61 a 74%−35.5% (n=3) a (de Velasquez et al., 2003) 

0.18 m3 of fresh waste 0.2−0.5 16.5% 0.54−1.06 a 45.7%−35.5% (n=3) a (de Velasquez et al., 2003) 

0.13 m3 of fresh waste NA NA 0.98−1.23 a 59.4%−44.3% (n=6) (Lan, 2012) 

0.13 m3 of 0.5-year-old waste NA NA 1.09−1.30 a 53.8%−43.5% (n=6) (Lan, 2012) 

0.13 m3 of 2-year-old waste NA NA 1.02−1.23 a 5.05%−41.4% (n=6) (Lan, 2012) 

0.13 m3 of 3-year-old waste NA NA 1.04−1.10 a 51.5%−38.2% (n=6) (Lan, 2012) 

0.13 m3 6-year-old waste NA NA 1.08−1.42 a 64.8%−36.9% (n=7) (Lan, 2012) 

Fresh waste with 90% paper and 

cardboard 
NA NA 1.01−1.72 a 69.7%−54.5% (n=5) a, c (Blight et al., 1992) 

Various kinds of fresh waste NA NA 0.85−1.56 a 59%−45% (n=11) a (Blight et al., 1992) 

Various kinds of 1-year-old waste NA NA 0.93−1.62 a 44%−34% (n=15) a (Blight et al., 1992) 

Various kinds of 1-year-old waste NA NA 0.79−1.62 a 48%−36% (n=17) a (Blight et al., 1992) 

0.04 m3 of old waste NA NA 0.88−1.18 a 60.2%−40.5% (n=4) (Zornberg et al., 1999) 
a These data were not originally present in the literature but calculated by the authors from other existing parameters. 

b Field capacity is calculated based on primary absorptive capacity, which is not the same as others based on total absorptive capacity. Therefore, these data are not used in the regression in Figure S5. 

c As waste with 90% paper and cardboard is not the typical MSW, these field capacities are not used in the regression in Figure S5. 
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Figure S1 Weather parameters used in the HELP simulations and the infiltration ratios of precipitation 

ending up as leachate in 31 Chinese cities 

(The weather data was created by the Weather Generator  included in Visual HELP. The weather data 

of Harbin, Changchun, Chongqing and Changsha were not available in Weather Generator, the closest 
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cities’ weather datasets were used instead for calculation (i.e. Shenyang for Harbin and Changchun, 

Jinfushan for Chongqing, Yueyang for Changsha). However, the average monthly rainfall and average 

monthly temperature of the closest cities’ weather datasets were replaced by the four cities’ own 

parameters based on 30 years’ data sources supplied by China Meteorological Administration.)
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Figure S2 Average yearly water balances in percent of precipitation at landfill sites under five types of 

top cover for the three Chinese geographic regions 
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Figure S3 Linear fitting of field capacity and bulk density for municipal solid waste. 

The fitting equation is FC= (59.6±2.5)−(12.9±2.3)×BD.
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