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Preface

This thesis is submitted as a partial fulfillment of the requirements for ob-
taining the Danish Ph.D. degree from the Technical University of Denmark
(DTU). The Ph.D. project was part of the 3-year GTS-university collabo-
ration ”Fremtidens Marine Konstruktioner” (FMK) between DHI and DTU
supported by the Ministry of Science, Technology and Innovation. The work
title of the project has been ”Modeling of soil-water-structure interaction”.

The Ph.D. was carried out at the Department of Civil Engineering, Sec-
tion for Geotechnics and Geology in the period of November 15th 2011 -
November 14th 2014. The main supervision was undertaken by Associate
Professor Ole Hededal from November 2011 to January 2014 and Associate
Professor Björn Johannesson from February 2014 until the end of the study.
The project also received co-supervision from Research Scientist Dr. Johan
Rønby at DHI Port and Offshore Technology.

The thesis is divided into three parts. The first part introduces the re-
search field, discusses the methodology, highlights the major findings and
provides an overview of the work carried out within this project. The sec-
ond part is a collection of papers which constitute the basis of the work and
describe the work in greater detail and serves as scientific documentation.
The last part is an appended implementation guide that provides practical
explanations on the developed numerical codes for knowledge sharing.

Lyngby, the 14th of November 2014

Tian Tang
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Abstract

The trend towards the installation of more offshore constructions for the pro-
duction and transmission of marine oil, gas and wind power is expected to
continue over the coming years. An important process in the offshore con-
struction design is the assessment of seabed soil stability exposed to dynamic
ocean waves. The goal of this research project is to develop numerical soil
models for computing realistic seabed response in the interacting offshore en-
vironment, where ocean waves, seabed and offshore structure highly interact
with each other.

The seabed soil models developed are based on the ’modified’ Biot’s con-
solidation equations, in which the soil-pore fluid coupling is extended to
account for the various nonlinear soil stress-strain relations included. The
Finite volume method (FVM) together with a segregated solution strategy
has been used to numerically solve the governing equations. In the FVM seg-
regated scheme, the conventional linear and uncoupled terms are discretized
implicitly, whereas the nonlinear and coupled terms are discretized explic-
itly by using available values from previous time level or iteration step. The
implicit-explicit discretisation approach leads to linearized and decoupled al-
gebraic systems, which are solved using the fixed-point iteration method.
Upon the convergence of the iterative method, fully nonlinear coupled solu-
tions are obtained. The developed nonlinear coupled soil models are capable
of predicting the transient and gradual pore pressure variations as well as
the developed nonlinear soil displacements and stresses under monotonic and
cyclic loading.

With the FVM nonlinear coupled soil models as a basis, multiphysics
modeling of wave-seabed-structure interaction is carried out. The computa-
tions are done in an open source code environment, OpenFOAM, where FVM
models of Computational Fluid Dynamics (CFD) and structural mechanics
are available. The interaction in the system is modeled in a 1-way manner:
First detailed free surface CFD calculations are executed to obtain a realistic
wave field around a given structure. Then the dynamic structural response,
due to the motions in the surrounding water, are calculated using a linear
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elastic solver. Finally, the direct wave loads on the seabed and the indirect
wave loads on the seabed-structure interface through the structure are pro-
vided as input for a dynamic soil response calculation. Simulation results in
general demonstrate that, the interaction modeling provides improved wave
loading environments for geotechnical assessment of the seabed soil.



Resumé

Over de kommende år forventes den nuværende trend med installation af flere
offshore konstruktioner til transport og produktion af olie, gas og vindenergi
at fortsætte. En vigtig del af designprocessen af offshore konstruktioner er
vurderingen af havbundens geotekniske stabilitet under dynamisk p̊avirkning
fra bølger. Målet med dette forskningsprojekt er at udvikle numeriske mo-
deller til at beregne et realistisk respons af havbunden omkring offshore kon-
strucktioner, hvor interaktionen mellem bølger, havbund og konstruktion er
høj.

De udviklede modeller af havbunden bygger p̊a modificerede Biot konso-
lideringsligninger, hvor koblingen mellem kornskelet og porevæske er udvidet
til at inkludere forskellige ikke-lineære spændings-tøjnings-relationer i hav-
bunden. Finite Volume metoden (FVM) er benyttet sammen med en opdelt
løsningsstrategi til at løse de styrende ligninger. I FVM løsningen blev de kon-
ventionelle lineære og ukoblede led diskretiseret implicit, hvorimod de ikke-
lineære og koblede led blev diskretiseret eksplicit ved at benytte tilgængelige
værdier fra forrige tids- eller iterationsskridt. Denne implicitte og eksplicitte
tilgang til diskretiseringen fører til lineariserede og afkoblede ligningssyste-
mer, der løses med fikspunkt iteration. N̊ar der er opn̊aet konvergens i den
iterative metode, er resultatet en fuldt ikke-lineær koblet løsning. De udvik-
lede ikke-lineære koblede jordmodeller kan b̊ade forudsige de transiente og
jævne variationer i poretrykket samt de ikke-linære flytninger og spændinger
i jorden under b̊ade monoton og cyklisk last.

Med den ikke-lineære finite volume koblede jordmodel som udgangspunkt,
blev multifysisk modellering af bølge-havbund-konstruktion interaktion udført.
Beregningerne er udført i Open Source miljøet OpenFOAM, hvor finite vo-
lume modeller for Computational Fluiddynamik (CFD) og strukturel meka-
nik er tilgængelige. Interaktionen i de beregnede systemer er envejs: Først
udføres detaljerede fri-overflade CFD beregninger for at bestemme et reali-
stisk bølgefelt omkring en given konstruktion. Derefter beregnes det dyna-
miske strukturelle respons som følge af bevægelserne i det omkringliggen-
de vand, ved hjælp af en lineær-elastisk løser. Til sidst benyttes de direk-
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te p̊avirkninger fra bølgerne p̊a havbunden og de indirekte p̊avirkninger p̊a
havbund-struktur interfacet gennem konstruktionen som input til beregning
af det dynamiske respons af havbunden. Resultaterne af simuleringerne de-
monstrerer generelt, at modelleringen af bølge-havbund-konstruktion inter-
aktion giver forbedrede bølgelaster til geoteknisk vurdering af havbunden.
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Chapter 1

Introduction

The awareness of the vast energy resources in the world’s ocean has driven an
increasing number of offshore constructions globally. Nowadays more than
thirty percent of oil and gas energy is extracted from reservoirs beneath the
seabed, Ferentinos (2013). Various kinds of platforms are built to support
exploratory drilling equipment and the production plants required to process
the hydrocarbons. Marine pipelines or tankers are used to transport the
hydrocarbons to shore. Meanwhile, offshore wind power as an important
renewable energy is also harvested by wind turbines constructed in the ocean.
Favorably, offshore wind turbines are acknowledged with lower visual impact
and larger production rates compared to onshore wind turbines.

1.1 Safety of offshore structure and founda-

tion

Offshore foundations are used to transmit the structural design loadings to
the subsoil, thus supporting the upper offshore structures. The type of foun-
dation element to be employed will depend mainly on the water depth, the
nature of loadings, and the seafloor characteristics. The traditional gravity-
based foundations are large diameter concrete and/or steel structures. They
are often ballasted with stones or sand to attain the necessary stability. Scour
protection is placed around the toe of the structure. Another widely applied
foundation type are the monopile foundations, which are long steel cylinders
rammed down in the seabed. The monopile structures are relatively simple
and insensitive to scour. The jacket (space frame) foundations consist of
three or four legged steel lattice structures, secured to the seabed with piles
at each leg position. This foundation type is very adaptable to increased
water depth. Figure 1.1 presents an overview of the three above mentioned
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1.1 Safety of offshore structure and foundation Introduction

common foundation types. A new attractive form of offshore foundation con-
cept is the suction caissons (also referred to as suction buckets), Figure 1.2.
They are upturned buckets which are embedded in the soil by creating under
pressures inside the caisson skirts. After installation, they are held in place
by a combination of weight, friction and suction.

Figure 1.1: Classic foundation concepts for offshore structures, Figure from:
http://www.navitusbaywindpark.co.uk/offshore-project-details.

Figure 1.2: The new skirted caisson foundation concepts for offshore
wind turbines, Figure from: http://www.ngi.no/en/Contentboxes-
and-structures/Reference-Projects/Reference-projects/Skirted-Caisson-
Foundations-for-Offshore-Structures.

The offshore structures together with their support foundations must
function safely for the designed lifetimes (e.g., 20 years for offshore wind
turbines and 25 years or more for offshore oil platforms, Sadeghi (2008)),
against harsh marine environments where hydrodynamic interaction effects
and dynamic response are present. Some important safety considerations

4 Department of Civil Engineering - Technical University of Denmark



Introduction 1.1 Safety of offshore structure and foundation

are: peak loads created by storm winds and waves, fatigue loads generated
by waves over time, the motions of the offshore structures induced by winds
and/or waves, and the underlying soil conditions. Figure 1.3, as an exam-
ple, demonstrates the various mishaps events on jack-up platforms observed
over 20 years worldwide, Kvitrud et al. (2001). In fact, the “Soil” factor, as
illustrated in Figure 1.3, has been attracting great attentions from offshore
geotechnical engineers, and is also the focus of this PhD project. Seabed soil
instability, including soil strength reductions, large permanent settlements
and soil liquefaction failures, often involves the foundation of the structure
and consequently impacts on the overall safety of the offshore structures.

Figure 1.3: Incidents statistics of jack-up platform ‘mishaps’, from Kvitrud
et al. (2001).

The primary goal of this research work is therefore to improve the un-
derstanding, analyzing and modeling of realistic seabed soil responses in an

Department of Civil Engineering - Technical University of Denmark 5



1.2 Wave-induced seabed soil response Introduction

offshore environment, where ocean waves, soil and structures(foundations)
highly interact with each other. In this way, we can help to prevent soil-
related instabilities and improve the safety of our future offshore construc-
tions.

1.2 Wave-induced seabed soil response

When designing offshore structures, assessing seabed soil behaviors under
waves in the vicinity of the structure is critical to geotechnical engineers.
Accurate assessment of the wave-induced pore pressure, soil displacements
and stresses, however, has been a challenging task, mainly due to not only the
complexity of the external dynamic wave loadings but also the complexity
of the seabed material itself. The following subsections therefore attempt to
provide background information about the two aspects.

1.2.1 The nature of wave loadings

When water waves propagate over the ocean, they generate dynamic wave
pressures on the sea floor. The resulting dynamic wave pressures, in gen-
eral, possess two distinct loading features: the progressive nature and the
oscillatory nature.

Figure 1.4: Illustration of the progressive wave loading nature, adopted
from Sumer and Fredsøe (2002).

6 Department of Civil Engineering - Technical University of Denmark



Introduction 1.2 Wave-induced seabed soil response

The progressive loading nature can be explained by reference to Figure
1.4, where a progressive wave over a horizontal seabed is illustrated. Along
with the propagation of waves, the seabed undergoes periodic pressure vari-
ations, as sketched in Figure 1.4 a. The soil is compressed under the wave
crest due to the increased bed pressure, and expanded under the wave trough
owing to the opposite effect. Subsequently, the water-soil interface is nearly
180◦ out of phase with the water surface elevation, as shown in Figure 1.4
b. This results in the generation of shear stresses in the soil, and these shear
stresses will vary periodically as the wave propagates.

The oscillatory loading nature, depicted in Figure 1.5, is mainly related
to the generation of transient pore pressure gradient in the soil. The bed
pressure fluctuations have a direct influence on changes in pore pressure in
the seabed, with significant amplitude damping and phase lag effect. At each
moment of wave oscillations, positive excess pore pressure generated in the
soil due to a passage of a wave crest creates seepage forces acting downwards.
Contrary to that, negative excess pore pressure induced by a passage of a
wave trough is responsible for seepage forces directed upwards.

Figure 1.5: Illustration of the oscillatory wave loading nature. Adopted
from Magda (2000).

The oscillatory loading can be of great importance under the case of single
extreme waves with large amplitudes, as a significant amount of upward seep-
age forces are generated under the wave trough. The upward seepage forces
may completely uplift the soil and hence damage the structure. Whereas, the
progressive loading scenario is more relevant to the gradual degradations of
the stiffness and strength of soil due to cyclic shearing, for small to medium
wave amplitudes.

Department of Civil Engineering - Technical University of Denmark 7



1.2 Wave-induced seabed soil response Introduction

1.2.2 The seabed soil properties

Seabed sediments cover a wide range of soil types, ranging from soft, im-
permeable silts and clays to stiff, permeable sands and gravels. Here, the
focus will be on the non-cohesive soils, like sand and gravel. The limitation
made is owing to that these ”sandy” soils are generally the most sensitive
to liquefaction - a soil failure phenomenon which is considered as a critical
cause of severe offshore structure instabilities, Jeng (2003) and de Groot et al.
(2006a,b).

In the case of saturated non-cohesive seabed, one deals with a two-phase
medium. The two phases are the soil skeleton and the pore water. The pore
water in a sandy seabed is usually not fully saturated and contains small
amounts of air bubbles. Hence, a third phase, air, is also present in many
cases, as illustrated in Figure 1.6a. Due to the presence of air bubbles in
the seabed, the pore fluid is more compressible than compared to a fully
saturated seabed condition.

The different volumetric packing of the soil particles due to the history
of the soil deposit is another important feature of non-cohesive soils, as it
will control the future responses to stress changes. As illustrated in Figure
1.6b, the loosely packed spheres (top) are clearly unstable and will collapse
when sheared; the dense packed spheres (bottom) can deform only if spheres
in each layer rise up over the spheres in the layer below upon shearing, Wood
(1990). Real sandy materials have much more irregular packing than those
depicted in Figure 1.6b, but the deformation modes are essentially the same.

(a) Assembles of soil particles with voids
filled with mixture of air and water.

(b) Loose and dense packing of idealized
soil particles.

Figure 1.6: Illustrations of porous soil structure, from Wood (1990).

The soil properties of air content and the packing density will highly in-
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Introduction 1.2 Wave-induced seabed soil response

fluence how the seabed reacts to the aforementioned wave actions. Figure
1.7 gives an example of the different pore pressure profiles in seabeds with
different air content, during the wave trough loading situation. Under the
wave trough, the excess pore pressure has a negative sign, and in the case
of fully saturated seabed the upward pressure gradient is not tremendously
large (Figure 1.7a). However, in the case of partially saturated seabed (Fig-
ure 1.7b), the pore pressure changes drastically due to the air content and
consequently the pressure gradient is very sharp. The sharp upward pressure
gradient creates a significant amount of uplift. If the lift force exceeds the
submerged weight of the soil, the soil will be liquefied and flow as a fluid.
This type of wave-induced soil failure, due to a combined effect of the oscilla-
tory wave trough loading and the unsaturated seabed state, is often termed
the momentary liquefaction.

Figure 1.7: Typical distributions of excess pore pressure under wave trough.
a) Fully saturated soil. b) Partially saturated soil. From Sumer and Fredsøe
(2002).

Figure 1.8: Different types of soil instabilities under cyclic shear loading. a)
Residual liquefaction in loose sand. b) Cyclic mobility in dense sand. From
Ishihara and Yoshimine (1998).

Department of Civil Engineering - Technical University of Denmark 9



1.3 Existing work Introduction

Figure 1.8 gives another example of the distinct soil responses in seabeds
with different soil packing density, upon progressive wave shearing. In the
case of a loosely packed sand, the periodic wave shear stresses gradually
rearrange the soil grains at the expense of the pore volume. The latter effect
”presses” the water in the pores and leads to a buildup of pore pressure. After
a certain wave cycles, the pore pressure may accumulate to such levels that it
exceeds the initial effective stress of the soil. In that case, the soil grains will
become unbound and completely free, and the soil will behave almost like a
liquid with large deformations (Figure 1.8a). This type of progressive flow
failure, often observed in loose sandy seabed, is termed residual liquefaction.

While, in the case of a dense sand, the progressive contraction of soil
skeleton under moderate shear stress level is compensated with soil dilation
when approaching to plastic failure level. Therefore the buildup of pore
pressure is often stabilized to a minor level compared to that in the loose
sand. However, as continuous shear deformations occur, the soil may still
fail due to accumulated shear deformations after large amount of wave cycles
(Figure 1.8b). This type of cyclic shear failure exclusively occurred in dense
seabed is named cyclic mobility.

Reliable models designed to predict the above mentioned seabed failures
or any pre-failure states of pore pressure, soil deformations and stresses, shall
require realistic descriptions of the wave loading mode as well as the seabed
soil material.

1.3 Existing work

Depending on the investigation approach, existing research works studying
the wave-induced seabed soil response may be categorized into three groups:

a) The analytical solution approach

b) The physical modeling approach

c) The numerical modeling approach

The analytical solution group represents those methods that directly solve
the poro-elasticity governing equations and obtain exact solutions of the
wave-induced pore pressure, soil displacements, and effective stresses by us-
ing analytical methods. The poro-elasticity theory was proposed initially by
Biot (1941), and has been commonly used to describe porous seabed as it
permits the strong coupling of pore fluid motion and soil motion. Pioneering
efforts on obtaining analytical solutions of Biot’s poro-elasticity equations
were taken by Madsen (1978) and Yamamoto et al. (1978). They dealt with

10 Department of Civil Engineering - Technical University of Denmark



Introduction 1.3 Existing work

partially saturated homogenous seabed of infinite thickness under isotropic
and hydraulically anisotropic conditions, respectively. Later, the analytical
investigations were moved forward to cover nonhomogeneous layered seabed
by Yamamoto (1981), finite soil thickness by Jeng and Seymour (1997), and
mechanically anisotropic soil condition by Hsu and Jeng (1994). However,
the recent development of exact analytical solutions of wave-induced seabed
response seems to remain stagnant, with limited applications in offshore en-
gineering practices. This may be partly due to the complicated mathematical
forms of the solutions themselves, especially for seabeds of finite thickness;
and partly due to the unrealistic simplifications of linear wave and elastic
soil material adopted in the analysis. It is very difficult to tackle nonlinear
wave effects and elasto-plastic seabed material, which are features commonly
present in real offshore environment, by analytical methods.

Physical modeling including wave tank experiments and centrifuge wave
facilities, is another approach to explore the wave-induced soil behaviors. In
fact, wave tank experiments have been broadly used by coastal engineers,
see Sumer et al. (1999); Teh et al. (2003); Chowdhury et al. (2006); Kudella
et al. (2006); Sumer et al. (2008); Zhou et al. (2011), among many others.
Teh et al. (2003) revealed the progressive instability of marine pipelines on
mobile and liquefied seabed. In the momentary liquefaction tests conducted
by Chowdhury et al. (2006), they confirmed the air content (also referred as
the degree of saturation) as a crucial factor for the pore pressure attenuation
and phase lag. Kudella et al. (2006) used large-scale experiments to study
pore pressure generation underneath caisson breakwaters. In this investiga-
tion it was discovered that significant residual pore pressure can be generated
by the caisson motions due to breaking wave loads. It is also worthy to note
that Sumer et al. (2012) set up an experimental study directed towards the
validation of an empirical mathematical model for the buildup of pore wa-
ter pressure and the resulting liquefaction of marine soils under progressive
waves. In general, these wave tank experiments provide direct and realis-
tic pictures on the spatial and temporal distribution of wave-induced pore
pressure and deformations within the soil. However, a potential limitation
of applying those experimental findings for geotechnical design lies in the
lack of accuracy in determining the various soil parameters. Alternatively,
centrifuge wave facilities are a new advanced physical modeling approach,
in which the experiments are carried out under N times gravitation accel-
eration, Sekiguchi and Phillips (1991). A promising work on applying the
centrifuge technology to study the wave-induced seabed liquefaction is Sassa
and Sekiguchi (1999, 2001). Nevertheless, sample preparation and a well-
controlled wave generation system are still key challenges to be solved using
this technology.
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Numerical modeling may be considered the most flexible approach among
the three approaches discussed here. Different numerical methods, like finite
element method (FEM), finite difference method (FDM) and boundary ele-
ment method (BEM), render approximated solutions at discrete points for
the wave-induced soil response and seabed instability. A big advantage of
those numerical models over the analytical approach is their capability to
cover more realistic wave and seabed characteristics. For instance, in the
branch of numerous FEM works, various wave conditions have been consid-
ered (e.g. non-linear waves Mostafa et al. (1999); Gao et al. (2003); Gao and
Wu (2006), 3-dimensional waves Zhang et al. (2011b), and breaking waves
Ulker et al. (2012)). More complex seabed features have also been studied,
including plasticity by Yang and Poorooshasb (1997) and Li et al. (2002),
varying shear modulus through depth by Jeng and Lin (1999), and sloping
topography by Zhang and Jeng (2005). Moreover, the dynamic motion of
the pore fluid has been investigated by Jeng (2003) and Ulker et al. (2010).

The FDM and BEM approaches, though less popular than FEM in the
field, have also been exploited to uncover interesting wave-induced soil be-
haviors, such as quasi-dynamic soil motion by Wang and Oh (2013) and poro-
plastic failure of seabed slopes by Raman-Nair and Sabin (1991). Further-
more, a micro-mechanical modeling technique - the discrete element method
(DEM) has recently been applied to study granular seabed liquefaction by
Scholtes et al. (2014).

The frontier of numerical modeling on wave-induced seabed response can
be drawn to the multi-physics technique. In this technique, a complete
Navior-Stokes fluid model is solved so as to give a realistic picture of the
dynamic wave pressure loading on the structure and the subsoil. A structure
solid mechanical model may be used to estimate the resulting structural mo-
tions and stresses. A porous soil model is applied to compute the subsequent
seabed responses, given the direct wave pressure loading at the wave-soil in-
terface and the indirect wave-induced structural loadings at the soil-structure
interface. Such a multi-physics model can adopt different numerical methods
for the different governing equations, such as FDM or finite volume method
(FVM) for the fluid (wave) and FEM for the solids (i.e. seabed and struc-
ture), Zhang et al. (2011a,b, 2012); Ye et al. (2013a) and Ye et al. (2013b);
but can also involve a single numerical method like FEM for all the physical
sub-domains and thus favored in terms of efficiency by avoiding data transfer
between different solvers, Jeng et al. (2010).

There are many appealing features to the numerical modeling approach
in the study of wave-induced seabed response, however, careful validations
and verifications of the numerical results are always necessary and important.
The overall efficiency of a complex multi-physics model for the wave-seabed-
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structure interacted system is also a challenging task to meet.

1.4 Research scope

The current research adopts numerical modeling as the main tool. First, the
FVM is applied to establish an alternative numerical method for predicting
the nonlinear soil material behaviors with pore fluid coupling. Thereafter,
a multi-physics model of the soil-water-structure interactions is developed.
This multi-physics model integrates a wave model, a solid structure model1

and a porous soil model together using a unifying framework of FVM.

In the following subsections, the initiatives to carry out such research will
be explained and an overview of the PhD project will also be given.

1.4.1 Initiatives

A key feature of the wave-induced seabed response is the coupled nonlinear
soil-pore fluid behavior. As already described, repeated (cyclic) shearing of
a granular sand material results in a change of volume due to particle rear-
rangement. When a pore fluid is present, this volume change will (via the
coupling) tend to increase the pore fluid pressures and hence reduce the soil
strength, especially for the case of loosely packed sand. The reproduction
of such soil behavior using numerical simulations is not easy. One challenge
lies in the fact that it is difficult to find constitutive relations which ex-
actly mimics the real soil response. Another challenge is to develop a robust
and efficient numerical tool and solution scheme to handle the nonlinearly
coupled governing equations. Efforts devoted to developing cyclic plasticity
models for realistic soil constitutive behaviors have been made by e.g. Pre-
vost (1978); Bardet (1986) and Manzari and Dafalias (1997). Their works
have achieved reasonable confidences in predicting soil stress-strain behaviors
by comparison with experiments. The numerical models used to solve the
overall nonlinearly coupled soil equations is however far from well-explored,
and hence was the main reason for initiating this Phd study.

FVM is usually second-order accurate, based on the integral form of the
governing equation, and uses a segregated solution procedure in which the
coupling and the non-linearity is treated in an iterative way, Jasak and Weller
(2000). FVM produces diagonally dominant matrices well suited for iterative
solvers. Due to this fact it is not surprising - that FVM has been extensively

1The structural model will be set as optional, as a complete numerical model may not
be necessary in the case of very rigid structures with small magnitude of deformations.
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applied to treat complicated, coupled and nonlinear fluid flow problems in the
computational fluid dynamics field. Two research questions were proposed:

a) Could the FVM be applied to solve the coupled nonlinear soil-pore fluid
problems of interest?

b) Could the FVM and its segregated solution scheme be used to obtain more
efficient and faster calculations of the nonlinearly coupled soil behaviors
than compared to the traditional FEM strategies?

This study was initialized to address the above questions.
It is also noted that by adopting a unifying FVM multi-physics framework

to the interacting wave-seabed-structure system, the usage of additional soft-
ware for data transfer between different numerical methods (and software)
and their maintenance is avoided; thus saving computational time and pro-
ducing more efficient solvers.

1.4.2 Project overview

This PhD study has been carried out in three main steps: preliminary study,
implementation and multi-physical simulation stage. The preliminary study
includes the understandings of the physical problems, the numerical tool
(FVM), as well as the code structure and re-use of an open source numerical
library (OpenFOAM). This first step is summed up in Chapters 1 and 2,
and Paper I. The implementation step involves implementing different cou-
pled soil solvers, convergence improvements, and the corresponding solver
verifications and applications. This second step is described in Chapter 3
and in Paper II and III. The multi-physical simulation step mainly contains
the work on integrating the available CFD wave model, newly developed
FVM soil model and existing FVM structure model together for modeling
the wave-seabed-structure interaction phenomena. The achievement gained
through this work stage are summarized in Chapter 4 and detailed in Paper
IV and V. Figure 1.9 provides a schematic work flow of the overall contents
of this thesis.
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Stage 1: Preliminary study of the physics, mathematical model, 
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Figure 1.9: The work flow of this PhD study.
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Chapter 2

Methodology

This chapter provides a summary of the methodologies used in the numer-
ical study. The descriptions are organized into three topics, which in fact
correspond to the three key components of any computational model. They
are: 1) the mathematical model in Section 2.1, 2) the numerical method in
Section 2.2, and 3) the implementation environment (tool) in Section 2.3.

2.1 Coupled soil mathematical model

A proper mathematical model, which is simple but yet effective enough to
represent the complex physical problem, can be considered as the keystone of
a good computational model. For the wave-induced seabed response problem
with strong soil-pore fluid coupling, it is obvious that one need to consider a
’coupled’ soil mathematical model which is capable of capturing the coupling
effects. The classic Biot’s consolidation theory for two-phase porous media is
used in this work. It involves several types of formulations, depending on the
numbers of unknown variables of interests, such as the pore fluid pressure
and the displacement of the soil skeleton phase and the pore fluid phase,
respectively. In our study, we have adopted the so-called u − p formulation
where the pore fluid pressure p and the soil (skeleton) displacement u are
the primary solution variables. The pore fluid displacement (often termed
as U), is typically included in earthquake engineering problems with strong
acceleration of the pore fluid, and hence not considered here.

In the following, the equations of the derived coupled soil mathematical
model will be presented. For more details on the derivation process than
presented here, the reader is referred to Paper I.
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2.1 Coupled soil mathematical model Methodology

2.1.1 Modified Biot’s consolidation equations

The original Biot’s consolidation equations only capture the soil-pore fluid
coupling in its linear form. Hence, the extra term ”Modified” is used here to
indicate the modifications including the substitution of the original elastic
constitutive model with the nonlinear plastic constitutive models.

The ”Modified” Biot’s model contains two types of governing partial dif-
ferential equations:

(i) One scalar equation representing the mass conservation.

(ii) One vector equation describing the momentum equilibrium.

The governing equation based on the mass balance, often referred to as the
storage equation or seepage equation Verruijt (1969), is formulated as follows:

n

K ′
∂p

∂t
= ∇ · ( k

γw
· ∇p)− ∂

∂t
(∇ · u) (2.1)

where, the unknown variables are:
p = the pore fluid pressure
u = the displacement vector of the soil skeleton

The material properties are:
k = generalized soil permeability tensor1

γw = density of water
n = soil porosity
K ′ = effective bulk modulus of the pore fluid

The mathematical operators are:
∇· = divergence operator
∇ = gradient operator

The left hand side term of Eq.(2.1) is related to the rate of volume change
of the pore fluid. The first and second terms on the right hand side of Eq.(2.1)
represent the rate of pore fluid seepage (via the Darcy’s law) and rate of
volume change of the soil skeleton, respectively. In the Biot’s equations, the
third phase - air bubbles - is considered to be part of the pore fluid. The
influence of the presence of the air bubbles in the pore fluid is taken into
account by estimating the effective bulk modulus of the pore fluid K ′ using
the following approximation:

1

K ′
=

Sr

Kw

+
(1− Sr)

pa
(2.2)

1In the case of isotropy, it will reduce to a single permeability parameter k; whereas in
the case of anisotropy, it is a diagonal tensor with the directional permeability parameters
kx, ky, and kz as the diagonal values.
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Methodology 2.1 Coupled soil mathematical model

with Sr being the degree of saturation, Kw the pure water bulk modulus
(≈ 2× 109Pa), and pa the absolute pore water pressure.

The governing equation for the solid matrix, often termed as the dis-
placement equation, is based on the total momentum equilibrium of the soil
mixture. By incorporating the incremental nonlinear stress-strain relation,
small-strain split and strain-displacement relation below, the momentum bal-
ance is conveniently formulated as:





∇ · (δσ) = ∇ · (δσ′ − δpI) = 0
δσ′ = C : δεe

δεe = δε− δεp
δε = 1

2

[
∇(δu) +∇(δu)T

]

⇓

∇ · {1

2
C : [∇(δu) +∇(δu)T]} − ∇ · (C : δεp)−∇(δp) = 0 (2.3)

in which, the primary unknown variables are:
δu = the incremental displacement vector of the soil skeleton
δp = the incremental pore fluid pressure

The stress variables are:
δσ, δσ′ = incremental total and effective stress tensor, respectively

The strain variables are:
δε, δεe, δεp = incremental total, elastic, plastic strain tensor, respectively

The mechanical property:
C = generalized forth-order soil elastic stiffness tensor 2

The mathematical operators:
: is the double dot operator
T denotes tensor transformation operator

and I: the identity tensor

It should be noted that in this study tension is defined as positive and
compression as negative, so as to comply with the tradition in computational
continuum mechanics.

There are two important features of the Biot’s mathematical model adopted:
They are strongly coupled by having a soil volumetric strain rate term present
in the pressure equation (2.1) and a pore pressure gradient term present in
the displacement equation (2.3). Also the displacement equation itself can
be highly nonlinear, depending on the plastic soil material behaviors.

2In the case of isotropy, it reduces to two scalar constants, usually as a pair of µ and
λ (the Lame’s coefficients), or K and G (the bulk modulus and shear modulus), or some
other similar combinations.
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2.2 FVM soil stress analysis Methodology

So far the important nonlinear variable - the incremental plastic strain
δεp - which closely depends on the effective stress state (σ′, δσ′) through
a given constitutive relation, has not been defined. The soil permeability
property k and the stiffness property C have also been kept as generalized
higher-order tensors. The intention to leave them open in this chapter is to
promote the coupled soil mathematical model as a general framework, any
user-desired constitutive model to predict certain soil feature(s) can later be
incorporated into this framework in a straightforward manner.

In Chapter 3, three specific soil constitutive models are selected and im-
plemented into the coupling framework:

(a) A simple plasticity model, namely the non-associated Mohr-Coulomb
model (Section 3.1), capable of capturing transient nonlinear seabed soil
behaviors.

(b) A cyclic plasticity model, i.e. the critical state two-surface plasticity
model (Section 3.2), effective for evaluating cyclic nonlinear seabed soil
behaviors.

(c) An anisotropic elasticity model (Section 3.3) capable of predicting anisotropic
effects on the seabed response.

However, the choices are not limited to the three models mentioned above.
Other appropriate soil constitutive models, like those defined within the critic
state soil mechanics concept describing important soil features, can also be
considered.

2.2 FVM soil stress analysis

Since 1990s, FVM has been gradually established as a noteworthy alterna-
tive to FEM in the field of solid mechanics through the work of many re-
searchers’ efforts. Some important references are: Demirdzic and Martinovic
(1993); Ivankovic et al. (1994); Demirdzic and Muzaferija (1994, 1995); Wheel
(1996); Demirdzic et al. (1997, 2000); Jasak and Weller (2000); Maneeratana
(2000); Slone et al. (2003); Taylor et al. (2003); Cardiff et al. (2012, 2014a,b);
Tukovic et al. (2013). In particular, Demirdzic and Martinovic (1993) dealt
with thermo-elasto-plastic solid materials and Cardiff et al. (2014b) studied
orthotropic solid bodies with large strain. Their works demonstrate the capa-
bility of FVM in handling nonlinear partial differential equations of various
solid mechanical stress problems.

Applying FVM to solve nonlinearly coupled soil materials in the field of
geotechnics, is still rare. Of this reason the FVM approach will be described
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Methodology 2.2 FVM soil stress analysis

Figure 2.1: Main concepts of numerical stress analysis. Modified from
Demirdzic and Ivankovic (1999).

in quite details: starting by the discretization to the solution procedure and
the special FVM traction boundary condition treatment.

2.2.1 Discretization

Firstly, FVM needs to transform the governing equations (Eqs. 2.1 and 2.3
in this case) into a system of algebraic equations. In order to achieve that,
the time, the space and the equations themselves have to be discretised as
illustrated in Figure 2.1.

The time discretisation subdivides the given total time interval of interest
into a number of smaller subintervals or time steps.

The space discretisation splits the spatial domain considered into a num-
ber of polyhedral control volumes (CV) that do not overlap and which com-
pletely fill the domain. A typical CV denoted VP , with the computational
point (node) P in its centroid, is shown in Figure 2.2. The face f and the
centroid N of the neighboring CV sharing that face are also marked.

The equation discretisation uses the integral form of the governing equa-
tions over the computational spatial domain and time. Individual integral
terms in the governing equations are then replaced (approximated) by alge-
braic expressions connecting nodal values in the spatial domain. Usually, a
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Figure 2.2: FVM polyhedral control volume. From Versteeg and Malalasek-
era (2007).

Table 2.1: A category of derivative terms in Eqs.(2.1) and (2.3).

Generic type Example φ Γ

Temporal derivative Γ∂φ
∂t

n
K′

∂p
∂t

p n
K′

Laplacian derivative ∇ · (Γ∇φ)
∇ · ( k

γw
· ∇p) p k

γw

∇ · [1
2
C : ∇(δu)] δu 1

2
C

∇ · [1
2
C : ∇(δu)T] δu 1

2
C

Divergence/gradient ∇ · (Γφ) / ∇(Γφ)

∂
∂t

(∇ · u) u 1
∇ · (C : δεp) δεp C
∇(δp) δp 1

second-order accuracy is obtained in the approximation by assuming a linear
variation of the variables over the CV. Consider the introduction of a symbol
Γ representing a generic material coefficient and φ being an unknown vari-
able (p,δp or u,δu,δεp in this case), in Table 2.1. The discretization of the
different types of derivatives terms present in Eqs. (2.1) and (2.3) may be
explained one by one:

(i) Temporal derivative:

∫

VP

Γ
∂φ

∂t
dV '

∫

VP

Γ
φn − φo
δt

dV ' ΓP
φnP − φoP

δt
(2.4)

where φn,o corresponds to the ’new’ and ’old’ time value of the variable,
respectively. The mid-point rule has been used to evaluate the volume
integrals.
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(ii) Laplacian derivative:
∫

VP

∇ · (Γ∇φ)dV =

∮

∂VP

ds · (Γ∇φ) '
∑

f

Γfsf · (∇φ)f (2.5)

where ∂VP is the closed surface bounding the volume VP , ds represents
an infinitesimal surface element with an associated outward pointing
normal on ∂VP , the subscript f implies the value of the variable in the
center of the face, and sf is the outward-pointing face area vector.

We shall recognize two options for evaluating the gradient variable at
the face center:

a. The implicit approach. The term will be approximated assuming
that the face area vector sf and the distance vector dN = PN are
parallel. It follows:

sf · (∇φ)f = |sf |
φN − φP
|dN |

(2.6)

The above approximation allows us to create an algebraic equation
in which the Laplacian ∇ · ∇φP depends on the values in P and its
nearest neighbors:

∫

VP

∇ · (Γ∇φ)dV = aPφP +
∑

N

aNφN (2.7)

where

aN = Γf
|sf |
|dN |

, aP =
∑

N

−aN (2.8)

If the vectors sf and dN are not parallel, a “non-orthogonal correc-
tion” is necessary. However, since this study only employ regular
orthogonal meshes, the details of non-orthogonality treatment are
not covered here, see instead Jasak (1996) for this matter.

b. The explicit approach. The term will be evaluated using the linearly
interpolated gradients:

sf · (∇φ)f = sf · [fx(∇φ)P + (1− fx)(∇φ)N ] (2.9)

in which fx is the interpolation factor, and it is defined as the ratio
of distances fN and PN , that is:

fx =
fN

PN
(2.10)
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Different from the implicit approach, the face center gradient term
is now evaluated from the current cell center values of ∇φ (i.e. from
the available distribution of φ). The gradients at the cell center can
be calculated using the least-square method.

(iii) Divergence or gradient derivative.
∫

VP

∇ · (Γφ)dV =

∮

∂VP

ds · (Γφ) =
∑

f

Γfsf · φf , for φ = u (2.11)

∫

VP

∇(Γφ)dV =

∮

∂VP

ds(Γφ) =
∑

f

Γfsfφf , for φ = p (2.12)

The face value is calculated assuming linear variation of φ between P
and N , as:

φf = fxφP + (1− fx)φN (2.13)

Similarly, an implicit or explicit approach can be chosen for the above
approximation. The implicit approach again allows us to form an al-
gebraic equation in which the divergence ∇ · φP or the gradient ∇φP
depends on the values in P and its nearest neighbors, e.g.:

∫

VP

∇ · (Γφ)dV = aPφP +
∑

N

aNφN (2.14)

with
aN = Γfsf (1− fx), aP =

∑

N

(Γfsf − aN) (2.15)

whereas, the explicit approach directly evaluates the terms using the
known available values of φ.

The actual choice of implicit or explicit discretization approach for each
spatial derivative term will be described in the following subsection.

2.2.2 Segregated solution procedure and iterative method

In most CFD codes, a segregated solution approach is used to deal with the
nonlinearity and pressure-velocity coupling in the flow equations, Versteeg
and Malalasekera (2007). Similarly, the following implicit-explicit discretiza-
tion split is used to facilitate the segregated solution of the soil governing
equations:

n

K ′
∂p

∂t
−∇ · ( k

γw
· ∇p)

︸ ︷︷ ︸
implicit

= − ∂

∂t
(∇ · u)

︸ ︷︷ ︸
explicit

(2.16)
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∇ · [K · ∇(δu)]︸ ︷︷ ︸
implicit

= −
(
∇ · {1

2
C : [∇(δu) +∇(δu)T]} − ∇ · [K · ∇(δu)]

)

︸ ︷︷ ︸
explicit

+∇ · (C : δεp)︸ ︷︷ ︸
explicit

+∇(δp)︸ ︷︷ ︸
explicit

(2.17)

The terms ∇ · (C : δεp), ∂
∂t

(∇ · u) and ∇(δp), are treated explicitly, as
they contain nonlinearity and coupling depending on the unknown solutions.
The original Laplacian term ∇·{1

2
C : [∇(δu)+∇(δu)T]} in the displacement

equation is rearranged into an implicit part ∇ · [K · ∇(δu)] and an explicit
part

(
∇ · {1

2
C : [∇(δu) +∇(δu)T]} − ∇ · [K · ∇(δu)]

)
. The K is a second-

order diagonal stiffness tensor with diagonal elements Kii which fulfill the
stress-strain relation σii = Kiiεii. In this way, the implicit term ∇· [K∇(δu)]
contains the maximum implicit contribution from the component-wise dis-
cretization, while the remaining terms in the explicit part include all the
off-diagonal coupling. Such a rearrangement has proved to have consider-
ably enhanced convergence in the work of Jasak and Weller (2000) (linearly
elasticity) as well as Cardiff et al. (2014b) (large strain with orthotropic
material properties).

As a consequence of the choice of the above discretization split, four linear
algebraic equations for each CV are produced:

apPpP +
∑

N

apNp
p
N = rpP (2.18)

auP (δu)P +
∑

N

auN(δu)pN = ruP (2.19)

where the source term rpP in the pressure equation contains the explicit dis-
placement coupling, and the source term ruP in the displacement equations
contains all the explicit nonlinearity and the explicit pore pressure coupling.
Those source terms also include the contributions from the temporal term
and/or the boundary conditions as usual.

Assembling Eqs. (2.18) and (2.19) for all the CVs results in four systems
of algebraic equations:

[Ap][p] = [rp] (2.20)

[Au] [δu] = [ru] (2.21)

where the sparse matrices [Ap] and [Au] have coefficients apP and auP in the
diagonal and apN and auN off the diagonal. [p] and [δu] are the vector of p′s and
δu′s for all CVs, respectively. [rp] and [ru] are the right-hand side vectors.
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Figure 2.3: The segregated solution procedure with fixed point iteration

The above systems will be solved sequentially for the pore pressure and
the three components of δu. Due to the fact that the matrices [A] are sym-
metric and diagonally dominant, the system of equations can be solved using
efficient iterative solvers, such as the Generalized geometric-algebraic multi-
grid (GAMG) solver.

In order to achieve full convergence of the nonlinearly coupled equations
system, the above segregated procedure must be combined with a certain
iterative method, i.e., the fixed point iteration method. In other words,
the algebraic equation systems (Eqs. 2.20 and 2.21) are solved iteratively,
with explicit nonlinear and coupling contributions in the source terms being
updated according to the latest iterative values. Only when the solution
changes less than some pre-defined tolerance, which implies that the explicit
terms essentially becomes implicit, the iteration will be stopped. As we are
dealing with transient calculations, the iteration will be performed for each
time step using the available solution from the previous time step as the
initial guess. Figure 2.3 illustrates such iterative process schematically.

It is interesting to note that the above fixed point iterative scheme has
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some nice properties. One is that it is usually not necessary to converge
the solutions of Eqs. (2.20) and (2.21) to a very tight tolerance, as the new
solutions will only be used to update the explicit terms. Another point is that
within the local nonlinear stress integration process, namely the calculation of
δεp based on the iterative value of δu, one can select cheap explicit or return-
mapping algorithms with loose tolerance, as again the term δεp will only be
used as an approximated explicit term in the global solution procedure.

2.2.3 Boundary condition treatment

There are two basic types of boundary conditions relevant to our study: the
Dirichlet boundary condition, which prescribes the value of the pore pressure
and/or the soil displacement on the boundary; and the Neumann boundary
condition, which on the other hand prescribes the pore water flow and/or
the external force on the boundary. For description of the treatment of the
Dirichlet and Neumann conditions in FVM in general can be found in, e.g.,
(Jasak, 1996, Chapter 3), and will therefore not be repeated here. However,
the traction force boundary which is important to the stress analysis problems
in solids and soils deserves some extra clarifications.

The traction boundary condition involves the prescription of the traction
force on the boundary. Unlike in the case of FEM, where external traction
is directly accounted due to separating the boundary contribution using the
weak form together with the Green-Gauss theorem, the traction in FVM is
treated in a more indirect manner and requires some extra computational
effort to transform the traction into the gradient of displacement normal to
the boundary (i.e., the Neumann type).

Based on the Cauchy’s stress theorem, one have:

δt = nb · δσ (2.22)

where δt is the (prescribed) incremental traction, and nb is the face area
vector normal to the boundary.

Recall the formulations in Eq. (2.3), the stress tensor can be expressed
as:

δσ =
1

2
C : [∇(δu) +∇(δu)T]−C : δεp − δpI (2.23)

Substituting Eq. (2.23) into (2.22), one obtain:

δt = nb ·
{

1

2
C : [∇(δu) +∇(δu)T]−C : δεp − δpI

}
(2.24)

It is shown in Eq. (2.24) that, to compute the displacement gradient ∇(δu)
normal to the boundary, we have to deal with the same nonlinearity and
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coupling issues as those present in the inner solution domain. Again, the
segregated solution approach with fixed point iterations can be adopted to
yield an effective resolution for the above case. The the following split on
the boundary is used:

nb · [K · ∇(δu)]︸ ︷︷ ︸
implicit

= δt − nb ·
{

1

2
C : [∇(δu) +∇(δu)T]−K · ∇(δu)

}

︸ ︷︷ ︸
explicit

+ nb · (C : δεp) + nbδp︸ ︷︷ ︸
explicit

(2.25)

In the case of isotropy, K reduces to a single constant and therefore nb ·
∇(δu) is obtained directly. In the case of anisotropy, some mathematical
manipulations are needed to calculate nb · ∇(δu) from the term nb · [K ·
∇(δu)]. A possible way is documented in Chapter 4 of Appendix. The
Neumann type boundary discussed here will be iteratively updated until
both the convergence of the inner solution domain and the convergence of
the boundaries have been obtained.

The treatment of the traction boundary together with the computational
cost required using FVM may have some minor drawbacks as compared to
the clean and simple traction boundary implemented in FEM. However, a
consistent iterative scheme is used in the traction boundary as in the inner
solution domain of the FVM scheme, and hence no effort on inventing a
new scheme was necessary. Furthermore, the computational cost related
to the traction boundary is in fact marginal, as the size of the boundary
patches is usually small compared to that of the inner solution domain. The
overall efficiency of the segregated FVM procedure, in handling the coupled
soil model, may still be better than that of the implicit block matrix FEM
approach, which will be demonstrated in Chapter 3.

2.3 OpenFOAM

After defining a mathematical framework and the numerical scheme, a proper
and convenient platform for code implementation needs also to be sought.
Here the OpenFOAM (Open source Field Operation And Manipulation),
which is a C++ class library for the development of customized numerical
codes in continuum mechanics, Weller et al. (1998), will be used. There are
several attractive features of OpenFOAM:

- It contains various tensor fields and tensorial derivatives required in
the FVM technique. The code syntax can be written very similar to
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the partial differential equations one wish to solve (e.g., Eqs. 2.16 and
2.17).

- It supports automatic computational parallelization.

- It includes free-surface wave solvers and structure solvers ready to
use. Multi-physic simulations of soil-wave-structure interaction can be
carried out straightforwardly, by integrating the existing OpenFOAM
solvers with the soil solver developed in this work.

In the following, the soil solver implementation within OpenFOAM will be
briefly described. Readers are suggested to refer to the Part III Appendix for
more details. Also the OpenFOAM’s potential in dealing with multi-physical
problems will be discussed.

2.3.1 Soil implementation

The implementation of the governing soil equations in OpenFOAM is done
in a straightforward manner, as the necessary tensor classes, their associated
tensor algebra, and the FVM discretization techniques are already there.

The ”geometric tensor field” classes, like volScalarField, volVectorField,
and volSymmTensorField are used to define the different working variables,
such as the pressure, displacement and stress in the domain of interest. A cus-
tomized forth-order symmetric tensor field volSymmTensor4thOrderField

and its associated double dot operator &&, implemented by Cardiff et al.
(2014b), are also adopted for the generalized higher-order stiffness tensor C
in the case of anisotropic material behavior.

The two types of tensor-derivative classes implemented in OpenFOAM:
fvm(finiteVolumeMethod) and fvc(finiteVolumeCalculus), directly cor-
respond to the aforementioned implicit and explicit discretization approaches.
All required tensor derivative operations: ∂/∂t, ∇·∇, ∇·, and ∇, are present
in the two classes as member functions and can simply be used as, e.g.,
fvm::ddt, fvm::laplacian, and fvc::div.

As an example, the Eq. (2.16) for solving the pore pressure is simply
represented by the code:

solve

(

fvm::ddt(p)

-fvm::laplacian(Dp1, p)

==

-fvc::div(fvc::ddt(Dp2, p))

);
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The Eq. (2.17) for obtaining the incremental displacement of soil skeleton is
written as:

volTensorField gradDU = fvc::grad(dU);

solve

(

fvm::laplacian(K, dU)

==

-(fvc::div(C && dEpsilon) - fvc::div(K & gradDU))

+fvc::div(C && dEpsilonP)

+fvc::grad(dP)

);

The above syntax closely resembles the form of the previously described
differential equations.

The other important part of the code, which relates to the time loop,
the fixed point iteration (global loop) and the nonlinear stress integration
process (local loop), are reported in details in Paper II and III as well as in
the Appendix, and will therefore not be repeated here.

2.3.2 Multi-physics handling in OpenFOAM

OpenFOAM is a general computational continuum mechanics library, in
which various fluid and solid solvers have been developed and released. It
provides a natural platform for multi-physical simulations of interest in this
work. Flexible wave generation tools, e.g., waves2foam by Jacobsen et al.
(2012) and IHFOAM by Higuera et al. (2014a,b), can generate and actively
absorb free surface water waves of many types in a 3D domain. Further-
more, the computational solid mechanics group at University College Dublin
contributed to a solidMechanics solver library that can solve stresses and
displacements in various solid bodies. The wave and solid structure modeling
capabilities of OpenFOAM facilitate wave-soil-structure interaction simula-
tions: the solvers for the different physical domains (fluid/soil/solid) are used
together, and the coupling is achieved through various boundary condition
updates.

Doing a simulation in a single software like OpenFOAM simplifies the
operation, as there is no need for multi-threaded simulations of software to
software coupling. Moreover, various mesh-to-mesh mapping tools that are
already implemented in OpenFOAM, further, simplify the boundary coupling
between the different domains. Some results regarding the integrated multi-
physic simulation are presented in Chapter 4.
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Chapter 3

FVM coupled soil solvers

This chapter presents examples of the FVM coupled soil solvers developed
through this study applying the aforementioned methodology. Each example
is introduced in terms of the specific constitutive relation and thereafter
supported by relevant test cases. A discussion of the possibility to extend
the methodology to cope with other types of soil constitutive behaviors is
also given.

3.1 Simple poro-elasto-plasticity model

A simple poro-elasto-plasticity model, in which the constitutive relation em-
ployed is a linear elastic/plastic model based on a classical non-associated
Mohr-Coulomb formulation, is first solved using FVM. This type of con-
stitutive model is ideally suitable for granular soil materials with dilative
behavior under monotonic loading. It is therefore expected that the simple
poro-elasto-plasticity model can effectively capture the plastic deformations
of the soil frame coupled with the pore flow response. Furthermore, after val-
idation, the FVM model should be capable to predict wave-induced seabed
soil plastic failures as well as pore pressure variations within the transient
(oscillatory) loading scenario.

Here it is necessary to note that, due to the use of isotropic linear elasticity
in the constitutive relation, the forth-order elastic stiffness tensor C and the
second-order diagonal ”stiffness” tensor K can be expressed as:

C = 2µl + λI⊗ I, K = (2µ+ λ)I (3.1)

where µ and λ are the Lamé’s constants, l is the symmetric part of the forth-
order identity tensor, and I is the second-rank identity tensor and ⊗ is the
dyad product.
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As a consequence of the above formulations, the soil model described by
Eqs. (2.16) and (2.17) can now be written in a simpler form without involving
those double dot tensor contractions:

n

K ′
∂p

∂t
=
k

γ
∇2p− ∂

∂t
(∇ · u)

︸ ︷︷ ︸
explicit

(3.2)

∇ · [(2µ+ λ)∇(δu)] =−∇ ·
{
µ∇(δu)T + λItr[∇(δu)]− (µ+ λ)∇(δu)

}
︸ ︷︷ ︸

explicit

+∇ · [2µ(δεp) + λItr (δεp)]︸ ︷︷ ︸
explicit

+∇(δp)︸ ︷︷ ︸
explicit

(3.3)

in this specific poro-elasto-plasticity model, a constant permeability scalar k
has also been used assuming hydraulic isotropy.

The definition of plastic strain term δεp is prescribed by the non-associated
Mohr Coulomb formulation as described below.

3.1.1 Non-associated Mohr Coulomb model

We adopted a non-associated Mohr Coulomb model with perfect plasticity
formulated in the principal stress space, which in turn conveniently allowed us
to employ an efficient explicit return mapping algorithm originally proposed
by Clausen et al. (2007) for the stress integration procedure.

In summary, the ingredients of this constitutive model are the following:

a. The yield surface, which specifies the occurrence of plastic deformation.

f = (σ′1 − σ′3) + (σ′1 + σ′3) sinϕ− 2c cosϕ (3.4)

where f is the yield surface, σ′1 and σ′3 are the maximum and minimum
principal effective soil stresses, respectively. They are equivalent to the
largest and smallest eigenvalues of the general effective stress tensor σ′.
The soil properties ϕ and c are the friction angle and cohesion.

b. The plastic potential, which prescribes the mode of the non-associated
plastic deformation (dilative/contractive).

g = (σ′1 − σ′3) + (σ′1 + σ′3) sinψ (3.5)

where g is the plastic potential function, and ψ is the soil dilation angle.
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c. The hardening rule, which defines the magnitudes of the plastic deforma-
tions.

δεp = 〈δΛ〉 ∂g
∂σ′

, 〈δΛ〉 =

{
0, when pre-yielding f < 0.

δΛ, when yielding f = 0.
(3.6)

where return mapping is used for the evaluation of the plastic multiplier
δΛ, which can be evaluated by:

δΛ =
f(σ′tl)

H + (∂f/∂σ′) : C : (∂g/∂σ′)
(3.7)

In the above equation f(σ′tl) is the yield function evaluated at the trial
elastic stress, and C is the elastic stiffness tensor completely defined by µ
and λ using Eq. (3.1). Moreover, as we are considering a non-hardening
model the plastic modulus H = 0.

The stress integration procedure, which is schematically summarized in
Table 3.1, is a local computation at each CV after the global iterative solution
of the poro-elasto-plasticity equations.

3.1.2 Test cases

Three test cases have been studied in order to assess the performance of the
implemented simple poro-elasto-plasticity solver, including: (i) an initial ver-
ification of the elastic soil/pore fluid coupling with the classic 1-D Terzaghi’s
consolidation problem, (ii) a further verification of the elaso-plastic soil/pore
fluid coupling with a strip footing bearing capacity problem, and (iii) an ex-
ample of the ability to predict the uplift capacity of a circular suction caisson
foundation. These cases are all described and discussed in Paper II. Here the
findings from the second test case are highlighted.

The strip footing case setup is as follows: a smooth, perfectly flexible,
uniformly loaded, permeable strip footing acts on a layer of soil resting on a
smooth rigid base. In order to completely define the problem, it is assumed
that there is no horizontal force on any vertical section; and plain strain
condition has been considered. This test case was originally examined by
Small et al. (1976), Figure 3.1, to investigate elasto-plastic consolidation
using FEM. We hence re-study the test using the developed FVM solver in
OpenFOAM, Figure 3.2, for comparison. Due to the lack of information
on computational costs in Small et al.’s work, a comparable simulation in a
commercial FEM software Abaqus was also performed. In this way, a clear
picture of the computational efficiency of the two methods in handling the
nonlinearly coupled soil problem could be estimated.
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Table 3.1: Local return mapping stress integration

INPUT: δu, displacement increments

σ′A, initial/old-time stress

1. Compute the elastic trial stress σ′B by:

σ′B = σ′A + {µ∇(δu) + µ[∇(δu)]T + λItr[(δu)]}
2. Transform σB into principal space as σ′Bprin (eigenvalues).

Store the principal directions (eigenvectors).

3. Evaluate the yield function f(σ′Bprin):

if f < 0, EXIT, σ′C = σB, dεp = 0
if f ≥ 0, CONTINUE

4. Determine the right stress return type.

Obtain the principal plastic corrector stress σ′Cprin.

5. Reuse the preserved principal directions.

Transform σ′Cprin back to the general space as σ′C

6. Compute the correct elastic strain increment δεe by:

δεe =
iso(σ′C − σ′A)

3λ+ 2µ
+

dev(σ′C − σ′A)

2µ
7. Calculate the plastic strain increment δεp by:

δεp =
1

2
[∇(δu) +∇(δu)T]− δεe

8. Go back to step 3.

OUTPUT: σ′C , δεp

Figure 3.1: Illustration of the strip footing case geometry. Adopted from
Small et al. (1976).
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Figure 3.2: (Half domain) mesh setup in OpenFOAM with soil properties.

In particular, a load rate parameter ω is used. The parameter ω is origi-
nally defined by Small et al. (1976) to indicate the different loading conditions
with various load rates:

ω =
d(P/c)

d(Tv)
, Tv =

cvt

a2
(3.8)

where P/c represents the external load pressure (normalized by soil cohe-
sion), and Tv is the dimensionless time, dependent on cv, the one-dimensional
consolidation coefficient, and a, the width of the strip footing.

The validity of the simulation results has been successfully verified in two
aspects:

1). A well-reproduced load rate effect on the soil bearing capacity.

A commonly observed feature of a saturated soil material is that: the
faster the load, the weaker the soil response. This is because of the
influence of the generated excess pore pressure on the soil effective stresses
and in turn the soil strength. Figure 3.3 represents cases where a very
fast load rate ω = 143 is applied for a fully undrained condition, a very
slow load rate ω = 0.143 for a completely drained condition, and the
two intermediate rates of ω = 14.3 and ω = 1.43 for a fast load rate
and a slow load rate in partially drained conditions, respectively. Our
FVM predictions are: the lowest level of footing bearing capacity under
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undrained condition (full impact from the high amount of excess pore
pressure); and thereafter a gradual increase of the capacity along with the
decreasing load speed (gradual dissipation of the excess pore pressure).
These results agree well with the FEM solutions obtained by Small et al.
(1976) and by calculations using Abaqus.

(a) FEM resluts of Small et al. (1976) (b) FEM results in Abaqus

(c) FVM results in OpenFOAM

Figure 3.3: Bearing capacities of the footing under different loading rates.

2). A good representation of the soil plastic dilation being coupled to the
pore pressure variation.

The results from the slow load rate test, ω = 1.43, are used as an exam-
ple. A qualitative proof of the captured strong coupling between the soil
dilation and the pore pressure response is illustrated in Figure 3.4. The
subfigures on the left panel depict the excess pore pressure distributions
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at various load levels; and the subfigures on the right panel present the
development of the plastic zone in the soil correspondingly. In the case
of the initial low load levels, the whole soil domain behaves elastically
(Figures 3.4b and 3.4d), and the excess pore pressure simply accumulates
because of the increasing load (Figures 3.4a and 3.4c). Whereas, when
load pressure increases to higher levels, the soil reaches plastic failure
(Figures 3.4f and 3.4h) and starts to dilate, and in turn the excess pore
pressure in the soil starts to dissipate at a fast rate (Figures 3.4e and
3.4g).

An illustration of the above phenomena is also given in Figure 3.5, where
the excess pore pressure distributions along the footing center line are
sampled. The lines in the Figure 3.5 correspond to the different load
levels (steps). It is very clear that the excess pore pressure starts to
dissipate as long as plastic deformation occurs and results in dilation.

The efficiency of the simulations in terms of computational costs is com-
pared with with those of Abaqus. The OpenFOAM simulation was performed
under parallel computation using 8 cores on an IBM HPC cluster (2.66 GHz
Intel Xeon E5430 cores). The Abaqus simulations were each run on 6 cores
in parallel on an SGI ICE X cluster (2.4 GHz Intel Xeon E5-2695 v2 Ivy
Bridge cores). The overall computational costs of FVM and FEM analysis
are listed in Table 3.2 and 3.3, respectively.

Table 3.2: FVM OpenFOAM computation cost of the strip footing case

Case No. CV No. time steps/ Max. No. outer iter. Total wall time
plasticity occurs at per plastic time step (hr)

Drained 3200 53/38 3.4× 104 00:17:23
Slow load rate 3200 46/34 1.0× 105 00:42:43
Fast load rate 3200 38/27 1.2× 104 00:18:58
Undrained 3200 33/25 1.0× 105 00:33:04

Table 3.3: FEM Abaqus computation cost of the strip footing case

Case No. ele./ No. time steps/ Max. No. equil iter. Total wall time
No. nod. per ele. plasticity occurs at per plastic time step (hr)

Drained 4800/8 1.150× 104/396 16 14:50:00
Slow load rate 4800/8 6.142× 103/358 16 08:07:00
Fast load rate 4800/8 9.558× 103/263 16 13:21:00
Undrained 4800/8 1.752× 104/257 16 06:50:00
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(a) Pore pressure at load step 20. (b) Yield status at load step 20.

(c) Pore pressure at load step 28. (d) Yield status at load step 28.

(e) Pore pressure at load step 35. (f) Yield status at load step 35.

(g) Pore pressure at load step 43. (h) Yield status at load step 43.

Figure 3.4: Nonlinear soil-pore fluid coupling, loading rate ω = 1.43.
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Figure 3.5: Pore pressure distributions along the footing center line using
a slow load rate, ω = 1.43.

Before discussing the computational efficiency of the two numerical meth-
ods, it is necessary to point out their different solution strategies in handling
the nonlinearity and coupling. The proposed segregated FVM simulations
use constant time steps with large amounts of fixed-point iterations, while the
implicit FEM predictions in Abaqus employ automatic (small) time stepping
approaches with Newton-type iterations. The two methods encounter the
same challenge - convergence rate decreases during plastic steps and requires
special algorithm handling. Therefore under-relaxation methods is applied
in OpenFOAM and automatic stabilization with fixed damping factor in
Abaqus to help for convergence.

It is not surprising that the current Abaqus FEM coupled analysis turned
out to be quite slow, which is due to the limitation that it only assumes a
fully saturated condition (i.e. incompressible pore fluid) using the standard
FE coupled formulation. The fully-saturated assumption yields singularities
in the stiffness matrix which significantly slows down the convergence. The
solution of the large implicit matrix system in Abaqus also requires much
more RAM and longer computational time. Contrary to that, the FVM
poro-elasto-plastic solver is formulated on the basis of an improved approxi-
mation of the soil saturation condition. The effective bulk modulus of pore
fluid (comparable to that of soil skeleton) enhances the convergence of the
coupled algorithm. The staggered solution procedure used in FVM also en-
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ables efficient iterative solver to be used for solving the small matrix system.

3.2 Cyclic poro-elasto-plasticity model

A simple poro-elasto-plasticity model was proven to work in a satisfactory
manner in the previous section. In this section, the inclusion of a more
advanced cyclic plasticity constitutive relation into the coupled framework
is studied. The cyclic poro-elasto-plasticity model aims at capturing the
gradual buildup of pore pressure and soil strength degradation upon cyclic
loading. In this way, a proper tool to investigate the wave-induced seabed soil
responses within the progressive(periodic) loading scenario can be obtained.

The specific cyclic constitutive soil model employed is a critical state
two-surface plasticity model originally proposed by Manzari and Dafalias
(1997). They used isotropic hypoelasticity and distinguished the volumetric
and deviatoric strains in the formulation, thus the governing momentum
equation (2.17) is now instead written in the form:

∇ · [(K + 4
3
G)∇(δu)] =−∇ · [G∇(δu)T + (K − 2

3
G)I∇ · (δu)− (K + 1

3
G)∇(δu)]︸ ︷︷ ︸

explicit

+∇ · [K (δεpv) + 2G (δεpd)]︸ ︷︷ ︸
explicit

+∇(δp)︸ ︷︷ ︸
explicit

(3.9)

where the soil properties K and G are the elastic bulk and shear modulus,
respectively. They define the full elastic stiffness tensors: C = 2Gl + (K −
2/3G)I⊗ I and K = (K + 4/3G)I. The plastic strain terms δεpv and δεpd are
the volumetric and deviatoric parts, respectively. The determination of δεpv
and δεpd are given in the constitutive formulations introduced below.

Note that the governing pore pressure equation is kept the same as before,
that is, Eq. (3.2), indicating a hydraulic isotropy condition.

3.2.1 Critical state two-surface cyclic plasticity model

The adopted critical state two-surface cyclic plasticity model can effectively
reproduce cyclic stress-strain behaviors considering several important soil
features, such as phase transformation, critical state and peak failure, etc.
It involves more complicated formulations and a considerable amount of ex-
tra model parameters, compared to the previously discussed Mohr Coulomb
model. However, that is always the rule: the more soil features to predict,
the more complex soil constitutive model one tend to need.
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The essential ingredients of this constitutive model is summarized as fol-
lows:

a hypo-elastic properties are,

δεed =
δs

2G
and δεev =

δp′

K
(3.10)

with

G = G0

(
p′

pat

)a
and K = K0

(
p′

pat

)a
(3.11)

where δεed and δεev are the deviatoric and volumetric part of the elastic
strain increment, respectively, δs is the deviatoric effective stress incre-
ment tensor, and p′(δp′) is the mean effective stress (increment). The
atmospheric pressure pat is used as a reference pressure, for which G = G0

and K = K0. The property a is a model constant usually set to a = 0.5.

b yield surface adopted is,

f =
√

(s− p′α) : (s− p′α)−
√

2/3mp′ (3.12)

where m and α denote the internal-state variables which determine the
’size’ and the position of the axis of the yield surface (cone-type), respec-
tively.

c hardening rule is described as,

δεpd = nδΛ and δεpv = DδΛ (3.13)

with

δΛ =
2Gn : δεd −KNδεv
Kp + 2G−KDN , Kp = p′(n : α̃+

√
2/3m̃) (3.14)

D = A0(1 + 〈F : n〉)d : n (3.15)

δα = α̃δΛ, α̃ = h0
|b : n|

bref − |b : n|b (3.16)

δm = m̃δΛ, m̃ = cm(1 + e0)D (3.17)

where n is the unit deviatoric stress-ratio tensor and D is the dilatancy
coefficient. Detailed explanations on the volumetric part N of the normal
to the yield surface, the plastic modulus Kp, the ’distance’ vectors b and
d, the fabric tensor F, and the model parameters h0, bref , cm and A0 can
be found in Manzari and Dafalias (1997).

Given the above constitutive formulations, an efficient return mapping
algorithm, adopted from Manzari and Prachathananukit (2001) and Bakmar
et al. (2008), to achieve the local stress integration process at each CV level
is used. Figure 3.6 summarizes the essential steps of this algorithm.
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Figure 3.6: Local stress-strain update procedure at each CV level.

42 Department of Civil Engineering - Technical University of Denmark



FVM coupled soil solvers 3.2 Cyclic poro-elasto-plasticity model

3.2.2 Test cases

Previously, the capability of the segregated FVM algorithm to capture the
nonlinear coupling effects through the verification of the simple poro-elasto-
plasticity model was demonstrated. Here, for the cyclic poro-elasto-plasticity
model, the focus is on validating the implemented complex constitutive rela-
tion and its ability to facilitate pore pressure buildup when strong coupling
is present.

Two types of numerical tests are studied, they are: (i) simulations of
small-scale monotonic and cyclic undrained triaxial tests on full 3D saturated
soil samples, and (ii) a hypothetical test case with wave pressure loading on a
large-scale porous seabed. These tests have also been documented in Paper
III. Here we briefly present the results from these cyclic triaxial tests and
the wave pressure loading case. It is worth mentioning, that the same soil
properties have been used in all the simulations, as summed up in Table 3.4,
for simplicity.

Table 3.4: Soil properties used in the simulations of this section, with the
plasticity model parameters adopted from Manzari and Dafalias (1997).

Elasticity Pore fluid
G0(MPa) 31.4 k(m/s) 0.0001 pa(kPa) 100
K0(MPa) 31.4 Kw(GPa) 2.1 γw(kPa) 10
a 0.6 Sr 0.90− 1.00
Critical state State parameter
Mc 1.2 kbc 3.975
Me 0.857 kbe 2.0
λ 0.025 kdc 4.2
(ec)ref 1.2 kde 0.07
Dilatancy Hardening
A0 0.6 h0 800
Cf 100 m 0.05
Fmax 100 cm 0.0

i). Cyclic undrained triaxial tests.

Two kinds of saturated soil samples are considered for the tests, with
initial void ratio of 0.65 (dense) and 0.85 (loose). To mimic the lab-
oratory test procedure, they are firstly isotropically consolidated to a
mean confining stress of p0 = 80kPa and then loaded by a cyclic shear
stress with the amplitude of 30− 40kPa and the frequency of 1Hz. As
can be seen from Figure 3.7, the well-known butterfly-shape stress path
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is predicted for the dense soil that undergoes ’cyclic mobility’ failure
with accumulated large shear strains (left); likewise, the complete loss
of mean effective stress leading to liquefaction failure is captured in
the loose sample (right). These simulations conform with experimental
evidences, e.g., Hyodo et al. (1991) and Flora et al. (2012).

ii). Standing wave pressure loading on the seabed.

In this hypothetical case, a standing wave pressure (from linear wave
theory) is acting on a porous seafloor with finite depth, and an imper-
meable object is present in the center of the seabed surface resulting
in a partially drained condition, as illustrated in Figure 3.8. The test
case explores the model’s capability of predicting accumulated excess
pore pressure inside the seabed given the applied cyclic wave loading
condition.

Figure 3.9 plots the simulated excess pore pressure variations, cycle by
cycle, at a certain soil depth (1/10d beneath the object center). Re-
sults from the classic Biot’s theory, i.e. the poro-elastic model, are also
presented for comparison. The current cyclic poro-elasto-plastic model
predicts a gradual accumulation of excess pore pressure inside the soil
corresponding to a gradual decrease of pore volume; whereas, the simple
poro-elastic model, which has constant pore volume, only captures the
steady state pore pressure variation. The former represents the more
realistic seabed response as described before: shear strains induced by
the standing wave pressure gradually rearrange the soil grains at the
expense of the pore volume of the soil, the latter pressurizes the pore
water, and as a result lead to the built-up of pore pressure.

3.3 Anisotropic poro-elasticity model

Most soils display some degree of material anisotropy: they possess different
mechanic and hydraulic properties in different directions, due to the depo-
sition mode, particle shape, and loading history. Besides from the inherent
anisotropy, soils may also develop plastic stress-induced anisotropy while be-
ing loaded. Ideally, soil models that incorporate such anisotropic features
could give better approximations of the soil response, compared to conven-
tional isotropic solutions. Hence it is of interest to explore the possibility of
including soil anisotropy into the coupled framework.

At this stage, the considerations are limited to a simple anisotropic poro-
elastic model, namely considering an orthotropic linear elastic soil skeleton
and an anisotropic pore permeability. It is believed that if successful, the
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Figure 3.7: Simulation results of stress-controlled cyclic undrained triaxial
tests on a dense soil sample (left) and a loose soil sample (right).
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Figure 3.8: Mesh setup of the porous seabed case with dimensions and
boundaries.
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door to further extension of the method to the variety of anisotropic poro-
elasto-plastic models is open.

In the case studied here the original form of the generalized coupled equa-
tions is used by omitting the nonlinear plastic terms, that is:

n

K ′
∂p

∂t
=

1

γw
∇ · (k · ∇p)− ∂

∂t
(∇ · u)

︸ ︷︷ ︸
explicit

(3.18)

∇ · [K · ∇(δu)] =−∇ ·
{

C :
1

2

[
∇(δu) +∇(δu)T

]}
+∇ · [K · ∇(δu)]

︸ ︷︷ ︸
explicit

+∇(δp)︸ ︷︷ ︸
explicit

(3.19)

The determination of the elastic stiffness tensors, C and K, and the perme-
ability tensor k will be described in the next subsection.

3.3.1 Orthotropic linear elasticity model

We adopted an orthotropic linear elastic constitutive relation, in which the
mechanical properties only differ along each coordinate axis, thus requiring
nine independent elastic constants. Consider the following generalized Hook’s
Law written in matrix format, Demirdzic et al. (2000):

δσ =




δσxx
δσyy
δσzz
δσxy
δσyz
δσzx




=




A11 A12 A31 0 0 0
A12 A22 A23 0 0 0
A31 A23 A33 0 0 0
0 0 0 A44 0 0
0 0 0 0 A55 0
0 0 0 0 0 A66







δεxx
δεyy
δεzz
δεxy
δεyz
δεzx




= C : δε

(3.20)
where the stiffness coefficients Aij are given in terms of the Young’s moduli
Ei, the Poisson’s ratio νij and the shear moduli Gij, as:

A11 =
1− νyzνzy
JEyEz

, A22 =
1− νxzνzx
JExEz

, A33 =
1− νyxνxy
JEyEx

,

A12 =
νxy + νzyνxz
JExEz

, A23 =
νyz + νyxνxz
JExEy

, A31 =
νzx + νyxνzy
JEyEz

,

A44 = 2Gxy, A55 = 2Gyz, A66 = 2Gzx (3.21)
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where

J =
1− νxyνyx − νyzνzy − νxzνzx − 2νyxνzyνxz

ExEyEz
(3.22)

νyx = νxy
Ey
Ex
, νxz = νzx

Ex
Ez
, νzy = νyz

Ez
Ey

(3.23)

The ”constructed” diagonal stiffness tensor K can therefore be expressed
as:

K =




A11 0 0
0 A22 0
0 0 A33


 (3.24)

Moreover, the anisotropic permeability tensor k is defined by:

k =




kx 0 0
0 ky 0
0 0 kz


 (3.25)

where kx, ky and kz are the permeability constants measured at the corre-
sponding axial directions.

3.3.2 Test cases

Three test cases are performed to evaluate the performance of the developed
anisotropic FVM code. They are: (i) a circular hole in an orthotropic plate
under tension used to verify the implemented mechanic anisotropy, (ii) a
short-crested wave pressure loading on a porous seabed used to verify the
implemented hydraulic anisotropy, and (iii) an example analyzing the wave-
induced seabed pore pressure and stresses considering the combined mechanic
and hydraulic anisotropy. The overall case setup and results for the first two
test cases are illustrated in Figure 3.10 and 3.11, see Paper V for more details.

The third example studies the wave-induced seabed behavior with com-
bined mechanic and hydraulic anisotropy in the soil, for which no exact
analytical solutions exist in publications. A simple 2D seabed loaded by a
standing wave pressure is considered. In parallel, an isotropic simulation
was conducted for comparison. The simulation results shown in Figure 3.12
demonstrate that the standing wave-induced seabed pore pressure and the
effective normal stress are symmetric with respect to the antinodes, while
the shear stress is symmetric with respect to the nodes. Furthermore, it
is observed that the conventional isotropic solution tends to overestimate
the pore pressure while underestimating the vertical effective normal stress.
These findings indeed comply with the conclusions drawn from a similar
study by Jeng (1997).
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(a) Orthotropic plateHole test case (b) Hoop stress σθθ around the hole

Figure 3.10: Verification of the mechanical anisotropy by comparison with
the analytical solutions presented by Lekhnitskii (1981).

(a) A sketch of a short-crested wave pres-
sure loading on a porous seabed with fi-
nite depth.

(b) Vertical distribution of the wave-
induced pore pressure with varying sat-
uration degree factor Sr.

Figure 3.11: Verification of the hydraulic anisotropy by comparison with
the analytical solutions derived by Hsu and Jeng (1994).
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(a) Pore pressure, anisotropic condition (b) Pore pressure, isotropic condition

(c) Vertical stress, anisotropic condition (d) Vertical stress, isotropic condition

(e) Shear stress, anisotropic condition (f) Shear stress, isotropic condition

Figure 3.12: Comparison of the standing wave induced anisotropic and
isotropic seabed responses. Wave input data: p = p0 cos(2π

L
x) cos(2π

T
t) with

T = 12.5s, L = 160m and p0 = 103Pa. Soil parameters: n = 0.3, Sr = 0.99,
isotropy: E = 107Pa, ν = 0.3, k = 10−3m/s, anisotropy: Ez = 107Pa,
Ex = 0.6Ez, νxx = νzx = 0.3, Gz = 6 · 106Pa, kx = 5kz = 10−3m/s.
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3.4 Extension of the method

In previous sections, the flexibility of the segregated FVM coupled framework
to handle a variety of nonlinearity and couplings in soil was demonstrated.
The extension of the method can be made in a straightforward manner: it
adopts a desired soil constitutive formulation and afterwards uses an asso-
ciated local (nonlinear) stress integration algorithm. The global iterative
solution procedure is essentially the same for all FVM soil models.

Though beyond the scope of this project, coupled analysis of (partially)
saturated soft soils, such as clay, silt and peat, are of interest in geotechni-
cal engineering. Soft soils show strong viscosity and time-dependence when
exposed to loading. Due to plastic straining, they also develop gradual degra-
dation of bonding (destructuration) and changes in fabric (induced plastic
anisotropy). Constitutive modeling of these complex soft soil behaviors has
been studied and interesting and promising results can be found in, e.g., Ver-
meer and Neher (1999); Wheeler et al. (2003); Leoni et al. (2008); Karstunen
and Koskinen (2008) and Grimstad et al. (2010). Fully coupled analysis in
this respect however, is relatively poorly understood. From the studies con-
ducted in this work, it seems reasonable to assume that new knowledge can
be gained also within the coupled behavior of soft soils using the proposed
FVM approach.
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Chapter 4

FVM Soil-water-structure
interaction

With the custom-made FVM soil solvers developed, an attempt to explore
the next important topic, that is, the multi-physical simulations of wave-
soil-structure interaction is performed, based on a single software platform,
OpenFOAM.

In principle, separate computational domains corresponding to the dif-
ferent physical fields are set up, and then various OpenFOAM solvers are
used to solve the different partial differential equations governing each com-
putational domain. The following is applied: an existing wave solver to
compute the wave domain governed by Navier-Stokes equations; the imple-
mented coupled soil solvers of this work to solve the seabed domain; and in
the case of a deformable structure, an available elastic structural solver to
calculate the displacements and stresses of the structure. The interactions
in the system are considered through boundary couplings. Paper IV and V
present the complete multi-physical simulations in greater detail than done
here. The following sections hence focus on describing specifically how one
can communicate information at the separate mesh interface boundaries, and
also provide numerical examples to illustrate the applicability of the multi-
physical model.

4.1 Interface coupling

In real ocean environments, the interactions between wave, seabed and off-
shore structure involve several coupling processes. The structure moves and
vibrates slightly and transmits the wave loads down in to the soil via pres-
sure and shear variations at the soil-structure interface. The soil also re-
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sponds to the pressure variations on the seabed, both directly from the wave
propagation and indirectly from the wave-induced structural response, by de-
formations and excess pore pressures. Furthermore, the subsequent seabed
responses lead to an overall reduced soil stiffness and strength, which in turn
results in enlarged displacements of the upper structure. A complete model
covering all the possible couplings in the system is very complicated and ex-
pensive and beyond the objective of this work. Hence, here we make some
assumptions to simplify the physical problem:

a.) The scour effects, which would alter the shape of the seabed and flow
pattern near the structure, are disregarded.

b.) The dynamic response of the structure and its effect on the wave load
itself is assumed to be minor, hence, it will not alter the calculated wave
field;

c.) The seabed soil is considered stiff enough to support the structure in
place during the simulation.

The first two aspects essentially means both the wave-soil and wave-
structure couplings to be of 1-way character. These assumptions are accept-
able, as the magnitude of wave-induced deformations of seabed and structure
usually takes place on a much longer time scale than the wave period. The
third aspect, assuming that the seabed can sustain the foundation fixed in
its location, implies a 1-way soil-structure coupling. This simplification is
valid for a relatively stiff soil at the pre-failure stage, namely when the soil-
structure interaction force hasn’t moved the structure significantly. Figure
4.1 illustrates such an overall 1-way interface coupling process graphically,
using a submerged gravity foundation structure as an example. Although
strong 2-way soil-structure interactions occurring under circumstances like
complete liquefaction failures and large deformations in soft soils are cur-
rently not included in the analysis, however, they would be relatively easy to
achieve in future work, as discussed later.

Indeed, the above discussed 1-way coupling scheme is quite efficient: it
allows the fluid/solid/soil domains to be solved sequentially using different
time steps and mesh sizes making convergence consideration more effective
and simple. One can avoid employing very small time steps and grids that
are usually required by the fluid domain on the solid/soil domains, and thus
greatly reduces computational time.

The available pre- and post-processing utilities in OpenFOAM also facili-
tate an easy way of setting up the 1-way boundary coupling: a sample tool is
used to collect the non-uniform wave pressure and/or structural stresses data
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on the interfaces at every (or certain) time points; and a primitive boundary
type - timeVaryingMappedFixedValue - which serves to map the given spa-
tial and temporal data onto the boundary patches with linear interpolations
in both space and time, was simply ”hacked” to fit to our needs of firstly
mapping the wave pressure and/or structural stresses and then iteratively
calculating the displacement gradient normal to the patches (as previously
explained in Section 2.3).

4.2 Example simulations

As the main purpose of this part of the work is to demonstrate the new
methodology of integrating FVM fluid, soil and(or) solid solvers together
in OpenFOAM, some simple offshore engineering examples are considered
including a buried marine pipeline and a gravity based foundation. The two
examples shall then be described and discussed in the following subsections,
respectively.

4.2.1 Wave-seabed-pipeline interaction

Submarine pipelines are commonly-used offshore installations, and their fail-
ures have been observed to be closely linked to the wave-induced instability
of soil deposits. Interesting benchmark experiments carried out by Turcotte
et al. (1984) and Teh et al. (2003), have contributed to improved knowledge
of the interactions among waves, seabed and pipelines in the past, see Figure
4.2. Here simulations similar to their experiments are set up to numerically
investigate the topic for comparison.

In the same case as in the experiment, a 18m long wave flume with the
water depth of 0.533m is simulated by setting a wave generation inlet on the
left hand side and a wave absorbing outlet on the right hand side boundary.
The generated wave hight is set to be 14.3cm and the wave period is 1.75s.
A rigid and impermeable pipeline with radius of 0.168m is buried (with bury
depth of 0.086m) in a 4.57m long and 0.826m deep soil trench. The whole
trench is placed at the mid-length of the wave flume.

The basic soil parameters available from the experimental data include
elastic shear modulus G = 6.4 × 105Pa, Poisson’s ratio ν = 0.33, perme-
ability k = 0.0011m/s and porosity n = 0.42. The other plastic soil model
parameters were obtained through careful calibrations and empirical rela-
tions whose values are listed in Table 4.1. One fact that needs to be pointed
out is that the pipeline is only modeled as a fixed boundary in the simulation
(no mesh), we focus on predicting the ”potential” uplifting risks of the pipe
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Figure 4.2: A sketch of the wave-seabed-pipeline interaction example, after
Cheng and Liu (1986).

due to wave-induced soil seepage forces, hence, this may be considered as an
indirect soil-structure interaction analysis in addition to the direct wave-soil
interaction.

Table 4.1: Calibrated plasticity model constants for the cyclic soil consti-
tutive model Manzari and Dafalias (1997).

Critical state State parameter Hardening Dilatancy
Mc(e) 1.15(1.035) kbc(e) 3.975(2.0) h0 1200 A0 6

λ 0.025 kdc(e) 4.2(0.07) m, cm 0.05, 0 Fmax, Cf 500, 600

Figure 4.3 presents the simulated free surface wave as well as the subse-
quent wave-induced seabed pore pressure and shear stress contours. These
transient snapshots are taken at a time t = 20s, at which instance the wave
crest is passing right above the pipeline generating the highest amount of
wave pressure. In particular, it can be found that significant shear stress
concentrations on the sides of the pipeline are developed.

Figure 4.4 shows the wave-induced pore pressure amplitude around the
pipeline, normalized by the base pressure. The available experiment data
from Turcotte et al. (1984) are also plotted for comparison purpose. The
current simulations slightly overshoot the measurements, which is mainly
due to the approximation of the soil pore fluid compressibility (Sr = 0.95).
Nevertheless, an overall match can be seen between the two.

In Figure 4.5, the seepage forces acting on the pipeline calculated by inte-
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(a) Free surface wave profile.

(b) Contours of the wave-induced seabed pore
pressure.

(c) Contours of the wave-induced seabed shear
stress.

Figure 4.3: Snapshots of the simulated wave profile and seabed response
at time t = 20s.

58 Department of Civil Engineering - Technical University of Denmark



FVM Soil-water-structure interaction 4.2 Example simulations

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  45  90  135  180  225  270  315  360

p/
p 0

θ (in degree)

OF
Experiment

Figure 4.4: Simulated pore pressure distribution along the pipeline against
the experiment measurements from Turcotte et al. (1984).

grating pore pressure along the pipeline surface are compared with available
numerical solutions from Cheng and Liu (1986). The influence of varying soil
permeability has been included as well. A good overall agreement between
the simulation results and the solutions of Cheng and Liu (1986) is observed.

Another important parameter of importance in the pipeline design is the
gradual pore pressure buildup during repeated wave cycles. Note that for
this purpose a very small soil permeability has to be present so that it pro-
duces a poorly drained condition and facilitates the accumulation process. In
fact, Teh et al. (2003) have used very fine soil deposits in their experiments
to successfully capture the accumulation feature of the cyclic wave-induced
pore pressure. The cyclic soil model is carefully calibrated against the ex-
perimental data. Figure 4.6a shows the simulated results together with the
measured data at two different soil depths away from the pipeline: one at
z = 0.005m, which is very near to the seabed surface and therefore the pore
pressure change is strongly influenced by the periodic wave pressure fluc-
tuation; and another at z = 0.185m, which is closer to the seabed bottom
and thus pore pressure buildup is more significant due to the long drainage
distance and the very low soil permeability. The performed simulations in
general reproduce the experimentally observed periodic amplitudes as well
as the overall accumulated trend of the pore pressure. Figure 4.6b presents
the pore pressure buildups around the pipeline, where poor drainage is also
created locally due to the impermeability of the pipe surface. It can be seen
that the pore pressure build up rate varies along the pipeline: fastest at the
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Figure 4.7: A sketch of the wave-seabed-gravity structure interaction layout
(elevation view). Note that dimensions are not to scale.

top of the pipe while lowest at the bottom. This agrees with what reported
in Dunn et al. (2006), that is, the liquefaction process propagates from the
the top and proceeds downwards.

4.2.2 Wave-seabed-gravity structure interactions

In the second application example, we further study gravity foundation type
structures which are exposed to wave loads and transmit the loads down to
the soil through the soil-structure interface. Specifically, the simulations are
carried out involving two cases: one is that the structure is a simple rigid
body and will not move; while the other considers a more realistic structure
which is deformable with small elastic displacements. In the former case,
a complete structure solver is not necessary and therefore we calculate the
wave-induced structural load on the soil simply by the total force balance of
the structure. In the latter case, an elastic structure solver is adopted.

Case I: A simple rigid gravity structure

In this case, the numerical wave tank is a square of side length 150m with
water depth 5m. Three wave-making inlets and one absorption outlet are
placed at each side of the tank. The employed wave characteristics at the
inlets are summed up in Table 4.2. The rigid and impermeable gravity struc-
ture (represented by a box of dimensions 20m × 20m × 5m) is submerged
in the middle of the wave tank with a buried depth 1m in the seabed. The
porous seabed is also modeled as a square of side length 60m with soil depth
10m. The overall case geometry is illustrated in Figure 4.7.

The basic soil parameters, e.g., elastic shear modulus G = 1.2 × 107kPa
and Poisson’s ratio ν = 0.2, are adopted from the design code of gravity
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platforms in the North Sea, Kjekstad and Lunne (1981). The soil perme-
ability is assumed to be k = 0.001m/s and the saturation factor is set to
Sr = 0.98. The other plasticity model constants are kept the same as the
previous studied pipeline case, for simplicity.

Table 4.2: Multi-directional wave parameters.

Wave direction Wave length Wave period Wave height
Inlet0 ( 1 0 0 )

45.66m 7s 0.5mInlet1 ( 1 0 1 )
Inlet2 ( 2 0 −1 )

It is important to note that before switching on the wave tank simulation,
a base state of the soil-structure system is computed, by simply putting
the structure self-weight on the soil and running the elastic consolidation
calculations until equilibrium is reached. This gives a realistic initial stress
state of the seabed and the subsequent effect of the dynamic wave loads.

Figure 4.8a first provides an overview of the wave tank mesh, the inlet
and outlet zones and the structure location. Figure 4.8b shows a snapshot
of the modeled wave surface elevation, taken at the time t = 47s at which
instance a wave crest passes on top of the structure. The modification of the
structure on the wave field around it is clearly seen. Figure 4.8b also presents
that the generated wave crest (0.45m) is further from the mean sea level than
the wave trough (-0.37m), due to the nonlinear nature of waves. Figure 4.8c
illustrates the cyclic dynamic wave pressures acting on the seabed and on the
structure, sampled at three representative positions x1, x2 and x3 as shown
in Figure 4.8a.

Figure 4.9 presents the different wave force components and magnitude
acting on the gravity structure. Those forces undergo cyclic variations along
with the wave propagation. In particular, a larger pull upward force am-
plitude (≈ 300kN) than its counterpart push downward force amplitude
(≈ 200kN) is simulated, as shown in the top right sub-figure of Figure 4.9.
This pressure force variation complies with the previously mentioned fact
that the generated wave crests are located further away from the mean sea
level than the troughs.

Provided with the direct wave pressure load and the indirect structural
stress load (which we obtained from the force balance of the rigid structure
and uniformly applied on the soil-structure interface), the subsequent soil
responses in both transient and long term scenarios will be predicted. Figure
4.10 is a snapshot of simulation results of the pore pressure distribution in
the deformed seabed, taken at the time t = 47s. It is obvious that at this
moment a wave crest is passing above the structure and consequently the
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(a) Plan view of the wave tank. The structure is placed
in the middle of the tank. y is the upward direction.

(b) Contours of the simulated surface elevation at time
t = 47s.
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marked in (a).

Figure 4.8: Numerical wave tank simulations.
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Figure 4.9: Simulated wave forces on the gravity structure.

Figure 4.10: Simulated pore pressure distributions within the deformed
seabed at time t = 47s. The deformation is exaggerated with a factor of
1000. z is the upward direction.

64 Department of Civil Engineering - Technical University of Denmark



FVM Soil-water-structure interaction 4.2 Example simulations

-300
-200
-100

 0
 100
 200
 300

 0  20  40  60  80  100

p(
Pa

)

t(s)

a

-300
-200
-100

 0
 100
 200
 300

 0  20  40  60  80  100

p(
Pa

)

t(s)

b

Figure 4.11: Simulated wave-induced pore pressure buildup at 0m (top)
and 3m (bottom) beneath the center of the structure.

parts of soil facing the wave crest are compressed. More interesting, it is
observed that only a shallow layer at the top of seabed has generated signif-
icant excess pore pressures, whereas the deeper soil layers experience almost
no excess pore pressure upon the wave loading. This phenomenon is partially
determined by the saturation degree (here Sr = 0.98 is used), because the
air content in the soil makes the pressure dissipate at a very fast rate. One
may expect that considerable pore pressure upward gradients can be created
at the top layer under the wave trough, leading to the ultimate (transient)
soil liquefaction and structure failure. Future research including 2-way soil-
structure interaction designed for handling the final liquefied condition will
probably give better predictions for the above discussed case.

Figure 4.11 demonstrates the long-term seabed response in terms of the
generated excess pore pressure during wave cycles. It is clear that excess
pore pressures (at the two soil locations underneath the impermeable struc-
ture) accumulates quickly during the initial wave cycles. However, followed
by further applied cycles they start to dissipate. This prediction can be con-
sidered reasonable, since the soil underneath the structure is on one hand
compressed during cyclic shearing of the soil skeleton and this generates pos-
itive pore pressure; while on the other hand the structural force pulls the
soil upwards (as referring to Figure 4.9) and creates negative pore pressure.
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The two above mentioned processes are competing against each other and in
the end the pull upward force becomes dominant according to the simulation
results obtained. It is important to keep in mind that pore pressure buildup
in a seabed is always a combined effect of certian soil materials (e.g., soils
with very small permeability and loose-packed density) and unfavorable wave
loading conditions (like short wave periods and large to medium amplitude
exposures).

Case II: A realistic deformable gravity structure

In this case, a realistic gravity-based foundation standing on the seabed for
offshore wind farm is considered, see Figure 4.12. The wave is generated
in the direction (1 0.3 0), in which z is the vertical axis. Full reflection on
the side walls of the numerical wave tank causes a directional spreading sea
state. The gravity structure is deformable and the actual displacements and
stresses are computed by a linear elastic solid mechanics solver. The seabed
is assumed as poro-elastic with anisotropic characteristics in mechanical and
hydraulic behaviour.

Figure 4.12: Computational domains of wave, gravity structure and seabed.
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Details of the geometries of the different domains as well as the input pa-
rameters for the wave generation and dynamic structure and soil calculations
are reported in Paper V. Here, the computational cost of the simulation and
the major results are briefly described.

The total computational cost for solving the three domains are given in
Table 4.3 below.

Table 4.3: Computational data of the 1-way integration simulation for a
total time period t = 17s.

Domain No. of cells No. of CPU CPU time Time step
Wave 1753264 8 29067s Adjustable, ca. 1∼3ms
Structure 86400 1 105672s Fixed, 0.05s
Seabed 247500 1 39678s Fixed, 0.05s

Figure 4.13 shows the calculated free surface of water waves at different
times in a wave period (T = 6.5s). The presence of the structure has modified
the wave motion around it. The exerted wave pressures acting on the seafloor
(Figure 4.13) and on the gravity structure (Figure 4.14) is highly nonlinear
and 3-dimensional, partly due to the disturbance effect of the structure and
also due to the directional spreading of natural waves. This complex wave
pressure loading environment is impossible to get from analytical solutions
based on wave theory, but can readily be estimated from advanced CFD wave
solvers.

Figure 4.15 illustrates the computed structural responses in terms of the
equivalent shear stress measurement σeq as well as the magnitude of displace-
ment, at a time t = 10.5s when a wave crest approached to the structure.
The equivalent stress σeq is defined by σeq =

√
2/3s : s, in which s is the

stress deviatoric tensor, i.e., s = σ − 1/3(trσ)I. Considerable amount of
shear stresses are generated around the cone part of the gravity structure
as a consequence of the dynamic wave pressure variations. However, the re-
sulting total displacement of the structure is still very small, which complies
with the previously mentioned 1-way wave-structure interaction assumption.

The transient seabed behavior including the pore fluid (seepage) flow, soil
deformations and shearing stresses are important factors for geotechnical
foundation design. Figure 4.16 shows the pore fluid flows induced in the
seabed at time t = 14s, at which instance a wave trough is passing the gravity
structure. There are notable upwards pore fluid flows created underneath
the structure. It is commonly acknowledged that when the upwards seepage
forces exceed the self-weight of the soil, the momentary soil liquefaction can
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Figure 4.13: Free surface of waves passing by the gravity structure in a
wave period. The resulting dynamic wave pressures p rgz acting on the sea
floor are colored from blue to red.
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Figure 4.14: Generated wave pressure load on the gravity structure and
porous seabed surface at times corresponding to Figure 4.13. Note that the
pore pressure in the soil and the wave pressure on the structure use separate
scales.
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Figure 4.15: Computed structure responses, represented by the distribu-
tions of the equivalent shear stress (top) and the displacement magnitude
(bottom).
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Figure 4.16: Seepage flows occurred in the seabed soil at time t = 14s
(wave trough). The display is in a cutting plane along x-axis.

Figure 4.17: Contours of the shear stress distribution in the seabed and
gravity structure at time t = 10.50s.

occur and thus impacts on the safety of the upper structure, Jeng (1997).
This leads to a widely applied liquefaction criteria:

(p− pb) ≥
1 + 2K0

3
(γs − γw)z (4.1)

where pb is the pore water pressure at the seabed surface, K0 is the coefficient
of lateral earth pressure and the value of K0 = 0.5 is used here, and γs(w)
is the unit weight of soil and water, respectively. The liquefaction risk was
examined accordingly, and it is found that the seabed soil did not reach
liquefaction failure given the wave and soil inputs in this simulation work.

Figure 4.17 presents the contours of the wave-induced shear stress, σxz, in
the seabed soil and the upper gravity structure. It is interesting to see that
in the field away from the structure the soil shear stress directly produced
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by the fluctuating wave pressures is almost negligible, compared to the con-
centred shearing zones around the structure edges. The latter are generated
because of the wave pressures as well, however, the loads are transferred
trough the gravity structure and act on the soil ’indirectly’. This implies
that the presence of the structure greatly amplifies the wave shearing effects
down to the underlying soil. Integrated wave-structure-seabed interaction
analysis can help to give correct predictions of the various loading conditions
and consequently the more realistic seabed response.
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Chapter 5

Convergence considerations

The convergence issue is a key factor determining the applicability of the
proposed FVM soil modeling approach. This chapter therefore studies the
convergence criteria of the fixed point iterative scheme adopted in the coupled
FVM soil models in some detail. Also possible stabilization and acceleration
methods for the iteration procedure are discussed.

5.1 Convergence of the fixed point iteration

Table 5.1 summarizes the steps of the fixed point iteration scheme in a general
schematic manner. One shall keep in mind that the function F (x) becomes
a complicated system of partial differential equations with nonlinearity and
coupling features, and the segregated FVM discretization creates G(x) as an
explicit function that contains all the nonlinear and coupling dependencies.
However, the overall iteration process is essentially the same.

Table 5.1: Algorithm - Fixed Point Iteration.

1. Given an equation F (x) = 0
2. Convert F (x) = 0 into the form x = G(x)
3. Specify the initial guess to be x0
4. Do

xi+1 = G(xi)
while (neither the convergence criterion C1 nor C2 is met)

C1: the maximum number of iterations N.

C2: |xi+1 −G(xi)| less than some tolerance limit.

A number of research studies have been carried out by, e.g., Rhoades
(1976); Weng (1991) and Hyvarinen (1999) to address the important conver-
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gence question: what choices on G(x), does the fixed point iteration algo-
rithm converge? The answer is the use of an unique criteria as follows:

If G(x) is a differentiable function, and

|G′(x)| ≤ α < 1 for all x ∈ [a, b] (5.1)

then G(x) has exactly one fixed point l0 in [a, b] and the sequence (xi) with
a starting point x0 ∈ [a, b] converges to l0. The constant α establishes the
rate of convergence, the closer it is to 1 the slower the convergence will be.

Figure 5.1 provides a graphical representation of both converged and di-
verged types of fixed point iterations.

(a) Converged sequence, |G′(x)| < 1. (b) Diverged sequence, |G′(x)| > 1.

Figure 5.1: A graphical example of fixed point iteration convergence.

In practice, checking the above convergence condition is often not easy,
mainly due to the complexity of G(x) and consequently the determination
of G′(x). This is also the case for the coupled soil models developed in
this work: the choice of G(x) is a system of complicated functions that
describe both the nonlinear stress condition and the soil-pore fluid coupling.
It is necessary to separate these issues. In other words, one can study the
convergence condition assuming that G(x) merely contains the segregated
nonlinear terms; and likewise one need to check the condition assuming G(x)
only involves the contribution from the segregated coupling. If both criteria
are fulfilled, there is a better chance that the overall segregated function will
lead to a reliable converged solution.

In the appendix of Paper II, details on the derivation of G′(x) consider-
ing the two above mentioned segregation aspects have been reported. Here
only the major findings will be present. For the case of partitioned nonlinear
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terms in the momentum equation: if the nonlinearity is based on simple per-
fect plasticity, the fixed point iteration scheme unconditionally converges, due
to the fact that the implicit stiffness is always greater than its explicit coun-
terpart; whereas for other more advanced hardening plasticity models, the
iterative scheme only converges conditionally and may require stabilization
methods. For the case of partitioned soil-pore fluid coupling, the convergence
of the iterative scheme can be guaranteed if the following condition is met:

K ′ ≤ n(2µ+ λ) (5.2)

in which, the left land side term of Eq. (5.2) is the effective bulk modulus of
the pore fluid, and the right hand side of Eq. (5.2) is the bulk modulus of
the soil skeleton multiplied by a factor of porosity n.

For natural partially saturated soils, one percent of air in the pore volume
results in a dramatic reduction of the bulk modulus of the pore fluid to K ′ ≈
10MPa, comparable to the soil bulk modulus. Hence, the lower saturation of
the soil, the better convergence of the iterative scheme.

5.2 Stabilization and acceleration

In general, the fixed point iteration method is very simple and computation-
ally economic for dealing with nonlinear and coupled problems. There is
no need for the formulation, storage and update of a Jacobian matrix as is
used in the standard types of Newton-Raphson methods. Only the source
terms of the equations are iteratively re-evaluated depending on the explicit
approximations of the nonlinearity and coupling, and matrix-vector products
are all performed with relatively small sizes as a result of the segregation.

However, there is always a price to pay, and that is, the convergence of the
method is closely influenced by the specific soil features (e.g., the values of
the material parameters describing hardening plasticity and pore fluid com-
pressibility). It is common that the proposed simple iterative scheme do not
have convergence when large plastic deformations and/or very strong pore
pressure coupling are present in the simulations. Under such circumstances,
one can usually apply a fixed under-relaxation factor θ ∈ [0, 1] and modify
the iterative guess, so as to promote the stability of the scheme:

x̃i+1 = θxi+1 + (1− θ)xi (5.3)

In the equation above, x corresponds to the variables δu, p and δεp. This
means that the method under-relaxes not only the two primary solution
variables, δu and p, obtained from the global matrix solutions, but also the
plastic strain term, δεp, calculated from the local stress integration.
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The fixed under-relaxation technique is very easy to incorporate into the
soil solvers, and furthermore helpful for stabilization. For most of the simu-
lations performed in this work, convergence was the case using (sufficiently)
small value of θ. It should be point out that the convergence rate of the
scheme turns out to be very slow in some cases. It would be better if one
could use some kind of acceleration processes that adjust the value of θ in
order to speed up the convergence.

One of the widely-used techniques for accelerating a convergent fixed-
point sequence is the Aitken’s method, Küttler and Wall (2008); Walker and
Ni (2011). The principles of this method is as follows. For the first iteration,
it still chooses a fixed under-relaxation factor θ0 = const.; starting from the
second iteration, it uses the residual r measured by:

ri = xi+1 − xi (5.4)

to adjust the value of θ by the formulation below:

θi+1 = −θi
(ri − ri−1)Tri−1

(ri − ri−1)T(ri − ri−1)
(5.5)

In the Aitken’s method, the relaxation factor is dynamically determined
based on the measured residual history (in terms of the latest two residuals).
It is interesting to note that, Eq. (5.5) allows for a single averaged value of
θ to under-relax the vectors of the corresponding variable over the domain.
One may also calculate the relaxation factor cell by cell, and then under-relax
the variable for each cell. Here the first simpler option was implemented.
Indeed, also a very simple tension case using a nonlinear stress solver with
both relaxation methods was tested. Table 5.2 presents the computational
cost data. It is encouraging that Aitken’s method can reduce the cost with a

Table 5.2: Convergence acceleration within a large deformation elasto-
plastic simple tension test case.

Relaxation method
No. fixed point iterations

CPU time (s)
(plastic step)

Fixed under-relaxation 618 38.34
Aitken’s method 264 15.79

factor of two during the plastic steps, compared to the fixed under-relaxation
approach.

Another useful but more complicated acceleration method is the so-called
Quasi-Newton Inverse Least Squares (QN-ILS) algorithm, Degroote et al.
(2009); Haelterman et al. (2009). As revealed by its name, this technique
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approximates the inverse of the Jacobian matrix in the Newton-Raphson
method using the Least Squares approach:

xi+1 = xi + (J)−1︸ ︷︷ ︸
−θI

(−ri), J =
dr

dx
(5.6)

More simply speaking, it makes use of the complete residual and iter-
ative histories, namely (ri, ri−1, ri−2...r0) and (xi, xi−1, xi−2...x0), to achieve
a high-rank approximation of the Jacobian and subsequently an accurate
modification of the predicted unknowns in the iteration. It is an ”expen-
sive” option, because the whole iterative series as well as the residual series
have to be stored. Furthermore, Least-Squares calculations also needs to be
performed for obtaining J . Due to the above mentioned facts the QN-ILS
algorithm is not used in this work. However, it can be an interesting subject
to explore in the future, for the sake of fast convergence in problems with
highly nonlinear and strong coupling characteristics.

Department of Civil Engineering - Technical University of Denmark 77



5.2 Stabilization and acceleration Convergence considerations

78 Department of Civil Engineering - Technical University of Denmark



Chapter 6

Concluding remarks

6.1 Conclusions

In this thesis, the wave-induced seabed responses - especially in terms of
pore pressure variations and nonlinear soil deformations - which are impor-
tant factors influencing the overall stability of offshore structures, have been
investigated. The investigation has mainly been carried out through nu-
merical modeling, and in particular by using FVM. The developed FVM
soil models are based on the modified Biot’s consolidation equations where
strong plastic soil-pore fluid couplings in the porous soil is considered. Such
coupled soil models can effectively predict the transient flow of pore fluid and
its influence on the strength of the soil skeleton and vice versa, in natural
saturated soils under partially drained conditions. The implicit and explicit
discretisation strategies and the associated segregated solution procedure are
applied to treat the quite complicated, nonlinear and coupled equation sets.
A simple fixed point iteration scheme along with relaxation techniques is also
used to produce reliable and converged solutions.

Practically, specific examples of FVM coupled soil models were imple-
mented and tested with the aid of OpenFOAM codes and utilities. The
developed FVM models covered different soil constitutive features, such that
they can be used to reproduce the distinct soil behaviors under the transient
and cyclic modes of wave loading. The verification and application test cases
in general demonstrated that FVM is an effective tool for the analysis of
various coupled, nonlinear soil problems. Especially, within a strip footing
test, the performance of the developed FVM poro-elasto-plasticity model was
compared with that of a similar commercial FEM coupled model: there was
found a noticeable advantage of the segregated FVM scheme over the FEM
implicit solution in terms of computational costs. Furthermore, perhaps the
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most interesting part of the established FVM coupled soil framework is that
it is not limited to these implemented examples; instead, it is flexible and
easily extendable to include other nonlinear soil stress-strain relations, and
thus generally applicable to solve other coupled soil issues in the wider field
of geotechnics.

With the developed FVM soil solvers as a basis, modeling of the soil-
water-structure interactions was implemented by adopting a unified FVM
technology. In this part of the work, existing FVM fluid and solid models in
OpenFOAM were adopted and incorporated together with the already de-
veloped FVM soil model to solve the wave, structure and seabed field. The
interactions between the domains were accounted by coupling at their com-
mon boundaries. An overall 1-way coupling for the common boundaries was
assumed in this work, which enabled the different fields to be solved sequen-
tially: i.e., first the wave dynamics is solved and followed by the structure
and seabed response solutions. Two types of offshore structures were exam-
ined, including the buried marine pipeline and the gravity foundations. The
simulation output reasonably captures the wave-induced transient and long
term soil behaviour in the seabed in the presence of a solid structure.

6.2 Future work

In this work, the interaction of the wave-soil system has been modeled 1-
way by neglecting the sediment transport. This is true for time scale of
interest here of a few wave periods, whereas on the time scale of many wave
periods the seabed shape may gradually deform due to scour and the flow
field is affected consequently. The transformation of the seabed shape will
also change the domain of the consolidation and change the pore pressure
distribution. The inclusion of such gradual deformation is an interesting
possible extension.

The interaction of the soil-structure system has also been modeled 1-way,
by assuming the seabed soil is stiff enough to support the structure in place
during the simulation. However, this is not always valid. Under circum-
stances like complete liquefaction failures and large deformations, the soil
can no longer sustain the structure and the structure will move significantly.
Strong 2-way interaction of soil-structure system is necessary to be included
in the future.
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ABSTRACT 

 
     The stability of offshore structures, such as wind turbine foundations, breakwaters, and 
immersed tunnels can be strongly affected by the liquefaction and cyclic mobility 
phenomena in the seabed. Our goal is to develop a numerical code for analysis of these 
situations. For this purpose, we start by formulating the strong interactions between soil 
skeleton and the pore fluid via a coupled set of partial differential equations. A single 
bounding surface soil model capable of simulating the accumulations of pore pressures, 
strains, dilatancy, and strain ‘softening’, is then adopted for quantifying the cyclic soil 
constitutive relations. To deal with the high non-linearity in the equations, the finite volume 
(FV) method is proposed for the numerical simulation. The corresponding discretization 
strategies and solution algorithms, including the conventional segregated method and the 
more recent block matrix solver, are discussed as well. Overall, investigations in this paper 
provide a methodology for developing a numerical code simulating liquefaction and cyclic 
mobility. In future work this will be implemented in practice with the aid of the open source 
CFD toolbox, OpenFOAM.      
 
1. INTRODUCTION 

 

     Soil liquefaction and cyclic mobility are two of the most important subjects in offshore 
engineering when the stability of offshore foundations is to be assessed. Liquefaction 
typically occurs in saturated loose granular soil when subject to repeated cyclic loading 
(e.g. waves, currents, vibration of superstructures in a marine environment). The gradual 
build-up of pore pressure due to compaction of the soil skeleton eventually results in a 
failure state of zero effective stress. Cyclic mobility, on the other hand, is characteristic for 
medium-dense granular soil with stabilized pore pressure and effective stresses, but with 
large permanent shear strains. Both of these phenomena are results of the strong 
interaction of the soil skeleton with the fluid present in the pore structure (generally water). 
Therefore, in order to model and simulate these complex phenomena more accurately, a 
coupled analysis of soil and pore fluid is necessary.  
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     The fundamental theory describing such a coupled soil-pore fluid system was first 
established by Biot (1941) assuming an elastic soil skeleton and a single pore fluid phase 
satisfying Darcy’s law. Biot’s theory was later extended to cope with non-linear geomaterial 
behaviors by Zienkiewicz (1982), Zienkiewicz & Shiomi (1984) and Zienkiewicz et al. 
(1990). Three general formulations, differing in the choice of unknowns, were put forward: 
the u-p-U, u-U, and u-p formulations, where u symbolizes the soil skeleton displacements 
vector, p is the pore fluid pressure, and U is the pore fluid displacements vector. The u-p-U 
formulation containing all the three unknowns is powerful in dealing with high frequency 
phenomena (Oka et al. 1994). The u-U formulation aimed at tracking the displacements of 
both the soil skeleton and the fluid phase has not been widely applied due to the potential 
volumetric locking problem in numerical simulations (Jeremic et al. 2008). The simplistic 
yet capable u-p formulation is currently the most common description used in practice 
(Oka et al. 1994, Elgamal et al. 2002, Di & Sato 2004, and Taiebat et al. 2007) since it is 
valid for low-frequency problems in dynamic analysis and reduces the total number of 
degrees of freedom.  
     Any of the above mentioned formulations for liquefaction and cyclic mobility modeling 
requires a well-defined constitutive law for capturing the granular seabed behavior under 
cyclic loading conditions. From field measurements and cyclic loading experiments, it is 
evident that plastic deformations occur both under loading and under unloading-reloading 
processes. The resulting hysteresis loop (Fig. 1.) in each cycle indicates that the soil is 
unable to return all the energy put into it during loading. Hence, conventional plasticity 
models with isotropic hardening, though adequate for modeling monotonic loading, fail to 
work under cyclic conditions. During the last few decades, the limitation of classical 
plasticity has motivated extensive efforts towards developing appropriate cyclic plasticity 
models. Kinematic hardening laws have been incorporated as well as models describing 
realistic smooth transition from elastic to fully plastic domains. Among these models, the 
two most successful and widely applied cyclic plasticity concepts are the multi-surface 
plasticity proposed by Mroz (1967), and the bounding surface plasticity by Dafalias and 
Popov (1975). In the branch of multi-surface plasticity, Prevost (1985) applied a simple 
multi-surface J2 theory for frictional cohesionless soils. Elgamal et al. (2002) and Elgamal 
et al. (2003) further updated Prevost’s model and applied it to the subject of earthquake 
engineering. Recently, Yang & Elgamal (2008) put forward a new multi-surface model 
considering the Lode angle effect to capture the three-dimensional loading conditions. The 
bounding surface theory has also been extended by several researchers (Bardet 1986, 
Crouch et al. 1994, Manzari & Dafalias 1997, and Li et al. 1999) to capture more realistic 
soil behavior such as strain softening, state dependence, fabric anisotropy, and the 
behavior under multi-axial loading conditions.  
 
 

 

 

Fig. 1. Typical soil response observed during undrained cyclic loading: (a) effective stress 
path; (b) stress:strain response; (c) pore pressure:strain response (from Wood 1990). 



      Numerical simulations of hysteretic soil behavior and pore fluid pressure accumulation 
have mainly been conducted using the finite element method (Zienkiewicz et al. 1993, 
Huang & Zienkiewicz 1998, Pastor et al. 2000, and Taiebat et al. 2007), or a combination 
of finite element and the finite difference method (Oka et al. 1994, and Di & Sato 2003). 
Due to the complexity of cyclic plasticity, these coupled models are not implemented into 
commercial engineering software packages presently applied in engineering practice. The 
objective of this paper is therefore to develop a numerical code for analysis of liquefaction 
and cyclic mobility, which is applicable in the practical context of offshore engineering. In 
the following sections we will present the methodology on achieving this goal.  
 

2. GOVERNING EQUATIONS FOR THE COUPLED SYSTEM  

 

     In this section, a mathematical framework is introduced for quantifying the behavior of 
the coupled soil-pore fluid system. We adopt the method of the u-p formulation 
(Zienkiewicz & Shiomi 1984, Zienkiewicz et al. 1990, Oka et al. 1994), which has the soil 
skeleton displacements and the pore fluid pressure as the principal unknowns. Some 
fundamental assumptions are made: 

1) The soil grains are incompressible; 
2) The soil skeleton strains remain sufficiently small; 
3) The relative acceleration of the fluid phase to the solid phase is much smaller than 

the acceleration of the solid phase, i.e. ���� � ���� ≪ ���� . Where ������, �������are the 

velocity and acceleration of the fluid (solid) phase, respectively; 
The general formulations are then derived one by one from conservation equations. 
     First, consider the overall momentum equation for the soil mixture: 
 

�1 � �	
����� � �
����� � ��,� � �1 � �	
��� � �
���,                     (1) 

 
Here, � is the porosity; 
� and 
� are the densities of solid and fluid phase, respectively; 

��,� stands for the divergence of the total soil stress tensor; and �� is the body force 

acceleration. 
     Defining the mixture density 
 � �1 � �	
� � �
�  and applying the third assumption 

above, Eq. (1) is reduced to: 
 
���� � ��,� � 
��,                                                     (2) 

 
     Next, based on the mass balances of the solid phase and the fluid phase, and the state 
of equation for the fluid that reads	
�� 
� �⁄ �� ��⁄ , the following equation can be derived: 

 �	�
�� � ��,�� � ����������,� � 0,                                         (3) 

                
Here � represents the pore fluid pressure and �� is the bulk modulus of the pore fluid. The 

last term in Eq. (3) is the specific discharge. It can be rewritten using the momentum 
equation for the pore fluid phase, 
 

�
����� � ��,� � �
��� � ��
�� ���������,                                            (4) 

 



where the last term is the Darcy drag force due to friction with the skeleton with k	denoting 
the scalar permeability coefficient and ��denoting the unit weight of fluid. Inserting the 
specific discharge from Eq. (4) in the last term of Eq. (3), and employing assumption 3) to 

replace ���� with ����, we obtain the equation 

 

 
�
�	�� �� � 
�� ��,�� � 
����,�� � �,�� � 
���,� � 0,                                   (5) 

 
     To further formulate the obtained governing equations - Eq. (2) and Eq. (5) in terms of 
our interested unknowns (us, p), the following relations are specified:  

a) The effective stress concept:	∆�� � ∆�� � �����∆�	, where ∆��  and ∆��represent, 

respectively, the increment of effective stress and total stress, ∆� is the incremental 
pore fluid pressure, ��� is the Kronecker delta and � is the Biot-Willis coefficient in 

the range of � � � � 1, (Wang 2000);  
b) The nonlinear stress-strain relations of soil skeleton: ∆�� 	� ������∆���	. ����� stands 

for the tangential stiffness matrix defined by state variables (e.g. ′, �), the direction 
of the increment and/or other considerations (loading history, strain rate, etc.). 
Details about this matrix will be presented in section 3;  

c) The linear strain-displacement relation of soil skeleton:	∆��� � �� �∆��,�� � ∆��,�� �; 

d) The velocity-displacement and acceleration-displacement relations of soil skeleton: ��� � �� �� and  ���� � � �� .                                                                                              
Based on the above specification, since it is more convenient to keep the unknowns in 
incremental form due to the incremental stress-strain relationship, Eq. (2) and Eq. (5) can 
be rewritten as: 
 �
∆� �� � ������∆��,�� �,� � �∆�,� � 
∆�� � 0,                                   (6) 

                �
�	�� ∆�� � 
�� ∆�� �,�� � 
�∆� �,�� � �∆�,��,� � 
�∆��,� � 0,                                  (7) 

 
With the soil skeleton displacement and pore fluid pressure present simultaneously in all 
the governing equations, the strong interaction in the soil-pore fluid system is modeled.  
                            
3. CONSTITUTIVE MODELING 

 
     To this point, the most crucial work left is an appropriate constitutive law describing the 
cyclic soil stress-strain relationship, i.e. the determination of the tangential soil stiffness 
matrix �����,.  
     The key issues in the selection of a plasticity model for the analysis of soil-fluid 
interaction are a) the ability to alter the void ratio of the soil, since it is this feature that 
allows pore pressures to develop irreversibly, leading e.g. to liquefaction; and b) a realistic 
but preferably numerically simple method for modeling the cyclic behavior of soil. 
     During the last thirty years, soil constitutive models that are able to capture the 
accumulations of pore pressures and strains upon cycling have been developed largely by 
introducing the multi-surface plasticity and the bounding surface plasticity concepts 
(Prevost 1985, Bardet 1986, Manzari & Dafalias 1997, Elgamal et al. 2003, and Yang & 
Elgamal 2008, etc.). The multi-surface plasticity is characterized by an approximation of 



the actual stress-strain curve by n linear segments of constant stiffness moduli. The 
bounding surface plasticity model is featured with continuously changed stiffness moduli 
depending on the distance from current stress state to a correspondent image state on the 
prescribed bounding surface. Since both of the two cyclic plasticity theories have merits 
and shortcomings, a comparison is presented in Appendix I. The purpose is to select a 
model, which is effective enough to describe the cyclic soil behavior and yet economic 
enough to be implemented and applied in practice.  
     As a result, Bardet’s single bounding surface model which has a very simple surface 
definition, few model constants as well as straightforward mapping technique will be 
chosen for the practical implementation. The numerical efficiency of Bardet’s model is also 
considered positive since only the bounding surface must be updated in each increment, 
and the evolution of the surface is controlled by the volumetric strains as in classical Cam 
Clay models. The essential elements of this model are presented in the following. 
 
3.1 General constitutive equations 
     Classically, the increment of strain resulting from a stress increment is assumed as the 

sum of the elastic �∆���� 	 and plastic �∆���� 	 incremental strains: 

 																																																																										∆��� � ∆���� � ∆���� ,                                                     (8) 

 
Hence, the elastic constitutive equation can be written as: 
 ∆�� � !����	�∆���� 	 � !�����∆��� � ∆���� 	,                                 (9) 

 

!���� is the isotropic elastic stiffness tensor: !���� � ������� � "������� � ������ � �� ������	, in 

which � stands for the bulk modulus and " is the shear modulus.  
     The increment of plastic deformation tensor can be defined through the flow rule, 
 ∆���� � 〈$〉&��.                                                      (10) 

 
Here, & is a dimensionless symmetric second-order tensor indicating the ‘direction’ of the 
plastic strain determined by the outward normal to a plastic potential surface; $ is the 
loading function, and the symbol '( denotes the McCauley’s bracket so that 〈$〉 � $ if $ ) 0; otherwise 〈$〉 � 0. The loading function is defined as: 
 

$ � �� ����∆�� 	,                                                    (11) 

 
In Eq. (11), *is the plastic modulus, and �, which is also a symmetric second-order tensor, 
is the outward normal to the convex yield (bounding) surface. Substituting Eq. (9)-(10) into 
Eq. (11), the expression for the loading function can be re-written with respect to the strain 
increments: 
 

$ � ������������	��	
��
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Combing Eq. (9)-(10) and Eq. (12), it is now possible to form the full stress-strain 
relationship and thus obtain	�����: 
 

∆�� � !�����∆��� � 〈$〉&��	 � 	 +!���� � ����	��	�
��
�������	��	
��
�	 ,	∆��� � 	������∆���	,         (13) 

 
     Most plastic models can fit within the above general framework. What makes a model 
unique is the specification of �, &	and * , i.e. the yield (bounding) surface, the plastic 
potential and the plastic modulus. The specified features for Bardet’s model are 
summarized in the following.  
 
3.2 Bounding surface and radial mapping 
 
      
    

 
 

Fig.  2. left) an illustration of bounding surface, the radial mapping and image points 
in I-J space (Bardet, 1986); right) a smooth triangular contour of the surface in the 

deviatoric plane (Krenk 2000, LeBlanc et al. 2008).  

 
     In the model, the bounding surface is selected as a Cam-Clay type ellipse with 3. as 
the coordinate of the ellipse summit on the /	axis and 
 as the aspect ratio in Fig. 2: 
 

0�/1, 21, .	 � 3 �

�
���

����4
�
� 35 ������6

� � .� � 0,                                 (14) 

 
In Eq. (14), / is the first effective stress invariant, 2 is the second effective deviatoric stress 
invariant, the tilde (~) denotes the image stress point, and 8 is the Lode’s angle. The 
definitions of the stress invariants can be found in Appendix II. The generalization of the 



critical state slope M into the three-dimensional stress space is done by representing the 
deviatoric contour by a triangular shape function (Fig. 2. right): 

9�8	 �  !"	�#��� !"	$�
�
%&  !"' !"	��#�  !"����(),     γ � *� � arctan �����

��√� ,                      (15) 

 
Where 9,  and 9�  are the critical state slope obtained from triaxial compression and 
extension tests, respectively.   
     The position of the ellipse summit is obtained similarly to the classic Cam Clay model: 
 

. � .- @A� 3.���/����
�
�

0�/ 4,                                                (16) 

 
In above, .- , B, C, D are respectively the unit pressure, critical void ratio at unit pressure, 
slopes of virgin loading and unloading-reloading line; and @ is the current void ratio. The 
bounding surface may expand or shrink depending upon whether the plastic volumetric 
strain increases or decreases, and it must always enclose the current stress state.     
     The radial mapping technique generates the image stress point as the intersection of 
bounding surface with straight line through the origin and the current stress state. If 
considering an associated flow rule, it is then possible to obtain the following relationships: 
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�
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�

,                                              (17) 

 
Notice that other considerations such as non-associated plastic potential are also possible. 
  
3.3 Plastic modulus 
     The most important feature of this bounding surface model is an analytically prescribed 
function about the dependence of the plastic modulus *  on *2  (the bounding surface 
plastic modulus): 
 

* � *2 � F�G�, G,9�8	, /	 33����3,                                        (18) 

 
so that * � �∞ when the distance between stress point and image point is larger than a 
reference distance ��45 , representing a purely elastic behavior; while * � *2  when the 

two points coincide. The distance parameter � is calculated from � � IE�� � �� I and the 

function F is an experimentally determined positive function depending on the mean stress 
and peak stress so as to simulate the strain-softening (Bardet 1986).   
     To determine the bounding surface plastic modulus	*2, two conditions are considered. 
Firstly, the consistency condition at the image points implies that: 
 

J0�E , .	 � 6�678��� JE�� � 6�6��
J. � 0,                                      (19) 

 
Secondly, the stress increments at stress point and at image point on the bounding 
surface gives the same plastic strain increment, which leads to the expression: 



 

∆���� � 〈�� ����∆�� 	〉 ��� � 〈 ���

����∆E�� 	〉 ���,                               (20) 

 
Recalling the volumetric hardening law for the surface evolution, and after some simple 
mathematical manipulations on Eq. (16), (17), (19) and (20), the following expression is 
obtained: 
 

*2 � � 9��

0�� 6�6��

�
��

�����
�

��

�����
�

6�678��� ,                                              (21) 

 
In above, � � 1 � @ � 	1/�1 � �	 is the current specific volume.   
     Up to now, the constitutive equations for the cyclic stress-strain relationships have been 
completed.  
 
4. FV DISCRETIZATION & SOLUTION ALGORITHM  

 

     To obtain a numerical solution, an appropriate discretisation strategy is necessary. 
Conventionally, solid body problems have been tackled mainly by the finite element 
method (FEM); however, for this cyclic soil behavior analysis, the presence of the non-
linear term – the tangential matrix �����  complicates the system significantly that using 

FEM can be quite expensive. Alternatively, the present paper is attempting to apply the 
finite volume method (FVM) for the simulation, which is motivated by the appealing 
capacity of FVM in solving highly non-linear problems in computational fluid dynamics.  

 
Fig. 3. Control volume: P is the centroid, f for the face centre, S for the face area 

vector, and ���� for an assemblage of centroids in neighboring CVs (from Jasak & Weller) 
2000). 

 
     Discretization of the computational domain consists of both temporal and spatial 
discretization: the time is discretized into an arbitrary number of time steps (�L), and the 
problem domain is subdivided into a finite number (N) of contiguous control volumes (CV), 
where the computational points lie in the centre (see illustration in Fig. 3 above).   
     The Eq. (6)-(7) can now be integrated over each of the N CV’s giving the 4N equations 
 



M:�
������∆��,�� �,�NOOOPOOOQ;�∗

JR � M:�
��∆�,��NOPOQ;�

JR � M:�
�
∆� ��	NOPOQ<��;�

JR � M:�
�
∆��	JR � 0,        (22) 

          

M:�
S�
�	�� ∆��TNOOPOOQ<��;�

JR � M:�
5
�� ∆�� �,�� 6NOOPOOQ<��;�

JR � M:�
5�∆�,��,�6NOOPOOQ;�

JR � M:�
�
�∆� �,�� �NOOPOOQ<��;�

JR �
																																																																						M:�

�
�∆��,��JR � 0,                                                   (23) 

 
The approximations of different derivative terms in above can be attained generally by 
applying Gauss theorem and some single time step schemes (Newmark 1959, Krenk 1999) 
summarized in Table 1:  
 

Table. 1. Generalized approximation scheme 

 
 

Spatial 
approximatio

n 
 

 
S1* 

M:�
������∆��,�� �,�JR � ∮;�������∆��,�� �JF�

≅ W������∆��,�� ��F��
 

The nonlinear term 

�������� needs 

special attention.  

S1 M:�
	5X�∆Y,��,�6JR � ∮;��X∆Y,��JF�

≅ WX��∆Y,���F���
 

∆Y �	general 
variables 
(∆�� , ∆�	, X �	corresponding 

general coefficients, F� �surface area 
vector 0 � face  

 Z�, Z� �	scheme 
parameters in range:Z� ) 1/2 Z� ) 1/2 Y� =, Y ==old-time 

values. 

 
S2 

M:�
	�X∆Y,��JR � ∮;��X∆Y	JF�

≅ WX��∆Y	�F���
 

S3 M:�
�X∆Y	JR ≅ X>∆Y>R> 

 
Temporal 

approximatio
n 

 
T1 ∆Y ≅ ∆Y � �LY� = � 12 ��L	�Y =Z���L	�  

 
T2 ∆Y� ≅ ∆Y � �LY� =

Z���L	  

 
 
     With an assumption of a linear variation of the variables over the CV, there are several 

existing approaches for approximating the increments of face gradient �∆Y,?�� and face 

value �∆Y��  from the computing centroids (∆Y> ) and neighboring centroids (∆Y@�>�. ), 
available in the literature (Jasak & Weller 2000, Demirdzic & Martinovic 1993, Demirdzic & 
Muzaferija 1995). The biggest challenge for our problem lies in how to treat the nonlinear 
term 	����� , since it depends on the current stresses, hardening parameter, and 

displacements as well. It has been demonstrated that explicit treatment of ����� tends to 

overestimate the stiffness and results in cumulative errors (Krenk 1993). Therefore, a 
convergent iterative process using Newton’s procedure is necessary to correct the 
solutions in each time step.  



      At present, to discuss the solution algorithm alone, the assembled discretisation 
equations for the Pth control volume are written: 
 

\��>>∆��> � W \��>BB∈@�>�
∆��B � ��>>∆�> � W ��>B∆�B

B∈@�>�NOOOOOOOPOOOOOOOQ�D���ED��F����4,����G	,=E����H
� ]�> 

(24)                 

J>>∆�> � W J>B
B∈@�>�

∆�B � @�>>∆��> � W @�>BB∈@�>�
∆��BNOOOOOOOPOOOOOOOQF����4,����G��D���ED�	,=E����H

� 0> 

  (25) 
 
     Here	\, �, J, @ represent, respectively, the different forms of the discretized coefficients 
from Eq. 22 and 23; ], 0 stand for the source terms including the body force, old time 
values and boundary conditions; the superscript Q is another index like P to address the 
influences between cells, and the set of neighbor cells to P is denoted by ^�_	.  
     Conventionally, such an algebraic system is solved by applying the segregated method. 
This is an iterative solution scheme where one considers the first equation as an equation 
for the first component	Δ��, the second and third equations as equations for Δ�� and Δ��, 
respectively and the final equation as an equation for �. It treats the inter-component 
displacement coupling and the pressure coupling in Eq. (24) explicitly from guessed or 
previously iterated values, shifting them into source terms so as to solve each component 
of displacement increments successively. Afterwards, explicit displacement coupling is 
applied to attain the pressure increment in Eq. (25). The solution algorithm is illustrated in 
the figure below: 

 

Fig. 4. Segregated method, a variable-based sorted algorithm 

 
Where, 

		.� � a b a sparse matrix with \��>> on the diagonal and \��>Bon the off-diagonals;  

		� � a b a sparse matrix with J>>on the diagonal, and J>Bon the off-diagonals; 		c� � d∆���, ∆���, ⋯ , ∆��If<; _ � d∆��, ∆��, ⋯ , ∆�If<;  		g� � ]� � ]�∗�Δ��∗ , Δ��∗ , Δ�∗	, g� � ]� � ]�∗�Δ��∗, Δ��∗ , Δ�∗	 , g� � ]� � ]�∗�Δ��∗, Δ��∗ , Δ�∗	; 		h � 0 � 0∗�Δ��∗, Δ��∗ , Δ��∗	. 
 



It is noted that the number of off-diagonal non-zero elements in the Pth row of .� and � 
equals the number of neighbors of the Pth cell. The asterisk notation represents the 
additional source terms created from explicit treatment of couplings. 
     The segregated method is solving one variable for the whole domain once and then 
moves on to the next variables consecutively. A few iterations are needed to correct the 
solutions in each discretized time step. The method is economic since the large system 
has been split into four sub-systems for each variable and the sub-system is diagonally 
dominant, and thus well-suited for iterative solvers. However, the limitation of this method 
lies in that it can only be expected to converge for weakly coupled problems. For our 
strongly coupled system, this explicit treatment of coupling could cause very slow (or even 
no) convergence. Thus a fully implicit algorithm being able to solve all the displacement 
components and the pore pressures simultaneously would be more suitable. The newly 
developed block matrix solver (Clifford & Jasak, 2009, Kissling et al. 2010) is providing this 
kind of choice by treating all the coupling terms implicitly, see illustration in below: 

 

Fig. 5. Block matrix solver, a control volume-based sorted algorithm 

 

In Fig. 5, the matrix consists of a� blocks of 4 b 4 local matrix (9), whose definition is: 
 

    9>B �
jk
kk
l\��>B \��>B \��>B ��>B
\��>B \��>B \��>B ��>B
\��>B \��>B
@�>B @�>B

\��>B
@�>B

��>BJ>Bmn
nn
o
 

  
All the unknown variables are arranged cell by cell, with the same strategy for the source 
terms, shown below: 

p> �
jk
kk
l∆��>∆��>∆��>∆�>mn

nn
o
, 															q> �

jk
kk
l]�>]�>]�>0>mn

nn
o
 

 

     Note that when the cell Q is not the neighbor of P, 9>B is simply a zero matrix. Thus, 
the sparseness pattern of the matrix in Fig. 5 is the same as for .� and � in the segregated 



method shown in Fig.4, with nonzero entries only where the index pair corresponds to 
neighbor cells. However, this block matrix system is non-symmetrical and has much more 
non-zero entries compared to the system of segregated method, which would then require 
more computational efforts.   
     In general, whether to choose the segregated method or the block matrix solver method 
is a question of trade-off between solving a reduced cheaper system repeatedly with slow 
convergence, and solving a much larger system with all the coupling relations preserved.  
 

CONCLUSION 

 

     This paper proposes the fundamental formulations and methodology of developing a 
numerical code modeling the soil liquefaction and cyclic mobility phenomena in the marine 
environment. The strong interactions between soil skeleton displacements and the pore 
pressure variations are mathematically modeled by a set of coupled partial differential 
equations. A constitutive model that appropriately describes the cyclic soil stress-strain 
relationships is crucial for achieving the accuracy of a numerical solution. A bounding 
surface model has been selected and presented in detail. In order to obtain reliable 
numerical simulations, the finite volume method is proposed for the discretization strategy. 
Different solution algorithms are discussed for solving the resulted algebraic system. 
Generally, it is expected that this coupled soil-pore fluid formulation incorporating the 
strong interactions in the porous seabed can gain more accuracy in modeling soil 
liquefaction and cyclic mobility compared with conventionally uncoupled approaches.  
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APPENDIX II.  

The definitions of stress invariant�: 
 � � ����      

(A.1a)  
     

� � �12 ������	
�/�

 

(A.1b) 
Where, the deviatoric stress ��� is calculated by: 

 

��� � ���� 
 1
3���� ��� 

(A.2) 
The definition of Lode’s angle: 

 � 1
3 ����� �3√32

�	

�	� 

(A.3) 
In which, the third deviator stress invariant: 
 

� � �13 ���������	
�/	

 

(A.4) 
The stress invariants at image point based on radial mapping: 
 �� � 3�∗�� 

(A.5a) 
 �� � 3�∗�∗�� 

(A.5b) 
Where �∗ is the generalized stress ratio: 
 

�∗ � 3√3�
�  

(A.6) 
The scalar �∗ can be calculated by substituting Eq.A5 and A6 into Eq.27: 
 

�∗ � ������ �������� 
 1�������� � ����� 
 2���
������ � 27��� 
 1����  

(A.7) 
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Summary
Accurate prediction of the interactions between the nonlinear soil skeleton and the pore fluid

under loading plays a vital role in many geotechnical applications. It is therefore important to
develop a numerical method that can effectively capture this nonlinear soil-pore fluid coupling
effect. This paper presents the implementation of a new finite volume method code of poro-
elasto-plasticity soil model. The model is formulated on the basis of Biot’s consolidation theory
and combined with a perfect plasticity Mohr-Coulomb constitutive relation. The governing
equation system is discretized in a segregated manner, namely, those conventional linear and
uncoupled terms are treated implicitly, while those nonlinear and coupled terms are treated
explicitly by using any available values from previous time or iteration step. The Implicit-
Explicit descretization leads to a linearized and decoupled algebraic system, which is solved
using the fixed-point iteration method. Upon the convergence of the iterative method, fully
nonlinear coupled solutions are obtained. Also explored in this paper is the special way of
treating traction boundary in FVM compared to FEM. Finally, three numerical test cases are
simulated to verify the implementation procedure. It is shown in the simulation results that the
implemented solver is capable of and efficient at predicting reasonable soil responses with pore
pressure coupling under different loading situations.

KEY WORDS: finite volume method; poro-elasto-plasticity; coupled analysis; soil model; segregated
solution procedure; OpenFOAM

1 Introduction
It is commonly recognized that the mechanical behavior of soils (and indeed other saturated

geo-materials) is governed largely by the interaction of their solid skeleton with the fluid present in
the pore structures [1, 2]. The fundamental mathematical framework describing the coupled effects
in porous soil was first established by Biot in 1941, who - by assuming a linear elastic behavior
of the soil skeleton and a Darcian fluid flow - formulated a coupled model with the soil skeleton
displacements and the pore fluid pressure as the primary unknowns [3]. Extensive research works
have in the past few decades been devoted to analytical or numerical solutions of this linear poro-
elasticity theory due to its simplicity and broad applicability in different engineering problems [4].
However, increasing focus on more complex applications has triggered research aimed at extending
∗Correspondence to: Tian Tang, Civil Engineering Department,Technical University of Denmark, 2800 Kongens
Lyngby, Denmark
†E-mail: tiat@byg.dtu.dk
‡Phd Student
§Associate Professor
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the original Biot theory to account for nonlinear material behaviors, i.e. the development of poro-
elasto-plasticity models [5]. Often, due to the complexity of those models (from the coupling and
highly nonlinear constitutive relation), analytical solutions are very difficult to obtain, and the
numerical approaches therefore play an active role in nonlinear coupled analyses, such as in dynamic
earthquake problems [6–8] and in foundation bearing capacity problems [9–11].

The aforementioned numerical poro-elasto-plasticity models adopted the traditional approach of
continuum solid mechanics, i.e. finite element method (FEM) technique. An alternative numerical
scheme is the finite volume method (FVM), which was originally applied to fluid mechanical prob-
lems. Demirdzic and co-workers [12–18] established FVM as noteworthy alternative to the FEM
for linear and nonlinear continuum solid mechanics. It is pointed out that the driving force behind
the development of segregated FVM stress analysis algorithms is the potential for dealing with non-
linear problems with only a marginal increase in computational cost [19]. Hence, it is interesting
to explore whether FVM is also capable of and efficient at treating poro-elasto-plasticity models
containing both material nonlinearity and strong soil-fliud coupling effects.

This article provides background information and documentation for a new finite volume im-
plementation of a poro-elasto-plasticity soil model. The constitutive relation employed is a linear
elastic/plastic model based on a classical, non-associated Mohr-Coulomb formulation. The selected
stress integration scheme is an explicit return mapping algorithm formulated in principal stress space
by Clausen et al. [20]. Emphasis is given to the introduction of the Implicit-Explicit split methodol-
ogy, i.e. the segregated method in FVM, to deal with the nonlinear and coupling effects in the model.
As a consequence of the special implicit and explicit treatment, the complicated nonlinear coupled
equations can be linearized and solved sequentially using a fixed-point type iterative method, which
usually provides a linear convergence. Additionally, the treatment of traction boundaries in the
current FVM implementation differs much from that in FEM and thus is also given special attention
in this work.

The numerical procedure has been implemented as a custom solver in OpenFOAM (version 1.6-
ext), which is a free-to-use open source numerical software that has extensive CFD and multi-physics
capabilities [21]. This implementation work therefore also opens a possibility of using the same
numerical methodology, namely FVM, for solving the wave-seabed-structure interaction problems
in the future.

The structure of this article is as follows: In Section 2, the mathematical (poro-elasto-plasticity)
model for nonlinear porous soil is presented, and the key issues in modeling poro-elasto-plasticity
as well as the corresponding solution strategies are proposed. In Section 3, the FVM discretisation
techniques including the discretisation of the solution domain and the discretisation of equations
are described in details. Section 4 outlines the global iterative solution procedure and the local
return mapping stress update algorithm. A brief introduction of the relaxation method applied for
the improvement of convergence is also included. Finally, several test cases for which comparable
analytical solution or FEM simulation results exist are presented in Section 5 in order to assess the
capability and efficiency of the the implemented code.

2 Mathematical model
The mathematical formulation of the poro-elasto-plasticity model employed in this article is an

extension of the original Biot’s consolidation equations [3] to account for plasticity. The deriva-
tion and how the equations are manipulated to fit FVM will be briefly explained in the following
subsections.

2.1 Governing equations
The behavior of the soil-pore fluid(mainly water) mixture is governed by two types of differential

equations: the total momentum balance of the soil and the conservation of the flow of water in the
pores.
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The momentum equation is formulated for static condition and without body force:

∇ · σ = ∇ · (σ′ − pI) = 0 (1)

where∇· symbolizes the divergence operator, σ the total stress tensor, σ′ the ’effective’ stress tensor,
p the pore fluid pressure, and I the identity tensor. Here, tension is assumed positive as normally
employed in computational continuum mechanics. And no distinction is made between the initial
and deformed configurations.

The seepage equation is expressed as:

k

γw
∇2p = n

K ′
∂p

∂t
+ ∂

∂t
(∇ · u) (2)

where ∇2 is the laplacian operator, k is the permeability, γw is the density of water, n is the porosity
and u is the soil skeleton displacement vector. The effective bulk modulus of the pore fluid, K ′, may
be estimated assuming that air present in the pores remains close to atmospheric pressure:

1
K ′

= Sr

Kw
+ 1− Sr

pa
(3)

Here, Sr is the degree of saturation, Kw the pure water bulk modulus (≈ 2 × 109Pa), and pa the
atmospheric pressure (≈ 105Pa).

2.2 Constitutive relation
The elasto-plastic constitutive relation of the soil skeleton is written in incremental form, applying

small-strain assumption and linear isotropic elasticity:

dσ′ = 2µ (dε− dεp) + λtr (dε− dεp) (4)

dε = 1
2[∇(du) +∇(du)T] (5)

where dε is the total incremental strain, dεp the plastic incremental strain, du the incremental
displacement, and∇ the gradient operator. The material constants µ and λ are the Lamé coefficients,
which can be defined by the more commonly used Young’s modulus E and Poisson’s ratio ν [13,22].
It is notable that the strain spilt - in elastic and plastic strains - though simple, is essential for the
segregated nonlinear stress analysis in FVM.

The incremental plastic strain dεp can further be defined from classic plasticity theory as:

dεp = 〈dΛ〉 ∂g
∂σ′

, 〈dΛ〉 =
{

0, when pre-yielding f < 0.
dΛ, when yielding f = 0.

(6)

where the gradient to the plastic potential, ∂g/∂σ, defines the direction of the plastic strain incre-
ment, and dΛ is the plastic multiplier defining the magnitude. For stress states on the yield surface
the loading-unloading condition is given by:

∂f

∂σ′
: dσ′

{
< 0 elastic unloading.
≥ 0 plastic loading.

(7)

in which ∂f/∂σ′ is an outward normal to the yield surface and the symbol : represents tensor
contraction operation. In this work, we adopt a non-associated Mohr-Coulomb perfect plasticity
model and employ a consistent return mapping stress integration procedure proposed by Clausen et
al. [20]:

f = (σ′1 − σ′3) + (σ′1 + σ′3) sinϕ− 2c cosϕ (8)
g = (σ′1 − σ′3) + (σ′1 + σ′3) sinψ (9)

dΛ = f(σ′tl)
H + (∂f/∂σ′) : C : (∂g/∂σ′) (10)
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where f is the yield function and g the plastic potential. The return mapping algorithm is formulated
in terms of principal stresses, σ′1, σ′3, which are easily obtained as the maximum and minimum
eigenvalue of the general effective stress tensor σ′. The soil properties ϕ, c, ψ are the friction angle,
cohesion and dilation angle, respectively. For determining the plastic multiplier, f(σ′tl) is the yield
function evaluated at the trial elastic stress, and C is the elastic stiffness tensor fully defined by µ
and λ. Since we are considering a non-hardening model the plastic modulus H = 0.

Other plasticity models, if needed, can also be integrated into Equation (6) as long as an efficient
stress update procedure has been carefully selected.

2.3 Poro-elasto-plasticity model
By substituting Equations (4) and (5) into Equation (1) and rearranging the linear terms on the

left side and the non-linear or coupling terms on the right side, the completed poro-elasto-plasticity
model is achieved and consists of the following equations:

- Displacement equation

∇ ·
[
µ∇(du) + µ∇(du)T + λItr(∇(du))

]
= ∇ · [2µ(dεp) + λItr (dεp)]︸ ︷︷ ︸

nonlinearity

+ ∇(dp)︸ ︷︷ ︸
coupling

(11)

- Pore pressure equation
k

γ
∇2p− n

K ′
∂p

∂t
= ∂

∂t
(∇ · u)

︸ ︷︷ ︸
coupling

(12)

As shown in Equations (11) and (12), the poro-elasto-plasticity soil model has two important
features: the nonlinearity, that is the plastic strain term dεp depends on the unknown displacement
and stress level (from Equation (6)); and the strong coupling, i.e. having pore pressure gradient
term present in the displacement equation and velocity divergence term present in the pore pressure
equation. In order to deal with these two issues, an Implicit-Explicit split strategy from the FVM
segregated method will be used: namely, the conventional linear, uncoupled terms categorized on the
left hand side of the equations will be treated implicitly, while the nonlinear, coupled terms on the
right hand side will be treated explicitly by using any available values from previous time or iteration
step. This splitting of the nonlinearity and coupling in general guarantees the linear convergence
of the employed global iterative solution procedure, i.e. the Fixed Point Iteration method (more
details can be found in the Appendix A). In general, the iterations are performed over the systems
of equations until all the explicit terms have converged.

2.4 Initial and boundary conditions
The poro-elasto-plasticity shall be further complemented with the definition of the initial and

boundary conditions. The initial conditions consist of the displacements and pore pressure in the
whole solution domain at the initial instant of time. The boundary conditions can be specified as
either constant or time varying of the types summarized in Table 1.

Table 1: Boundary conditions (BC)

du : - prescribed displacement
- prescribed traction
- fixedDisplZeroShear (zero value on normal direction, zero traction on tangent directions)
- plane of symmetry

p : - prescribed pressure
- zero gradient (impermeable)
- plane of symmetry
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It should be mentioned that the current implementation of traction boundaries in FVM is not
as trivial as that in FEM. In FEM, the traction is straightforwardly accounted for as an external
force contribution into the source term. Whereas in our implementation, we must ensure fulfillment
of the momentum balance on boundary surfaces and it thus involves some computations in solving
the Cauchy’s stress theorem equation on the boundary:

dt = n · (dσ)
= n · (dσ′ − dpI)
= µn · [2µdε+ λtrdε− (2µdεp + λtr (dεp))− dpI︸ ︷︷ ︸

nonlinearity and coupling on BC

]
(13)

where t stands for the traction force vector acting on the boundary, σ is the total stress in the soil
and n is the surface normal vector of the boundary.

It is clear from Equation (13) that the same nonlinearity and coupling effects exist in the traction
boundary condition as the inner solution domain. It is therefore vital to apply the same Implicit-
Explicit split strategy and iteration method on the traction boundary as for the inner domain, which
will be described later.

3 Finite volume discretization
In this section, cell-centred FVM technique is applied to discretize the poro-elasto-plasticity

model derived in the previous section. FVM discretization is often second order accurate by as-
suming a linear variation of the variables over the control volume (CV). The standard discretization
procedure consists of two parts: the discretization of solution domain and discretization of equations.

3.1 Discretization of solution domain
Discretization of the solution domain consists of discretization of the time interval and discretiza-

tion of space. The time interval is split into a finite number of time steps ∆t and the equations are
then solved in a time-marching manner using first-order accurate implicit method. The computa-
tional space domain is subdivided into a finite number of convex polyhedral CVs which are bounded
by polygonal faces. Figure 1 illustrates a typical control volume VP with the computational point P
located in its centroid, the face f , the face area Sf , the face unit normal vector nf , the centroid N
of the neighboring CV sharing the face f , the distance vector df joining P and N , and the skewness
vector mf pointing from the intersection point between df and the face f to the face center [23].

Figure 1: Polyhedral CV (Adopted from [23])

Notice, if the vectors nf and df are not parallel, the mesh is denoted as non-orthogonal. Fur-
thermore, if the vector mf is non-zero, the mesh is skewed. Both features have a large effect on the
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accuracy of the FVM technique, and thus requires special corrections in the discretization proce-
dure [24]. Since the soil geometry is often simple and has regular mesh, non-orthogonal and skewness
corrections will not be discussed further.

3.2 Discretization of equations
For each time step, the discretization of equations uses the integral form of Equations (11)

and (12) over VP and then applies the Gauss’ theorem to convert the volume integrals into surface
integrals:

implicit︷ ︸︸ ︷∮

∂VP

ds · [(2µ+ λ)∇(du)] =−

inter-component coupling, explicit︷ ︸︸ ︷∮

∂VP

ds ·
{
µ∇(du)T + λItr[∇(du)]− (µ+ λ)∇(du)

}

+

nonlinearity, explicit︷ ︸︸ ︷∮

∂VP

ds · [2µ(dεp) + λItr (dεp)]

+

pressure coupling, explicit︷ ︸︸ ︷∮

∂VP

ds · (dp)

(14)

implicit︷ ︸︸ ︷∮

∂VP

ds · ( k
γw
∇p)−

∫

VP

n

K ′
∂p

∂t
dV =

displacement coupling, explicit︷ ︸︸ ︷∮

∂VP

ds ·
(
∂u
∂t

)
(15)

The integral equations have been split into Implicit and Explicit discretization parts in order to
allow the system being solved in the segregated manner as mentioned in Section 2.3. Iterations will be
applied until the convergence of the whole system is attained. It is worth mentioning that besides
from the nonlinear and pressure-displacement coupling terms, an extra inter-component coupling
part is also treated explicitly to promote faster convergence, see Jasak & Weller [22].

Let us now describe the implicit and explicit discretization parts on a term-by-term basis.

3.2.1 Implicit discretization

The implicit surface diffusion term (laplacian terms) from the momentum equation is discretized
as: ∮

∂VP

ds · [(2µ+ λ)∇(du)] =
F∑

f=1
(2µf + λf )nf · [∇(du)]fSf (16)

where F is for the number of faces of VP . By assuming a linear variation across face f , the face-center
gradient [∇(du)]f is evaluated as:

nf · [∇(du)]f = |nf |
(du)N − (du)P

|df |
(17)

Similarly, the pore pressure diffusion term is discretized as follows:
∮

∂VP

ds · ( k
γw
∇p) =

F∑

f=1

kf

γwf

nf · (∇p)fSf =
F∑

f=1

kf

γwf

(
|nf |

pN − pP

|df |

)
Sf (18)

For constant soil properties, µf , λf , kf and γwf are simply equal to µ ,λ, k and γw.
The volume integral of the time derivative of p is calculated using the mid-point rule and a first

order implicit Euler method:
∫

VP

n

K ′
∂p

∂t
dV =

∫

VP

n

K ′
p− po

∆t dV = n

K ′
pP − po

P

∆t VP (19)

where the upper index o is representing the old-time step value.
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3.2.2 Explicit discretization

The explicit surface diffusion terms (the inter-component coupling terms) in Equation (14) are
firstly approximated the same way as in Equation (16):

∮

∂VP

ds ·
{
µ∇(du)T + λItr[∇(du)]− (µ+ λ)∇(du)

}

=
F∑

f=1
nf ·

{
µf

[
∇(du)T]

f
+ λf Itr [∇(du)]f − (µf + λf )[∇(du)]f

}
Sf

(20)

But, unlike the implicit discretization, the face-center gradient [∇(du)]f will now be calculated from
linear interpolation of the cell center gradients (available from previous iteration) as follows:

[∇(du)]f = fx[∇(du)]P + (1− fx)[∇(du)]N (21)

where fx = |nf |/|df | is the interpolation factor, and the cell center gradient values, i.e. [∇(du)]P and
[∇(du)]N can be evaluated using the least square fit approach based on the available distribution of
du [22].

The explicit gradient terms are related to the nonlinearity and pressure coupling terms in Equa-
tion (14). They will be discretized assuming linear variation of the values across the face (i.e. linear
interpolation approach):

∮

∂VP

ds · [2µ(dεp) + λItr (dεp)] =
F∑

f=1
nf ·

[
2µf (dεp)f + λf Itr (dεp)f

]
Sf

=
F∑

f=1
nf · {2µf [fx (dεp)P + (1− fx) (dεp)N ]}Sf

+
F∑

f=1
nf · {λf I [fxtr (dεp)P + (1− fx)tr (dεp)N ]}Sf

(22)

∮

∂VP

ds · (dp) =
F∑

f=1
nf · (dp)fSf =

F∑

f=1
nf [fx(dp)P + (1− fx)(dp)N ]Sf (23)

wherein above all the cell center values: (dεp)P , (dεp)N , (dp)P , (dp)N are evaluated from the previ-
ous iterative values.

The explicit displacement coupling term is differentiated with respect to both time and space,
and it can be approximated as follows:

∮

∂VP

ds ·
(
∂u
∂t

)
=
∮

∂VP

ds ·
(

u− uo

∆t

)
= 1

∆t

F∑

f=1
nf ·

(
uf − uo

f

)
Sf

= 1
∆t

F∑

f=1
nf · [fxuP + (1− fx)uN ]Sf

− 1
∆t

F∑

f=1
nf · [fxuo

P + (1− fx)uo
N ]Sf

(24)

where uP ,uN will be evaluated from the current available iterative value.

3.2.3 Traction boundary conditions

The traction boundary condition in FVM is discretized into displacement gradients of the CVs
on the boundary patches based on Cauchy’s stress theorem. It has been discussed previously in Sec-
tion 2.4 that the same Implicit-Explicit split and iteration method shall be applied on the boundary
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as the inner solution domain, expressed by the formula below:

(2µ+ λ)nb · [∇(du)]b︸ ︷︷ ︸
implict

= (dt)b − {µ[∇(du)]b · nb + λtr ([∇(du)]b) nb − (µ+ λ)nb · [∇(du)]b}︸ ︷︷ ︸
explicit inter-component coupling

+ {2µnb · (dεp)b + λtr(dεp)bnb}+ (dp)bnb︸ ︷︷ ︸
explicit nonlinear and pressure coupling

(25)

where nb is the outward-pointing boundary face area vector, (dt)b is the traction increment on
the boundary (be either directly specified or computed using the specified total traction minus the
previous time total traction), and the variables with lower index b are values on boundary face.

In this way, the traction boundary will be iteratively updated until both the convergence of the
inner solution domain and convergence of the boundaries have been obtained. In general, this extra
computation effort on the traction BC is marginal as the size of the internal domain is often far
larger than that of the boundary patches.

4 Solution procedure
As a consequence of the above discretization, the discretized form of Equations (11) and (12) for

each CV can finally be arranged as four linearized algebraic equations (one vector equation and one
scalar equation):

a
(du)
P (du)P +

∑

F

a
(du)
N (du)N = b

(du)
P (26)

a
(p)
P pP +

∑

F

a
(p)
N pN = b

(p)
P (27)

where F is the number of control volume faces.
The discretized coefficients a(du)

P , a(du)
N , a(p)

P , a(p)
N , and source terms b(du)

P , b(p)
P are summarized

as:
a

(du)
P = −

∑

F

adu
N , a

(du)
N = (2µf + λf ) |nf |

|df |
Sf (28)

b
(du)
P =−

∑

F

nf ·
{
µf [∇(du)]Tf + λf Itr [∇(du)]f − (µf + λf )[∇(du)]f

}
Sf

+
∑

F

nf ·
[
2µf (dεp)f + λf Itr (dεp)f

]
Sf +

∑

F

nf · (dp)fSf

(29)

a
(p)
P = −

∑

F

ap
N −

nVP

K ′∆t , a
(p)
N = kf

γf

|nf |
|df |

Sf (30)

b
(p)
P =− n

K ′
po

P

∆tVP + 1
∆t
∑

F

nf ·
(
uf − uo

f

)
Sf (31)

In above, the source terms b(du)
P and b(p)

P cover the contribution from explicit nonlinear terms, explicit
couplings, and boundary conditions.

Assembling Equations (26) and (27) for each CV in the mesh results in four sets of algebraic
equations:

[A(du)][du] = [b(du)] (32)
[A(p)][p] = [b(p)] (33)

where [A(du)], [A(p)] are the sparse N × N matrices (N stands for the total number of CVs), with
coefficients a(du)

P , a
(p)
P on the diagonal and F non-zero neighbor coefficients a(du)

N , a
(p)
N off the diagonal

(recall F as the total internal face numbers of each CV); [du] the displacement increment vector

8



consisting of du at the cell center of all CVs, [p] the vector of pore pressure ps at each CV center;
and [b(du)], [b(p)] the assembled source vectors.

Having solved the incremental system for the four primary unknown variables, du and p, it is
possible to compute the the dependent unknown variables, i.e. the total displacement vector u, the
plastic strain increment dεp, the effective stress σ′, and the pore pressure increment dp. Overall,
the segregated solution procedure with fixed point iterations is summarized in Table 3:

Table 2: Global solution procedure

TIME STEP: t, t = n
ITERATION: i, i = 0

1. Initialize variables with the value from previous time(load) step:
(du)0

n = (du)n−1, (u)0
n = (u)n−1, (p)0

n = (p)n−1, (dεp)0
n = (dεp)n−1

2. Assemble and solve the pore pressure equation for (p)i
n by:

fvm::laplacian(k/γ, p)− fvm::ddt(n/K′, p) == fvc::div(fvc::ddt(u))1

3. Calculate the pore pressure increment:
dp = pi

n − pn−1:
4. Assemble and solve the displacement equation for (du)i

n by:
fvm::laplacian(2µ+ λ, du) == −fvc::div(dsigmaExp)

+fvc::div(2µdεp + λItr(dεp))
+fvc::div(dp)

with
dsigmaExp = µ ∗ fvc::grad(du).T() + λ ∗ I ∗ tr(fvc::grad(du))− (µ+ λ) ∗ fvc::grad(du)

5. Obtain plastic corrections (dεp)i
n through local stress update algorithm in Table 3

6. Update the total displacement:
ui

n = un−1 + (du)i
n

7. Return to step 2 until converged solutions.
i = i+ 1

EXIT: n = n+ 1

Two levels of iteration are involved in the global solution procedure. The outer iterations, namely
the repeated Step 2-6, are performed to account for the explicitly lagged nonlinear and couplings
terms. While the inner iterations are performed during the iterative solution of the symmetric and
diagonally dominant linear sparse systems in Step 2 and Step 4, typically using the incomplete
Cholesky pre-conditioned conjugate gradient (ICCG) method. Due to the applied linear Mohr-
Coulomb plasticity model, the local return mapping process to a linear yield plane with a linear
plastic potential can be performed in one step.

In principle, it is not necessary to solve the inner iterations to a very tight tolerance, as the
solutions will only be used to update the explicit terms in the outer iterations. The entire system is
considered to be solved when the solution changes less than a predefined tolerance.

In addition, in order to promote the stability of the iteration method, an under-relaxation method
is often necessary. In this work, we employ two levels of under-relaxation for the outer iteration and
inner iteration, respectively:

1. Under-relaxation of the variables in outer iteration
The variable under-relaxation can be explained briefly by the form below:

x̃i = (1− θ)xi−1 + θxi (34)

where x̃i stands for the ith under-relaxed iterative value of a generalized unknown variable x,
and θ the under-relaxation factor with a value between 0 to 1. The variable under-relaxation
slows down the change of two successive iterations in the outer iteration and thus promotes

1The fvm:: operator indicates an implicit discretization term in OpenFOAM, whereas the fvc:: operator indicates
an explicit calculus.
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Table 3: Local return mapping stress update

INPUT: du, displacement increments
σ′A, initial/old-time stress

1. Compute the elastic trial stress σ′B by: σ′B = σ′A + {µ∇(du) + µ[∇(du)]T + λItr[(du)]}
2. Transform σB into principal space as σ′Bprin (eigenvalues).

Store the principal directions (eigenvectors).
3. Evaluate the yield function f(σ′Bprin):

if f < 0, EXIT, σ′C = σB , dεp = 0
if f ≥ 0, CONTINUE

4. Determine the right stress return type. Obtain the principal plastic corrector stress σ′Cprin.
5. Reuse the preserved principal directions and transform σ′Cprin back to the general space as σ′C
6. Compute the correct elastic strain increment dεe by:

dεe = iso(σ′C − σ′A)
3λ+ 2µ + dev(σ′C − σ′A)

2µ
7. Calculate the plastic strain increment dεp by: dεp = 1

2 [∇(du) +∇(du)T]− dεe

OUTPUT: σ′C , dεp

the stabilization of the solution method. The relaxation factor θ can be specified either as
constant value (fixed under-relaxation) or more efficiently as adaptive value based on the
iteration sequences (e.g. Aitken’s method, Anderson acceleration, etc.). In this paper, the
simple fixed under-relaxation has been adopted.

2. Under-relaxation of equations in inner iteration
The equation under-relaxation is dealing with the linear algebraic system from Step 2 and Step
4 in the global solution procedure. If we take Equation (26) as an example for explanation, it
may be written as:

a
(du)
P

β
(du)i

P = −
∑

F

a
(du)
N (du)i

N + b
(du)
P + (1− β)a

(du)
P

β
(du)i−1

P (35)

where β is another under-relaxation factor between 0 and 1. It enhances the diagonal domi-
nance of the linear system and thus improves the convergence of most iterative linear algebraic
solvers [13,25].

The segregated fixed point iteration algorithm combined with the under-relaxation has been
implemented as a custom solver nonlinearBiotFoam in the open-source FVM code OpenFOAM-
1.6-ext.

5 Numerical examples
In order to assess the performance of the nonlinearBiotFoam solver, three geotechnical problems

with comparable solutions in either analytical or numerical (FEM) forms have been simulated: 1-D
consolidation of a poro-elastic soil column; the bearing capacity of a strip footing; and the uplift
capacity of a circular suction caisson foundation. Additionally, the computational cost for each case
is presented to demonstrate the efficiency of the solver.

5.1 Consolidation of poro-elastic soil column
The first simple case is aimed to verify the elastic soil-pore fluid coupling. Figure 2 outlines the

case definition: a saturated soil column with height h is subjected to a surface step loading (T ) of
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Figure 2: A poro-elastic soil column subjected to a surface step loading.

1kN/m2 applied over a time of 0.1s. The boundary conditions and soil material properties have also
been shown in the figure itself.

A comparison between FVM prediction, the analytical solution of Terzaghi’s 1-D consolidation
theory [26], and FEM simulation in Abaqus is shown in Figure 3. The horizontal axis represents
the pore pressure normalized by an initial pore pressure built up immediately after loading, and the
vertical axis stands for the depth of the soil column normalized by the total height. The five data
series correspond to different dimensionless consolidation time, (cvt/h

2), where cv is the consolidation
coefficient. Overall, the FVM results agree very well to both the analytical and Abaqus solutions.

The OpenFOAM FVM simulations were carried out on a laptop computer with Intel Core i7
1.5GHz processor and 8GB RAM, and the total computation cost is listed in Table 4.

Figure 3: Numerical and analytical excess pore pressure dissipation isochrones (sampled along the
center line of soil column)
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Table 4: FVM computation cost of the poro-elastic consolidation case

No. CV No. time step No. outer iterations per time step Total CPU time (s)
40 110 12 10.59

5.2 Bearing capacity of strip footing
The second test aims at demonstrating the elasto-plastic soil-pore fluid coupling. Following the

work done by Small et al. [11], a similar elasto-plastic consolidation validation case is examined here:
a smooth, perfectly flexible, uniformly loaded, permeable strip footing acting on a layer of soil resting
on a smooth rigid base. In order to completely define the problem, it is also assumed that there is
no horizontal force on any vertical section. The original case geometry is sketched in Figure 4 and
the OpenFOAM case set-up with regular mesh and soil properties is shown in Figure 5. Plain strain
condition has been considered. To demonstrate the computational efficiency of the proposed FVM
technique, a comparable coupled Mohr-Coulomb FEM simulation is run in Abaqus (version 6.11-1).

Figure 4: Illustration of case geometry (Adopted from [11])

Figure 5: Finite volume mesh used for footing (half domain)

The boundary conditions for the displacement increment (du) and pore fluid pressure (p) in

12



OpenFOAM are listed in Table 5. Correspondingly, the Abaqus model input of the same boundary
and loading conditions is summed in Table 6.

Table 5: The boundary conditions used in OpenFOAM

soilStructureInterface Ground Left Right soilDomainBottom
du timeVaryingTraction zeroTraction symmetryPlane zeroTraction fixedDispZeroShear

(duz = 0, tx = 0)
p fixedValue fixedValue symmetryPlane zeroGradient zeroGradient

(p = 0) (p = 0)

Table 6: The prescribed boundary and load conditions in Abaqus

soilStructureInterface Ground Left Right soilDomainBottom
Displacement BC XSYMM YSYMM
pore pressure BC p = 0 p = 0

load condition Uniform pressure

(a) (b)

(c)

Figure 6: Bearing capacities under different loading rates a). FEM resluts of Small et al.; b). FEM
results in Abaqus; c). nonlinearBiotFoam simulations
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In the beginning, it is assumed that there is no initial stress and pore pressure in the domain. A
load rate parameter ω is adopted from [11]:

ω = d(P/c)
d(Tv) , Tv = cvt

a2 (36)

Here, P/c represents the external load pressure (normalized by soil cohesion), Tv the dimensionless
time defined by cv which is the aforementioned one-dimensional consolidation coefficient, and a the
width of strip footing.

Figure 7: Pore pressure distributions along the footing center line with slow load rate ω = 1.43

Figure 8: Pore pressure distributions along the footing center line with fast load rate ω = 14.3

In general, the smaller the load parameter ω, the slower the load rate acting on the soil layer. It is
suggested in [11] that ω <= 0.143 could represent drained condition, ω >= 143 for fully undrained
condition, and the two intermediate rates of ω = 1.43 and ω = 14.3 for a slow load rate and a
fast load rate in partially drained conditions, respectively. For comparison, Figure 6a shows the
original results of Small et al, Figure 6b presents the Abaqus predictions, while Figure 6c shows the
simulation results of nonlinearBiotFoam in OpenFOAM.

It can be clearly seen that the nonLinearBiotFoam solver successfully predicts the different
failure load levels under various load rates (i.e. stronger response at slower load rate), consistent
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with the results of Small et al and Abaqus. Moreover, Figure 7 and Figure 8 show the pore pressure
distributions along the footing center line at different load levels, for the slow load rate ω = 1.43
and for the fast load rate ω = 14.3, respectively. The numbers next to the lines are indicating the
load level (P/c). At low load levels in the beginning, the whole soil domain behaves elastically (solid
lines). Whereas, when load pressure increases to high levels, soil reaches failure (dotted line). It
is interesting to observe from the simulation results that the excess pore pressure in the soil starts
to dissipate fast as long as plastic deformation occurs and results in dilation. This demonstrates
well the capability of nonlinearBiotFoam to effectively model the interactions between the pore
pressure development and the nonlinear soil behavior.

The OpenFOAM simulation was performed under parallel computing using 8 cores on an IBM
HPC cluster (2.66 GHz Intel Xeon E5430 cores). Comparably, the Abaqus simulations were each
run on 6 cores in parallel on an SGI ICE X cluster (2.4 GHz Intel Xeon E5-2695 v2 Ivy Bridge
cores).

The overall computational costs for FVM and FEM analysis are summarized in Table 7 and
Table 8, respectively.

Table 7: FVM OpenFOAM computation cost of the strip footing case

Case No. CV No. time steps/ Max. No. outer iter. Total wall time
plasticity occurs at per plastic time step (hr)

drained 3200 53/38 3.4× 104 00:17:23
slow load rate 3200 46/34 1.0× 105 00:42:43
fast load rate 3200 38/27 1.2× 104 00:18:58
undrained 3200 33/25 1.0× 105 00:33:04

Table 8: FEM Abaqus computation cost of the strip footing case

Case No. elements/ No. time steps/ Max. No. equil iter. Total wall time
No. nodes per element plasticity occurs at per plastic time step (hr)

drained 4800/8 1.150× 104/396 16 14:50:00
slow load rate 4800/8 6.142× 103/358 16 08:07:00
fast load rate 4800/8 9.558× 103/263 16 13:21:00
undrained 4800/8 1.752× 104/257 16 06:50:00

It is necessary to note that the proposed segregated FVM simulations use constant time steps
with large amounts of fixed-point iterations, while the implicit FEM predictions in Abaqus employ
automatic (small) time step with Newton-type iterations. The two methods encounter the same
challenge - convergence rate decreases during plastic steps and requires special algorithm handling.
We therefore applied under-relaxation methods in OpenFOAM and automatic stabilization with
fixed damping factor in Abaqus to help for convergence.

In particular, the Abaqus soil analysis only assumes fully saturated condition (i.e. incompressible
pore fluid) using standard FE coupled formulation (e.g. [27, sec. 6.8]). Element type with hybrid
formulation or reduced integration has been used to alleviate the volumetric locking problem (in this
case, we applied the 8-node quadratic elements with hybrid formulation CPE8PH2). Furthermore,
the fully-saturated assumption yields singularities in the stiffness matrix and significantly slows down
the convergence. The solution of the large implicit matrix system in Abaqus also takes much more
RAM and longer computational time. Whereas, the FVM nonlinearBiotFoam solver is formulated
on the basis of unsaturated condition, in which true bulk modulus of pore fluid (comparable to that
of soil skeleton) is considered and the convergence is improved. The staggered solution procedure
also enables efficient iterative solver to be used for solving the small matrix system. Alternatives
to the Abaqus implicit solver are explicit FEM/hybrid-FEM solvers (with optimized algorithms as
2CPE8PH: an 8-node plane strain quadratic, biquadratic displacement, bilinear pore pressure, hybrid, linear pressure
stress
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for the proposed FVM), however they are not available for fully coupled poro-elasto-plastic stress
analysis in the commercial software packages.

Additionally, if comparing the two methods in terms of traction boundary condition treatment:
the FEM Abaqus analysis only requires a simple external load input, while the proposed FVM uses
user-defined boundaries which do iterative computation from the external traction to displacement
on the patches. This drawback of FVM may be acceptable as long as consistent staggered iterative
method has been applied on the boundary and the inner solution domain, which provides an overall
efficiency of the algorithm.

5.3 Uplift capacity of suction caisson
The third test case is representing a problem that draws increasing applications in the offshore

geotechnical field: namely, the vertical uplift capacity of suction caisson foundations. A suction
caisson, open at the bottom and closed at the top, is designed to penetrate to the sea floor by its own
weight and also by creating an internal under-pressure relative to the external water pressure [28].
The developed passive suction inside the soil plug significantly enhances the pullout capacity of the
suction caisson.

Figure 9 illustrates a cylindrical suction caisson with an overall diameter d and an embedded
length L, subjected to an uplift load at the top of the caisson.

Figure 9: Suction caisson foundation under vertical uplift loading (Adopted from [28]).

The above geometry are then set up in OpenFOAM using the same rectangular FVM mesh type
as in Figure 5. A ’wedge’ type boundary in OpenFOAM is also applied to simulate the case as
2-D axi-symmetric. It has to be mentioned that the entire suction caisson is assumed to be lifted
uniformly under constant rate (as a prescribed displacement boundary). All the parameters involved
in the simulations have been listed in Table 9.

Table 9: Parameters employed in the suction caisson case

Component Property Symbol Value(s)
Caisson geometry Embedment depth L 1m

Diameter d 2m
Young’s modulus E 2× 107 Pa

Poisson’s ratio ν 0.3
Permeability k 0.001m/s

Porosity n 0.2
Soil properties Saturation factor Sr 0.98

Friction angle ϕ 30
Cohesion c 1× 105 Pa

Dilation angle ψ 0
Bulk modulus of water Kw 2.1×109 Pa
Specific weight of water γw 1× 104 Pa

Loading rate Pullout velocity v 2× 10−4 to 2× 10−1 m/s
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Our focus is to evaluate the effects of different loading rate on the uplift capacity. It is revealed
in Figure 10 that faster load rates give greater pullout capacities, which comes from the ability to
build up and sustain a significant negative pore pressure inside the bucket, Figure 11. This captured
phenomenon agrees well to those simulation results in the references [28, 29] with FEM analysis,
although they are dealing with less permeable clay.
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Figure 11: Passive suction development under various loading rate

The simulation was carried out under parallel computation using 8 cores of a single computation
node which has 2 XEON 5550 2.66 GHZ quad core CPUs and 24 GB RAM. The overall cost is listed
in Table 10.
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Table 10: Computation cost of the suction caisson

Case No. CV No. time steps Max. No. outer iterations Total used wall time (hr)
per time step

0.2m/s 1840 10 1× 104 00:18:58
0.02m/s 1840 10 1× 104 00:20:43
0.002m/s 1840 10 1× 104 00:20:55
0.0002m/s 1840 10 1× 104 00:23:31

6 Conclusion
A new numerical method for poro-elasto-plastic soil is presented, based on a finite volume method

discretization and segregated solution procedure. The main features of the method are:

(i) It is computationally efficient in terms of both memory and CPU time-wise, as the Implicit-
Explicit split of discretization and linearization result in a decoupled system of linear algebraic
system with sparse diagonally dominant coefficient matrices, solvable by efficient iterative
solvers.

(ii) The solution algorithm is neat and economic, because any nonlinearity and coupling can be
handled with one single outer iteration process (i.e. the fixed point iteration method), thus
requiring no or little additional cost. Moreover, it has been demonstrated in the convergence
study of the iteration method (in Appendix A.1 and A.2): careful splitting of the nonlinear and
coupling terms guarantees a linear convergence rate for unsaturated soil problems. For fully
saturated situations, the selection of time step and mesh density needs to fulfill the convergence
criteria, namely Eq. 47.

(iii) The implementation work is time-saving under the help of OpenFOAM C++ library where
rich FVM classes and functions are freely available.

(iv) The model itself is easily extendable, as other nonlinear constitutive relations can be integrated
into the model with the same global solution procedure.

(v) It has a lot of application potentials to model many geotechnical problems in a simple and
effective manner, as illustrated by the test cases.
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A Remarks on fixed point iteration method
The fixed-point (FP) iteration method in FVM simply uses the following recursive form:

xi+1 = G
(
xi
)
, i = 0, 1, 2, · · · (37)

The FP method usually results in linear convergence [30], slightly inferior to the commonly applied
Newton-type iteration method in FEM that gives quadratic convergence. However, the important
feature of FP method lies in that, it avoids the formation of the large non-symmetric Jacobian matrix,
and instead it produces several small symmetric matrices which can be very efficiently solved by
standard fast iterative algebraic solvers. The main problem of applying FP method comes out that
that the convergence condition is dependent on the choice of function G(x), which shall in principle
be differentiable and fulfill |G′(x)| ≤ 1 in some operator norm [31]. In our case, the definition of
function G(x) is closely related to the method of partitioning the nonlinear terms in the momentum
equation and the soil-pore fluid coupling operators. The following paragraphs will then discuss these
two aspects separately.
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A.1 The partitioning of nonlinear terms in momentum equation
If we are solving a nonlinear system equation A(x)x = b, the splitting of linear and nonlinear

terms by writing A(x) = Al −Anl(x), results in:

Alx = Anl(x)x+ b (38)

The FP iteration method is then:

xi+1 = A−1
l (Anl(xi)xi + b) (39)

where, x symbolizes the displacement increment du in the momentum equation Equation (14),
Al relates to the linear (implicit) elastic stiffness matrix, and Anl(x) the nonlinear (explicit) plastic
stiffness matrix. In this way, the function G(x) can simply be written out as G(x) = A−1

l (Anl(x)x+b)
and its differential is:

G′(x) = A−1
l Anl(x) +A−1

l A′nl(x)x (40)

Particularly, as we used a perfect plasticity model without any hardening or softening effect in the
constitutive relation, the derivative of plastic stiffness A′nl(x) is equivalent to zero and therefore the
second term on the right hand side of Equation (40) simply vanishes. In the end, the sufficient
convergence condition for the partitioning scheme turns to be |G′(x)| = ‖A−1

l Anl(x)‖ ≤ 1. We
may prove such convergence condition in a qualitative way in stead of complicated matrix norm
manipulation. The elastic stiffness contribution Al is the maximum stiffness that the system can
provide, in other words the plastic stiffness Anl is always weaker than the pre-yielding elastic stiffness
Al, which means that |A−1

l Anl(x)‖ ≤ 1 always holds. In general, as long as the implicit stiffness
part is stronger than its counterpart explicit stiffness part, the system of momentum equation will
converge. While for other advanced hardening/softening plastic models, more terms will be involved
in Equation (40) and hence careful evaluation might be needed.

A.2 The partitioning of soil-pore fluid coupling
Consider a simple linearly coupled equation system in the following form:

aw1 = w2

bẇ2 + cw2 = ẇ1
(41)

The above system has the same coupling feature as our poro-elasto-plasticity model, i.e. Equa-
tions (11) and (12), but is formed in a much simpler form for demonstration purpose. Reference [32]
has pointed out that the sufficient condition for convergence of a coupled system is related to the
spectral radius of the coupled operator, which is indeed equivalent to the value of aforementioned
|G′(x)|. We here adopted the same procedure of defining the coupled spectral radius:

Firstly, use the backward Euler scheme and the coupled system Equation (41) is discretized in
time as, [

1 −1/a
−1/(b+ c∆t) 1

] [
wn+1,i+1

1
wn+1,i+1

2

]
=
[

0
bwn

2 − wn
1

]
(42)

where the superscript n stands for the time step counter and i the iterative counter.
Then apply the FP splitting, Equation (43) can be written as,

[
1 0
0 1

] [
wn+1,i+1

1
wn+1,i+1

2

]
=
[

0
bwn

2 − wn
1

]
+
[

(1/a)wn+1,i
2

(1/(b+ c∆t))wn+1,i
1

]
(43)

Further rewrite Equation (43) into the following form as,
[
wn+1,i+1

1
wn+1,i+1

2

]
=
[

0 1/a
1/(b+ c∆t) 0

]

︸ ︷︷ ︸
G

[
wn+1,i

1
wn+1,i

2

]
+
[

0
bwn

2 − wn
1

]
(44)
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The spectra radius of the coupled operator is the eigenvalues of the matrix G,

ρ(G) = eig

[
0 1/a

1/(b+ c∆t) 0

]
= ±

√
1/(a(b+ c∆t)) (45)

The convergence condition requires that ρ(G) shall be less than 1. Let us now examine whether
this criteria could be fulfilled in our case. Recall the model Equations (11) and (12) and ignore the
nonlinear terms in this stage, we could figure out the expression of the coefficients a, b, c in terms of
the soil properties and the mesh and time step sizes:

a = 2µ+ λ

h
, b = nh

K ′
, c = k∆t

γh
(46)

where h could represent the generalized mesh size. The convergence criteria now can be written out
as:

a(b+ c∆t) = 2µ+ λ

K ′/n
+ (2µ+ λ)k

γw
· ∆t
h2 ≥ 1 (47)

the above criteria implies that, once the bulk modulus of the soil skeleton is stronger than the
effective bulk modulus of the fluid normalized by the porosity, i.e. 2µ+ λ ≥ K ′/n, the convergence
can be guaranteed without limitation on time and mesh conditions. It therefore reveals that the
poro-elasto-plastic model might fail to simulate the case when pure water presents in the soil pore, as
pure water is often considered as incompressible compared to the soil skeleton. However favorably, for
natural soil that even only contains one percent of air in the pore, the fluid bulk modulus is reduced
dramatically by a factor of 200 to 107Pa, which often turns out to be small enough compared to the
solid bulk modulus and thus fulfills Equation (47).
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ABSTRACT: This paper presents a finite volume implementation of a porous, nonlinear soil model capable
of simulating pore pressure accumulation under cyclic loading. The mathematical formulations are based on
modified Biot’s coupled theory by substituting the original elastic constitutive model with an advanced elasto-
plastic model suitable for describing monotonic as well as cyclic loading conditions. The finite volume method
is applied to discretize these formulations. The resulting set of coupled nonlinear algebraic equations are then
solved by a ‘segregated’ solution procedure. An efficient return mapping algorithm is used to calculate the stress
and strain relation in each control volume level. Test cases show very good performance of the model.

1 INTRODUCTION

In offshore engineering, it is acknowledged that the
coupled interactions between the soil skeleton and pore
fluid under loading may lead to built-up of pore pres-
sure, yielding material softening and shear strength
degradation. Therefore, it poses considerable risks on
the stability of offshore structures and/or foundations
(Sumer & Fredsøe 2002, Jeng 2003). Numerical anal-
ysis of this phenomenon however is a challenging task,
due to the inherently strong coupling effects inside the
two-phase physical system, and lack of reliable consti-
tutive models that capture soil mechanical behaviors
realistically under cyclic loading. For this purpose,
a suitable formulation based on the modified Biot’s
theory (Biot 1941, Zienkiewicz 1982), which takes
both the soil-pore fluid coupling and material non-
linearity into account, is employed to simulate porous
soil behavior in this paper. A critical state two-surface
plasticity model originally proposed by Manzari and
Dafalias (1997), which can reproduce cyclic stress-
strain behaviors with several important soil features
including phase transformation, critical state and peak
failure etc., is incorporated as a proper constitutive
relation for the soil skeleton.

Moreover, the Finite Volume Method (FVM) is
creatively proposed to solve the two-phase soil equa-
tion system. FVM is a numerical approach that has
been successfully applied in the field of computational
fluid dynamics for solving various flow problems.
It was Demirdzic and Martinovic (1993) and Jasak
and Weller (2000) who first started to employ FVM
to successfully solve a number of solid mechanical

problems. Possibly, the most attractive feature of FVM
revealed by their research is the simplicity and effi-
ciency in dealing with coupling and nonlinearity of the
equations through a ‘segregated’ solution procedure,
where each unknown variable is solved sequentially
and the coupling and nonlinear terms are lagged.
Often, a fixed point iteration method is combined with
the segregated procedure to achieve full convergence
of the nonlinearly coupled system.

Hence, the main goal of this paper is to present the
formulation and FVM implementation of a nonlinear
porous soil model capable of simulating the pore pres-
sure accumulation. Numerical tests and application are
also included to demonstrate the performance of the
implemented model.

2 GENERAL FORMULATION FOR THE
TWO-PHASE POROUS SOIL MODEL

In the classic Biot’s coupled theory for two-phase
porous media, the pore fluid and the solid skeleton
are considered compressible obeying linear elasticity,
while the flow in the pores is assumed governed by
Darcy’s law. Here, we will extend the theory to account
for more realistic nonlinear material behaviors of the
soil skeleton.

The governing equation of the pore fluid flow is
formulated as follows:
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where the unknown variable p is the pore pressure
and u the displacement vector of the soil skeleton.
The material properties: k , γw, n, K ′ are the soil per-
meability, density of water, soil porosity and effective
bulk modulus of the pore fluid, respectively. A pos-
sible estimation of bulk modulus of the pore fluid
K ′ has been made through the following expres-
sion: 1/K ′ = Sr/Kw + (1 − Sr)/[b(p + pb) + pa], with
Sr being the degree of saturation, Kw the pure water
bulk modulus (≈2 × 109Pa), pb the back pressure, pa
the atmospheric pressure (≈105Pa) and b a model
constant (Bian & Shahrour 2009).

In Eq. (1), the left hand side term represents the rate
of pore fluid seepage, and the first and second terms
on the right hand side are the rate of volume change for
the pore fluid and the soil skeleton phase, respectively.
It is hence very clear to see the embedded interactions
of pore fluid seepage and the volume change of the
soil skeleton from the formulation.

The governing equation of the soil skeleton phase
is based on total momentum equilibrium in incremen-
tal form. By incorporating the stress-strain relation,
small-strain split, and strain-displacement relation
below, it is conveniently written as:

where δσ, δσ ′ are the incremental total stress and
incremental effective stress. The strain variables:
δε, δεe, δεp are the incremental total strain, incremen-
tal elastic strain, incremental plastic strain respec-
tively. The primary unknown variable δu symbolizes
the incremental displacement vector of the soil skele-
ton, and δp the incremental pore pressure. The other
two variables: δε

p
v , δεp

d are the volumetric and devi-
atoric part of incremental plastic strain, respectively.
The soil skeleton properties K , G are the elastic bulk
and shear modulus. I is the identity tensor and T the ten-
sor transformation operator. Here, tension is assumed
positive as normally employed in computational con-
tinuum mechanics.

Eq. (2), which represents the momentum balance,
may look different from its equivalent forms employed
in other works e.g. (Zienkiewicz 1982), as it has been
particularly formulated to fit the ’segregated’ solution
procedure in FVM. The first term in the equation can
be considered as the ‘predicted’ internal force due to
soil skeleton deformation with purely elastic response,
while the second term denotes a ‘correcting’ internal
force due to soil skeleton that might undergo plastic
deformation, and the third term is the internal force due
to pore fluid flow. Again, it is very clear to see from
the equation that the influence of pore fluid pressure

Figure 1. Schematic illustration of different surfaces,
adopted from (Manzari & Dafalias 1997).

on the nonlinear deformation of the soil skeleton is
captured.

Eqs. (1–2) make a set of four equations with four
primary unknowns – pore pressure p and incremental
displacement vector δu. To complete the mathemat-
ical model, specifications for initial conditions and
boundary conditions such as impermeable and traction
boundaries are also required.

3 THE CRITICAL STATE TWO-SURFACE
PLASTICITY CONSTITUTIVE MODEL

Determination of the ‘correcting’ internal force due to
plastic deformations, namely δε

p
v and δε

p
d , has to be

done with a proper soil constitutive model. Here, we
briefly summarize the essential features of the chosen
critical state two-surface plasticity constitutive model.
A detailed description is found in Manzari and Dafalias
(1997).

This model is based on the framework of critical
state soil mechanics (Wood 1990), and combines a
state parameter, ψ, originally proposed by Been and
Jefferies (1985). The state parameter ψ defines the
soil state based on combined effects of initial den-
sity (void ratio) and confining stress. It is then used
to determine the bounding (peak) and dilatancy sur-
faces, see a schematic illustration in Fig. (1) below.
All the surfaces have been formulated in multiaxial
stress space by considering the effect of Lode angle θ.

The yield surface is a cone-type shape with circular
cross-section in π-plane, determined by two internal
variables: m and α, i.e. the radius and position of the
axis of the cone. The evolution of parameter α allows
the model to describe plastic deformations in both
reverse and forward loading.

Moreover, mean stress dependent elastic bulk and
shear modulus have also been included in the model.
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Figure 2. Polyhedral control volume (CV) in FVM, adopted
from (Jasak & Weller 2000).

4 NUMERICAL METHOD AND
IMPLEMENTATION

In this section, the cell-centered FVM is applied to
discretise the aforementioned equation system, i.e.
Eqs. (1–2).The method firstly requires a subdivision of
the solution domain into a finite number of contigu-
ous, non-overlapping control volumes (CVs), with a
computational node in its center, as shown in Fig. 2.

For the equation discretisation, we describe our spe-
cial strategy tailored to the soil model only, as details of
finite volume discretisation itself are available in the
references (Demirdzic & Martinovic 1993, Jasak &
Weller 2000):

As marked in the equations, two types of discretisa-
tion are selected for each term: Implicit discretisation
and Explicit discretisation. The Implicit discretisa-
tion constructs the matrix coefficients and unknown
variable vectors of the large algebraic equation sys-
tem, while the Explicit discretisation uses the current
available value of the variables directly and therefore
contributes to the source terms.

It can be noted that these coupled terms: ∂
∂t (∇ · u)

in the pore fluid flow equation and ∇(δp) in the
momentum equation, and the nonlinear terms: ∇ ·
[K(δεp

v) + 2G(δεp
d )], have all been treated as explicit.

Extra explicit portions in the momentum equa-
tion are the displacement cross-component coupling

term: ∇ · [
G∇(δu)T + (K − 2

3 G)I∇ · (δu)
]

and an
over-relaxed term ∇ · [

(K + 1
3 G)∇(δu)

]
. Using the

above Implicit-Explicit split, the nonlinear coupled
model reduces to a set of small linear decoupled equa-
tions, easily solvable through a segregated solution
procedure, see Section 4.1.

Note that in this model since the elastic moduli, K
and G, and the soil porosity n are dependent on soil
mean stress level and volumetric deformations, the
Implicit discretisation terms – ∇ · [

(K + 4
3 G)∇(δu)

]

in the momentum equation and n
K ′

∂p
∂t in the flow equa-

tion – contain nonlinearity and therefore indeed can
not be treated fully implicitly. However, the adopted
iterative segregated approach allows these nonlinear
coefficients to be dealt with in the same natural way
as the other coupling and nonlinear terms: namely they
will be updated explicitly through iterations.

4.1 Segregated solution procedure

As a result of above FVM discretization, a system of
linear algebraic equations:

is created for each of four primary unknowns – the
pore pressure p and three components of incremental
displacement vector δu. Where A is an N × N sym-
metric, sparse and diagonally dominant matrix, vector
x contains values of unknown variables at N nodal
points, and b the source vector covering those explicit
contributions from coupling and nonlinearity.

Eq. (5) are solved sequentially for each unknown
following the order: first the pore pressure p and then
the three components of δu in parallel.After solution of
all four unknowns is performed, one iteration is com-
pleted and unless a converged solution is obtained, the
coefficient A and source b are updated using the new
solutions and next iteration proceeds. Fig. (3) depicts
such solution algorithm.

It may be argued that these iterative procedures
require large computational effort. However, a great
advantage lies in that the matrix systems in each iter-
ation are ideally suitable for efficient linear iterative
solvers. And in fact, there is no need to solve these
equations to a tight tolerance, as sources and coeffi-
cients are only approximated (based on the previous
iteration). Hence, the overall simplicity and rela-
tive efficiency of this segregated solution procedure
makes it a proper choice for solving our complicated
nonlinear coupled soil model.

4.2 Stress-strain update

Inside each global iteration, after the displacement
vector of the soil skeleton in the whole domain has
been solved, it is important to calculate the corre-
sponding stress and strain, especially the plastic strains
δε

p
v and δε

p
d , at each CV center based on the cho-

sen constitutive model. An efficient return mapping
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Figure 3. The global iterative ‘segregated’ solution
procedure.

Figure 4. Local stress-strain update procedure at each CV
center.

algorithm, adopted from LeBlanc et al. (2008), has
therefore been tailored to achieve the goal. Fig. (4)
below summarizes the essential steps of this algorithm.

4.3 Implementation

The described discretisation, global solution proce-
dure and stress-strain update have been implemented

Table 1. Soil properties used in the simulations, with
the plasticity model parameters adopted from (Manzari &
Dafalias 1997).

Elasticity Pore fluid
G0 (MPa) 31.4 k (m/s) 0.0001 pa (kPa) 100
K0 (MPa) 31.4 Kw (GPa) 2.1 γw (kPa) 10
a 0.6 Sr 0.90∼1.00

Critical state State parameter
Mc 1.2 kb

c 3.975
Me 0.857 kb

e 2.0
λ 0.025 kd

c 4.2
(ec)ref 1.2 kd

e 0.07

Dilatancy Hardening
A0 0.6 h0 800
Cf 100 m 0.05
Fmax 100 cm 0.0

as a custom OpenFOAM solver named twoSurface-
PlastBiotFoam, where OpenFOAM is an open source
software having various FVM classes freely accessible
in C++ language.

5 TESTS AND APPLICATION OF THE
METHOD

In order to validate the implemented code, first, sim-
ulations of small-scale undrained triaxial tests on full
3D saturated soil samples are presented. Thereafter a
hypothetical test case with wave pressure loading on
large-scale porous seabed is performed. For simplic-
ity, all the simulations use the same soil properties
summarized in Table 1.

5.1 Monotonic and cyclic undrained triaxial tests

Undrained monotonic compression and extension tests
are simulated for two soil samples at different void
ratios at a confining pressure of 160 kPa yielding
ec = 0.80. The distinctly different responses of a soil
state looser than critical (e0 = 0.85) and denser than
critical (e0 = 0.79) are well predicted in the simulation
results presented in Fig. 5. Loose soil is showing soft-
ening, while dense soil is showing hardening behavior,
which conforms with experimental evidence. Large
impact of degree of saturation on soil strength is pre-
dicted in the analysis (Fig. 5 right) as also predicted
by Bian and Shahrour (2009).

Simulations of cyclic triaxial tests are then con-
ducted for initial void ratios of 0.65 and 0.85, respec-
tively. The soils are firstly isotropically consolidated
to a mean confining stress of p′ = 80 kPa and there-
after loaded by cyclic shear stress with the amplitude
of 30∼40 kPa and the frequency of 1 Hz. As it can
be clearly seen from Fig. 6, the well-known butterfly-
shape stress path is observed for the dense soil that
undergoes ‘cyclic mobility’ failure with accumulated
large shear strains. Likewise, the complete loss of
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Figure 5. Simulated stress paths (left, right) and stress-strain curve (middle) in monotonic undrained triaxial tests on full soil
sample.

Figure 6. Simulation of stress-controlled cyclic undrained triaxial tests on a dense soil sample (left) and a loose soil sample
(right).

mean effective stress of a loose sample leading to
liquefaction failure is captured successfully.

5.2 Standing wave pressure loading on seabed

A hypothetical case of standing wave pressure act-
ing on top of porous seafloor is also explored here.

The objective of this example is to demonstrate the
capability of predicting accumulated excess pore pres-
sure inside the seabed, due to a combined effect of
cyclic wave loads and presence of a impermeable
object on top resulting in a partially undrained con-
dition. The generated seabed mesh is shown in Fig. (7)
with lateral dimensions equal to the applied wave
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Table 2. Boundary conditions.

Patch Boundary type

Seabed sides, bottom impermeable & zero displacement
and the object
Seabed top standing wave pressure: amplitude =

5 kPa, period = 0.1 s & free traction

Figure 7. Mesh setup of the porous seabed case with
dimensions.

Figure 8. Simulated pore pressure accumulations at soil
depth of 0.5 m (top) and 0.1 m (bottom) underneath the object
center.

length (l = L) and vertical depth od one third of the
wave length (d = 1/3L). The impermeable rectangular
object occupies one ninth of the whole seafloor.

The boundary conditions are presented in Table 2.

The simulated excess pore pressure variations, cycle
by cycle, at two different soil depths have been plotted
in Fig. 8. Results from the classic Biot’s theory, i.e.
the poro-elastic model, are also presented for com-
parison. The poro-elasto-plastic model developed in
this paper predicts a gradual accumulation of excess
pore pressure inside the soil corresponding to a gradual
decrease of pore volume, while the simple poro-elastic
model – which has constant pore volume – only cap-
tures the steady state pore pressure variation. Analysis
of the poro-elasto-plastic simulation results implies
that, shear strains induced by the standing wave pres-
sure gradually rearrange the soil grains at the expense
of the pore volume of the soil. The latter pressurizes
the pore water, and as a result, lead to the built-up of
pore pressure.

6 CONCLUSIONS

In this study, the described FVM discretisation strat-
egy and iterative ‘segregated’solution procedure offers
an interesting avenue to model complicated porous
soil material, namely having soil – pore fluid coupled
interactions as well as highly nonlinear constitutive
behavior, in a simple and effective manner.
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Abstract

The open source finite volume based C++ code library OpenFOAM R©can solve a variety of problems
within computational continuum mechanics due to its tensorial approach and object-oriented nature. In
this paper, we demonstrate how OpenFOAM R©can be used as a platform for multi-physics simulations
involving wave-seabed-structure interaction. Our primary concern is the seabed soil response to ocean
waves in the vicinity of offshore structures. Hence a wave tank sub domain is modeled with the aid of
the wave generation toolbox waves2Foam. The resulting pressure field on the seabed varies both in
space and time and is used as an input boundary condition for the underlying soil sub-domain. For
the soil simulation a newly developed nonlinear porous soil solver, twoSurfacePlastBiotFoam, is
applied in order to assess the possibility of pore pressure build-up and risk of soil failure. Test cases
demonstrate the performance and applicability of the simulation method.

1. INTRODUCTION

When designing offshore structures such as pipelines, breakwaters and wind turbine foundations it
is essential to be able to assess their geotechnical stability. This involves evaluation of wave-induced
pore pressure, soil stresses and groundwater flow. Typically in conventional geotechnical soil modeling
simplified wave pressure fields derived from analytical wave theories are applied on top of the seabed
[1, 2]. When structures of complicated geometry are present in the water such analytical expressions are
not available. Better approximations can be achieved by using multi-physics numerical models where,
the porous soil model for the seabed domain is augmented by computational fluid dynamics (CFD)
simulations yielding accurate pressure modifications due to the presence of the structure.

Recently, the freely available C++ finite volume method (FVM) library, OpenFOAM R©, has gained
popularity in a wide range of fields within computational continuum mechanics, ranging from complex
fluid flow problems, to solid mechanics and electromagnetism. OpenFOAM R©possesses great potentials for
multi-physics numerical simulations due to its general structure. Currently, the officially released versions
do not include solvers directly dedicated to porous seabed modeling. However, the tensorial approach
and object-oriented nature of OpenFOAM R©[3] makes it relatively easy to implement new tailor-made
soil solvers for porous seabed problems. Indeed, Liu and Garcia [4] successfully made the first effort on

∗ Corresponding author: Tian Tang (tiat@byg.dtu.dk)
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investigating seabed response under waves using OpenFOAM R©. They applied the original OpenFOAM
solver for two immiscible incompressible fluids (water and air) to produce a wave field, and implemented
a new poro-elastic soil solver based on Biot’s consolidation theory for the seabed behaviour. Still, a
key element lacking within their research is the incorporation of a realistic soil stress-strain constitutive
relation: The Biot equations are not capable of predicting the nonlinear soil skeleton behaviour and the
gradual built-up of excess pore pressure under cyclic loading. Implementation and validation of a soil
solver that include these important phenomena is the main goal of the present work.

The structure of this paper is as follows. In section 2 we briefly review the governing equations for the
two different domains - sea and seabed. The adopted numerical solvers for solving the two systems are
introduced in Section 3, where a detailed account of the solution algorithm in the newly implemented
cyclic nonlinear porous soil solver is given. In Section 4, test cases are provided to demonstrate the overall
performance of the simulations. Finally in Section 5 discussions and conclusion are presented.

2. GOVERNING EQUATIONS

The governing equations for the free surface water waves and the nonlinear porous seabed are briefly
described below.

2.1 Wave domain: Reynolds averaged Navier-Stokes equations
The combined flow of air and water above the seabed is governed by the incompressible Reynolds

averaged Navier-Stokes (RANS) equations:

∂ρv
∂ t

+∇ · (ρvvT) =−∇p∗− (g ·x)∇ρ +∇ · (µ∇v+ρτ) (1)

∇ ·v = 0 (2)

where, v is the velocity vector field in Cartesian coordinates x, p∗ is the pressure in excess of the
hydrostatic pressure (p∗ = ptot −ρg ·x), ρ = ρ(x) is the density taking the values 1 and 1000 kg/m3 at
regions occupied by air and water, respectively. Likewise the viscosity µ takes the values 1.48 ·10−5 and
10−3 kg/ms in air and water, respectively. The constant vector g is the gravity acceleration. The specific
Reynolds stress tensor τ is defined as τ = 2

ρ µtS− 2
3 kI and S = 1

2(∇v+∇vT), with µt standing for the
dynamic eddy viscosity, S being the strain rate tensor and k the turbulent kinetic energy.

The two immiscible fluids are tracked using a scalar field γ , which is the cell averaged density shifted
and normalized to a volume fraction taking the value 0 for air filled cells, 1 for water filled and intermediate
values for partially water filled cells. The transportation equation for γ is modeled by:

∂γ
∂ t

+∇ · (vγ)+∇ · [vr(1− γ)] = 0 (3)

where vr is a relative velocity [5]. Using γ , the spatial variation of any fluid property Φ (such as viscosity
µ and density ρ) can be given by Φ = γΦwater +(1− γ)Φair.

Turbulence is modeled using a k−ω closure model:

∂ρk
∂ t

+∇ · (ρvk) =Pk−β ∗kω +∇ · [(µ +σ∗µt)∇k] (4)

∂ρω
∂ t

+∇ · (ρvω) =αPω −βω2 +
σd

ω
∇k · (∇ω)T +∇ · [(µ +σω

k
ω
)∇ω] (5)

µt = ρ
k
ω̃
, ω̃ = max(ω,

Clim√
β ∗
√

2S : S) (6)

where, ω is the characteristic frequency for the turbulence. The closure coefficients: β ∗, σ∗, α , β , σd , σω
and Clim take the standard values from literature. The production terms, Pk and Pω , can be determined via
standard formulations, e.g. on the basis of the rotation of velocity field [6].
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2.2 Seabed domain: Modified Biot’s consolidation equations
The nonlinear porous seabed (filled with water and/or air in the pores) is governed by the modified

Biot’s consolidation equations. The term ’modified’ is used since the original elastic soil constitutive
model has been substituted with an advanced cyclic plasticity model suitable for describing both monotonic
and cyclic loading condition:

k
γw

∇2 p =
n
K′

∂ p
∂ t

+
∂
∂ t

(∇ ·u) (7)

∇ ·
[

G∇(δu)+G∇(δu)T +(K− 2
3

G)I∇ · (δu)
]
−∇ ·

[
K (δε p

v )+2G
(
δε p

d

)]
−∇(δ p) = 0 (8)

Here p is the pore pressure, u is the soil displacement vector and ε p
v(d) is the volumetric (deviatoric) plastic

strain. The δ symbolizes the increment of any of the aforementioned variables. The material properties
are the permeability, k, the specific weight of water, γw, the porosity, n, the true bulk modulus of the pore
fluid, K′, and the bulk and shear moduli of the soil skeleton, K and G, respectively. For unsaturated soil the
combined flow of water and air in the pores is simply considered as a single fluid, with the approximated
bulk modulus K′ = Sr

Kw
+ (1−Sr)

p0
, where Sr is the saturation factor, Kw is the pure water bulk modulus

(≈ 2GPa), and p0 the absolute (not excess) pore-water pressure.
Eq. 7 describes the mass balance of the pore fluid and Eq. 8 represents the total momentum balance

of the soil mixture. The total momentum equation is written in incremental form so as to incorporate the
selected nonlinear cyclic plasticity constitutive model. A brief description of the model formulations is
listed as following:

Yield function: f =
√
(s− p′α) : (s− p′α)−

√
2/3mp′ = 0 (9)

Hardening law: δα = α̃δλ , α̃ = h0
|b : n|

bre f −|b : n|b (10)

δm = m̃δλ , m̃ = cm(1+ e0)D (11)

Flow rule: δε p
v = Dδλ , D = A0(1+ 〈F : n〉)d : n (12)

δε p
d = nδλ (13)

δλ =
2Gn : δεd−KNδεv

Kp +2G−KDN
, Kp = p′(n : α̃ +

√
2/3m̃) (14)

Here s is the deviatoric stress tensor and p′ is the effective mean stress. The internal-state variables
denoted by m and α determine the ’size’ and the position of the axis of the yield surface (cone-type),
respectively. The yield function f describes the bounded region in a general stress space within which
elastic and recoverable deformations occur. The yield surface can also undergo dynamical expansion
(hardening of the soil during plastic deformations), specified by the hardening law. In the yielding process,
the flow rule determines the relative magnitude of various components (i.e. volumetric and deviatoric) of
plastic deformations. The volumetric plastic deformation δε p

v is calculated from the volumetric part D
(the dilatancy coefficient) of a defined scalar plastic multiplier δλ , while the deviatoric plastic strain δε p

d
is from the deviatoric part n of δλ . Detailed explanations on δλ , the volumetric part N of the normal
to the yield surface, the plastic modulus Kp, the ’distance’ vectors b and d, the fabric tensor F, and the
model parameters h0, bre f , cm and A0 - can be found in [7, 8].

In the work presented here the offshore structures are simply assumed to be rigid and fixed bodies and
hence no governing equations are specified for the structure domain.

3. NUMERICAL METHODS

This section presents the numerical procedures applied to solve the governing equations in the two
domains.
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3.1 waves2Foam

waves2Foam is a freely available package in OpenFOAM R©developed by Jacobsen [9] for generating
and absorbing free surface water waves. It contains a solver, waveFoam, for free surface Newtonian flows
using the RANS equations coupled with the volume of fluid method (Eq. 3). Its main features are the
wave generation options at the inlet boundary supported by a large range of wave theories, plus the custom
geometrical-shape relaxation zones at the inlet and outlet boundaries for wave absorption. Examples of
application and validation of the waves2foam toolbox can be found in [6].

3.2 twoSurfacePlastBiotFoam

twoSurfacePlastBiotFoam is a newly developed nonlinear porous soil solver implemented by the
first author of this article on the basis of the FVM discretization library in OpenFOAM R©[10]. It solves
the aforementioned modified Biot’s consolidation equations supplemented with the nonlinear two surface
cyclic plasticity constitutive model (Eq. 9-14).

There are two main challenges in the solution procedure for Eqs. 7 and 8: one is the strong nonlinearity
in the total momentum equation caused by the cyclic plasticity constitutive relation, and the other is the
strong pressure-displacement coupling due to the presence of the volume change term in the storage
equation (Eq. 7) and the presence of the pore pressure gradient term in the momentum equation (Eq. 8).
The ’segregated’ solution algorithm associated with FVM, (which is also the common approach used
in most of CFD codes), is adopted to deal with these challenges. Thus, Eq. 7 and 8 are first linearised
and decoupled by use of the latest available values of the nonlinear plastic terms and the coupling terms
(explicit discretization). This allows the equations to be solved one by one for each solution variable. It is
important to apply a certain kind of iteration method – the fixed point iteration method – together with
this ’segregated’ procedure to recover the full nonlinearity and coupling of the original equations.

The above solution strategy results in four small linear algebraic systems of equations being solved
iteratively. Iterations are stopped once a desired convergence has been achieved. When the soil is yielding,
the plastic deformations will dominate and significantly impact on the convergence. It may even destroy
the convergence as the explicit discretization terms overweight their implicit counterparts. Explicit under-
relaxation methods are then used to improve or recover convergence. Appointing a fixed under-relaxation
factor or dynamic relaxation factors from e.g. the Aitken’s method on the nonlinear plastic terms in each
iteration helps to fix the convergence problems for most cases.

Another important issue is the nonlinear stress calculation process. After the displacement field
has been solved in the whole soil domain one must compute the corresponding stresses and (total and
plastic) strains for each computational cell using the constitutive relation. As previously discussed,
the plastic strain terms are calculated using explicitly approximated values inside each global momen-
tum iteration. Applying costly complex implicit stress calculation algorithm is unnecessary. Instead
twoSurfacePlastBiotFoam uses a simple and economic return-mapping method for the nonlinear
stress-strain calculations.

The interested reader can find more details regarding to the solution algorithm and verifications of
the twoSurfacePlastBiotFoam solver in [10]. The solver itself has also been uploaded as a public
repository on Bitbucket for free download, the link can be found through [11].

3.3 Simulation procedure
In the present work we simulate the interactions among the wave, seabed and structure as a one-way

coupling process. The wave motion field can be altered by the presence of offshore structure. However the
structure itself is assumed rigid and will not move. Also, we focus on investigating the impact from wave
loads on the seabed, that is, excess pore pressures, soil displacements and stresses. The feedback from
the soil deformations on to the wave field is neglected. From a offshore engineering perspective this is
acceptable since generally the magnitude of wave-induced deformations of seabed takes place on a longer
time scale than the wave period. The one-way coupling assumption also allows us to solve the wave and
seabed domain separately using different time steps and mesh sizes, saving extra computational costs.
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The overall simulation procedure used in this paper is as follows: The wave domain is first solved
using waves2Foam with appropriate boundary condition settings, such as wave inlet(s), outlet(s), and rigid
impermeable sea bottom and/or structure. After the wave solution has been obtained for the prescribed
total time period, a sample utility in OpenFOAM R©is applied to extract the wave pressure on the sea
bottom and output the data (point positions and pressure values) into files named after the corresponding
time step. In cases where a structure is present, the forces utility is also used to calculate forces (pressure
integration along the structure surface) and output a data file listing wave forces and moments at each
time step. Having the above calculated wave load input - i.e. bottom wave pressure and/or structure force,
twoSurfacePlastBiotFoam is used to solve the corresponding seabed response. A common assumption
is made concerning the top of the seabed in which the pore pressure is equal to the wave bottom pressure
and that the soil effective stresses vanish [1]. Moreover, simple force balance of the fixed structure is
considered to transfer the total wave force on the structure to an uniformly distributed structural force
acting on the seabed.

A summary of the different boundary conditions employed for the wave and seabed domains is given
in Table 1.

Table 1: Primitive and derived OpenFOAM R©boundary conditions used in the simulation

(a) wave domain: waves2Foam

p : pressure v : velocity
inlet(s) zeroGradient waveVelocity1

outlet(s) zeroGradient fixedValue

sea bottom zeroGradient slip

structure zeroGradient slip

atmosphere totalPressure pressureInletOutletVelocity
1waveVelocity is a derived wave generation boundary in waves2Foam.

(b) seabed domain: twoSurfacePlastBiotFoam

p : pore pressure δu : incremental displacement
top timeVaryingMappedFixedValue2 zeroTraction

lateral zeroGradient fixedValue or slip
bottom zeroGradient fixedValue or slip
structure zeroGradient fixedValue or

timeVaryingTraction3

2timeVaryingMappedFixedValue is a time-varying, non-uniform OpenFOAM R©boundary, it can read those

sampled bottom wave pressure data files and assign the corresponding values to the pore pressure field.
3timeVaryingTraction is a derived traction boundary in twoSurfacePlastBiotFoam, it reads

the structural force data file and computes the compatible displacement gradient boundary.

4. TEST CASES

Validation of waves2Foam as a toolbox for modeling of free surface waves and twoSurfacePlastBiotFoam
as a nonlinear soil solver for modeling of porous seabed has already been carried out in [6] and [10],
respectively. Thus, the presented test cases focus on demonstrating the interaction modeling using the two
solvers. Two numerical examples are considered: (i) a validation case of a marine pipeline buried in a
porous seabed under wave loadings, and (ii) an application case with a submerged gravity-based structure
partially buried in the seabed under a multi-directional wave field.
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4.1 Modeling of wave-seabed-pipeline interaction
A marine pipeline is a type of common-used offshore installations. Here we simulate a test case

similar to an experimental study conducted at Cornell University [12]. Fig. 1 presents the schematic
view of the experiment. The details of this experiment can be found in the original paper. In this test, an
uniform, homogeneous porous seabed with a buried pipeline is exposed to a progressive wave loading.

Figure 1: A sketch of the wave-seabed-pipeline interaction example, after [12]

In the simulation, a 2-D wave flume field is modeled by setting a wave generation inlet on the left
and a wave absorbing outlet on the right vertical boundary. A finite soil (seabed) trench is placed at the
mid-length of the wave flume. On the bottom and sides of the seabed trench all displacements and normal
water flux are assumed to vanish. For the pipe, zero displacement and zero flux conditions are applied.

Fig. 2 shows the numerical results of the test case with Fig. 2a showing a snapshot of the simulated
free surface water wave, and Figs. 2b-2c showing, respectively, pore pressure contours and shear stresses
contours in the seabed. There are clear signs of shear stress concentrations on the sides of the pipeline.
These transient plots are all taken at a representative time t = 20s when the wave crest is passing right
above the pipeline.

In Fig. 3a, the simulated pore pressure amplitude around the pipeline is plotted against the experi-
mentally measured data [12]. Although the simulation results seem to slightly overshoot the experiment
data mainly due to the approximation of the true pore fluid bulk modulus, an overall match can be seen
between the two. In Fig. 3b, the calculated seepage forces acting on the pipeline (obtained by integrating
pore pressure along the pipeline surface) are compared with available solutions from Cheng and Liu [12],
where the influence of varying soil permeability has been considered. We observe a good agreement
between our simulation results and their solutions.

Besides from the above transient response (e.g. amplitude damping and phase lag of the pore pressure),
another quantity of interest to the pipeline design is the residual (built-up) nature of pore pressure under
cyclic wave shearing. As there was no information revealed on the latter feature in the original Cornell’s
experiments, we now compare our results to another similar experiment conducted later by Teh et al
[13], where the gradual built-up of the seabed pore pressure is investigated as well. In their experiment,
very fine silt was used as the seabed material so that it could restrain the dissipation of pore pressure and
facilitate the built-up process. Hence, a corresponding small soil permeability, k = 2×107m/s, is used
in our simulation. Typical values of loose silt were adopted and the plasticity model constants for the
constitutive model [7] were also carefully calibrated to obtain a reasonable fit to the measurements. A
summary of the used plasticity model parameters is given in Table 2.

Fig. 4 presents the gradual increase of pore pressure in the seabed at different locations due to
cyclic wave loading. In Fig. 4a, the simulated results are first compared with experimental data at two
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Table 2: Calibrated plasticity model constants used in the residual response simulation.

Elastic Critical state State parameter Hardening Dilatancy
K0, G0 2, 0.866MPa Mc(e) 1.15(1.035) kb

c(e) 3.975(2.0) h0 1200 A0 6
a 0 λ 0.025 kd

c(e) 4.2(0.07) m, cm 0.05, 0 Fmax, C f 500, 600

(a)

(b) (c)

Figure 2: Numerical results of the wave-seabed-pipeline interaction test case. Upper panel: view of the
free surface wave profile. Lower panels: contours of the wave-induced pore pressure (left) and shear

stress (right) inside the seabed domain.
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different soil depths without the presence of the pipeline: one at z =−0.005m near to the seabed surface,
where pore pressure change is strongly influenced by the periodic wave pressure fluctuation; another at
z =−0.185m near to the seabed bottom, where pore pressure build-up is more significant due to the long
drainage distance plus the very low soil permeability. Although the match with experiments is not perfect,
the general trend of pore pressure accumulation is well captured in the simulation. With the same soil data
set, Fig. 4b plots the pore pressure build-up in the presence of an impermeable pipeline, which locally
creates a poor drainage condition. It can be seen that the pore pressure build up rate varies along the
pipeline: fastest at the top of the pipe while lowest at the bottom. This agrees with the observation by
Dunn et al. [14] that the liquefaction process propagates from the the top and downwards.

4.2 Modeling of wave-seabed-gravity structure interaction
To further demonstrate the applicability of the new solver in the context of practical offshore engineer-

ing, a test case of 3-D seabed response in a numerical wave tank with a submerged gravity based structure
is carried out. The wave tank is a square of side length 150m and the water depth is 5m. The gravity
structure (represented by a rigid box of dimensions 20m×20m×5m) is placed in the middle of the wave
tank and partially buried in the seabed (buried depth = 1m). The porous seabed domain is 60m in width
and length, and 10m deep. Realistic ocean wave conditions are simulated by imposing waves from three
different directions. The wave characteristics are: wave hight H0 = 0.5m, wave period T = 7s, and wave
length L = 45.66m. The elastic soil parameters used for design of gravity platforms in the North Sea [15]
are adopted here for the seabed domain: e.g. elastic shear modulus G = 1.2×107kPa, Poisson’s ratio
ν = 0.2. The soil permeability is assumed to be k = 0.001m/s and the saturation factor is set to Sr = 0.98.
The other plasticity model constants are kept the same as the pipeline case.

The overall simulation process is divided into two steps: First an initial consolidation stage after
the installation of gravity structure on the seabed (static wave assumption). Then follows a cyclic wave
loading stage where wave-induced seabed response around and beneath the structure are of the main
interests.

4.2.1 Consolidation stage
The structure is assumed to consist of concrete with density ρ = 2.4kg/m3. This corresponds to a

vertical load tv = 1.2×105Pa acting upon the seabed-structure interface. The seabed domain is assumed
initially in the geostatic stress state with the lateral earth pressure coefficient K0 = 0.5. Once the structure
is in place the seabed consolidates under its load until all excess pore pressure has been dissipated. It is
assumed that there are no waves present during the consolidation process.

Figure 5: A slice view of the excess pore pressure distribution within the deformed seabed (exaggerated
a factor 100). The green arrows represent the pore flow direction.

Fig. 5 shows a snapshot of the pore fluid flow profile in the seabed right after the installation of the
structure. It can be seen that large amount of excess pore pressure is generated beneath the structure, and
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(a) (b)

(c) (d)

Figure 6: Distribution of the effective stresses in seabed at the final stage of consolidation process

the pore fluid flows from the high pressure zone (underneath the structure) to the lower pressure zones at
the seabed surface where there is free drainage. Moreover, the structure itself settles downwards during
the consolidation process and the maximum settlement occurs at the middle part of the structure.

Fig. 6 illustrates the distribution of the different components of effective stresses in the seabed when
the consolidation is finished. In Fig. 11a, the vertical effective stress (sigmaZZ) is increased significantly
under the structure as expected. In Fig. 11b and 11c the two horizontal effective stress components
(sigmaXX and sigmaYY) are shown to be reduced beneath the structure. This is because the soil has
been squeezed toward the two lateral sides due to overburden compression. Fig. 6d shows the shear stress
concentration zones underneath the edges of the structure.

The above final consolidated stress state in the seabed is used as the initial condition for the wave
loading stage, while the displacement field is simply reset to be zero.

4.2.2 Cyclic wave loading stage
After completion of the consolidation stage, the waves are turned on, and the wave-induced seabed

response is studied. Three wave generation inlet zones are placed at three sides to generate the desired
wave motion inside the wave tank. On the remaining side a wave absorption outlet zone is set to absorb
the wave energy. The parameters for generating the multi-directional waves are listed in Table 3 below.

Fig. 7a shows the wave tank geometry with the inlet and outlet placements. Fig. 7b plots the
generated surface elevation of waves at time t = 47s when a wave crest passes on top of the structure. The
modification of the structure on the wave field around it is clearly seen. Another feature visible in Fig. 7b
is that the generated wave crest (0.45m) is further from the mean sea level than the wave trough (-0.37m),
which represents a general feature of the nonlinear nature of waves.

Fig. 8 plots the generated periodic wave dynamic pressure acting on the sea bottom and the structure.
Three representative positions from Fig. 7a are probed: a point on the sea bottom in front of the structure
x1 = (65,−5,75), a point on the structure x2 = (75,−1,75), and a point on the sea bottom behind the
structure x3 = (85,−5,75). Fig. 9 illustrates the periodic wave force components and magnitude acting
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Table 3: Multi-directional wave parameters

direction wave number frequency wave height(m)
inlet0 ( 1 0 0 ) ( 0.137622 0 0 )

0.897598 0.5inlet1 ( 1 1 0 ) ( 0.0973138 0.0973138 0 )
inlet2 ( 2 −1 0 ) ( 0.123093 −0.0615466 0 )

(a)

(b)

Figure 7: Snapshot of the 3-D wave profile. Upper panel: view of the wave tank mesh geometry
(structure presenting in the middle of the tank). Lower panel: contours of the surface elevation at time

t = 47s.
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on the gravity structure. It is seen from the upper panel of Fig. 9 that the pull upwards force (∼ 300kN)
is larger than its counterpart push downwards force (∼ −200kN). This wave pressure force variation
complies with the previously observed fact that the generated wave crests are further from the mean sea
level than the troughs.

(a) (b)

Figure 10: Wave-induced pore pressure distribution in seabed at time point t = 47s. Left panel: top
surface view. Right panel: slices view. The deformed configuration is exaggerated a factor of 1000.

In Fig. 10, the wave-induced pore pressure distribution in the seabed at time t = 47s is illustrated.
At this moment a wave crest is passing above the structure and consequently the parts of soil facing the
wave crest are compressed. It is also observed that the soil beneath the structure only undergoes minor
deformations compared to the soil just next to the structure. Fig. 10b also demonstrates the vertical
penetration of the wave-induced pore pressure down through the seabed. Only a shallow layer of soil is
found to be affected, while the deeper soil layers experience no excess pore pressure. This layer thickness
is partially determined by the saturation degree, because the air content in the soil will make the pressure
pressure dissipate at a very fast rate.

Fig. 11 shows the distribution of the wave-induced effective stress components in the seabed at time
t = 47s. It is observed from Fig. 11a that extension stress is generated in the seabed at the two sides of the
structure because a wave trough is passing by, while compression stress is generated beneath the structure
because of the passage of a wave crest. Moreover, a significant amount of shear stress is observed under
the edges of the structure as shown in Fig. 11c. Note that the effective stresses in response to the gravity
structure weight have been subtracted from the results to demonstrate the pure effect of waves.

Fig. 12 shows the evolution of the generated pore pressure in seabed under wave loading within
several wave cycles. Two positions in the seabed are selected - one below the center of structure and the
other 3m underneath its center. Partial drainage are created in those places due to the impermeability of
the structure. It is shown that the pore pressure is accumulated in the initial cycles after which dissipation
takes over. We consider this prediction quite reasonable, since what occurs to the soil underneath the
structure is that: on one hand the cyclic shearing compresses the soil skeleton and thus generates positive
pore pressure, while on the other hand the structural force pulls the soil upwards (see Fig. 9) and so
creates negative pore pressure. The two processes are competing against each other and in the end the pull
upwards becomes dominant in this case.

5. CONCLUSION AND DISCUSSION

The present work has demonstrated in general that it is feasible to use OpenFOAM R©as a platform for
multi-physics modeling of the interactions between ocean waves, porous seabed and an offshore structure.
For the seabed domain in particular, a new nonlinear cyclic porous soil solver is applied, which allows
investigation of the different mechanism involved in seabed response to transient and cyclic wave loading
condition. The object-oriented nature of the OpenFOAM R©code library also allows the implementation
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(a)

(b)

(c)

Figure 11: Wave-induced effective normal and shear stresses distributions in a cutting plane view
(x-direction) of the seabed at time point t = 47s.
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Figure 12: Wave-induced residual response of the seabed in terms of pore pressure buildup. Upper panel:
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of other user-desired soil solvers. It is the authors’ view that OpenFOAM R©opens a way for offshore
geotechnical engineers to incorporate more realistic wave loading conditions (retrieved from CFD models),
and meanwhile to use FVM soil solvers effectively dealing with the strong nonlinearity and pressure
coupling in the equation system by using the ’segregated’ solution strategy.

There are also some extensions which can widen the applicability of the presented simulation method.
For instance, in reality the offshore structures may not be rigid and stay in the place, instead they undergo
deformation and/or rotation due to the wave loads. Therefore realistic structural response could be
modeled e.g. by employing a solid mechanics solver. In this way, the soil-structure interaction can be
included by imposing continuity of the displacement on the interface between the soil and structure.
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1. Introduction

Offshore geotechnical engineers are putting increasing efforts into the
study of dynamic interaction processes between the three components in
marine construction: water, soil, and structure. When ocean waves pass by
an offshore structure, the presence of the structure alters the incoming wave
field, which in turn exerts forces on the structure. These external wave forces
should at any time be counter balanced by the stresses at the soil-structure
interface to keep the structure in place. The underlying soil responds to the
pressure and shear variations on the seabed with small displacements and
changes in pore pressure as a result. Improved knowledge of this type of
interaction process is essential for engineers when it comes to prevent future
offshore structure failures of geotechnical nature.

Traditionally, a large effort has been put into modeling one of the three
components accurately with somewhat oversimplified models for the other
two subdomains. For instance, advanced CFD models have been applied to
calculate the wave loads on structures for complex ocean wave conditions in
coastal engineering, but using simple assumptions such as rigid and imper-
meable seabed and structure conditions Chen et al. (2014). Others employ
soil models to estimate wave-induced seabed responses in geotechnical engi-
neering, Sassa and Sekiguchi (2001) and Geremew (2013), but with simplified
wave loading conditions derived from linear wave theories. Only a few at-
tempts have been made to integrate numerical models of all three components
Jeng et al. (2013) and Ye et al. (2013). These studies follow the tradition of
using the finite volume method (FVM) to model the waves and a separate
software based on the finite element method (FEM) for the solid domains
i.e. soil and structure.

In the present study, we develop an approach for modeling the soil-water-
structure interaction, in which we incorporate all subdomains in the same
FVM based coding framework. Adopting this approach, the usage of addi-
tional software for data transfer between different numerical methods (and/or
software) can be avoided. Benefits of using FVM based numerics for soil mod-
eling has recently been discussed in Tang et al. (2014) and Tang and Hededal
(2014). The method has proven well-suited for handling the strong coupling
effect between the soil skeleton and the pore fluid, as well as the soil material
nonlinearity. Integrating the wave, soil and structure solvers in the same
FVM based code framework opens up for an efficient way for handling the
interaction modelings. Our work may be regarded as an extension of Liu
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and Garcia (2007) who combined a CFD solver with an FVM isotropic poro-
elastic soil solver to study wave-induced seabed response in the presence of a
rigid offshore structure. The new features in the present work are 1) the use
of more realistic directionally spread wave field imposed on the structure, 2)
the inclusion of displacements and stresses in the structure, and finally 3) the
extension of the soil model to account for anisotropy. The latter extension is
important since most nature soils display some degree of anisotropy, having
different elastic and hydraulic properties in different directions, due to the
deposition mode, particle shape, and loading history, Hsu and Jeng (1994).

2. Mathematical models of the wave-structure-seabed system

Three mathematical models governing the three different components in
the interacting system are briefly presented below. We start with the descrip-
tion of the hydrodynamic wave calculation which provides the input pressure
for the remaining sub-domains. Then we move on to the structural solver,
and finally we present the soil solver in some detail.

2.1. Free surface Navier-Stokes wave model

The water waves and the air above them are modeled using the incom-
pressible flow type of Navier-Stokes (NS) equations - including one momen-
tum equation and one continuity equation:

∂ρv

∂t
+∇ · (ρvvT) = −∇p+ ρg +∇ · (µ∇v) (1)

∇ · v = 0 (2)

where v is the velocity vector, p is the pressure, and g is the gravity vector.
The density ρ and dynamic viscosity µ of a fluid particle are assumed to be
constant in time with the values ρw ≈ 1000kg/m3 and µw ≈ 1 · 10−3Pa s in
the water phase and the values ρa ≈ 1.2kg/m3 and µa ≈ 18 · 10−6Pa s in
the air phase. The passive advection equation governing the evolution of the
density field reads

∂ρ

∂t
+ v · ∇ρ = 0 (3)

We note that this equation is trivially solved everywhere except at the air-
water interface where it is numerically challenging due to the sharp jump in
density causing ∇ρ to be a Dirac delta function. A similar equation could be
written for the viscosity, but this clearly contains no new information, due
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to the assumption that both ρ and µ are constant everywhere except for the
jump at the air-water interface.

In the FVM method the above governing equations are volume integrated
over each computational cell and all terms are approximated via the values
of dependent variables, v, p and ρ, in the cell and its neighbour cells. With 5
dependent variables and N cells this gives 5N coupled equations that must
be solved to propagate the flow in time. The details of the solution algorithm
for the CFD is beyond the scope of the present paper. We only mention that
the pressure-velocity coupling is solved with a PISO based algorithm and the
air-water interface capturing is based on the VOF method with numerical
interface compression to keep the interface sharp. The reader is referred to
Anumolu et al. (2012) for further details.

2.2. Linear elastic structure model

The structure response is governed by one momentum balance equation
supplemented with constitutive equation in terms of an isotropic linear elastic
stress-strain relation:

∇ · σ =∇ · [2µε+ λtr(ε)I]

=∇ · [µ∇u + µ(∇u)T + λtr(∇u)I] = 0 (4)

where σ stands for the stress tensor and ε is the small strain tensor which can
be defined by ε = 1/2(∇u +∇uT) with u being the structure displacement
vector. The elastic material properties µ and λ are Lamé’s coefficients. The
two parameters are related to the more widely used Young’s modulus E and
Poisson’s ratio ν. The quasi-static assumption used here is valid for stiff
offshore structures, such as gravity-based structure (GBS), which tend to be
less sensitive to acceleration effects.

Even with the simplest isotropic linear elastic stress-strain relation, the
three displacement components are still coupled with each other through the
terms - µ(∇u)T + λtr(∇u)I - in Eq. (4). In FVM structure analysis, such
coupling is handled using the segregated strategy, in which one separates the
inter-coupling terms into ’explicit’ discretisation. Eq. (4) is split into the
following format:

∇ · [(2µ+ λ)∇u]︸ ︷︷ ︸
implicit

= −∇ · [µ(∇u)T + λItr(∇u)− (µ+ λ)∇u]︸ ︷︷ ︸
explicit

(5)
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The above segregated momentum equation will be solved iteratively until
the explicit terms essentially become implicit based on a fixed-point iteration
algorithm, Jasak and Weller (2000).

According to the derivation of Jasak and Weller (2000), the over-relaxed
implicit part on the left hand side of Eq. (5) is the maximum consistent im-
plicit contribution to the component-wise contribution, whereas the explicit
part on the right represents a pure rotation. For problems with little or no
rotation, such as the cases studied here, the splitting described in Eq. (5)
results in smooth and rapid convergence as the implicit part carry more in-
formation than its explicit counterpart.1

2.3. Anisotropic Biot’s porous soil model

The behavior of seabed soil is largely governed by the interaction of the
solid skeleton with the fluid(s) present in the pore structures. We adopt the
classical Biot’s consolidation equations, Biot (1941), to describe the coupled
soil behavior. The first governing equation is one quasi-static momentum
balance equation for the soil mixture, in which the constitutive behavior of
the solid phase (soil skeleton) applied is anisotropic elasticity:

∇ ·
[
C :

1

2

(
∇u + (∇u)T

)]
−∇p = 0 (6)

where u is the soil (skeleton) displacement, p is the pore fluid pressure and
C is the forth-order elastic stiffness tensor. In particular, the orthotropic
anisotropy will be considered here, as it effectively captures the degrees of
anisotropy that soil materials display in nature. The orthotropic elastic stress
strain relation may be expressed in the 6× 6 matrix notation:

σ′ =




σ′xx
σ′yy
σ′zz
σxy
σyz
σzx




=




A11 A12 A31 0 0 0
A12 A22 A23 0 0 0
A31 A23 A33 0 0 0
0 0 0 A44 0 0
0 0 0 0 A55 0
0 0 0 0 0 A66







εxx
εyy
εzz
εxy
εyz
εzx




= C : ε

(7)

1For structural problems where rotation is dominant, strong under-relaxation of the
explicit part are required for convergence consideration, or even full implicit block matrix
solution procedure is necessary when explicit relaxation fails to work.
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where according to Demirdžić et al. (2000), the 9 independent coefficients Aij
can be given in terms of Young’s moduli Ei, Poisson’s ratio νij, and shear
modulus Gij as follows:

A11 =
1− νyzνzy
JEyEz

, A22 =
1− νxzνzx
JExEz

, A33 =
1− νyxνxy
JEyEx

,

A12 =
νxy + νzyνxz
JExEz

, A23 =
νyz + νyxνxz
JExEy

, A31 =
νzx + νyxνzy
JEyEz

,

A44 = 2Gxy, A55 = 2Gyz, A66 = 2Gzx (8)

with

J =
1− νxyνyx − νyzνzy − νxzνzx − 2νyxνzyνxz

ExEyEz
(9)

The second soil governing equation is one mass balance equation of the
pore fluid based on Darcy’s law condition:

n

K ′
∂p

∂t
− 1

γw
∇ · (k · ∇p) +

∂

∂t
(∇ · u) = 0 (10)

where n is the soil porosity, γw is the specific weight of water, and k is
the diagonal permeability tensor with values kx, ky and kz in the diagonal.
The bulk modulus of the compressible pore flow K ′ can be approximated
by the formulation 1

K′ = 1
Kw

+ 1−Sr

pa
Verruijt (1969), where Sr is the degree

of saturation, Kw the bulk modulus of pure water (≈ 2GPa), and pa is the
absolute pore water pressure.

The momentum and mass balance equations are generally strongly cou-
pled due to the the presence of uy, uz and p in the equation for ux and so
forth. In the context of FVM, one traditionally solve the equations in a
segregated manner where in each iteration loop we solve the equations one
after another using the uy, uz and p values from the previous iteration in the
equation for ux and so forth. In other words, the equations are split into dif-
ferent ’implicit’ and ’explicit’ discretization parts, where the ’explicit’ parts
contain all the coupling effect from the other variables and shall be evaluated
from the previous iteration or the initial condition. Here we introduce how
to rearrange Eqs. (6) and (10) into the FVM implicit-explicit format:

∇ · (K∇u)︸ ︷︷ ︸
implicit

= −∇ ·
[
C :

1

2

(
∇u +∇uT

)]
+∇ · (K∇u) +∇p

︸ ︷︷ ︸
explicit

(11)
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n

K ′
∂p

∂t
− 1

γw
∇ · (k · ∇p)

︸ ︷︷ ︸
implicit

= − ∂

∂t
(∇ · u)

︸ ︷︷ ︸
explicit

(12)

in the above, the new ’implicit’ stiffness K in the momentum equation
is a second-order diagonal tensor defined by its three non-zero diagonals:
K1, K2, K3. Their values are according to σ′ii = Kiεii (i=1,2,3 and ε = soil
strain).

3. Numerical solvers and coupling procedure

Numerical codes used in this work for solving the soil, water and struc-
ture models are based on OpenFOAM, which is an open-source C++ li-
brary for continuum mechanics, Weller et al. (1998). One of the main ad-
vantages of OpenFOAM is that the partial differential equation and ten-
sor operations syntax closely resembles the equations being solved. For
FVM, OpenFOAM provides two distinct types of tensor-derivative classes:
finiteVolumeCalculus or fvc, which performs an ’explicit’ evaluation from
predetermined data; and finiteVolumeMethod or fvm, which constructs ap-
propriate matrices using the ’implicit’ finite-volume discretisation. Taking
advantage of these FVM classes in OpenFOAM, different types of custom
solvers can easily be implemented.

In the following subsections, we briefly describe the OpenFOAM solvers
applied in this work (either developed by ourself or adopted from the released
OpenFOAM solver library), the coupling procedure for modeling the inter-
action in the system, and the corresponding boundary conditions specified.

3.1. OpenFOAM Solvers

anisoBiotFoam is a newly developed anisotropic porous soil mechanics
solver. It is capable of computing transient pore pressure, elastic soil dis-
placement, strains and stresses accounting for mechanical and hydraulic soil
anisotropy. An extract of the code is given in Appendix (A), which demon-
strates the straight forwardness of implementing the governing equations, i.e.
Eqs. (11) and (12). In the implementation, the fixed-point iteration method
is applied to improve the convergence of the segregated solution approach,
and under-relaxation factors are adopted for stabilization.
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InterFoam is a standard OpenFOAM solver for 2 incompressible fluids.
It solves the NS equations and tracks the interface using the PISO scheme
and VOF approach, as described in Section 2.1.

stressedFoam is a linear elastic stress analysis solver released in OpenFOAM-
1.6-ext. It is capable of predicting elastic stresses and displacements in solid
bodies. The two solvers can be downloaded freely at the OpenFOAM Extend
Project website.

3.2. Coupling procedure

There are 3 separate mesh domains used in the computation: one for
the soil, one for the wave and one for the structure. The coupling between
different domains, which indicates the interactions in the multi-physics sys-
tem, is the information transfer via the common boundaries, i.e. water-soil
interface, water-structure interface and soil-structure interface. In general,
two kinds of coupling exist: strong coupling with 2-way data exchange, and
weak coupling with only 1-way data exchange. In this work, we will consider
only the latter type.

The 1-way coupling procedure for the soil-water-structure system, also
illustrated in Fig. 1, is explained as follows. The water wave domain is solved
first and the pressure on the seabed and on the structure is mapped to the
soil domain and the structure domain, respectively. The elastic structure
response is then computed based on the wave pressure loading on the water-
structure interface and the structural stresses acting on the soil-structure
interface are mapped to the soil domain. In the end, the soil dynamics is
solved given the wave pressure as well as the stress load from the structure.
This 1-way approach can be acceptable since the magnitude of wave-induced
deformation of seabed and marine structure displacement is minor compared
to the wave length. We note that this is true for time scale of interest here
of a few wave periods, whereas on the time scale of many wave periods the
seabed shape may gradually deform due to scour. The inclusion of such
gradual deformation is an interesting possible extension which is outside of
the scope of the current paper.

3.3. Boundary conditions

When solving the integrated mathematical models, appropriate bound-
ary conditions at external boundaries and internal interfaces for the three
computational domains are required, see Fig. 1. We note that the interface
boundaries specified here are on a basis of the 1-way coupling assumption.
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For 2-way coupling, the interface boundary conditions for the wave and struc-
ture solver parts respectively, should be modified.

In the wave domain, an implemented stream function wave-making bound-
ary (referring to the theoretical description in Fenton (1999)) is used in the
inlet. An active absorption boundary similar to the work of Higuera et al.
(2013) is located in the outlet to dissipate the wave energy. The slip condi-
tion is adopted at the solid surfaces such as sea bottom, sidewalls and surface
of structure. Zero dynamic pressure is set at the top atmosphere boundary
and the outlet, and a ’fixedFluxPressure’ boundary condition is applied for
the remaining boundaries. The fixedFluxPressure boundary sets the pressure
gradient to the provided value such that the flux on the boundary is that
specified by the velocity boundary condition.

In the structure domain, a time varying nonuniform pressure boundary
is specified at the wave-structure interface. This type of boundary condi-
tion maps the wave pressure data produced by the CFD calculations on the
structure at different times and spatial positions to the structure model with
proper interpolations. At the soil-structure interface, a fixed zero displace-
ment boundary is prescribed for the structure, assuming the soil material
is stiff to support the structure in place during the simulations. If given a
strong 2-way soil-structure interaction assumption, the displacement on this
boundary shall no longer be fixed but updated iteratively according to the
actual soil displacement upon calculations.

In the seabed domain, it is commonly accepted that effective soil stresses
vanish at the wave-soil interface (i.e. zero traction), and that the pore pres-
sure equals the hydrodynamic pressure on the seabed obtained from the wave
calculation. At the soil-structure interface it is assumed that the structure
is impermeable to the pore water flow. From the Darcy flow equation this
implies that the pressure condition should be zero normal gradient for the
pore pressure. The displacement on the soil-structure interface is assumed to
be dominated by the wave-induced structural forces. Hence a time varying
nonuniform traction force boundary is specified, in which the traction forces
are derived from the structure computations using patch to patch interpo-
lations. At the bottom and lateral boundaries of the soil domain the soil
skeleton is allowed to slip and the normal pore pressure gradient vanishes in
accordance with the impermeability condition.
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4. Test cases: verification and application

4.1. Verification of FVM anisotropic soil solver

Thorough verifications and validations of the standard OpenFOAM solvers
- interFoam and stressedFoam - have already been well documented in
Deshpande et al. (2012) and Jasak and Weller (2000), respectively; thus,
the verification work here will be limited to the performance of the newly
implemented anisoBiotFoam solver.

The verification of the anisoBiotFoam is achieved by examining two sep-
arate test cases and comparing the numerical predictions to the available
analytical solutions. The first test case investigates the wave-induced pore
pressures in unsaturated and hydraulically anisotropic seabed, similar to that
of Hsu and Jeng (1994) where analytical solutions were derived. We ap-
ply the same case geometry and wave and soil conditions as in Hsu and
Jeng’s paper for direct comparison, see Fig. 2a. The wave loading condi-
tion (based on linear wave theory) employed is a 2-D intersecting wave (with
wave obliquity θ = 45◦) of period 13.5 seconds in a water depth d = 50m
(or wavelength L = 224m). A coarse sand layer with thickness h = 48m is
assumed as the seabed, with cross-anisotropic permeability kz = 10−2 m/s,
kx/kz = ky/kz = 2.5. Some other important parameters for the soil are:
Poisson’s ratio ν = 1/3, shear modulus G = 107Pa (here mechanical isotropy
is considered), and porosity n = 0.3. The condition calculated is for unsat-
urated soils with the degree of saturation Sr over a range of 0.9 (partially
saturated) to approximately 1 (nearly fully saturated).

In Fig. 2b, the numerical results of vertical distribution of pore pressure
under different degree of saturation condition in seabed are illustrated. The
analytical solutions of Hsu and Jeng (1994) are also plotted. It can be seen
that the present numerical solutions are in good agreement with the analyti-
cal solutions. The results also show that the degree of saturation has a large
impact on the pore pressure development: the partially saturated soils have
much lower pore pressure than a nearly fully saturated soil, which has been
commonly observed in experiments, Sumer and Fredsøe (2002).

The second test case consists of an orthotropic square plate with a cir-
cular hole, as illustrated in Fig. 3a (only a quarter of the physical domain
is modeled for reasons of symmetry). This test case examines the imple-
mented mechanical anisotropy feature of anisoBiotFoam alone. Plane stress
condition is assumed. The plate width to the hole radius ratio is 200:1.
The material properties employed are the varied directional Young’s modu-
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(a) Definition sketch of a short-crested
wave pressure loading on a porous seabed
with finite depth.

(b) Vertical distribution of the wave-
induced pore pressure with varying sat-
uration degree factor Sr.

Figure 2: Verification of the hydraulic anisotropy of anisoBiotFoam with
the analytical solutions derived by Hsu and Jeng (1994).

lus Ex = 200GPa, Ey = 60GPa, 130GPa, 200GPa, Poisson’s ratio νxy = 0.3,
and shear modulus Gxy = 76.9GPa. A uniform tension of 1MPa is applied
on the right boundary of the plate.

(a) Orthotropic plateHole test case (b) Hoop stress σθθ around the hole

Figure 3: Verification of the mechanical anisotropy of anisoBiotFoam with
the analytical solutions presented by Lekhnitskii (1981).

Fig. 3 plots the numerically predicted hook stress σθθ around the cir-
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cumference of the hole, compared to the analytical solutions by Lekhnitskii
(1981). A close agreement can be seen between the numerical predictions
and the analytical solutions for all the orthotropic property variations.

4.2. Application on wave-structure-seabed interaction

The application test case demonstrates the applicability of the integrated
approach to a realistic offshore structure. This test case, as illustrated in
Fig. 4, consists of three computational domains: a numerical wave tank 86m
long and 42.5m wide, a grounded gravity base structure (with geometries
listed in Table 1), and an underlying porous seabed 10m thick.

Figure 4: Computational domains of wave, gravity structure and seabed.

The inputs for the wave generation are wave height 2.6m, water depth
8.08261m, wave length 53.3697m and wave period 6.7s. The wave is generated
in the direction (1 0.3 0), in which z is the vertical axis. Full reflection on
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Table 1: A gravity-based foundation geometry for offshore wind farm, Den-
mark

Foot height 3.45m Middle cylinder height 2.65m
Cone height 3.8m Top cylinder height 2.1m
Tower section height 1.9m Short side length 4.65m
Foot diameter at short side 17m Middle cylinder diameter 4.3m
Top cylinder diameter 9m

the side walls of the wave tank causes a directional spread sea state. The
elastic properties of the structure used are E = 20GPa and ν = 0.2. The
porous seabed parameters are extracted from typical values of the North
sea soil measurements, Kjekstad and Lunne (1981), together with reasonable
assumptions concerning the anisotropic conditions. They are: the varied
directional Young’s modulus Ez = 20MPa, Ex = Ey = 12MPa, directional
Poisson’s ratios νxy = 0.2 and νxz = νyz = 0.24, and the shear modulus
Gyz = Gzx = 12MPa and Gxy = 5MPa. The soil permeability is assumed
to be kz = 0.001m/s in vertical direction and kx = ky = 5kz = 0.005m/s in
horizontal directions, the soil porosity n = 0.3 and the saturation factor is
set to Sr = 0.98.

The computations start from a reference state, that is, the gravity struc-
ture is already installed in place and the seabed soil has adjusted itself in
equilibrium with the massive weight of the gravity structure. This is because
the main purpose of this work is to study the dynamic wave effects on the
structure and seabed and the interactions.

The total computational cost for running the three domains are given in
Table 2 below.

Table 2: Computational data of the 1-way integration simulation for a total
time period t = 17s.

Domain No. of cells No. of CPU CPU time Time step
Wave 1753264 8 29067s Adjustable, ca. 1∼3ms
Structure 86400 1 105672s Fixed, 0.05s
Seabed 247500 1 39678s Fixed, 0.05s

Fig. 5 shows the calculated free surface of water waves at different times in
a wave period. It can be seen that the presence of the structure significantly
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Figure 5: Free surface of waves passing by the gravity structure in a wave
period. The resulting dynamic wave pressures p rgz acting on the sea floor
are colored from blue to red.

15



Figure 6: Generated wave pressure load on the gravity structure and porous
seabed surface at times corresponding to Fig. 5. Note that the pore pressure
in the soil and the wave pressure on the structure use separate scales.
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modified the wave motion around it. The exerted wave pressures acting on
the seafloor (Fig. 5) and on the gravity structure (Fig. 6) is highly nonlinear
and 3-dimensional, partly due to the disturbance effect of the structure and
also due to the directional spreading of natural waves. This complex wave
pressure loading environment is impossible to get from analytical solutions
based on wave theory, but can readily be estimated from advanced CFD wave
solvers.

Fig. 7 provides an insight of the computed structural responses in terms
of the equivalent shear stress measurement σeq as well as the magnitude of
displacement, at a time t = 10.5s when a wave crest approached to the
structure. The equivalent stress σeq is defined by σeq =

√
2/3s : s, in which s

is the stress deviatoric tensor, i.e., s = σ−1/3(trσ)I. Considerable amount of
shear stresses are generated around the cone part of the gravity structure as a
consequence of the dynamic wave pressure variations. However, the resulting
total displacement of the structure is still very small, which complies with
the previously mentioned 1-way wave-structure interaction assumption. In
Fig. 8, the total forces created at the bottom of the structure, namely the
dynamic wave loads transferred through the structure to the underlying soil,
are plotted. The magnitudes of the shearing forces - Fx denoted by red and
Fy by green - are quite comparable to that of the normal force Fz (blue).
This demonstrates that the soil underneath the structure is subjected to
significant combined loading effects from the structure response.

Let us now analyze the transient seabed behavior including the pore fluid
(seepage) flow, soil deformations and shearing stresses, which are important
factors for geotechnical foundation design. Fig. 9 illustrates the pore fluid
flows induced in the seabed at time t = 14s, when a wave trough is passing
the gravity structure. There are notable upwards pore fluid flows created
underneath the structure. It is commonly acknowledged that when the up-
wards seepage forces exceed the self-weight of the soil, the momentary soil
liquefaction can occur and thus impacts on the safety of the upper structure,
Jeng (1997). This leads to a widely applied liquefaction criteria:

(p− pb) ≥
1 + 2K0

3
(γs − γw)z (13)

where pb is the pore water pressure at the seabed surface, K0 is the coefficient
of lateral earth pressure and the value of K0 = 0.5 is used here, and γs(w)
is the unit weight of soil and water, respectively. We have examined the
liquefaction risk accordingly, and found that the seabed soil did not reach
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Figure 7: Computed structure responses, represented by the distributions of
the equivalent shear stress (top) and the displacement magnitude (bottom).
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Figure 9: Seepage flows occurred in the seabed soil at time t = 14s (wave
trough). The display is in a cutting plane along x-axis.

liquefaction failure given the wave inputs in this work.
Fig. 10 presents the calculated vertical and lateral components of the soil

displacement at t = 10.5s. As a wave crest is crossing by the structure at
that time, the soil underneath the structure is compressed accordingly, and
the compressions increase from the center towards the edges of the structure.
Significant amount of lateral soil displacements, particularly along the x-
direction, are generated below the structure as a result of those horizontal
structural traction forces shown in Fig. 8.

Fig. 11 shows the contours of the wave-induced shear stress measurement
σxz in the seabed soil and the upper gravity structure. It is interesting to see
that in the field away from the structure the soil shear stress directly pro-
duced by the fluctuating wave pressures is almost negligible, compared to the
concentred shearing zones around the structure edges. The latter are gener-
ated because of the wave pressures as well, however, the loads are transferred
trough the gravity structure and act on the soil ’indirectly’. This implies that
the presence of the structure greatly amplifies the wave shearing effects down
to the underlying soil. Integrated wave-structure-seabed interaction analysis
can help to give correct predictions of the various loading conditions and
consequently the more realistic seabed response.

5. Conclusion

In this work, a new integrated finite volume approach is proposed to
model the interactions between wave, structure and seabed for offshore engi-
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Figure 10: Contours of the calculated soil displacements at time t = 10.50s.
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Figure 11: Contours of the shear stress distribution in the seabed and gravity
structure at time t = 10.50s.

neering purpose. Three FVM solvers, which are dedicated to solve problems
of fluid, solid and porous medium, respectively, are employed to compute
the 3D wave motion, as well as the dynamic structure and seabed responses.
The interactions in the system are modeled through 1-way data transfer via
the interface boundaries in terms of pressures and tractions. The computa-
tions are done in the open source C++ numeric library, OpenFOAM, where
preprocessing tools (e.g. FVM mesh generation), modifiable solvers, and
postprocessing tools (e.g. data sampling, patch interpolation) are all freely
available.

Two verification tests are first carried out to verify the newly implemented
anisotropic coupled soil solver. Afterwards the integrated FVM approach is
applied to solve a realistic offshore example involving a gravity base foun-
dation. Simulation results demonstrate that the interaction analysis can
provide improved wave loading environments for geotechnical assessment of
the seabed soil.

An appealing feature of this work applying FVM to solve the multi-
physics system is the computational efficiency. The FVM and its associated
segregate solution procedure only solve small matrix system with a simple
fixed iteration method for any nonlinearly coupled fluid or solid problems. As
a result, in future studies where even 2-way information transfer is required
for the coupling and the three subsystems shall be solved simultaneously,
FVM can produce very efficient solvers without requiring heavy computa-
tional resources.
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In general, the integrated modeling approach proposed in this work can
be used to enhance the design of offshore structures and foundations, by
providing the information on the wave-generated pore fluid flows, liquefaction
risks and stress distributions.

Acknowledgements

The implementation support on the anisotropic features in OpenFOAM
from Dr. Philip Cardiff at University College Dublin, Ireland, is gratefully
acknowledged.

Appendix A.

An extract of the code from the developed anisoBiotFoam solver is shown
in Listing 1. The fvm:: operator indicates an implicit term, operator fvc::
indicates an explicit term, operator & indicates a dot product, and operator
&& indicates a double dot product. Comments given describe the different
steps taken. A custom fourth order tensor class and the required operators
(e.g. double dot product) implemented by Cardiff et al. (2014) have been
adopted.

// Star t the time loop
f o r ( runTime++; ! runTime . end ( ) ; runTime++)
{

i n t iCorr = 0 ;
// Star t the FPI scheme

do
{

p . s t o r e P r e v I t e r ( ) ;
// Construct s t o rage equat ion

fvSca la rMatr ix pEqn
(

fvm : : ddt (p) == fvm : : l a p l a c i a n (Dp, p) − f v c : : d iv ( fvc : :
ddt (Dp2 ,U) )

) ;
// Solve s to rage equat ion

pResidual = pEqn . s o l v e ( ) . i n i t i a l R e s i d u a l ( ) ;
// Under−r e l a x a t i o n o f the pore p r e s su r e

p . r e l a x ( ) ;

U. s t o r e P r e v I t e r ( ) ;
// Construct momentum equat ion
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fvVectorMatr ix UEqn
(

fvm : : d2dt2 ( rho , U)
==

fvm : : l a p l a c i a n (K, U, ” l a p l a c i a n (DU,U) ” )

+ fvc : : d iv (C && e p s i l o n )

− f v c : : d iv (K & gradU )

− f v c : : grad (p)
) ;
// Solve momentum equat ion
UResidual = UEqn . s o l v e ( ) . i n i t i a l R e s i d u a l ( ) ;
U. r e l a x ( ) ;
// Reca lu la t e d i sp lacement g rad i ent and s t r a i n
gradU = fvc : : grad (U) ;
e p s i l o n = symm( gradU ) ;

i n i t i a l R e s i d u a l = max( pResidual , UResidual ) ;

} whi le // I t e r a t e u n t i l the e x p l i c i t terms become i m p l i c i t
( i n i t i a l R e s i d u a l > convergenceTolerance && ++iCorr <

nCorr ) ;
// Write s t r e s s f i e l d and eva luate l i q u e f a c t i o n depth
# inc lude ” c a l c u l a t e S t r e s s .H”
# inc lude ” eva lua t eL ique f a c t i onR i sk .H”

}
Listing 1: anisoBiotFoam.C
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1 Introduction

This Guide describes the technology of implementing various solid body stress analysis
solvers using the Open Source Field Operation and Manipulation (OpenFOAM) C++
libraries.

One of the strengths of OpenFOAM is that new solvers and utilities can be
created by its users with some pre-requisite knowledge of the underlying method,
physics and programming techniques involved.

——–OpenFOAM User’s Guide[1]
The key part of my Phd study focuses on soil modeling, which involved the understanding
of several important soil mechanical features and the selected numerical method itself,
namely the Finite Volume Method (FVM). Equipped with the above knowledge, I delved
into the OpenFOAM library [2] and enjoyed my implementations with the vast flexibility
that it provides.

Our intention is to make it as easy as possible to develop reliable and efficient
computational continuum-mechanics codes: this is achieved by making the top-
level syntax of the code as possible to conventional mathematical notation for
tensors and partial differential equations.

———Founders of OpenFOAM [3]
Hence this Guide is prepared with my hopes to generally demonstrate the great potentials
of the OpenFOAM library to do computational solid continuum mechanics, and also to
share in details my learning-process of building up new user-developed solvers in Open-
FOAM.
The overall structure of the Guide is shown in Figure 1.1. I will first present a brief
review on the standard released linear elastic solver - the stressedFoam - in chapter
2. Afterwards, I will describe the four advanced new stress solvers developed by myself
using OpenFOAM. These new solvers cover material nonlinearity (i.e. elasto-plasticity),
anisotropy, large strain and pore fluid coupling (poro-elasticity) feature, respectively. They
are corresponding to the epStressedFoam in chapter 3, the anisoFoam in chapter 4, the
totalLagrangianFoam in chapter 5 and the biotFoam in chapter 6.
For each solver, I shall present it through the following process:

physical model���numerical strategy���implementation���application
In this way, readers can easily follow up the whole story of the solver and will be freely
able to either add any desired modifications or build their own specific solvers.
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Introduction

In chapter 7, I will further describe some more advanced stress solvers having multiple
mechanical features. And in chapter 8, a couple of extra topics including the relaxation
method and the block matrix solver algorithm which help for the numerical convergence,
will be discussed.

Figure 1.1: Overview of the implementation Guide

2



2 A short review of stressedFoam

stressedFoam is a linear elastic stress analysis solver released in OpenFOAM-1.6-ext.
Although it is based on the simplest linear elasticity model, it possesses the following key
characteristics of computational solid mechanics (CSM) using FVM framework:

- The segregated solution procedure: each component of the displacement vector is
solved separately by treating the cross-component coupling explicitly.

- The fixed point iteration: the explicit cross-component coupling is updated itera-
tively using a simple first-order iterative method [4].

- The traction boundary condition: the force balance on the boundary is solved iter-
atively along with the inner solution domain.

The spirit of this linear elasticity FVM solver, namely applying cheaper iterative solvers
with the necessary iteration over the explicit cross-component coupling, is very appealing.
Because we can simply follow the same idea and use FVM to treat other complicated,
coupled and non-linear differential equations, widely present in solid mechanics problems.
As the mathematical model becomes more complex, FVM turns to be an interesting and
powerful tool in CSM.
As a start, let’s have a look at how stressedFoam is built in OpenFOAM. Shown in
Figure 2.1, the stressedFoam solver contains the Make compilation subdirectory, the
tractionDisplacement boundary condition subdirectory, the main stressFoam.C file
and several included header files (with .H extension). Detailed explanation on the codes
of each file is not provided here, as readers can refer to my two previous works [5, 6].
Through the following chapters, I will present the newly developed solvers, which uses
more advanced mathematical models, however, still keeps the same numerical strategy
and implementation structure.

3



A short review of stressedFoam

stressedFoam
Make ... This directory holds

compilation info (header
file locations and
libraries).

files
options

tractionDisplacement ... This directory holds the
traction force boundary
condition.

tractionDisplacementFvPatchVectorField.C
tractionDisplacementFvPatchVectorField.H

calculateStress.H ... This file calculates the
linear elastic stress.

createFields.H ... This file initializes
the displacement
vector field and/or
the temperature field.

readMechanicalProperties.H ... This file reads the
mechanical properties
from user input.

readStressedFoamControls.H ... This file reads the
convergence control
parameters from user
input.

readThermalProperties.H ... This file reads the
thermal properties from
user input.

stressedFoam.C ... This file is the main
file that solves the
momentum equation.

Figure 2.1: The directory structure of stressedFoam.
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3 The elasto-plasticity solver

Plasticity is one of the most important topics in solid body stress problems. Due to the high
non-linearity of the differential equations, finite element method (FEM) plasticity solvers
often turn to be very complicated and computationally expensive, as they produce large
block-matrices usually with high condition numbers, and as a consequence rely on direct
solvers. This chapter therefore presents the new FVM plasticity solver in OpenFOAM,
where the non-linearity is treated in an iterative way and creates diagonally dominant
matrices well suited for efficient iterative solvers.

3.1 Elasto-plasticity theory

Firstly, a brief summary of the governing equations for an elasto-plastic solid body is
described as following:

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂2[ρ(δu)]
∂t2 − ∇ · (δσ) = 0

δσ = 2μδεe + λtr(δεe)
δεe = δε − δεp

δε = 1
2

[
∇(δu) + ∇(δu)T

]

⇓
∂2[ρ(δu)]

∂t2 − ∇ ·
[
μ∇(δu) + μ∇(δu)T + λItr(∇δu)

]
+ ∇ · [2μ(δεp) + λItr (δεp)] = 0

(3.1)

where, δu: displacement increment;
δσ: stress increment;
δε, δεe, δεp: total, elastic, and plastic strain increment, respectively;
ρ: density;
μ, λ: material elasticity properties (Lame’s coefficients).
The plastic strain increment δεp shall be further determined by the given elasto-plastic
constitutive model:

δεp = 〈dΛ〉 ∂g

∂σ
, 〈dΛ〉 =

{
0, when pre-yielding f < 0.

dΛ, when yielding f = 0.
(3.2)

where the yield function, f , defines whether the material undergoes recoverable elastic
deformation or irrecoverable plastic deformation. The gradient to the plastic potential,
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∂g/∂σ, defines the direction of the plastic strain increment, and dΛ is the plastic multi-
plier defining the magnitude. Classic plasticity models are von Mises and Drucker-Prager
criterion. For details of those different plasticity model formulations, readers are suggested
to refer to standard plasticity books, e.g. [7].

3.2 Numerical strategy

In order to solve the non-linear governing equation - Eq. (3.1), a split of implicit and
explicit FVM discretization strategy adopted from [8, 9, 10] is applied:

∂2[ρ(δu)]
∂t2︸ ︷︷ ︸

implicit

− ∇ · [(2μ + λ)∇(δu)]︸ ︷︷ ︸
implicit

= ∇ ·
[
μ∇(δu)T + λItr(∇δu) − (μ + λ)∇(δu)

]

︸ ︷︷ ︸
explicit

− ∇ · [2μ(δεp) + λItr (δεp)]︸ ︷︷ ︸
explicit

(3.3)

In above, the first explicit part corresponds to the relaxed cross-component coupling, and
the second explicit part is the non-linearity. By simply treating all the coupling and
non-linear terms explicitly, the resulted small linear matrix systems are solved easily by
iterative solvers. Remember, we must iterate over the governing momentum equation
until these explicit terms essentially become implicit, so as to guarantee fully converged
solution.

3.3 epStressedFoam Implementation

In the following, I shall present the implementation techniques of the elasto-plastic stress
solver based on aforementioned theories. The new solver is named epStressedFoam, as we
are going to reuse the elastic solver codes and add the elasto-plastic features. Firstly, inside
your local solvers directory1, simply copy the original stressedFoam solver here and
change the corresponding file names. We shall do the following commands in a terminal2:
// copy the stressedFoam from the installed OpenFOAM library, rename it
// as epStressedFoam.
cd of16ext
cp −r $WM_PROJECT_DIR/applications/solvers/stressAnalysis/stressedFoam \
.
mv stressedFoam epStressedFoam
// rename the main .C file.
cd epStressedFoam
mv stressedFoam.C epStressedFoam.C

1Assume that a local solvers directory has already been created for placing all the user-defined solvers.
2The command sed -i ’s/some texts/another texts/g’ file-name(s) replaces the word "some

texts" with "another texts" in the file file-name. The \ symbol is used for line breaking
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// create an empty plasticity file.
echo > correctPlasticity.H
// rename relevant header files.
mv calculateStress.H calculateEpStress.H
mv readStressedFoamControls.H readEpStressedFoamControls.H
// modify the included .H file−names in the epStressedFoam.C file.
sed −i ’s/calculateStress.H/calculateEpStress.H/g’ epStressedFoam.C
sed −i ’s/readStressedFoamControls.H/readEpStressedFoamControls.H/g’ \
epStressedFoam.C
// rename the traction boundary dictory and files.
mv tractionDisplacement epTractionDisplacement
cd epTractionDisplacement
mv tractionDisplacementFvPatchVectorField.H \
epTractionDisplacementFvPatchVectorField.H
mv tractionDisplacementFvPatchVectorField.C \
epTractionDisplacementFvPatchVectorField.C
sed −i ’s/tractionDisplacement/epTractionDisplacement/g’ \
epTractionDisplacementFvPatchVectorField.*
cd ..
// edit info in the compilation file.
sed −i ’s/stressedFoam/epStressedFoam/g’ Make/files
sed −i ’s/tractionDisplacement/epTractionDisplacement/g’ Make/files
sed −i ’s/FOAM_APPBIN/FOAM_USER_APPBIN/g’ Make/files
// re−compile the solver to make sure all the basic set−ups are correct.
wclean
wmake

After typing the above command lines, we shall have created the directory structure for
the new epStressedFoam solver3, shown in below:

epStressedFoam
Make

files
options

epTractionDisplacement
epTractionDisplacementFvPatchVectorField.C
epTractionDisplacementFvPatchVectorField.H

calculateEpStress.H
correctPlasticity.H
createFields.H
readEpStressedFoamControls.H
readMechanicalProperties.H
epStressedFoam.C

Figure 3.1: The directory structure of epStressedFoam.

3Notice that, this Guide is only focusing on implementing isothermal mechanical stress, all the codes
relating to the thermal effect has therefore been deleted.
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Now we are ready to dig into each file and add those desired modifications. Any of the
standard text editor programs, e.g. emacs or gedit, is fine to use.

• createFields.H
We start with the createFields.H file, as it initializes all the unknown fields of our
interests. By reusing the original file, we only need to add the new primitive variable,
namely the incremental displacement δu, and also other two dependent variables:
the symmetric stress tensor σ and the (symmetric) plastic strain tensor ε.�

1 Info<< "Reading field U\n" << endl;
2
3 volVectorField U
4 (
5 IOobject
6 (
7 "U",
8 runTime.timeName(),
9 mesh,

10 IOobject::READ_IF_PRESENT, // optionally read from
user input when non−zero initial displacement
condition

11 IOobject::AUTO_WRITE
12 ),
13 mesh,
14 dimensionedVector("U", dimLength, vector::zero)
15 );
16
17 volVectorField dU
18 (
19 IOobject
20 (
21 "dU",
22 runTime.timeName(),
23 mesh,
24 IOobject::MUST_READ, // must read from user specified

boundary condition
25 IOobject::AUTO_WRITE
26 ),
27 mesh
28 );
29
30 volSymmTensorField sigma
31 (
32 IOobject
33 (
34 "sigma",
35 runTime.timeName(),
36 mesh,
37 IOobject::READ_IF_PRESENT, // read from user input

when non−zero initial stress condition

8
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38 IOobject::AUTO_WRITE
39 ),
40 mesh,
41 dimensionedSymmTensor("sigma", dimForce/dimArea,

symmTensor::zero)
42 );
43
44 volSymmTensorField dEpsP
45 (
46 IOobject
47 (
48 "dEpsP",
49 runTime.timeName(),
50 mesh,
51 IOobject::NO_READ, // assume no plasticity in the

beginning of simulation
52 IOobject::AUTO_WRITE
53 ),
54 mesh,
55 dimensionedSymmTensor("dEpsP", dimless, symmTensor::zero)
56 );� �

Listing 3.1: createFields.H

• readMechanicalProperties.H
Then we are going to modify the readMechanicalProperties.H file, so as to add
those plastic properties present in the specific plasticity model we have chosen.
Worth to mention that, in the original file the Young’s modulus parameter is normal-
ized with respect to density as later the whole governing equation will be normalized
by the density. However, here we will not follow this way, the elastic parameters
are kept as they are without any normalization. The code snippet of the modified
readMechanicalProperties.H file is present below:�

1 Info<< "Reading mechanical properties\n" << endl;
2
3 IOdictionary mechanicalProperties
4 (
5 IOobject
6 (
7 "mechanicalProperties",
8 runTime.constant(),
9 mesh,

10 IOobject::MUST_READ,
11 IOobject::NO_WRITE
12 )
13 );
14
15 dimensionedScalar rho(mechanicalProperties.lookup("rho"));
16 dimensionedScalar E(mechanicalProperties.lookup("E")); //

9
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Young’s Modulus
17 dimensionedScalar nu(mechanicalProperties.lookup("nu")); //

Poisson’s ratio
18
19 Info<< "Calculating Lame’s coefficients\n" << endl;
20
21 dimensionedScalar mu = E/(2.0*(1.0 + nu));
22 dimensionedScalar lambda = nu*E/((1.0 + nu)*(1.0 − 2.0*nu));
23
24 Switch planeStress(mechanicalProperties.lookup("planeStress"))

;
25
26 if (planeStress)
27 {
28 Info<< "Plane Stress\n" << endl;
29
30 //− change lambda for plane stress
31 lambda = nu*E/((1.0 + nu)*(1.0 − nu));
32 }
33 else
34 {
35 Info<< "Plane Strain\n" << endl;
36 }
37 Info<< "mu = " << mu.value() << " Pa/rho\n";
38 Info<< "lambda = " << lambda.value() << " Pa/rho\n";
39
40 Info<< "Reading plastic properties\n";
41 dimensionedScalar sigmaY(mechanicalProperties.lookup("sigmaY")

); // Yielding stress
42 /*
43 dimensionedScalar varPhi(mechanicalProperties.lookup("varPhi")

); // Friction angle
44 dimensionedScalar c(mechanicalProperties.lookup("c")); //

Cohesion
45 dimensionedScalar varPsi(mechanicalProperties.lookup("varPsi")

); // Dilation angle
46 */� �

Listing 3.2: readMechanicalProperties.H

• readEpStressedFoamControls.H
The readEpStressedFoamControls.H file contains information on convergence con-
trol parameters. Here we only need to edit two places using sed commands (you
could also do direct edition by using text editor):
sed −i ’s/stressedFoam/epStressedFoam/g’ readEpStressedFoamControls.H
sed −i ’s/U/dU/g’ readEpStressedFoamControls.H

The new readEpStressedFoamControls.H file shall look like as following:�
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1 const dictionary& stressControl =
2 mesh.solutionDict().subDict("epStressedFoam");
3
4 int nCorr(readInt(stressControl.lookup("nCorrectors"))); //

maximum iteration numbers
5 scalar convergenceTolerance(readScalar(stressControl.lookup("

dU"))); // desired residual� �
Listing 3.3: readEpStressedFoamControls.H

• epStressedFoam.C
Now we can edit the main epStressedFoam.C file to solve the governing equation
- Eq. (7.1). As in our case we would like to solve the displacement increment δu,
instead of the total displacement u in stressedFoam.C, we could firstly replace all
the U text with dU by a single command line:
sed -i ’s/U/dU/g’ epStressedFoam.C

Then we can start to add those explicit plasticity terms into the equation. Remember
that, we need to iteratively update the plastic strain, which means the plasticity
computation file - correctPlasticity.H file has to be placed inside the momentum
loop. The final epStressedFoam.C file is present in Listing 3.4:�

1 #include "fvCFD.H"
2 #include "Switch.H"
3
4 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
5
6 int main(int argc, char *argv[])
7 {
8
9 # include "setRootCase.H"

10
11 # include "createTime.H"
12 # include "createMesh.H"
13 # include "readMechanicalProperties.H" // read material

properties
14 # include "createFields.H" // initialize all the computing

varaibles
15
16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
17
18 Info<< "\nCalculating displacement field\n" << endl;
19
20 for (runTime++; !runTime.end(); runTime++) // time loop
21 {
22 Info<< "Iteration: " << runTime.timeName() << nl << endl;
23
24 # include "readEpStressedFoamControls.H" // read convergence

control parameters
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25
26 int iCorr = 0;
27 scalar initialResidual = 0;
28
29 do // momentum loop, using the simple fixed point

iteration
30 {
31 volTensorField graddU = fvc::grad(dU); // compute the

current displacement gradient field
32
33 fvVectorMatrix dUEqn // construct the momentum matrix
34 (
35 fvm::d2dt2(rho, dU) // implicit time derivative

term
36 ==
37 fvm::laplacian(2*mu + lambda, dU, "laplacian(DdU,

dU)") // implicit over−relaxed laplacian term
38
39 + fvc::div
40 (
41 mu*graddU.T() + lambda*(I*tr(graddU)) − (mu +

lambda)*graddU,
42 "div(sigmaE)"
43 ) // explicit cross−component coupling terms (

after over−relaxation)
44 − fvc::div
45 (
46 2.0*mu*dEpsP + lambda*(I*tr(dEpsP)),
47 "div(sigmaP)"
48 ) // explicit non−linear plastic terms
49 );
50
51 initialResidual = dUEqn.solve().initialResidual(); //

solve the momentum equation and store the residual
52
53 # include "correctPlasticity.H" // based on the adopted

elasto−plastic constitutive model, calculate the plastic strain
for each control volume using the currently solved dU value.

54
55 } while (initialResidual > convergenceTolerance && ++iCorr

< nCorr); // evaluate the convergence condition
56
57 U += dU; // update the total displacement field
58
59 # include "calculateEpStress.H" // calculate the correct

stress upon converged solution
60
61 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << "

s"
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62 << " ClockTime = " << runTime.elapsedClockTime() << "
s"

63 << nl << endl;
64 }
65
66 Info<< "End\n" << endl;
67
68 return(0);
69 }� �

Listing 3.4: epStressedFoam.C

• correctPlasticity.H
Up to this stage, the correctPlasticity.H file is still empty, with no plasticity
information incorporated. Here I select to implement a simple von Mises J2 plasticity
model for demonstration purpose. Any other advanced plasticity model can be
implemented as well. Depending on the plasticity model itself, implicit or explicit
stress integration procedure shall be carefully examined, so that the local integration
is consistent to the global momentum solution procedure. In our case of the simple
von Mises model, a radial return algorithm is chosen for the implementation. Readers
are invited to refer to the tutorial [11], which gives detailed information on the
J2 plasticity formulation and the radial return method. The code snippet of the
correctPlasticity.H file is shown in Listing 3.5. Notice that, it is more accurate
that we calculate the plastic strain not only in the internal domain but also along
all the boundary patches.�

1 const volSymmTensorField& sigma_old = sigma;
2
3 // Get the trial updated stress
4 volSymmTensorField sigmaNew =sigma_old+ 2.0*mu*symm(graddU

) + lambda*I*tr(graddU);
5
6 // Check the yield condition
7 volScalarField sqrtJ2 = sqrt((3.0/2.0)*magSqr(dev(sigmaNew

)));
8 volScalarField fac = sqrtJ2/sigmaY;
9

10 symmTensorField& sigmaI = sigmaNew.internalField();
11 symmTensorField& dEpsPI = dEpsP.internalField();
12
13 const symmTensorField& sigma_oldI = sigma_old.

internalField();
14 const scalarField& facI = fac.internalField();
15 const tensorField& graddUI = graddU.internalField();
16
17 forAll(facI, celli) // iterate all the internal cells
18 {
19 if (facI[celli] > 1.0) // Plasticity occurs
20 {
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21 sigmaI[celli] = 1.0/3.0*I*tr(sigmaI[celli]) + dev(
sigmaI[celli])/facI[celli];

22 symmTensor dsigma = sigmaI[celli] − sigma_oldI[
celli];

23 tensor deps_e = 1.0/3.0*I*tr(dsigma)/(3.0*lambda
+2.0*mu).value()

24 + dev(dsigma)/(2.0*mu.value());
25 tensor deps = 1.0/2.0*(graddUI[celli] + graddUI[

celli].T());
26 dEpsPI[celli] = symm(deps − deps_e);
27 }
28 else // only elasticity
29 {
30 dEpsPI[celli] = symmTensor::zero;
31 }
32 }
33
34 forAll(fac.boundaryField(), patchI) // iterate all the

boundary cells
35 {
36 symmTensorField& sigmaPatch = sigmaNew.boundaryField()[

patchI];
37 symmTensorField& dEpsPPatch = dEpsP.boundaryField()[patchI

];
38
39 const symmTensorField& sigma_oldPatch = sigma_old.

boundaryField()[patchI];
40 const scalarField& facPatch = fac.boundaryField()[patchI];
41 const tensorField& graddUPatch = graddU.boundaryField()[

patchI];
42
43 forAll(facPatch, facei)
44 {
45 if (facPatch[facei] > 1.0) //Plasticity occurs
46 {
47 sigmaPatch[facei] = 1.0/3.0*I*tr(sigmaPatch[facei

]) + dev(sigmaPatch[facei])/facPatch[facei];
48 symmTensor dsigma = sigmaPatch[facei] −

sigma_oldPatch[facei];
49 tensor deps_e = 1.0/3.0*I*tr(dsigma)/(3.0*lambda

+2.0*mu).value()
50 + dev(dsigma)/(2.0*mu.value());
51 tensor deps = 1.0/2.0*(graddUPatch[facei] +

graddUPatch[facei].T());
52 dEpsPPatch[facei] = symm(deps − deps_e);
53 }
54 else // only elasticity
55 {
56 dEpsPPatch[facei] = symmTensor::zero;
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57 }
58 }
59 }� �

Listing 3.5: correctPlasticity.H

• calculateEpStress.H
During each time/load step, we calculate the stress condition using converged dis-
placement solution (by placing the calculateEpStress.H file out of the momentum
loop in Listing 3.4). The content of the calculateEpStress.H file is shown below.�

1 volTensorField graddU = fvc::grad(dU); // calculate the
total strain increment

2
3 sigma += 2.0*mu*(symm(graddU)−dEpsP)
4 + lambda*I*tr(symm(graddU)−dEpsP); // update the

stress field with plastic correction
5
6 volScalarField sigmaEq
7 (
8 IOobject
9 (

10 "sigmaEq",
11 runTime.timeName(),
12 mesh,
13 IOobject::NO_READ,
14 IOobject::AUTO_WRITE
15 ),
16 sqrt((3.0/2.0)*magSqr(dev(sigma))) // calculate the

von−Mises stress
17 );
18
19 Info<< "Max sigmaEq = " << max(sigmaEq).value()
20 << endl;� �

Listing 3.6: calculateEpStress.H

• epTractionDisplacement/epTractionDisplacementFvPatchVectorField.C
So far we have completed the main part of the epStressedFoam solver. The only
task left is the nonlinear traction boundary. We will now implement the nonlinear
epTractionDisplacement boundary using force balance equation on the boundary.
As the force balance equation has the same cross-component coupling and non-
linearity as the global momentum equation, we have to apply similar segregated
implicit-explicit treatment, see Eq. (3.4). Regarding to the implementation, we only
need to modify the updateCoeffs() function, as it updates the normal gradient of
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the displacement increments based on the specified traction force on the boundary.
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

δt = (δσ) · nb

δσ = 2μδεe + λtr(δεe)
δεe = δε − δεp

δε = 1
2

[
∇(δu) + ∇(δu)T

]

⇓
(2μ + λ)nb · [∇(δu)]b︸ ︷︷ ︸

implict

=(dt)b

− {μ[∇(δu)]b · nb + λtr ([∇(δu)]b) nb − (μ + λ)nb · [∇(δu)]b}︸ ︷︷ ︸
explicit cross-component coupling

+ {2μnb · (δεp)b + λtr(δεp)bnb}︸ ︷︷ ︸
explicit nonlinearity

(3.4)

where δt: traction increment;
nb: boundary surface normal vector;
The corresponding implementation code is displayed in Listing 3.7.�

1 // Update the coefficients associated with the patch field
2 void epTractionDisplacementFvPatchVectorField::updateCoeffs()
3 {
4 if (updated())
5 {
6 return;
7 }
8
9 const dictionary& mechanicalProperties =

10 db().lookupObject<IOdictionary>("mechanicalProperties");
11
12 dimensionedScalar E(mechanicalProperties.lookup("E"));
13 dimensionedScalar nu(mechanicalProperties.lookup("nu"));
14
15 dimensionedScalar mu = E/(2.0*(1.0 + nu));
16 dimensionedScalar lambda = nu*E/((1.0 + nu)*(1.0 − 2.0*nu));
17
18 Switch planeStress(mechanicalProperties.lookup("planeStress"))

;
19
20 if (planeStress)
21 {
22 lambda = nu*E/((1.0 + nu)*(1.0 − nu));
23 }
24
25 vectorField n = patch().nf(); // store the boundary surface

normal vector
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26 vectorField dTraction(n.size(),vector::zero); // initialize
the traction increment field

27
28 const fvPatchField<tensor>& graddU =
29 lookupPatchField<volTensorField, tensor>("grad(dU)"); //

copy the current displacement gradient field
30
31 const fvPatchField<symmTensor>& sigma =
32 lookupPatchField<volSymmTensorField, symmTensor>("sigma");

// copy the stress field, notice that here the stress
is from the previous time step, not the iteration step

33
34 const fvPatchField<symmTensor>& dEpsP =
35 lookupPatchField<volSymmTensorField, symmTensor>("dEpsP");

// copy the current plastic strain field
36
37 dTraction = (traction_ − pressure_*n) − (n & sigma); //

calculate the traction increment = user specified current
traction − calculated previous time step traction

38
39 gradient() =
40 (
41 dTraction
42 − (n & (mu.value()*graddU.T() − (mu + lambda).value()*graddU

))
43 − n*tr(graddU)*lambda.value() // explicit cross−component

coupling
44 + 2.0*mu.value()*(n & dEpsP) + n*tr(dEpsP)*lambda.value() //

explicit non−linearity
45 )/(2.0*mu + lambda).value();
46
47 fixedGradientFvPatchVectorField::updateCoeffs();
48 }� �
Listing 3.7: epTractionDisplacement/epTractionDisplacementFvPatchVectorField.C

Now we can compile all the codes by typing wmake command. After successful compilation,
the new solver epStressedFoam is ready to apply for elasto-plastic solid problems.

3.4 Application

Here I will shortly describe general case set-up in OpenFOAM. As illustrated in Fig. 3.2,
any OpenFOAM case contains 3 main directories:
0 The 0 directory includes several files, which are usually entitled with the corresponding

unknown variable name. Inside the file, initial and boundary condition is specified.
constant The constant directory contains the mesh generation file and some material
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properties libraries.
system The system directory mainly set up the time step controls, the linear system

solvers, and the numerical schemes.
For more information regarding to the case setup, please refer to the OpenFOAM User’s
Guide [1].

OpenFOAM case
0

variable1
variable2
variableX

constant
polyMesh

blockMeshDict
boundary

materialLibrary1
materialLibraryX

system
controlDict
fvSchemes
fvSolution

Figure 3.2: Basic OpenFOAM case set-up.

For the epStressedFoam solver, let’s run two simple cases to demonstrate its performance.
- Plastic plate hole

We first run a plasticPlateHole case, which is simply based on the original
plateHole case in OpenFOAM. The test condition is set that the right hand side
edge of the plate is pulled with increasing traction force (constant increasing speed).
It is expected that plastic deformations will be built up with time around the hole.
Figure 6.5 represents reasonable simulation results of the epStressedFoam solver.

- Triaxial test
A simple triaxial compression test with cubic geometry is also created. The top
and bottom sides are compressed uniformly under constantly increasing traction
forces, while all the horizontal sides are left with zero traction. Worth to mention
that, we have simply modified the J2 plasticity model into a non-associated Mohr
Coulomb plasticity model [12] so as to test the flexibility of the epStressedFoam
solver. The simulation results are shown in Figure 3.4, with well captured material
failure behavior and the dilation effect. It is believed that the epStressedFoam
solver has large potentials to incorporate any other advanced plasticity model.
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(a) (b)

(c) (d)

Figure 3.3: The development of plastic zones, represented by mag(dEpsP). Traction=t ·
103Pa, σY = 103Pa
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(a) Case geometry

(b)

Figure 3.4: Triaxial test simulation reulsts. Employed material properties: friction
angle=40◦, cohesion=5kPa, dilation angle=10◦
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4 The anisotropic elasticity solver

Anisotropy, in material science, is a material’s directional dependence of a physical prop-
erty. Most materials exhibit anisotropic behavior, namely, they are stiffer when loaded
along some material directions than others. Such materials are said to be anisotropic, and
cannot be modeled using the conventional isotropic stress analysis procedures in Open-
FOAM.
In this chapter, we are therefore going to implement a new anisotropic elasticity solver,
capable of simulating solid bodies with directional dependent elastic properties. As you
might expect, modeling full anisotropy is very difficult and complicated, requiring 21
independent elastic constants. Here we will focus on the so-called orthotropic solid body,
so that its mechanical properties are, in general, only different along each axis (thus
requiring 9 independent elastic constants).
The methodology of doing orthotropic stress analysis with finite volume discretization was
firstly proposed by Demirdzic et al. 2000 [13] and recently extended by Cardiff et al. 2013
[14] into large strain problems with general material orientations. Readers are therefore
kindly invited to read these articles, so as to gain better knowledge on the orthotropic
elasticity using FVM.

4.1 Orthotropic elasticity theory

In this section, I will shortly present the orthotropic elasticity formulations.
Consider the following generalized Hook’s Law:

σ = C : ε (4.1)

Where
σ, the second-order symmetric stress tensor;
C, the fourth-order constitutive tensor of elastic constants;
ε, the second-order symmetric strain tensor;
:, the double dot operator.
For visualization purpose, we could arrange these second order symmetric tensors into
vectors format and similarly transform the forth order elasticity tensor into second order
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matrix, Hook’s Law can therefore be rewritten as following for an orthotropic solid body:

σ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

σxx

σyy

σzz

σxy

σyz

σzx

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A11 A12 A31 0 0 0
A12 A22 A23 0 0 0
A31 A23 A33 0 0 0
0 0 0 A44 0 0
0 0 0 0 A55 0
0 0 0 0 0 A66

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

εxx

εyy

εzz

εxy

εyz

εzx

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= C : ε (4.2)

where the stiffness coefficients Aij are given in terms of Young’s moduli Ei, Poisson’s ratio
νij , and shear moduli Gij :

A11 = 1 − ν23ν32
JE2E3

, A22 = 1 − ν13ν31
JE1E3

, A33 = 1 − ν21ν12
JE2E1

,

A12 = ν12 + ν32ν13
JE1E3

, A23 = ν23 + ν21ν13
JE1E2

, A31 = ν31 + ν21ν32
JE2E3

,

A44 = 2G12, A55 = 2G23, A66 = 2G31,

J = 1 − ν12ν21 − ν23ν32 − ν13ν31 − 2ν21ν32ν13
E1E2E3

(4.3)

In general, the global momentum balance equation can be written in the form below:

∂2(ρu)
∂t2 − ∇ · σ = 0 ⇒ ∂2(ρu)

∂t2 = ∇ · (C : ε) (4.4)

The above formulation is still quite simple, however it is significantly different from the
isotropic model solved before in OpenFOAM, as the elasticity tensor C becomes complex
forth-order tensor and can no longer be represented by only two Lame’s constants, i.e. μ
and λ. We need a cleverer way to deal with this high-order momentum equation with more
complicated cross component coupling. The following section will introduce the resolution.

4.2 Numerical method

To deal with the cross-component coupling inside Eq. (4.4), the right hand side part can
be decomposed to implicit and explicit components:

C : ε = K · ∇u︸ ︷︷ ︸
implicit

+ C : ε − K · ∇u︸ ︷︷ ︸
explicit

(4.5)

where the 3 × 3 diagonal tensor K is given by:

K =

⎛
⎜⎝

A11 0 0
0 A22 0
0 0 A33

⎞
⎟⎠ (4.6)
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Eq. (4.5) can easily be verified by canceling out the implicit K · ∇u with the explicit
K · ∇u.
Hence, to allow the FVM segregated solution procedure, the orthotropic governing mo-
mentum equation is solved by the following numerical strategy:

∂2(ρu)
∂t2︸ ︷︷ ︸

implicit

= ∇ · (K · ∇u︸ ︷︷ ︸
implicit

+ C : ε − K · ∇u︸ ︷︷ ︸
explicit

) (4.7)

Now the only challenge left is how to calculate the explicit (C : ε) term, since currently
no forth-order tensor class exists in OpenFOAM library yet, nor the double dot operator
between a forth-order tensor and a second-order tensor is implemented. I shall introduce
how these difficulties are solved in the following implementation section.

4.3 anisoFoam Implementation

The new solver is named anisoFoam. Again, we can start with the original stressedFoam
solver codes to save some work.
Similarly, by typing the command lines like what we have done to create the basic set up
for the epStressedFoam in Page. 6, we can firstly build the following basic file structure
of the new anisoFoam solver:

anisoFoam
Make

files
options

tractionOrtho
tractionOrthoFvPatchVectorField.C
tractionOrthoFvPatchVectorField.H

calculateSigmaEpsilonOrtho.H
createFields.H
readAnisoFoamControls.H
readMechanicalProperties.H
anisoFoam.C

Figure 4.1: The directory structure of anisoFoam.

Now I shall describe those modifications inside each file as well as the contents of the new
calculateSigmaEpsilonOrtho.H file.

• createFields.H
In this case, a strain field is newly created for the convenience of explicit calculation
of (C : ε) inside the momentum equation.
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�
1 Info<< "Reading field U\n" << endl;
2 volVectorField U
3 (
4 IOobject
5 (
6 "U",
7 runTime.timeName(),
8 mesh,
9 IOobject::MUST_READ,

10 IOobject::AUTO_WRITE
11 ),
12 mesh
13 );
14
15 volTensorField gradU = fvc::grad(U);
16
17 volSymmTensorField epsilon // the symmetric strain tensor
18 (
19 IOobject
20 (
21 "epsilon",
22 runTime.timeName(),
23 mesh,
24 IOobject::READ_IF_PRESENT, // read from user input

when initial strain condition available
25 IOobject::AUTO_WRITE
26 ),
27 mesh,
28 dimensionedSymmTensor("zero", dimless, symmTensor::zero)
29 );
30
31 volSymmTensorField sigma
32 (
33 IOobject
34 (
35 "sigma",
36 runTime.timeName(),
37 mesh,
38 IOobject::READ_IF_PRESENT, // read from user input

when initial stress condition available
39 IOobject::AUTO_WRITE
40 ),
41 mesh,
42 dimensionedSymmTensor("zero", dimForce/dimArea, symmTensor

::zero)
43 );� �

Listing 4.1: createFields.H
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• readMechanicalProperties.H
As the orthotropic elasticity contains 9 independent elastic constants comparing to
the simple isotropic elasticity with only 2 constants, the readMechanicalProperties.H
files turn to be a little bit more complicated this time. Each coefficient of the forth-
order elasticity tensor C is calculated according to Eq. (4.3).�

1 Info<< "Reading mechanical properties\n" << endl;
2
3 IOdictionary mechanicalProperties
4 (
5 IOobject
6 (
7 "mechanicalProperties",
8 runTime.constant(),
9 mesh,

10 IOobject::MUST_READ,
11 IOobject::NO_WRITE
12 )
13 );
14
15 dimensionedScalar rho(mechanicalProperties.lookup("rho"));
16
17 // Initialize Young’s modulus at different directions
18 scalar Ex = 0;
19 scalar Ey = 0;
20 scalar Ez = 0;
21
22 // Initializez Poisson’s ratio at different directions
23 scalar vxy = 0;
24 scalar vyz = 0;
25 scalar vzx = 0;
26 scalar vyx = 0;
27 scalar vxz = 0;
28 scalar vzy = 0;
29
30 // Initialize shear modulus at different directions
31 scalar Gxy = 0;
32 scalar Gyz = 0;
33 scalar Gzx = 0;
34
35 // Create a switch for simulating 2D problem or 3D problem
36 Switch model2d(mechanicalProperties.lookup("model2D"));
37
38 if(model2d) // 2D condition
39 {
40 Ex = readScalar(mechanicalProperties.lookup("Ex"));
41 Ey = readScalar(mechanicalProperties.lookup("Ey"));
42 vxy = readScalar(mechanicalProperties.lookup("nuxy"));
43 Gxy = readScalar(mechanicalProperties.lookup("Gxy"));
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44
45 //− material contraints
46 vyx = vxy*Ey/Ex;
47
48 Info << "2D model (z is assumed to be the empty direction)"

<< nl
49 << "Linear elastic orthotropic properties are:\n"
50 << "Ex " << Ex/1e9 << " GPa" << nl
51 << "Ey " << Ey/1e9 << " GPa" << nl
52 << "nuxy " << vxy << nl
53 << "Gxy " << Gxy/1e9 << " GPa" << endl;
54 }
55 else // 3D condition
56 {
57 Ex = readScalar(mechanicalProperties.lookup("Ex"));
58 Ey = readScalar(mechanicalProperties.lookup("Ey"));
59 Ez = readScalar(mechanicalProperties.lookup("Ez"));
60 vxy = readScalar(mechanicalProperties.lookup("nuxy"));
61 vyz = readScalar(mechanicalProperties.lookup("nuyz"));
62 vzx = readScalar(mechanicalProperties.lookup("nuzx"));
63 Gxy = readScalar(mechanicalProperties.lookup("Gxy"));
64 Gyz = readScalar(mechanicalProperties.lookup("Gyz"));
65 Gzx = readScalar(mechanicalProperties.lookup("Gzx"));
66
67 //− material contraints
68 vyx = vxy*Ey/Ex;
69 vxz = vzx*Ex/Ez;
70 vzy = vyz*Ez/Ey;
71
72 Info << "3D model" << nl
73 << "Linear elastic orthotropic properties are:\n"
74 << "Ex " << Ex/1e9 << " GPa" << nl
75 << "Ey " << Ey/1e9 << " GPa" << nl
76 << "Ez " << Ez/1e9 << " GPa" << nl
77 << "nuxy " << vxy << nl
78 << "nuyz " << vyz << nl
79 << "nuzx " << vzx << nl
80 << "Gxy " << Gxy/1e9 << " GPa" << nl
81 << "Gyz " << Gyz/1e9 << " GPa" << nl
82 << "Gzx " << Gzx/1e9 << " GPa" << endl;
83 }
84
85 //− components of C − fourth order elastic constants tensor
86 scalar J = 0;
87 scalar A11 = 0;
88 scalar A22 = 0;
89 scalar A33 = 0;
90 scalar A12 = 0;
91 scalar A31 = 0;
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92 scalar A23 = 0;
93 scalar A44 = 0;
94 scalar A55 = 0;
95 scalar A66 = 0;
96
97 scalar A21 = 0;
98
99 if(model2d)

100 {
101 J = 1 / (1 − vxy*vyx);
102 A11 = J*Ex;
103 A22 = J*Ey;
104 A12 = J*vyx*Ex;
105 A21 = J*vxy*Ey;
106 A44 = 2*Gxy;
107
108 Info << "\n2D stiffness coefficients are:" << nl
109 << "A11 " << A11 << nl
110 << "A22 " << A22 << nl
111 << "A12 " << A12 << nl
112 << "A21 " << A21 << nl
113 << "A44 " << A44 << endl;
114 }
115 else
116 {
117 J = (1.0 − vxy*vyx − vyz*vzy − vzx*vxz − 2*vyx*vzy*vxz) / (

Ex*Ey*Ez);
118 A11 = (1.0 − vyz*vzy)/(J*Ey*Ez);
119 A22 = (1.0 − vxz*vzx)/(J*Ex*Ez);
120 A33 = (1.0 − vyx*vxy)/(J*Ey*Ex);
121 A12 = (vxy + vzy*vxz)/(J*Ex*Ez);
122 A31 = (vzx + vyx*vzy)/(J*Ey*Ez);
123 A23 = (vyz + vyx*vxz)/(J*Ex*Ey);
124 A44 = 2*Gxy;
125 A55 = 2*Gyz;
126 A66 = 2*Gzx;
127
128 Info << "\n3D stiffness coefficients:" << nl
129 << "A11 " << A11 << nl
130 << "A22 " << A22 << nl
131 << "A33 " << A33 << nl
132 << "A12 " << A12 << nl
133 << "A31 " << A31 << nl
134 << "A23 " << A23 << endl;
135 }
136
137 tensor Ku(
138 A11, 0 , 0 ,
139 0 , A22, 0 ,
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140 0 , 0 , A33
141 );
142
143 Info << "\nThe implicit stiffness tensor K is " << Ku << endl;
144
145 volTensorField K
146 (
147 IOobject
148 (
149 "K",
150 runTime.timeName(),
151 mesh,
152 IOobject::NO_READ,
153 IOobject::NO_WRITE
154 ),
155 mesh,
156 dimensionedTensor
157 (
158 "zero",
159 dimensionSet(1,−1,−2,0,0,0,0),
160 Ku
161 ),
162 zeroGradientFvPatchScalarField::typeName
163 );
164
165 K.correctBoundaryConditions();
166
167 /*
168 // Create the full forth−order elasticity tensor, if the

symmTensor4thOrder class has been defined
169 volSymmTensor4thOrderField C
170 (
171 IOobject
172 (
173 "C",
174 runTime.timeName(),
175 mesh,
176 IOobject::NO_READ,
177 IOobject::NO_WRITE
178 ),
179 mesh,
180 dimensionedSymmTensor4thOrder("zero", dimForce/dimArea,
181 symmTensor4thOrder(A11, A12, A31,
182 A22, A23,
183 A33,
184 A44,
185 A55,
186 A66)
187 ),
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188 zeroGradientFvPatchSymmTensor4thOrderField::typeName
189 );
190
191 C.correctBoundaryConditions();
192 */� �

Listing 4.2: readMechanicalProperties.H

• readStressedFoamControls.H
The definition of convergence control parameters is kept the same as before shown
in Listing 4.3.�

1 const dictionary& stressControl =
2 mesh.solutionDict().subDict("anisoFoam");
3
4 int nCorr(readInt(stressControl.lookup("nCorrectors")));
5 scalar convergenceTolerance(readScalar(stressControl.lookup("U

")));� �
Listing 4.3: readAnisoFoamControls.H

• anisoFoam.C
Having all the variable fields and model parameters set ready, we can now proceed
to the main anisoFoam.C file. The differential equation with the segregated strategy
present in Eq. (4.5) is implemented here. And in particular, a fixed under-relaxation
procedure is applied for stabilizing the convergence. Details regarding to the relax-
ation method will be described in Chapter 8.
A new calculateSigmaEpsilonOrtho.H file is included in the main file, so as to
specially compute the explicit (C : ε) term and leave the main codes neat.�

1 int main(int argc, char *argv[])
2 {
3
4 # include "setRootCase.H"
5
6 # include "createTime.H"
7 # include "createMesh.H"
8 # include "readMechanicalProperties.H"
9 # include "createFields.H"

10
11 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * //
12
13 Info<< "\nCalculating displacement field\n" << endl;
14
15 for (runTime++; !runTime.end(); runTime++)
16 {
17 Info<< "Iteration: " << runTime.timeName() << nl << endl;
18
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19 # include "readAnisoFoamControls.H"
20
21 int iCorr = 0;
22 scalar initialResidual = 0;
23
24 # include "calculateSigmaEpsilonOrtho.H"
25
26 //Altertive file, if given the 4th−order tensor and the double dot

operator && have been defined
27 //# include "calculateSigmaEpsilonOrthoNew.H"
28
29 do
30 {
31 // Store the previous iterative value for relaxation later
32 U.storePrevIter();
33
34 // Construct the equation matrix
35 fvVectorMatrix UEqn
36 (
37 fvm::d2dt2(rho, U)
38 ==
39 fvm::laplacian(K, U, "laplacian(DU,U)")
40
41 + fvc::div(sigma) // sigma=C:epsilon
42
43 − fvc::div(K & gradU)
44 );
45
46 initialResidual = UEqn.solve().initialResidual();
47
48 // Under−relax the displacement field, helpful for

convergence. The relaxation factor will read from user
input

49 U.relax();
50 gradU = fvc::grad(U);
51
52 // Explicitly calculate the sigma field using the

orthotropic Hook’s Law
53 # include "calculateSigmaEpsilonOrtho.H"
54 //Altertive file, if given the 4th−order tensor and the double dot

operator && have been defined
55 //# include "calculateSigmaEpsilonOrthoNew.H"
56
57 } while (initialResidual > convergenceTolerance && ++iCorr

< nCorr);
58
59 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << "

s"
60 << " ClockTime = " << runTime.elapsedClockTime() << "
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s"
61 << nl << endl;
62 }� �

Listing 4.4: anisoFoam.C

• calculateSigmaEpsilonOrtho.H
Now we shall deal with the difficulty, namely how to calculate the double dot product
between the forth-order elasticity tensor and the second-order strain tensor without
such higher-order tensor class and associated function built in OpenFOAM? If look-
ing at Eq. (4.2) which writes out the tensors in vector format, we can find the
solution: though forth-order tensor class and its double dot operator are currently
missing in OpenFOAM, the usual tensorial approach in OpenFOAM is not possible,
we could still easily do the calculation in a term-by-term manner. Rewriting Eq.
(4.2) as:

σxx = A11 · εxx + A12 · εyy + A31 · εzz

σyy = A12 · εxx + A22 · εyy + A23 · εzz

σzz = A31 · εxx + A23 · εyy + A33 · εzz

σxy = A44 · εxy

σyz = A55 · εyz

σzx = A66 · εzx (4.8)

The following code explains the above explicit calculation procedure.�
1 //− calculate epsilon and sigma for an orthotropic material
2
3 //− epsilon
4 epsilon = symm(gradU);
5
6 //− sigma = C:epsilon
7 forAll(sigma.internalField(), celli) // calulate sigma at each

inner cell
8 {
9 const scalar& e11 = epsilon.internalField()[celli].component(

symmTensor::XX);
10 const scalar& e22 = epsilon.internalField()[celli].component(

symmTensor::YY);
11 const scalar& e33 = epsilon.internalField()[celli].component(

symmTensor::ZZ);
12 const scalar& e12 = epsilon.internalField()[celli].component(

symmTensor::XY);
13 const scalar& e23 = epsilon.internalField()[celli].component(

symmTensor::YZ);
14 const scalar& e31 = epsilon.internalField()[celli].component(

symmTensor::XZ);
15
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16 if(model2d) // 2D condition
17 {
18 sigma.internalField()[celli].component(symmTensor::XX) = A11

*e11 + A12*e22;
19 sigma.internalField()[celli].component(symmTensor::YY) = A21

*e11 + A22*e22;
20 sigma.internalField()[celli].component(symmTensor::XY) = A44

*e12;
21 }
22 else // 3D condition
23 {
24 sigma.internalField()[celli].component(symmTensor::XX) = A11

*e11 + A12*e22 + A31*e33;
25 sigma.internalField()[celli].component(symmTensor::YY) = A12

*e11 + A22*e22 + A23*e33;
26 sigma.internalField()[celli].component(symmTensor::ZZ) = A31

*e11 + A23*e22 + A33*e33;
27 sigma.internalField()[celli].component(symmTensor::XY) = A44

*e12;
28 sigma.internalField()[celli].component(symmTensor::YZ) = A55

*e23;
29 sigma.internalField()[celli].component(symmTensor::XZ) = A66

*e31;
30 }
31 }
32
33 forAll(mesh.boundary(), patchi) // calculate sigma at each

boundary patch cell
34 {
35 forAll(sigma.boundaryField()[patchi], facei)
36 {
37 const scalar& e11 = epsilon.boundaryField()[patchi][facei].

component(symmTensor::XX);
38 const scalar& e22 = epsilon.boundaryField()[patchi][facei].

component(symmTensor::YY);
39 const scalar& e33 = epsilon.boundaryField()[patchi][facei].

component(symmTensor::ZZ);
40 const scalar& e12 = epsilon.boundaryField()[patchi][facei].

component(symmTensor::XY);
41 const scalar& e23 = epsilon.boundaryField()[patchi][facei].

component(symmTensor::YZ);
42 const scalar& e31 = epsilon.boundaryField()[patchi][facei].

component(symmTensor::XZ);
43
44 if(model2d) // 2D condition
45 {
46 sigma.boundaryField()[patchi][facei].component(

symmTensor::XX) = A11*e11 + A12*e22;
47 sigma.boundaryField()[patchi][facei].component(
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symmTensor::YY) = A21*e11 + A22*e22;
48 sigma.boundaryField()[patchi][facei].component(

symmTensor::XY) = A44*e12;
49 }
50 else // 3D condition
51 {
52 sigma.boundaryField()[patchi][facei].component(

symmTensor::XX) = A11*e11 + A12*e22 + A31*e33;
53 sigma.boundaryField()[patchi][facei].component(

symmTensor::YY) = A12*e11 + A22*e22 + A23*e33;
54 sigma.boundaryField()[patchi][facei].component(

symmTensor::ZZ) = A31*e11 + A23*e22 + A33*e33;
55 sigma.boundaryField()[patchi][facei].component(

symmTensor::XY) = A44*e12;
56 sigma.boundaryField()[patchi][facei].component(

symmTensor::YZ) = A55*e23;
57 sigma.boundaryField()[patchi][facei].component(

symmTensor::XZ) = A66*e31;
58 }
59 }
60 }� �

Listing 4.5: calculateSigmaEpsilonOrtho.H

You might wonder, why not we create a new forth-order tensor class and then im-
plement the aforementioned calculation procedure as a double dot operator member
function, in that way we keep the nice tensorial approach spirit of OpenFOAM? The
answer is positive. It is challenging to do this, since thorough knowledge of c++
programming itself and the ’architecture’ of OpenFOAM are necessary. However, it
is definitely possible. I have learned my way from Dr. Philip Cardiff during my ex-
ternal stay in the OpenFOAM group at University College Dublin. In the following
I will only introduce the main idea of building the new symmTensor4thOrder class
and the double dot operator &&, leaving the details of modifying hundreds of files in
OpenFOAM away. readers are invited to contact me or Philip to get the source files
directly.
All the basic tensor classes are defined in the src/OpenFOAM/primitives. We can
copy the codes from other similar tensor directory, e.g. the symmTensor and then
create the new SymmTensor4thOrder class with the following basic constructor:
// Construct given nine Cmpts
template <class Cmpt>
inline SymmTensor4thOrder<Cmpt>::SymmTensor4thOrder
(

const Cmpt txxxx, const Cmpt txxyy, const Cmpt txxzz,
const Cmpt tyyyy, const Cmpt tyyzz,

const Cmpt tzzzz,
const Cmpt txyxy,
const Cmpt tyzyz,
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const Cmpt tzxzx
)
{

this−>v_[XXXX] = txxxx; this−>v_[XXYY] = txxyy; this−>v_[XXZZ] = txxzz;
this−>v_[YYYY] = tyyyy; this−>v_[YYZZ] = tyyzz;

this−>v_[ZZZZ] = tzzzz;
this−>v_[XYXY] = txyxy;
this−>v_[YZYZ] = tyzyz;
this−>v_[ZXZX] = tzxzx;

}

The symmTensor4thOrder class has 9 data members, corresponding to the 9 inde-
pendent coefficients of the elasticity tensor. An over-loaded operator function, &&,
is representing the double dot product. The && operator takes a symmetric forth-
order tensor as the first argument and a symmetric second-order tensor as the second
argument, and returns a symmetric second-order tensor. The code snippet of the
operator function is shown below:

//− Double−dot−product between a fourth order symmetric tensor and
a symmetric tensor

template <class Cmpt>
inline SymmTensor<Cmpt>
operator&&(const SymmTensor4thOrder<Cmpt>& t4th, const SymmTensor<

Cmpt>& st)
{
//− s_ij = C_ijkl E_kl

return SymmTensor<Cmpt>
(
t4th.xxxx()*st.xx() + t4th.xxyy()*st.yy() + t4th.xxzz()*st.zz

(),
t4th.xyxy()*st.xy(),
t4th.zxzx()*st.xz(),

t4th.xxyy()*st.xx() + t4th.yyyy()*st.yy() + t4th.yyzz()*st.zz
(),

t4th.yzyz()*st.yz(),

t4th.xxzz()*st.xx() + t4th.yyzz()*st.yy() + t4th.zzzz()*st.zz
()

);
}

By defining the forth-order symmetric tensor class symmTensor4thOrder and its
corresponding geometric tensor fields - the symmTensor4thOrderField class and
the volSymmTensor4thOrderField class, we can now simplify our implementation
codes.
First, the symmetric forth-order elasticity tensor C can be generated at the end of
the readMechanicalProperties.H file as follows,
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�
1 volSymmTensor4thOrderField C
2 (
3 IOobject
4 (
5 "C",
6 runTime.timeName(),
7 mesh,
8 IOobject::NO_READ,
9 IOobject::NO_WRITE

10 ),
11 mesh,
12 dimensionedSymmTensor4thOrder("zero", dimForce/dimArea,
13 symmTensor4thOrder(A11, A12, A31,
14 A22, A23,
15 A33,
16 A44,
17 A55,
18 A66)
19 ),
20 zeroGradientFvPatchSymmTensor4thOrderField::typeName
21 );
22
23 C.correctBoundaryConditions();� �

Then we replace the original calculateSigmaEpsilonOrtho.H file with a new simply
coded calculateSigmaEpsilonOrthoNew.H file using the && operator.�

1 //− calculate epsilon and sigma for an orthotropic material
2
3 //− epsilon
4 epsilon = symm(gradU);
5
6 //− sigma
7 sigma = (C && epsilon);
8 sigma.correctBoundaryConditions();� �

Listing 4.6: calculateSigmaEpsilonOrthoNew.H

In general, the above two approaches (Listing 4.5 and Listing 4.6) are equal. For
those readers who do not wish to change large amount of files inside the OpenFOAM
library, the first one is recommended.

• tractionOrtho/tractionOrthoFvPatchVectorField.C
The last task left is the implementation of the traction boundary condition. For an
orthotropic solid, we have the force balance equation:

t = n · σ (4.9)

where
t, traction force;
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n, surface normal vector;
σ, total stress.
As in OpenFOAM, we always apply the implicit and explicit split treatment to deal
with the cross-component coupling inside the governing equation, the stress can be
decomposed into two parts as follows:

σ = K · ∇u︸ ︷︷ ︸
implicit

+ C : ε − K · ∇u︸ ︷︷ ︸
explicit

(4.10)

Combine Eq. (4.9) and Eq. (4.10),

t = n · (K · ∇u) + n · (C : ε − K · ∇u) (4.11)

Rearrange in terms to obtain the implicit gradient:

n · (K · ∇u) = t − n · (C : ε − K · ∇u) (4.12)

Since what we would like to get is the normal gradient boundary, namely, (n · ∇u),
some mathematical manipulations of Eq. (4.12) are necessary. Multiply by n on
both sides,

n[n · (K · ∇u)] = n[t − n · (C : ε − K · ∇u)] (4.13)

Now on the left-hand-side we have a tensor which is similar to KDotGradU except
it only has information in the n direction, but all the tensors on the right hand side
only have information in the n direction, so it is valid to rewrite the equation:

(K · ∇u) = n[t − n · (C : ε − K · ∇u)]
→∇u = K−1 · {n[t − n · (C : ε − K · ∇u)]}
→n · ∇u = n ·

[
K−1 · {n[t − n · (C : ε − K · ∇u)]}

]
(4.14)

The implementation codes in Listing 4.7 below represent the above calculation pro-
cedure.�

1 // Update the coefficients associated with the patch field
2 void tractionOrthoFvPatchVectorField::updateCoeffs()
3 {
4 if (updated())
5 {
6 return;
7 }
8
9 const fvPatchField<tensor>& K =

10 patch().lookupPatchField<volTensorField, tensor>("K");
11
12 const tensorField Kinv = inv(K);
13
14 vectorField n = patch().nf();
15
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16 const fvPatchField<tensor>& gradU =
17 patch().lookupPatchField<volTensorField, tensor>("grad(U)"

);
18 const fvPatchField<symmTensor>& sigma =
19 patch().lookupPatchField<volSymmTensorField, symmTensor>("

sigma");
20
21 vectorField Traction(n.size(), vector::zero);
22 tensorField sigmaExp(n.size(), tensor::zero);
23
24 Traction = (traction_ − n*pressure_);
25
26 sigmaExp = (n*(n & sigma)) − (K & gradU);
27
28 gradient() =
29 n &
30 (
31 Kinv & ( n*(Traction) − sigmaExp )
32 );
33
34 //− The following code does not work
35 //scalarField sigmaExp = sigma − (K & gradU);
36 //scalarField Kn = n & ( n & K );
37 //gradient() = (1/Kn)*(Traction − sigmaExp);
38
39 fixedGradientFvPatchVectorField::updateCoeffs();
40 }� �

Listing 4.7: tractionOrtho/tractionOrthoFvPatchVectorField.C

4.4 Application

The implemented anisoFoam solver is applied for a test case, in which a circular hole in an
orthotropic plate is subjected traction. Plane stress condition is assumed. The material
properties employed are Ex = 200GPa, Ey = 60GPa, 130GPa, 200GPa, νxy = 0.3, and
Gxy = 76.9GPa. The traction applied on the right hand side is 1MPa. Good agreement
is achieved between analytical solutions [15] and the simulation results as shown in Figure
4.2.
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(a) Geometry and boundary condition

(b) Hoop stress σθθ around the hole

Figure 4.2: The Orthotropic plateHole test case.
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5 The large strain solver

Another important non-linear stress analysis is involving large displacements and large
strains. The so-called large strain theory, or large deformation theory, deals with de-
formations in which both rotations and strains are arbitrarily large, i.e. invalidates the
assumptions inherent in infinitesimal strain theory. In this case, the un-deformed and
deformed configurations of the continuum are significantly different and a clear distinction
has to be made between them.
It is interesting to develop a proper FVM large strain solver in OpenFOAM to deal with
such kind of issue in solid continuum mechanics. The following sections will describe the
general theoretical background and corresponding numerical and implementation tech-
niques.

5.1 Total lagrangian large strain formulation

Basically, two different approaches have been pursued in the incremental non-linear stress
analysis involving large strains: the updated lagrangian formulation which is referred to
an updated configuration in each load step, and the total lagrangian formulation which
is referred to the initial configuration. Here, we will consider the second approach - the
total lagrangian large strain formulation.
Let’s first look at the momentum balance in integral form (static state):

∮

a
n · σ|da| = 0 current configuration (5.1)

⇒
∮

ao

no · (S · F)|dao| = 0 reference(initial) configuration (5.2)

where
a and ao, the surface area in current and reference configuration, respectively;
S, the second Piola-Kirchhoff stress. S = JF−1σF−T , with J = det(F);
F, the deformation gradient.
The incremental momentum balance is then obtained from the ’difference’ form of Eq.
(5.2): ∮

ao

no · (δS · F + S · δF + δS · δF)|dao| = 0 (5.3)

with
F = I + ∇u, δF = ∇(δu) (5.4)
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Substituting Eq. (5.4) into Eq. (5.3) and rearrange the terms, we obtain:
∮

ao

no · [δS · (I + ∇u) + (S + δS) · ∇(δu)]|dao| = 0 (5.5)

Now recall the linear elastic constitutive law and (green) strain-displacement relation as
follows:

δS = 2μδE + λtr(δE)I (5.6)

δE = 1
2[∇(δu) + ∇(δu)T + ∇(δu) · ∇uT + ∇u · ∇(δu)T + ∇(δu) · ∇(δu)T] (5.7)

where
δE, the increment of green strain.
Using Eq. (5.6) and Eq. (5.7), we can further rewrite Eq. (5.5) as:

∮

ao

no · {μ∇(δu) + μ[∇(δu)T + ∇(δu) · ∇uT + ∇u · ∇(δu)T + ∇(δu) · ∇(δu)T] + λtr(δE)}|dao|

+
∮

ao

no · [δS · ∇u + (S + δS) · ∇(δu)]|dao| = 0 (5.8)

As you might notice that due to the higher order nonlinear terms in the green strain, the
governing equation turns to be quite complicated. We shall apply as usual the segregated
implicit and explicit strategy to deal with the cross-component coupling, higher-order
strain terms, and the stress terms present in the equation.

5.2 Numerical strategy

Let’s write the Eq. (5.8) back into differential format which OpenFOAM usually solves:

∇ ·
{

μ∇(δu) + μ[∇(δu)T + ∇(δu) · ∇uT + ∇u · ∇(δu)T + ∇(δu) · ∇(δu)T] + λtr(δE)
}

+ ∇ · [δS · ∇u + (S + δS) · ∇(δu)] = 0 (5.9)

We can apply the following segregated numerical strategy to handle the high non-linearities
in Eq. (5.9).

(2μ + λ)∇2(δu)︸ ︷︷ ︸
implicit

+ ∇ ·
{

−(μ + λ)∇(δu) + μ[∇(δu)T + ∇(δu) · ∇uT + ∇u · ∇(δu)T + ∇(δu) · ∇(δu)T] + λtr(δE)
}

︸ ︷︷ ︸
explicit

+ ∇ · [δS · ∇u + (S + δS) · ∇(δu)]︸ ︷︷ ︸
explicit

= 0 (5.10)

where the implicit term corresponds to the over-relaxed laplacian. The first explicit term
is related to the cross-component coupling and the nonlinearity inside the strain definition.
The second explicit nonlinear term is due to the stress change.
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5.3 totalLagrangianFoam implementation

This section aims to describe the implementation procedure of a new totalLagrangianFoam
solver which basically solves Eq. (5.10).
Similar to how we built the basic set up of our previous solvers, we firstly copy and rename
the original stressedFoam, change the corresponding files’ name, modify the keywords
inside the files and do the initial compilation (see command lines in Page. 6 as an example).
The totalLagrangianFoam solver has the following directory structure:

totalLagrangianFoam
Make

files
options

totalLagrangianTraction
totalLagrangianTractionFvPatchVectorField.C
totalLagrangianTractionFvPatchVectorField.H

createFields.H
readMechanicalProperties.H
readTotalLagrangianFoamControls.H
totalLagrangianFoam.C
writeFields.C

Figure 5.1: The directory structure of totalLagrangianFoam.

Now I shall explain what to do for each file.
• createFields.H

Except from the displacement and increment of displacement fields, we will initialize
the incremental and total second Piola-Kirchhoff stress and the total and incremental
green strain tensor. Optionally, we might also define the true engineering stress and
non-uniform density field of interests. The code excerpt is shown in Listing 5.1.
Worth to mention that, calculation of true stress from the second Piola-Kirchhoff
stress is based on the formulation below:

σ = J−1FT SF (5.11)�
1 volTensorField gradU = fvc::grad(U);
2
3 volSymmTensorField epsilonG // the green strain
4 (
5 IOobject
6 (
7 "epsilonG",
8 runTime.timeName(),
9 mesh,
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10 IOobject::NO_READ,
11 IOobject::AUTO_WRITE
12 ),
13 symm(gradU)+0.5*symm(gradU & gradU.T())
14 );
15
16 volTensorField graddU = fvc::grad(dU);
17
18 volSymmTensorField dEpsilonG // increment of green strain
19 (
20 IOobject
21 (
22 "dEpsilonG",
23 runTime.timeName(),
24 mesh,
25 IOobject::NO_READ,
26 IOobject::AUTO_WRITE
27 ),
28
29 symm(graddU)+0.5*symm(graddU & gradU.T())
30 +0.5*symm(gradU & graddU.T())
31 +0.5*symm(graddU & graddU.T())
32 );
33
34 volSymmTensorField sigmaPK2 //the second Piola−Kirchhoff stress
35 (
36 IOobject
37 (
38 "sigmaPK2",
39 runTime.timeName(),
40 mesh,
41 IOobject::READ_IF_PRESENT, // read if initial stress

condition
42 IOobject::AUTO_WRITE
43 ),
44 mesh,
45 dimensionedSymmTensor("zero", dimForce/dimArea, symmTensor

::zero)
46 );
47
48 volSymmTensorField dSigmaPK2 // increment of the second Piola−

Kirchhoff stress
49 (
50 IOobject
51 (
52 "dSigmaPK2",
53 runTime.timeName(),
54 mesh,
55 IOobject::NO_READ,
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56 IOobject::AUTO_WRITE
57 ),
58 mesh,
59 dimensionedSymmTensor("zero", dimForce/dimArea, symmTensor

::zero)
60 );
61
62 volTensorField F = I+gradU+graddU; // deformation gradient F+=

dF
63
64 volSymmTensorField sigmaTrue // true stress (Cauchy stress)
65 (
66 IOobject
67 (
68 "sigmaTrue",
69 runTime.timeName(),
70 mesh,
71 IOobject::NO_READ,
72 IOobject::AUTO_WRITE
73 ),
74 1.0/det(F)*symm(F.T() & sigmaPK2 & F)
75 );� �

Listing 5.1: createFields.H

• readMechanicalProperties.H and readTotalLagrangianFoamControls.H
As we use the same isotropic elastic constants - μ and λ - and the same convergence
control parameters - the maximum iteration number and the residual tolerance, the
two readMechanicalProperties.H and readTotalLagrangianFoamControls.H file
remain unchanged.

• totalLagrangianFoam.C
The main file totalLagrangianFoam.C contains the solution procedure of Eq. (5.10).�

1 for (runTime++; !runTime.end(); runTime++) // Time loop
2 {
3 Info<< "Iteration: " << runTime.timeName() << nl << endl;
4
5 # include "readTotalLagrangianFoamControls.H" // Read

convergence control
6
7 int iCorr = 0;
8 scalar initialResidual = 0;
9 lduMatrix::solverPerformance solverPerf;

10
11 lduMatrix::debug=0;
12
13 do // momentum loop
14 {
15 dU.storePrevIter(); // store previous iteration for
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later relaxation
16
17 fvVectorMatrix dUEqn
18 (
19 fvm::laplacian(2*mu + lambda, dU, "laplacian(DU,dU

)")
20
21 == − fvc::div
22 (
23 − ((mu + lambda)*graddU)
24 + (mu*graddU.T())
25 + (mu*(graddU & gradU.T()))
26 + (mu*(gradU & graddU.T()))
27 + (mu*(graddU & graddU.T()))
28 + (lambda * tr(dEpsilonG) * I ) // first

explicit part
29
30 + (dSigmaPK2 & gradU)
31 + ((sigmaPK2+dSigmaPK2) & graddU), // second

explicit part
32 "div(sigma)"
33 )
34 );
35
36 solverPerf = dUEqn.solve();// solve matrix
37
38 initialResidual = solverPerf.initialResidual();
39
40 dU.relax(); // fixed under−relaxation
41 graddU = fvc::grad(dU);
42
43 dEpsilonG = symm(graddU)+0.5*symm(graddU & gradU.T())
44 +0.5*symm(gradU & graddU.T())
45 +0.5*symm(graddU & graddU.T());// compute

the increment of green strain
46 dSigmaPK2 = 2.0*mu*dEpsilonG + lambda*tr(dEpsilonG)*I;//

compute the increment of 2nd Piola−Kichhoff stress
47
48 } while (initialResidual > convergenceTolerance && ++iCorr

< nCorr);
49
50 // Upon convergent solution, Update all the dependent

variables of interests
51 U += dU; // total displacement
52 gradU = fvc::grad(U);
53 epsilonG += dEpsilonG; // green strain
54 sigmaPK2 += dSigmaPK2; // 2nd Piola−Kichhoff
55 volTensorField F = I + gradU + graddU; // deformation

gradient
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56 volScalarField J = det(F);// Jacobian
57 sigmaTrue = (1/J) * symm(F.T() & sigmaPK2 & F);// true

engineering stress
58
59 # include "writeFields.H" // calculate stress invariants
60
61 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << "

s"� �
Listing 5.2: totalLagrangianFoam.C

• writeFields.H
The included writeFields.H simply calculates a stress invariant - von Mises stress
(also called equivalent stress) - for both 2nd Piola-Kirchhoff stress and true engi-
neering stress.�

1 if (runTime.outputTime())
2 {
3 volScalarField sigmaPK2Eq // equivalent 2nd Piola−

Kirchhoff
4 (
5 IOobject
6 (
7 "sigmaPK2Eq",
8 runTime.timeName(),
9 mesh,

10 IOobject::NO_READ,
11 IOobject::AUTO_WRITE
12 ),
13 sqrt((3.0/2.0)*magSqr(dev(sigmaPK2)))
14 );
15
16 Info<< "Max sigmaPK2Eq = " << max(sigmaPK2Eq).value()
17 << endl;
18
19 volScalarField sigmaTrueEq //equivalent true stress
20 (
21 IOobject
22 (
23 "sigmaTrueEq",
24 runTime.timeName(),
25 mesh,
26 IOobject::NO_READ,
27 IOobject::AUTO_WRITE
28 ),
29 sqrt((3.0/2.0)*magSqr(dev(sigmaTrue)))
30 );
31
32 Info<< "Max sigmaTrueEq = " << max(sigmaTrueEq).value()
33 << endl;
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34
35 runTime.write();� �

Listing 5.3: writeFields.H

• totalLagrangianTraction/totalLagrangianTractionFvPatchVectorField.C
We also need to adjust the traction boundary so that large strain effect is accounted.
Let’s first write down the force balance equation which is referred to the initial
configuration:

δt = no · δS
= no · [2μδE + λtr(δE)I] (5.12)

where
δto, increment of traction referred to the initial configuration.
no, the boundary surface normal vector referred to the initial configuration.
Recall the green strain definition:

δE = 1
2[∇(δu) + ∇(δu)T + ∇(δu) · ∇uT + ∇u · ∇(δu)T + ∇(δu) · ∇(δu)T] (5.13)

As our aim is to get the implicit normal displacement gradient no · ∇(δu), we can
apply the following split:

δto =no · {μ[∇(δu) + ∇(δu)T + ∇(δu) · ∇uT + ∇u · ∇(δu)T + ∇(δu) · ∇(δu)T] + λtr(δE)I}
=no · {(2μ + λ)∇(δu)︸ ︷︷ ︸

implicit

− (μ + λ)∇(δu)︸ ︷︷ ︸
explicit

+ μ[∇(δu)T + ∇(δu) · ∇uT + ∇u · ∇(δu)T + ∇(δu) · ∇(δu)T]︸ ︷︷ ︸
explicit

+ λtr(δE)︸ ︷︷ ︸
explicit

}

⇓

no·∇(δu) =
δto − no ·

{
−(μ + λ)∇(δu) + μ[∇(δu)T + ∇(δu) · ∇uT + ∇u · ∇(δu)T + ∇(δu) · ∇(δu)T] + λtr(δE)

}

2μ + λ
(5.14)

where the incremental traction force δto that refers to the reference configure can
be computed from user-specified total Cauchy traction tb:

δto = J |F−1 · no|Tb · F−1
︸ ︷︷ ︸

newT imeT rac

− no · S︸ ︷︷ ︸
oldT imeT rac

(5.15)

The corresponding implementation is present in Listing 5.4.
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�
1 // Update the coefficients associated with the patch field
2 void totalLagrangianTractionFvPatchVectorField::updateCoeffs()
3 {
4 if (updated())
5 {
6 return;
7 }
8
9 const dictionary& mechanicalProperties =

10 db().lookupObject<IOdictionary>("mechanicalProperties");
11
12 dimensionedScalar E(mechanicalProperties.lookup("E"));
13 dimensionedScalar nu(mechanicalProperties.lookup("nu"));
14
15 dimensionedScalar mu = E/(2.0*(1.0 + nu));
16 dimensionedScalar lambda = nu*E/((1.0 + nu)*(1.0 − 2.0*nu));
17
18 Switch planeStress(mechanicalProperties.lookup("planeStress"))

;
19
20 if (planeStress)
21 {
22 lambda = nu*E/((1.0 + nu)*(1.0 − nu));
23 }
24
25 vectorField n = patch().nf();
26 vectorField Traction(n.size(),vector::zero);
27
28 const fvPatchField<tensor>& graddU =
29 patch().lookupPatchField<volTensorField, tensor>("grad(dU)

");
30 const fvPatchField<tensor>& gradU =
31 patch().lookupPatchField<volTensorField, tensor>("grad(U)"

);
32
33 const fvPatchField<symmTensor>& sigmaPK2 =
34 patch().lookupPatchField<volSymmTensorField, symmTensor>("

sigmaPK2");
35 const fvPatchField<symmTensor>& dEpsilonG =
36 patch().lookupPatchField<volSymmTensorField, symmTensor>("

dEpsilonG");
37
38 tensorField F = I + gradU + graddU;// deformation gradient
39 tensorField Finv = inv(F);// inverse of F
40 scalarField J = det(F);
41 vectorField nCurrent = Finv & n; // surface vector

referring to deformed mesh
42 nCurrent /= mag(nCurrent); // normal surface vector in

deformed configuration
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43
44 vectorField tractionTrue = (traction_ − nCurrent*pressure_)*(

this−>db().time().value()); // constantly increased true
traction from user input

45
46 Traction = (mag(J * Finv & n) * tractionTrue & Finv) − (n &

sigmaPK2); // traction in initial (referrence)
configuration

47
48 vectorField newGradient =
49 Traction
50 − (n & (mu.value()*graddU.T() − (mu + lambda).value()*graddU

))
51 − (n*lambda.value()*tr(dEpsilonG))
52 − (n & (mu.value()*(graddU & gradU.T())))
53 − (n & (mu.value()*(gradU & graddU.T())))
54 − (n & (mu.value()*(graddU & graddU.T())));
55
56 newGradient /= (2.0*mu + lambda).value();
57
58 gradient() = newGradient;
59
60 fixedGradientFvPatchVectorField::updateCoeffs();
61 }� �
Listing 5.4: totalLagrangianTraction/totalLagrangianTractionFvPatchVectorField.C

5.4 Application

The bending of a straight cantilever beam with transverse end point load is applied to test
the implemented solver.
A square beam, of length L = 2m, height h = 0.1m and cross sectional area A = 0.01m2,
is subjected to an end point load P (Figure 5.2 below). The material properties used in
the simulation are E = 200GPa and ν = 0.3.

Figure 5.2: Beam bending case

The simulated initial and largely deformed beam configuration are both illustrated in
Figure 5.3. It can be seen from Figure 5.4, good agreement is achieved bewteen the
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analytical vertical displacement V and horizontal displacement U at the end of beam [16]
and the totalLagrangianFoam predictions.

(a) Initial configuration

(b) Deformed configuration

Figure 5.3: The cantilever beam test case.
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Figure 5.4: Comparison of displacement at the end of beam between analytical solution and
totalLagrangianFoam results
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6 The poro-elasticity solver

Due to my particular interest in soil mechanics, I will focus on developing a new poro-
elasticity stress analysis solver tailored for porous soil in this chapter.
Soil is consisted of soil grain skeleton and the fluids (e.g. water and air) present in the pore
structures. It is commonly acknowledged that the mechanical behavior of soils (and indeed
other saturated geo-materials) is governed largely by the interaction of their solid skeleton
with the pore fluid. Coupled analysis that accounts for both the solid skeleton response
and the fluid flow dynamics is therefore very important for accurate soil modeling.
The new poro-elasticity solver is based on coupled formulation and uses the segregated
solution procedure to handle the coupling. Details on the coupled theory, corresponding
FVM numerical strategy, and implementations, will be described through the following
sections.

6.1 Biot’s consolidation model

The fundamental mathematical framework describing the coupled effects in porous soil
was first established by Biot in 1941 [?], who - by assuming a linear elastic behavior of the
soil skeleton and a Darcian fluid flow - formulated a coupled model with the soil skeleton
displacements u and the pore fluid pressure p as the primary unknowns.
The so-called Biot’s consolidation model contains two balance equations: the total mo-
mentum balance of the soil mixture and the conservation of the flow of water in the pores.
Firstly, the seepage of pore fluid flow which obeys Darcy’s Law states,

k

γ
∇2p − n

K ′
∂p

∂t
= ∂

∂t
(∇ · u)

︸ ︷︷ ︸
u-coupling

(6.1)

where
p, the pore water pressure;
k, the the permeability coefficient;
γ, the specific weight of water;
n, the porosity;
K ′, the effective bulk modulus of the pore fluid. It may be estimated assuming that air
present in the pores remains close to atmospheric pressure:

1
K ′ = Sr

Kw
+ 1 − Sr

pa
(6.2)

51



The poro-elasticity solver

with
Sr, the degree of saturation;
Kw, the pure water bulk modulus (≈ 2 × 109Pa);
pa the atmospheric pressure (≈ 105Pa).
Secondly, the total momentum balance equation for the soil mixture is expressed as:

∇ · σ = ∇ · (σ′ − pI) = 0 (6.3)
where
σ, the total stress tensor;
σ′, the ’effective’ soil stress tensor. For linear elastic soil skeleton, the stress-strain relation
writes:
σ′ = 2με + λtrε = μ∇u + μ∇uT + λItr(∇u);
and I, the identity tensor.
Substituting the linear elastic stress-strain relation into Eq. (6.3), it can be rewritten as,

∇ · [μ∇u + μ∇uT + λItr(∇u)︸ ︷︷ ︸
cross−componentcoupling

] − ∇p︸︷︷︸
p−coupling

= 0 (6.4)

Hence, Biot’s consolidation model is composed of Eq. (6.1) and Eq. (6.4), which shows
strong two-way coupling since the displacement u present in the flow equation and the pore
pressure p present in the momentum equation. Let me introduce the numerical strategy
for dealing with this coupling below.

6.2 Numerical strategy

Similarly, the segregated discretization plus iterative solution procedure will be the key
technique to solve the coupled consolidation model. The segregated implicit-explicit split
strategy is performed as follows:

k

γ
∇2p − n

K ′
∂p

∂t︸ ︷︷ ︸
implicit

= ∂

∂t
(∇ · u)

︸ ︷︷ ︸
explicit

(6.5)

∇ · [(2μ + λ)∇u]︸ ︷︷ ︸
implicit

= − ∇ ·
{

μ∇uT + λItr(∇u) − (μ + λ)∇u
}

︸ ︷︷ ︸
explicit

+ ∇p︸︷︷︸
explicit

(6.6)

The corresponding iterative solution procedure is illustrated in Figure 6.1. The pore
pressure equation - Eq. (7.2) - will be solved first using the previous iteration value of
displacement u; thereafter the displacement equation - Eq. (6.6) - will be solved using the
updated value of pore pressure. After solution of both the pore pressure and displacement
vector is obtained, one iteration is completed and unless a converged solution is obtained,
the two equations will be solved again using the latest available iterative values.
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SOLVE PRESSURE  
EQUATION 

SOLVE DISPLACEMENT 
EQUATION 

CHECK 
CONVERGENCE 

STOP 

NO 

YES 

Figure 6.1: An outline of the iterative solution procedure employed in the poro-elasticity
model

6.3 biotFoam implementation

Overall, the implementation work of biotFoam mainly contains the following two aspects:
• Solve a new scalar flow equation for pore fluid pressure
• Add a new explicit pressure coupling term in the momentum equation

I shall explain how we implement the above two features. Firstly, create the basic directory
structure of tbiotFoam using similar command lines as listed in Page. 6:

biotFoam
Make

files
options

poroTraction
poroTractionFvPatchVectorField.C
poroTractionFvPatchVectorField.H

calculatePoroStress.H
createFields.H
readBiotFoamControls.H
readSoilProperties.H
biotFoam.C

Figure 6.2: The directory structure of epStressedFoam.
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where
createFields.H initializes the pore fluid pressure, displacement, stress fields;
readSoilProperties.H reads the soil mechanical and hydraulic properties from user;
readBiotFoamControls.H reads convergence control parameters from user;
biotFoam.C solves the pore fluid flow equation and the momentum equation;
calculatePoroStress.H calculates the (effective and total) stress condition;
poroTractionDisplacement specifies the traction boundary condition for porous soil.
Let me then present the corresponding code representations of each file.

• createFields.H

�
1 Info<< "Reading displacement field U\n" << endl;
2 volVectorField U
3 (
4 IOobject
5 (
6 "U",
7 runTime.timeName(),
8 mesh,
9 IOobject::MUST_READ,

10 IOobject::AUTO_WRITE
11 ),
12 mesh
13 );
14
15 Info<< "Reading pore pressure field p\n" << endl;
16
17 volScalarField p
18 (
19 IOobject
20 (
21 "p",
22 runTime.timeName(),
23 mesh,
24 IOobject::MUST_READ,
25 IOobject::AUTO_WRITE
26 ),
27 mesh
28 );
29
30 Info<< "Calculating effective stress field sigma\n" << endl;
31 volSymmTensorField sigmaEff
32 (
33 IOobject
34 (
35 "sigmaEff",
36 runTime.timeName(),
37 mesh,
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38 IOobject::READ_IF_PRESENT, // read if initial stress
condition specified

39 IOobject::AUTO_WRITE
40 ),
41 mesh,
42 dimensionedSymmTensor("sigmaEff",dimPressure,symmTensor::zero)
43 );
44
45 Info<< "Calculating total stress field sigma\n" << endl;
46 volSymmTensorField sigmaTot
47 (
48 IOobject
49 (
50 "sigmaTot",
51 runTime.timeName(),
52 mesh,
53 IOobject::NO_READ,
54 IOobject::AUTO_WRITE
55 ),
56 sigmaEff−I*p
57 );� �

Listing 6.1: createFields.H

• readSoilProperties.H

�
1 Info<< "Reading soil properties\n" << endl;
2
3 IOdictionary soilProperties
4 (
5 IOobject
6 (
7 "soilProperties",
8 runTime.constant(),
9 mesh,

10 IOobject::MUST_READ,
11 IOobject::NO_WRITE
12 )
13 );
14
15 dimensionedScalar E(soilProperties.lookup("E"));
16 dimensionedScalar nu(soilProperties.lookup("nu"));
17 dimensionedScalar k(soilProperties.lookup("k"));
18 dimensionedScalar K(soilProperties.lookup("K"));
19 dimensionedScalar Sr(soilProperties.lookup("Sr"));
20 dimensionedScalar p0(soilProperties.lookup("p0"));
21 dimensionedScalar gamma(soilProperties.lookup("gamma"));
22 dimensionedScalar n(soilProperties.lookup("n"));
23
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24 dimensionedScalar Kprime = 1.0/(1.0/K + (1.0−Sr)/p0);
25
26 Info<< "Calculating Lame’s coefficients\n" << endl;
27
28 dimensionedScalar mu = E/(2.0*(1.0 + nu));
29 dimensionedScalar lambda = nu*E/((1.0 + nu)*(1.0 − 2.0*nu));
30
31 Switch planeStress(soilProperties.lookup("planeStress"));
32
33 if (planeStress)
34 {
35 Info<< "Plane Stress\n" << endl;
36
37 lambda = nu*E/((1.0 + nu)*(1.0 − nu));
38 }
39 else
40 {
41 Info<< "Plane Strain\n" << endl;
42 }
43
44 Info<< "mu = " << mu.value() << " Pa\n";
45 Info<< "lambda = " << lambda.value() << " Pa\n";
46
47 dimensionedScalar Dp
48 (
49 "Dp",
50 dimensionSet(0, 2, −1 , 0, 0),
51 (k/gamma*Kprime/n).value()
52 );
53
54 dimensionedScalar Dp2
55 (
56 "Dp2",
57 dimensionSet(1, −1, −2 , 0, 0),
58 (Kprime/n).value()
59 );
60
61 Info<< "Dp = " << Dp.value() << " m^2/s \n";
62 Info<< "Dp2 = " << Dp2.value() << " kg/m/s^2\n";� �

Listing 6.2: readSoilProperties.H

• readBiotFoamControls.H

�
1 const dictionary& stressControl = mesh.solutionDict().subDict("

biotFoam");
2
3 int nCorr(readInt(stressControl.lookup("nCorrectors")));
4 scalar convergenceTolerance(readScalar(stressControl.lookup("
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residualDesired")));� �
Listing 6.3: readBiotFoamControls.H

• biotFoam.C

�
1 int main(int argc, char *argv[])
2 {
3 #include "setRootCase.H"
4
5 #include "createTime.H"
6 #include "createMesh.H"
7 #include "readSoilProperties.H"
8 #include "createFields.H"
9

10 // * * * * * * * * * * * * * * * * * * * * * * * * * * //
11
12 Info<< "\nCalculating displacement field\n" << endl;
13
14 while (runTime.loop())
15 {
16 Info<< "Iteration: " << runTime.value() << nl << endl;
17
18 #include "readBiotFoamControls.H"
19
20 int iCorr = 0;
21 scalar residual = 1.0e10;
22
23 do
24 {
25 p.storePrevIter();// for relaxation purpose
26
27 fvScalarMatrix pEqn // create pore pressure

equation matrix
28 (
29 fvm::ddt(p) == fvm::laplacian(Dp, p) − fvc::div(

fvc::ddt(Dp2,U))
30 );
31
32 residual = pEqn.solve().initialResidual();// solve

pEqn
33 p.relax();// under−relax pressure
34
35 U.storePrevIter();
36 volTensorField gradU = fvc::grad(U);
37
38 fvVectorMatrix UEqn // create momentum equation

matrix
39 (
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40 fvm::laplacian(2*mu + lambda, U, "laplacian(DU,U)")
41 + fvc::div
42 (
43 mu*gradU.T() + lambda*(I*tr(gradU)) − (mu +

lambda)*gradU,
44 "div(sigmaEXP)"
45 )
46 == fvc::grad(p)// explicit p−coupling
47 );
48
49 if (residual > UEqn.solve().initialResidual())
50 {
51 residual = UEqn.solve().initialResidual();
52 } // resdiual = max(UEqn.solve().initialResidual(),

pEqn.solve().initialResidual())
53
54 U.relax(); // under−relax displacement
55
56 } while (residual > convergenceTolerance && ++iCorr <

nCorr);
57
58 #include "calculateStress.H"
59
60 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << "

s"
61 << " ClockTime = " << runTime.elapsedClockTime() << "

s"
62 << nl << endl;
63 }
64
65 Info<< "End\n" << endl;
66
67 return 0;
68 }� �

Listing 6.4: biotoam.C

• calculatePoroStress.H

�
1 sigmaEff = mu*twoSymm(fvc::grad(U)) + (lambda*I)*tr(fvc::

grad(U)); // update effective stress field
2
3 sigmaTot = sigmaEff − I*p; // update total stress field
4
5 if (runTime.outputTime())
6 {
7 volScalarField sigmaEffEq
8 (
9 IOobject
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10 (
11 "sigmaEffEq",
12 runTime.timeName(),
13 mesh,
14 IOobject::NO_READ,
15 IOobject::AUTO_WRITE
16 ),
17 sqrt((3.0/2.0)*magSqr(dev(sigmaEff)))
18 );
19
20 Info<< "Max sigmaEffEq = " << max(sigmaEffEq).value()
21 << endl;
22
23 volVectorField V // Pore fluid flow velocity vector
24 (
25 IOobject
26 (
27 "V",
28 runTime.timeName(),
29 mesh,
30 IOobject::NO_READ,
31 IOobject::AUTO_WRITE
32 ),
33 −(k/gamma)*fvc::grad(p)
34 );
35
36 runTime.write();
37 }� �

Listing 6.5: calculatePoroStress.H

• poroTraction/poroTractionFvPatchVectorField.C
The porous traction boundary condition is based on the total force balance equation:

t =n · σ

=n · (σ′ − pI)
=n · [μ∇u + μ∇uT + λItr(∇u)] − pn
=n · [(2μ + λ)∇u︸ ︷︷ ︸

implicit

+ μ∇uT + λItr(∇u) − (μ + λ)∇u︸ ︷︷ ︸
explicit

] − pn︸︷︷︸
explicit

(6.7)

Rearrange the terms to get the implicit normal displacement gradient:

n · ∇u = t − n · [μ∇uT + λItr(∇u) − (μ + λ)∇u] + pn
2μ + λ

(6.8)

The code snippet is shown in Listing 6.6.�
1 void tractionDisplacementFvPatchVectorField::updateCoeffs()
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2 {
3 if (updated())
4 {
5 return;
6 }
7
8 const dictionary& materialProperties =
9 db().lookupObject<IOdictionary>("soilProperties");

10
11 dimensionedScalar E(materialProperties.lookup("E"));
12 dimensionedScalar nu(materialProperties.lookup("nu"));
13
14 dimensionedScalar mu = E/(2.0*(1.0 + nu));
15 dimensionedScalar lambda = nu*E/((1.0 + nu)*(1.0 − 2.0*nu));
16
17 Switch planeStress(materialProperties.lookup("planeStress"));
18
19 if (planeStress)
20 {
21 lambda = nu*E/((1.0 + nu)*(1.0 − nu));
22 }
23
24 vectorField n = patch().nf(); //Surface normal
25
26 scalar twoMuLamda =(2.0*mu + lambda).value();
27
28 const fvPatchField<tensor>& gradU =
29 patch().lookupPatchField<volTensorField, tensor>("grad(U)"

);
30
31 const fvPatchField<scalar>& p =
32 patch().lookupPatchField<volScalarField, scalar>("p");
33
34 gradient() =
35 (
36 (traction_ + pressure_*n)
37 − (n & (mu.value()*gradU.T() − (mu + lambda).value()*gradU))
38 − n*tr(graddU)*lambda.value()
39 + n*p
40 )/twoMuLambda;
41
42 fixedGradientFvPatchVectorField::updateCoeffs();� �

Listing 6.6: poroTraction/poroTractionFvPatchVectorField.C
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6.4 Application

The classic one-dimensional consolidation test is performed to validate the solver. Figure
6.3 outlines the case definition: a saturated soil column with height h is subjected to a
surface step loading (T ) of 1kN/m2 applied over a time of 0.1s. The boundary conditions
and soil material properties have also been shown in the figure itself.

Figure 6.3: A poro-elastic soil column subjected to a surface step loading

A comparison between the numerical prediction and the analytical solution [18] has been
shown in Figure 6.4. The horizontal axis represents the pore pressure normalized by an
initial pore pressure built up immediately after the loading, and the vertical axis stands
for the depth of the soil column normalized by the total height. The five data series corre-
spond to different dimensionless consolidation time, (cvt/h2), where cv is the consolidation
coefficient.

Figure 6.4: Numerical and analytical excess pore pressure dissipation isochrones (sampled
along the center line of soil column)
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(a) t=0.1s

(b) t=5s (c) t=20s

(d) t=50s (e) t=100s

Figure 6.5: Simulated excess pore pressure dissipation with time
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7 More advanced developments

In the previous chapters, we have implemented the four new stress analysis solvers, each of
whom covers a specific solid mechanic feature. In fact, we could easily move a step forward
to develop more advanced solvers that handle multiple solid features, without additional
effort. This is because in FVM, equations are solved in a segregated manner, where each
component of a vector and/or any additional transport equations are solved sequentially
and the coupling as well as the non-linearity are lagged. No matter how complex (e.g.
multiple coupling and non-linear terms) the mathematical formulation is, always only one
single fixed point iteration procedure iterating over all the explicit terms is needed.
In this chapter we will therefore attempt to implement three advanced stress analysis
solvers, using the same segregated solution procedure. This time only key parts of the
solver development will be described, for the implementation details readers are suggested
to follow the guidance of previous solvers.

7.1 Poro-elasto-plasticity

The first advanced solver is the so-called poro-elasto-plasticity soil stress analysis solver,
capable of accounting both the pore pressure coupling and the nonlinear plastic behavior
of the soil skeleton.
The governing equation system for the porous elasto-plastic soil body states:

∇ · [(2μ + λ)∇(δu)]︸ ︷︷ ︸
implicit

= − ∇ ·
{

μ∇(δu)T + λItr[∇(δu)] − (μ + λ)∇(δu)
}

︸ ︷︷ ︸
inter-component coupling, explicit

+ ∇ · [2μ(dεp) + λItr (dεp)]︸ ︷︷ ︸
nonlinearity, explicit

+ ∇(δp)︸ ︷︷ ︸
pressure coupling, explicit

(7.1)

k

γ
∇2p − n

K ′
∂p

∂t︸ ︷︷ ︸
implicit

= ∂

∂t
(∇ · u)

︸ ︷︷ ︸
volumetric strain coupling, explicit

(7.2)

Iterative solution procedure shown in Figure 7.1 is applied to solve the above coupled
nonlinear equation system.
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Figure 7.1: The iterative solution strategy of biotEpFoam in OpenFOAM

The corresponding implementation is present in Listing 7.1. Comments given describes
different steps taken.

int iCorr = 0;
scalar pResidual = 0;
scalar dUResidual = 0;

// Store the previous time step pressure and displacement field
value, so as to calculate incremental values
volScalarField p_old = p;
volVectorField U_old = U;

do
{

p.storePrevIter(); // store previous iteration for
relaxation

fvScalarMatrix pEqn // pressure equation matrix
(
fvm::ddt(p) == fvm::laplacian(Dp1, p, "laplacian(Dp1,p)")

− fvc::div(fvc::ddt(Dp2, U), "div(ddt(U))")
);
pResidual = pEqn.solve().initialResidual();
p.relax(); // under−relax p

volScalarField dp = p − p_old; // caculate incremental pore
pressure which will be used in the incremental

displacement equation
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dp.correctBoundaryConditions();

dU.storePrevIter();
volTensorField graddU = fvc::grad(dU);
fvVectorMatrix dUEqn // displacement equation matrix
(

fvm::laplacian(2*mu + lambda, dU, "laplacian(DdU,dU)")
==
− fvc::div

(
mu*graddU.T() + lambda*(I*tr(graddU)) − (mu +

lambda)*graddU,
"div(sigmaExp)"

)
+ fvc::div

(
2.0*mu*dEpsP + lambda*I*tr(dEpsP),
"div(sigmaP)"

)
+ fvc::grad(dp)

);
dUResidual = dUEqn.solve().initialResidual();
dU.relax; // under−relax dU

U = U_old + dU; // calculate the total displacement which
will be used in the pore pressure equation

U.correctBoundaryConditions();

} while ((pResidual > pTolerance || dUResidual > dUTolerance)
&& ++iCorr < nCorr);

# include "calculateStress.H"

Listing 7.1: biotEpFoam OpenFOAM solver code excerpt

7.2 Large deformation elasto-plasticity

Secondly, we could combine the geometrical nonlinearity and the material nonlinearity
together, namely, to create a large deformation elasto-plasticity stress solver.
Under the small strain assumption, it is valid to do the following strain decomposition:

δE = δEe + δEp (7.3)

As a result, the elasto-plastic stress-strain relation can be written as:

δS = 2μ(δE − δEp) + λtr(δE − δEp)I (7.4)

65



More advanced developments

The governing momentum equation contains several nonlinear terms and therefore is ar-
ranged in terms of different implicit and explicit discretizations, so as to allow the segre-
gated solution procedure:

(2μ + λ)∇2(δu)︸ ︷︷ ︸
implicit

+ ∇ ·
{

−(μ + λ)∇(δu) + μ[∇(δu)T + ∇(δu) · ∇uT + ∇u · ∇(δu)T + ∇(δu) · ∇(δu)T] + λtr(δE)
}

︸ ︷︷ ︸
explicit

+ ∇ · [δS · ∇u + (S + δS) · ∇(δu)]︸ ︷︷ ︸
explicit

− ∇ · [(2μδEp + λtr(δEp)I)]︸ ︷︷ ︸
explicit

= 0 (7.5)

The global iterative solution procedure accordingly is implemented in Listing 7.2.
do
{

iCorr++;
dU.storePrevIter();

// store previous iteration, since later dU will be under−
relaxed

dU.storePrevIter();

// solve the system with ’lagged’ plasticity and cross−
component coupling

fvVectorMatrix dUEqn
(

fvm::d2dt2(rho, dU)
==

fvm::laplacian(2*mu + lambda, dU, "laplacian(DU,dU)")

+ fvc::div
(

− ((mu + lambda)*gradDU)
+ (mu*gradDU.T())
+ (mu*(gradDU & gradU.T()))
+ (mu*(gradU & gradDU.T()))
+ (mu*(gradDU & gradDU.T()))
+ (lambda * tr(dEpsG) * I )
+ (dSigma & gradU)
+ ((sigma+dSigma) & gradDU),
"div(sigma)"

)

− fvc::div(2.0*mu*(mesh.Sf() & fvc::interpolate(dEpsP)))

− fvc::div(lambda*(mesh.Sf() & I*fvc::interpolate(tr(
dEpsP))))

);
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solverPerf = dUEqn.solve();

dU.relax();
gradDU = fvc::grad(dU);
DF = gradDU.T();

// update stress and plastic strains
# include "correctPlasticity.H"

dEpsG = symm(gradDU)
+0.5*symm(gradDU & gradU.T())
+0.5*symm(gradU & gradDU.T())
+0.5*symm(gradDU & gradDU.T());

dSigma = 2.0*mu*(dEpsG−dEpsP) + lambda*tr(dEpsG−dEpsP)*I;

} while
(
solverPerf.initialResidual() > convergenceTolerance
&& iCorr < nCorr
);

Listing 7.2: totalLaEpFoam OpenFOAM solver code excerpt

7.3 Anisotropic poro-elasticity

The third advanced stress solver attempts to capture general anisotropic soil behaviors,
including both mechanical(elastic properties) and hydraulic(permeability) anisotropy.
The anisotropic Biot’s consolidation equations are expressed as:

n

K ′
∂p

∂t
− 1

γw
∇ · (k · ∇p)

︸ ︷︷ ︸
implicit

+ ∂

∂t
(∇ · u)

︸ ︷︷ ︸
explicit

= 0 (7.6)

∂2(ρu)
∂t2︸ ︷︷ ︸

implicit

= ∇ · (K · ∇u)︸ ︷︷ ︸
implicit

+ ∇ · (C : ε − K · ∇u)︸ ︷︷ ︸
explicit

− ∇p︸︷︷︸
explicit

(7.7)

where

k is the diagonal permeability tensor: k =

⎛
⎜⎝

kx 0 0
0 ky 0
0 0 kz

⎞
⎟⎠ The solution procedure of

anisoBiotFoam is similar to that of the isotropic biotFoam solver: namely, the pressure
equation is solved first, followed by the anisotropic momentum equation; after solution
of both the pore pressure and displacement vector is obtained, one iteration is completed
and unless a converged solution is obtained, the two equations will be solved again using
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the latest available iterative values. The corresponding implementation codes is present
in Listing 7.3.

do
{

p.storePrevIter();

fvScalarMatrix pEqn
(

fvm::ddt(p) == fvm::laplacian(Dp, p) − fvc::div(fvc::
ddt(Dp2,U))

);

pResidual = pEqn.solve().initialResidual();
p.relax();

U.storePrevIter();

fvVectorMatrix UEqn
(

fvm::d2dt2(rho, U)
==

fvm::laplacian(K, U, "laplacian(DU,U)")

+ fvc::div(C && epsilonG)

− fvc::div(K & gradU)

− fvc::grad(p)
);

UResidual = UEqn.solve().initialResidual();
U.relax();
gradU = fvc::grad(U);

# include "calculateSigmaEpsilonOrtho.H"

initialResidual = max(pResidual,UResidual);

} while (initialResidual > convergenceTolerance && ++iCorr <
nCorr);

Listing 7.3: anisoBiotFoam OpenFOAM solver code excerpt
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8 Convergence improvements

The fixed point iteration procedure associated with FVM is very simple, as there is no need
to form and update the large Jacobian matrix like in FEM. Convergence can usually be
achieved within certain number of iterations. However, there are occasions when very slow
convergence or no convergence occurs due to strong coupling and/or high non-linearity.
In those cases, some convergence improvement methods are necessary. In this chapter, we
will explore the two different approaches that can help for convergence.

8.1 Explicit approach: relaxation methods

The first option is the explicit approach, namely, using the relaxation methods. Relaxation
can be explained briefly by the formulation below:

x̃i = (1 − θ)xi−1 + θxi (8.1)

where
x̃i, stands for the ith under-relaxed iterative value of a generalized unknown variable x;
θ, the under-relaxation factor with a value between 0 to 1. The value 0 means no update
of the variable, while value 1 means full-update. In general, the smaller the relaxation
factor, the stabler the solution procedure, but the more iteration numbers needed.
The relaxation factor θ can be specified either as constant value (fixed under-relaxation)
or more efficiently as adaptive value based on the iteration sequences (adaptive under-
relaxation, e.g. Aitken’s method, Anderson acceleration, etc.).
Relaxation methods are easy to implement in OpenFOAM, since they do not alter the
segregated solution procedure, instead they simply slow down the change of successive
iterations and thus promote the stabilization of the solution method. In the following, I
shall explain how to implement the fixed under-relaxation and one of the adaptive under-
relaxation methods - Aitken’s method - in OpenFOAM.

8.1.1 Fixed under-relaxation

Fixed under-relaxation method is very simple to use. You might have already noticed
that, we applied this method in some of our previous solvers (e.g. Listing 5.2 and 6.4)
by two steps. Firstly, we call a member function of a variable (scalar,vector,tensor fields)
class, e.g.:
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dU.storePrevIter();

which stores the previous iteration value.
And then after we solve the mentum equation, we call another member function of the
variable:

dU.relax();

which simply under-relax the solved dU. The relaxation factor is read from user specified
sub-dictionary relaxationFactors in the system/fvSolution file. Let me show you an
example here:

relaxationFactors
{
dU 0.5;
p 0.75;

}

which specifies that the increment of displacement vector shall be under-relaxed by a factor
of 0.5 while the pore fluid pressure shall only be under-relaxed by 0.75.
Fixed under-relaxation might not be a good choice when for example strong plasticity
occurs, since we have to use very small relaxation factor to promote the convergence. The
small relaxation factor will slow down the whole simulation, even for the elastic range. In
this case, we shall turn to more efficient relaxation methods, which allow us to dynamically
adjust the relaxation factor accordingly.

8.1.2 Adaptive under-relaxation

Aitken’s method is one of such efficient adaptive under-relaxation methods. It is most
powerful for accelerating a linear convergent sequence, by adaptively computing the re-
laxation factors based on the errors in two successive approximations as follows:

ri = x̃i+1 − xi (8.2)

θi+1 = −θi ri−1 (
ri − ri−1)

(ri − ri−1) (ri − ri−1) (8.3)

where
x, the solving variable;
x̃, denotes the solved value before under-relaxation;
r, the error between two successive iterations;
θ, dynamic relaxation factor. θ0 can be read from user input.
Though the implementation of Aitken’s method involves more work than the simple fixed
under-relaxation, the effort is worthwhile since we can save considerable iterations. As
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an example I will describe the implementation of Aitken’s method for under-relaxing the
increment of displacement. First, we need to create an error field and a scalar under-
relaxation factor in the createFields.H file:

volVectorField err
(

IOobject
(

"err",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE

),
mesh,
dimensionedVector("err", dimLength, vector::zero)

);

scalar theta(0);

Then we shall modify the main .C file to incorporate the computation of relaxation factor.
Inside the momentum loop, we firstly store the previous computing variable as well as the
previous error:

dU.storePrevIter();
volVectorField dUPrevIter = dU.prevIter();
err.storePrevIter();
volVectorField errPrevIter = err.prevIter();
const vectorField& errPrevIterI = errPrevIter.internalField();

After we solve the momentum equation, we update the error field, calculate the dynamic
relaxation factor, and then perform the under-relaxation to obtain a better approximation
value:

err = dU - dUPrevIter;
const vectorField& errI = err.internalField();
if (iCorr == 1)
{
theta = theta0;
}

else
{
theta *= -(

gSum(errPrevIterI & (errI - errPrevIterI))
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/(
gSum(mag(errI - errPrevIterI))+SMALL
)

);
}

dU.relax(theta);

The above Aitken’s procedure can be performed on any computation variable of interest.
Moreover, there are some other advanced adaptive relaxation methods, which use the
whole sequence and distribution of the errors. Those methods can speed up the iterations
significantly, however, not as trivial as the Aitken’s method to use. Readers of interest are
invited to have a look at the reference [19].

8.2 Implicit approach: block matrix solver

The second option, quite different from those relaxation methods mentioned before, is the
implicit approach using block matrix solver. The so-called block matrix solver algorithm
is intended for use in implicit solutions of strongly coupled variables sharing a common
mesh [20, 21], where most of the explicit under-relaxation methods fail to give convergence
or produce very slow convergence.

8.2.1 Theory of the block matrix solver

Let us first have a brief understanding on the theory of the new block matrix solver method.
Given a resulting finite volume discretization of a coupled equation set:

aP xP +
∑

N

aN xN = b (8.4)

where, x is a vector of m arbitrary variables that we would like to solve from the equation
set, and a is the coefficient matrix of dimension m × m. The lower index P stands for the
current computing cell and N is the neighbor of cell P .
The block matrix solver algorithm will differs from the conventional segregated algorithm
as follows:

• The segregated approach - no coupling between variables, namely all the off-diagonal
coefficients are zero:

aP xP +
∑

N

aN xN =

⎡
⎢⎣

a11
. . .

amm

⎤
⎥⎦

P

xP +
∑

N

⎡
⎢⎣

a11
. . .

amm

⎤
⎥⎦

N

xN (8.5)

72



Convergence improvements

• The block matrix solver approach - coupling between variables in owner and neighbor
cells, namely the off-diagonals are non-zeros:

aP xP +
∑

N

aN xN =

⎡
⎢⎣

a11 · · · a1m
... . . . ...

am1 · · · amm

⎤
⎥⎦

P

xP +
∑

N

⎡
⎢⎣

a11 · · · a1m
... . . . ...

am1 · · · amm

⎤
⎥⎦

N

xN (8.6)

We then write out the assembled sparse linear system as:

[A][X] = [B] (8.7)

• In segregated approach, we iteratively solve m small sparse linear systems of [A],
each is:

[Asmall] = [1 · n × 1 · n], [X] = [1 · n × 1] (8.8)

where, n = number of cells.
• In block matrix solver approach, we solve once the large sparse linear system [A]:

[A] = [m · n × m · n], [X] = [m · n × 1] (8.9)

Favorably, the sparseness pattern of block matrix [A] is unchanged from the segregated
small scalar matrix [Asmall], due to the same mesh set-up.

8.2.2 Implementation of the block matrix solver algorithm

The implementation of block matrix solver is not as trivial as the previous relaxation
methods, as we no longer use the default segregated solution procedure which has been
used for years in OpenFOAM. Development of new block matrix structure in OpenFOAM
is needed. We can firstly gain some insight from the blockCoupledScalarTransportFoam
solver, available in the OpenFOAM-1.6-ext path of $Foam_APP/solvers/coupled.
The original blockCoupledScalarTransportFoam solver solves a coupled two-phase flu-
id/solid heat transfer problem:

∇ · φTf − ∇ · DTf
∇Tf = α(Ts − Tf ) (8.10)

−∇ · DTs∇Ts = α(Tf − Ts) (8.11)

where
Ts, Tf , the temperatures of solid and fluid, respectively;
φ, DTf

, DTs , α, material properties.
In this heat transfer problem, the two scalar equations are coupled simply through linear
source terms, i.e. Ts present in Eq. (8.10) and Tf in Eq. (8.11). We might have two
options to deal with the coupling:
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- The conventional segregated implementation
For the conventional segregated solution, relaxation and several iterations may be
required. The code excerpt of such implementation is present below.

do
{

solve
(
fvm::div(phi, Tf) - fvm::laplacian(DTf, Tf)
== alpha*Ts - fvm::Sp(alpha, Tf)

);
Tf.relax();

solve
(
- fvm::laplacian(DTs, Ts) == alpha*Tf - fvm::Sp(alpha, Ts)
);

Ts.relax();

} while (initialResidual > convergenceTolerance && ++iCorr <
nCorr);

- The block matrix solver implementation
For the block matrix implementation, all the terms in the equation system will be
treated implicitly, thus no iteration is needed. A new blockMatrixTools class is
defined to help for the construction of the large block matrix, preserving the same
sparseness as the above small matrix system. The following codes describe the key
parts of block matrix solver implementation.
fvScalarMatrix TfEqn
(
fvm::div(phi, Tf)-fvm::laplacian(DT, Tf)==alpha*Ts-fvm::Sp(alpha, Tf)
);

fvScalarMatrix TsEqn
(
-fvm::laplacian(DTs, Ts)==alpha*Tf-fvm::Sp(alpha, Ts)
);

// Prepare block system
BlockLduMatrix<vector2> blockM(mesh);

//- Transfer the coupled interface list for processor/cyclic/etc. boundaries
blockM.interfaces() = blockT.boundaryField().blockInterfaces();
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// Grab block diagonal and set it to zero
Field<tensor2>& d = blockM.diag().asSquare();
d = tensor2::zero;

// Grab linear off-diagonal and set it to zero
Field<vector2>& l = blockM.lower().asLinear();
Field<vector2>& u = blockM.upper().asLinear();
u = vector2::zero;
l = vector2::zero;

vector2Field& blockX = blockT.internalField();
vector2Field blockB(mesh.nCells(), vector2::zero);

//- Inset equations into block Matrix
blockMatrixTools::insertEquation(0, TfEqn, blockM, blockX, blockB);
blockMatrixTools::insertEquation(1, TsEqn, blockM, blockX, blockB);

//- Add off-diagonal terms and remove from block source
forAll(d, i)
{
d[i](0, 1) = -alpha.value()*mesh.V()[i];
d[i](1, 0) = -alpha.value()*mesh.V()[i];

blockB[i][0] -= alpha.value()*blockX[i][1]*mesh.V()[i];
blockB[i][1] -= alpha.value()*blockX[i][0]*mesh.V()[i];
}

//- Block coupled solver call
BlockSolverPerformance<vector2> solverPerf =
BlockLduSolver<vector2>::New
(

blockT.name(),
blockM,
mesh.solutionDict().solver(blockT.name())

)->solve(blockX, blockB);

solverPerf.print();

// Retrieve solution
blockMatrixTools::blockRetrieve(0, Tf.internalField(), blockX);
blockMatrixTools::blockRetrieve(1, Ts.internalField(), blockX);

Tf.correctBoundaryConditions();
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Ts.correctBoundaryConditions();

It is important to note that for this very simple heat transfer problem, the two scalar
equations are coupled through linear source terms. While, for our stress analysis prob-
lems, even the most simple linear elasticity case, the equations are coupled via differential
operators. This difference complicates the implementation significantly. The currently
available blockMatrixTools class only contains member functions that help to fill in the
block diagonals, source terms and variables with the information from the conventional
fvScalarMatrix and fvVectorMatrix. We have to extend the functions to fill in the block
off-diagonals (namely coupling under differential operator) as well. Readers are invited
to have a look at my previous work [5], where the more complicated Biot’s poro-elastic
consolidation equations have been implemented using block matrix solver procedure.
In general, the implicit block matrix solver gives good convergence for strong coupling
and/or high nonlinear problems. However, the situation is not as clear-cut as it might
seem: for example, we cannot tell in advance whether the block solution gives an a priori
advantage over the segregated solution even for a simple linear elastic stress analysis
problem: this is a question of the trade-off between the high expense of constructing and
solving a large matrix and the simple iterative solvers with necessary iterations over the
explicit coupling and non-linearity.
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