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Photonic trumpets are broadband dielectric antennas that efficiently funnel the emission of a point-

like quantum emitter—such as a semiconductor quantum dot—into a Gaussian free-space beam.

After describing guidelines for the taper design, we present a “giant” photonic trumpet. The device

features a bottom diameter of 210 nm and a 5 lm wide top facet. Using Fourier microscopy, we

show that 95% of the emitted beam is intercepted by a modest numerical aperture of 0.35.

Furthermore, far-field measurements reveal a highly Gaussian angular profile, in agreement with

the predicted overlap to a Gaussian beam Mg ¼ 0:98. Future application prospects include the

direct coupling of these devices to a cleaved single-mode optical fiber. The calculated transmission

from the taper base to the fiber already reaches 0.59, and we discuss strategies to further improve

this figure of merit. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4932574]

Photonic wire antennas have recently emerged as a

powerful solution to shape the emission of a point-like emit-

ter into a directive Gaussian free-space beam. The integra-

tion of an isolated quantum dot (QD) in such structures

opens appealing prospects for solid-state quantum optics, in

particular, for the generation of non-classical states of light.

Beyond the initial demonstration of bright single-photon

sources,1–3 the broad operation bandwidth of these antennas

is also a key asset to realize tunable single-photon sources4

or bright sources of entangled photon pairs.5 Specifically,

nanowire antennas exploit the efficient spontaneous emission

(SE) control provided by a single-mode high-index nanowire

waveguide, whose far-field emission is tailored by a top

taper.6 The taper can either take the shape of a sharp needle

or the one of a “photonic trumpet,” So far, appreciable beam

directivity has been demonstrated with both approaches, but

collection optics with a numerical aperture (NA) that

exceeds 0.7 are still mandatory to fully intercept the antenna

output beam.1,3,4,7

Scaling up the dimensions of a photonic trumpet in order

to enlarge its top facet represents a natural strategy to

improve the output beam directivity. In this work, we first

examine theoretically the relevance of this approach. We

then report the realization of “giant” photonic trumpets with

a 5 lm wide top facet. Using Fourier microscopy, we map

their far-field emission and show that 95% of the emitted

beam is intercepted by a numerical aperture of 0.35.

Moreover, our measurements reveal a highly Gaussian angu-

lar profile, in agreement with the predicted overlap to a

Gaussian beamMg ¼ 0:98. Extending the top facet also dra-

matically increases the overlap to the mode supported by a

standard single-mode fiber (SMF), enabling an efficient

direct coupling. The calculated transmission from the taper

base to a cleaved fiber already reaches 0.59, and we discuss

future improvement directions.

The structure under investigation is made of a dielectric

material with a large refractive index (nt ¼ 3:48), in a low

index environment (n¼ 1). As illustrated in Fig. 1(a), its bot-

tom section features a diameter db¼ 230 nm, which ensures

single-mode operation (HE11) for a free-space operation

wavelength k¼ 925 nm. Moreover, this diameter choice

ensures an optimal control over the SE of an embedded

FIG. 1. (a) Geometry of the trumpet taper. Light is launched upward in the

fundamental guided mode (HE11) at the taper base. T is the total transmis-

sion to a collection lens with a numerical aperture NA ¼ sinðhmaxÞ, andMg

is the far-field overlap to a Gaussian beam. (b) Calculated transmission to a

Gaussian beam Tg ¼MgT in the ðdt; hÞ plane for db ¼ 230 nm and k ¼ 925

nm. Each contour line corresponds to Tg ¼ 0:9 for a given collection NA;

the solid circles highlight the minimal taper dimensions compatible with

those requirements. The cross corresponds to the taper described in Ref. 3,

and the plus sign to this work.a)Electronic mail: julien.claudon@cea.fr
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point-like emitter.8 Indeed, for an on-axis optical dipole,

95% of the SE is funneled into the HE11 modes, with sym-

metric contributions to the modes propagating upward and

downward. Moving up along the structure, the wire diameter

increases linearly (total opening angle 2a) to induce a lateral

expansion of the guided mode. The top facet is located at a

distance h from the base and features a diameter dt. It is cov-

ered with a k=4 anti-reflection coating which is composed of

Si3N4 (refractive index nar ¼ 1:99).

Qualitatively, the criterion for an adiabatic expansion of

HE11 is determined from a comparison between a0, the dif-

fraction angle of the mode inside the taper, and the sidewall

tapering angle a (Ref. 9). a0 ¼ k=ðpneffw0Þ, where neff and

w0 are the effective index and waist10 of HE11. For the high

contrast waveguide investigated here, as soon as the local di-

ameter d exceeds 0:5 lm, neff � nt and w0 � 0:75ðd=2Þ.
Adiabatic transmission of HE11 is achieved when a� a0.

Larger taper angles, on the order of a0, result in the onset of

conversion to higher order modes, with oscillations arising

from interference effects. Finally, for a� a0, one enters a

deeply multimode regime: a large fraction of the electromag-

netic energy is irreversibly transferred to higher order guided

modes. At the taper base, a0 largely exceeds a. Moving up

the taper, a0 decreases as d�1 to reach a minimum at the top

facet level. The breakdown of adiabatic propagation occurs

at a typical height h0 ¼ k=ð0:75pnta2Þ which corresponds to

a0 ¼ a. If h � h0, the whole taper operates in the adiabatic

regime, yielding large modal transmission for HE11. For

larger tapers, light propagation involves several guided

modes above h0.

We now focus on the taper output beam. In the follow-

ing theoretical analysis, light is launched at the taper base

into the upward HE11 mode, propagates along the taper, and

is collected in free-space by an ideal thin lens with a NA.

The taper transmission to a Gaussian beam can be decom-

posed as Tg ¼MgT, where T is the total transmission into

the lens, andMg is the overlap between the output beam and

a Gaussian beam. As detailed in the supplementary material

of Ref. 3 (see also Ref. 11), Tg is calculated by optimizing

both the waist dimension of the target Gaussian beam and

the location of the lens focal plane.

Figure 1(b) shows contour lines corresponding to Tg ¼
0:9 in the ðdt; hÞ plane for various values of the NA of the

collection optics. For an adiabatic taper, the output beam is

solely defined by the diffraction of the HE11 mode at the top

facet level. For relevant geometries (dt > 1 lm), the spatial

profile of this mode is very close to a Gaussian. The location

of the lens focal plane that optimizes Tg coincides with the

top facet, and one obtains large Tg into adequate collection

NAs. This regime is revealed by the independence on ht for

small dt values (vertical part of contour lines in Fig. 1(b)).

In a non-adiabatic taper, Tg depends both on dt and h,

with oscillations associated with mode interferences. For a

given dt, a multimode taper generally features a larger beam

divergence than a single-mode taper. However, and quite

surprisingly, a satisfying Gaussian output beam can still be

obtained for significantly multimode tapers if the focal plane

is set to a distance �ðh� h0Þ=nt below the top facet. This

suggests that when adiabatic transmission breaks down, the

mode diffracts as in the bulk material, with small deviations

associated with the finite set of available guided modes. In

this simple picture, the taper upper part does not lead to fur-

ther improvements of the output beam directivity.

For each NA, one can define minimal taper dimensions

ðdt;m; hmÞ ensuring Tg ¼ 0:9. Such a minimal geometry is

identified by solid circles in the figure and is found close to

the single-mode regime. The parabolic dependence of hm on

dt;m is reminiscent of the condition a � a0 discussed above.

For NA¼ 0.7, a very compact structure, with hm ¼ 5 lm, is

sufficient to ensure Tg ¼ 0:9. However, further improve-

ments of the beam directivity become increasingly demand-

ing in terms of taper height. As an example, hm should be

increased up to 24 lm in order to obtain the same transmis-

sion into a NA of 0.35.

In the second part of the paper, we demonstrate the fab-

rication of such “giant” photonic trumpets and measure their

far-field emission properties. Figure 2(a) is a scanning elec-

tron microscope image of a 26:8 lm high photonic trumpet

that is supported by a pyramidal pedestal. At the connection

with the pedestal, the waveguide supports a single guided

mode (db ¼ 210 nm). The total tapering angle is 2a ¼ 10:5�

and the top diameter dt ¼ 5:15 lm. For optical characteriza-

tion, the device embeds self-assembled InAs QDs as an inter-

nal light source. The QDs are located �150 nm below the

connection with the pedestal. The structure is mostly com-

posed of Al0.05Ga0.95As, except the dot section for which

GaAs is used as barrier material. Compared to Ref. 3, the

taper height and top diameter have been multiplied by more

than a factor of 2 and 3, respectively. In brief, fabrication

starts with the growth of a planar sample by molecular beam

epitaxy. A hard etching mask is then defined using e-beam li-

thography, nickel deposition, and lift-off. The trumpets are

etched in a reactive ion etching chamber, using a SiCl4-Ar

gas chemistry. Finally, the remaining Ni mask is removed

using wet chemistry.

Optical characterization is performed in a cryogenic

microphotoluminescence (lPL) setup. The sample is kept at

FIG. 2. Sample and microphotoluminescence spectra. (a) Scanning electron

microscope image of the sample (tilted view). The horizontal scale bar rep-

resents 5 lm. (b) Top trace: Microphotoluminescence spectrum, acquired

under pulsed excitation with a mean power Pex ¼ 200 nW (vertically offset

for clarity). Bottom trace: Isolation of a single QD line using additional

interferometric filters. (c) Spectrally integrated CCD counts versus Pex for

QD lines 1 and 2. The solid lines show linear dependencies.
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liquid helium temperature (�4 K) in a cold finger cryostat.

The QD luminescence is excited by a pulsed laser beam (repe-

tition rate 76 MHz) focused on the sample with a microscope

objective (NA¼ 0.6). The excitation energy (Eex ¼ 1:433 eV)

is tuned below the GaAs and Al0.05Ga0.95As band gaps, in the

absorption continuum of the QD’s wetting layer. The same

objective collects the QD luminescence, and a low pass filter

blocks stray laser light. For spectral analysis, the lumines-

cence signal is directed towards a grating spectrometer

equipped with a CCD camera.

A lPL spectrum is shown in Fig. 2(b) (top trace): it is

composed of sharp lines, associated with the recombination

of excitonic complexes trapped in individual QDs. At satura-

tion, the brightest lines (for example, QD2) typically feature

a spectrally integrated CCD count rate of �100 kHz [Fig.

2(c)], which corresponds to a top extraction efficiency

�" � 0:1. The isolated line QD1, that will be investigated lat-

ter, features a twice lower �". In the open waveguide (no bot-

tom mirror) investigated here, the theoretical maximum for

�" is 0.47. It would be achieved for a QD with a stable charge

state, located on the waveguide axis, above the connection

with the pedestal. We stress that this reduced �" is not a con-

cern for the main goal of this work, namely, the investigation

of the taper far-field emission using Fourier microscopy.7,12

As illustrated in Fig. 3(a), the taper emission can be

decomposed on a set of plane waves which leave the top

facet with a direction defined by the polar and azimuthal

angles h and u. These plane waves are focused on a point

ðqðhÞ;uÞ of the objective back focal plane. After calibration

of the objective response (function qðhÞ and transmitted in-

tensity versus h), we image this plane with a CCD camera

which yields the far-field intensity per unit solid angle
dI
dX h;uÞð . The objective calibration is detailed in the supple-

mentary material.13 To a very good approximation, the func-

tion qðhÞ is linear. The maximum imaging angle hmax ¼ 37�

is limited by the objective NA; this limit appears as a solid

circle in the far-field map presented in Fig. 3. Close to the

angle cut-off, the objective transmission has dropped by

25% relative to its on-axis value. The data presented in the

following are corrected from the objective response. To vali-

date the setup, we have also imaged the far-field emission of

a single InAs QD buried in an unprocessed GaAs planar

sample. The resulting broad far-field emission pattern

matches very well the theoretical predictions (see supple-

mentary material13).

We perform angle-resolved far-field measurements on a

single QD embedded in the trumpet. We focus on the spec-

trally isolated line QD1, which can be filtered using a combi-

nation of bandpass interferometric filters [bottom trace in

Fig. 2(b)]. As shown in Fig. 3(b), the trumpet under study

emits a very directive beam which is fully intercepted by the

objective. Moreover, as shown in Fig. 3(c), far-field meas-

urements conducted on the QD ensemble yield an identical

pattern, which is a direct proof of the single-mode nature of

the bottom part of the waveguide. For quantitative analysis,

we estimate the emission intensity intercepted within a

cone of opening angle h, IintðhÞ ¼
Ð 2p

0
du
Ð h

0
dI
dX ðh;uÞ sin hdh.

Since the beam is fully intercepted by the objective, the

transmission to an optics with a collection angle h is given

by T ¼ IintðhÞ=IintðhmaxÞ. As demonstrated in Fig. 3(d), a

modest 0.35 NA is sufficient to collect 95% of the taper out-

put beam. This represents a significant improvement over

previously reported nanowire antennas (needle- or trumpet-

like): up to now, these required NAs larger than 0.7 for effi-

cient light collection.1,3,4,7

Furthermore, the cuts along u ¼ 0� and u ¼ 90�, which

are presented in the top and right panels in Fig. 3(b), reveal

highly Gaussian beam profiles. Both traces can be fitted to

the same function / exp½�2ðh=h0Þ2�, yielding a beam diver-

gence angle h0 ¼ 16�. Except for acquisition noise, the data

do not show any deviation from the Gaussian law. This con-

firms simulation results, which predict an overlap to a

Gaussian beam Mg ¼ 0:98 for a 0.35 collection NA.

Although the Gaussian character of the beam emitted by nee-

dle nanowires has recently been demonstrated7 and was

predicted for trumpet tapers,3 we stress that the present

FIG. 3. Far-field imaging. (a) Fourier microscopy setup. L1 and L2 are lenses of focal length f1 ¼ 40 cm and f2 ¼ 20 cm; F1 and F2 are bandpass interferomet-

ric filters. (b) Far-field intensity map in the ðh;uÞ plane, acquired on the spectrally filtered line QD1 shown in Fig. 2(b). The solid circle corresponds to the

maximum collection angle of the microscope objective (hmax ¼ 37�). The dark CCD counts have been subtracted, and the data are corrected for the objective

response. The upper panel is a profile measured along u ¼ 0�, and the right one is a profile measured along u ¼ 90� (“lateral” integration over 5 CCD pixels).

The solid lines are fit to a Gaussian profile, yielding identical beam diffraction angle h0 ¼ 16� for both profiles. (c) Same measurement as in (b), without spec-

tral filtering. All QDs contribute to the far-field map. (d) Collected fraction of the beam intensity versus the collection NA, determined from partial angular

integration of the measurements shown in (b). The star marks a collected fraction of 95%.
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nanowire antenna offers an unprecedented combination of

directive and Gaussian emission. Beyond nanowire pho-

tonics, similar far-field characteristics are only offered by

state-of-the-art micropillar cavities.14,15 These features

simplify the efficient out-coupling to a single-mode fiber

using free-space coupling optics, and, reversibly, the in-

coupling of an external Gaussian laser beam. In analogy

with a symmetric micropillar cavity that embeds a QD,16

the structure investigated in this work is particularly well

suited to explore optical nonlinearities at the single-photon

level. Interestingly, the broadband nature of a waveguide

approach enables multicolor nonlinearities based on com-

plex emitter level schemes.17

The “butt” coupling to a SMF constitutes another

appealing perspective of this work.18 In particular, such a de-

vice would result in a practical, alignment-free source for the

long-distance distribution of quantum light. As illustrated in

Fig. 4(a), we first consider the coupling to the cleaved facet

of a standard SMF (NA � 0:1). Such a coupling has been

recently demonstrated,19 using the first generation of trum-

pets presented in Ref. 3. In the following theoretical analysis,

a perfectly matched anti-reflection layer with nar ¼ 2:25 is

inserted between the trumpet and the fiber cleaved facet. For

a taper with a single-mode base, the transmission from the

taper base to the fiber reads Tf ¼ THE11
	 Tfacet, where THE11

is the HE11 modal transmission of the taper, and Tfacet is the

top facet to fiber modal transmission. The taper described in

Ref. 3 offers an excellent THE11
¼ 0:99. However, the modest

top facet diameter (dt ¼ 1:6 lm) leads to a poor overlap to

the fiber mode and limits Tfacet to 0.11 [cross in Fig. 4(b)].

The “giant” trumpet demonstrated in this work features a

much larger Tfacet ¼ 0:74 [plus sign in the figure]. Despite a

slightly smaller THE11
¼ 0:8, Tf is increased by a factor of 5

and reaches 0.59. Going beyond this result will require the

simultaneous optimization of THE11
and Tfacet. An optimal

Tfacet ¼ 0:95 is achieved for dt ¼ 8:6 lm. As shown in Fig.

4(c), a linear taper with this dt should feature a height h >
118 lm to ensure THE11

> 0:90. Such structures could be

defined in a thinned GaAs wafer, after a flip-chip step, and

using a robust hard mask which can sustain very deep etch-

ing. Alternatively, an additional tapering of the fiber20 allows

reducing the fiber mode size down to the micron range, thus

decreasing a lot the constraints on dt and h.

To conclude, we have demonstrated “giant” photonic

trumpets which funnel the emission of a single QD into a

very directive and Gaussian output beam. Beyond free-space

quantum optics experiments, these structures can also be

directly coupled with high efficiency to a cleaved single-

mode fiber. Envisioned applications include practical sources

of quantum light, as well as recently proposed near-field

QD-electrical field sensors and single-plasmon launchers.19

CEA authors acknowledge the support of the European

Union Seventh Framework Program 209 (FP7/2007-2013)

under Grant Agreement No. 601126 210 (HANAS). CEA

authors, N.G. and J.M. acknowledge the support of the

European Metrology Research Programme [project SIQUTE

(Contract No. EXL02)]. M.R. acknowledges the support of

the European Research Council (STG 25868). M.M. and J.T.

acknowledge funding from the Swiss National Centre of

Competence in Research “QSIT—Quantum Science and

Technology.” Sample fabrication was carried out in the

“Plateforme Technologique Amont (PTA)” and CEA LETI

MINATEC/DOPT clean rooms.

1J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen,

C. Sauvan, P. Lalanne, and J.-M. G�erard, Nat. Photonics 4, 174 (2010).
2M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M.

A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller,

Nat. Commun. 3, 737 (2012).
3M. Munsch, N. S. Malik, J. Bleuse, E. Dupuy, A. Delga, J.-M. G�erard, J.

Claudon, N. Gregersen, and J. Mørk, Phys. Rev. Lett. 110, 177402 (2013).
4P. E. Kremer, A. C. Dada, P. Kumar, Y. Ma, S. Kumar, E. Clarke, and B.

D. Gerardot, Phys. Rev. B 90, 201408 (2014).
5M. A. M. Versteegh, M. E. Reimer, K. D. Joens, D. Dalacu, P. J. Poole, A.

Gulinatti, A. Giudice, and V. Zwiller, Nat. Commun. 5, 5298 (2014).
6J. Claudon, N. Gregersen, P. Lalanne, and J.-M. G�erard, ChemPhysChem

14, 2393 (2013).
7G. Bulgarini, M. E. Reimer, M. B. Bavinck, K. D. J€ons, D. Dalacu, P. J.

Poole, E. P. A. M. Bakkers, and V. Zwiller, Nano Lett. 14, 4102 (2014).
8J. Bleuse, J. Claudon, M. Creasey, N. S. Malik, J.-M. G�erard, I.

Maksymov, J.-P. Hugonin, and P. Lalanne, Phys. Rev. Lett. 106, 103601

(2011).
9A. F. Milton and W. K. Burns, IEEE J. Quantum Electron. 13, 828 (1977).

10w0 is defined as the radial distance for which the amplitude of the domi-

nant electric field component is divided by e.
11M. Munsch, N. S. Malik, J. Bleuse, E. Dupuy, A. Delga, J.-M. G�erard, J.

Claudon, N. Gregersen, and J. Mørk, Phys. Rev. Lett. 111, 239902 (2013).
12G. Grzela, R. Paniagua-Dom�ınguez, T. Barten, Y. Fontana, J. A. S�anchez-

Gil, and J. G�omez Rivas, Nano Lett. 12, 5481 (2012).
13See supplementary material at http://dx.doi.org/10.1063/1.4932574 for (i)

the calibration of the microscope objective response and (ii) the far-field

emission of an InAs QD embedded in an unprocessed GaAs planar sample.
14S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D.

Bouwmeester, Nat. Photonics 1, 704 (2007).
15O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E.

Galopin, I. Sagnes, L. Lanco, A. Lemâıtre, and P. Senellart, Nat.
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