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Abstract 

A high concentration of lithium, corresponding to charge capacity of ~4200 mAh/g, can be 
intercalated in silicon. Unfortunately, due to high intercalation strain leading to fracture and 
consequent poor cyclability, silicon cannot be used as anode in lithium ion batteries. But 
recently interconnected hollow nano-spheres of amorphous silicon have been found to 
exhibit high cyclability. The absence of fracture upon lithiation and the high cyclability has 
been attributed to reduction in intercalation stress due to hollow spherical geometry of the 
silicon nano-particles. The present work argues that the hollow spherical geometry alone 
cannot ensure the absence of fracture. Using classical molecular dynamics and density 
functional theory based simulations; satisfactory explanation to the absence of fracture has 
been explored at the atomic scale.  

1 Introduction 
 

In commercial lithium ion batteries, graphitic carbon has been used as an anode material 
because of high discharge voltage, high cycle life and low cost. The available capacity of 
graphitic carbon is approaching near the theoretical value (370mAhg−1) [1]. In order to 
improve capacity of lithium ion secondary battery, silicon, instead of graphitic carbon is 
explored as an anode material because of its high theoretical capacity (4200mAhg−1), which 
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corresponds to Li22Si5 formation [2, 3]. The theoretical capacity of silicon is 11 times higher 
than that of the graphitic carbon. Unfortunately, lithiation-de-lithiation in silicon is associated 
with large volume change which causes cracking of silicon leading to poor cycle life [4, 5]. 
Graphite anodes use particles in the size range of 15 -20 microns. If silicon particles of the 
same size are used instead of graphite, anode will fail within few cycles due to the fracture.  

One of the promising ways to reduce the mechanical stress and therefore to increase the 
cycle life, is reduction of the particle size to nano-meter range. The same has been 
demonstrated in several publications [6-8], which show that with nano-scale materials it is 
possible to reach capacities up to 1700 mAh/g, together with reduced fading. Additionally, 
adding carbon in the form of nano-silicon/carbon composites improves the stability 
significantly [9]. However, compared to common graphite electrodes, such materials still 
suffer from a relatively low cycle life and high fading. In contrast, composite electrodes 
based on nano-silicon inclusions in carbon aero gel were shown by Wang et al. to offer a 
stable charge capacity of 1450 mAh/g [10]. The same group also prepared a promising high-
capacity composite electrode by ball-milling, but these electrodes still suffer from relatively 
high fading [11]. In the past, attempts were made to limit the amount of lithium inserted into 
the silicon and thus reducing the volume expansion [12]. This approach can offer relatively 
higher number of cycles with low capacity fading but compromises on capacity utilization. 

Recently, Yao et al.[13] have found that interconnected hollow nano-spheres of amorphous 
silicon is a potential candidate for anode, having better cycle life and considerable capacity 
retention up to 700 cycles. This was attributed to the fact that the maximum tensile stress 
during lithiation is significantly lower for a hollow sphere as compared to a solid sphere. Thus 
the interconnected hollow nano-spheres are capable of accommodating large volume 
expansion without fracture. Considering poor fracture toughness of silicon [14], additional 
factors responsible for the high cyclability need to be explored. Yi Chi et. al proposed a new 
hierarchical structure of silicon anode which is of the shape of a pomegranate where the 
nano-particles of silicon is encapsulated by a conductive layer of carbon which in turn 
resulting in superior cyclability, high columbic efficiency and volumetric capacity [15], 
because of the sufficient void space created for expansion and contraction during lithium 
intercalation. Similar objective of accommodating volume expansion by creating void space 
in different forms such as hollow core shell, nonporous microspheres, hollow double-walled 
nano-tubes and hollow yolk-shell are addressed in various publications [16-22]. 

Classical molecular dynamics simulations, carried out in the present work, reveal 
significantly lower atomic density in interconnected hollow nano-spheres of amorphous 
silicon as compared to that of bulk amorphous silicon. Subsequent simulations which are 
based on density functional theory suggest that the reduction in atomic density results in 
significant decrease in the lithiation strain and smaller band-gap in the lithiated amorphous 
silicon. These, in turn, lead to high fracture toughness and good cyclability. Thus high 
cyclability in interconnected hollow nano-spheres of amorphous silicon, observed by Yao et 
al. [13], can be attributed to its lower atomic density. The phenomenon of reduction in atomic 
density of amorphous materials when the particle size is reduced to nano-range was first 
discovered by Gleiter [23]. Classical molecular dynamics simulations on Cu-Ti [23] and Cu-
Zr [24] amorphous systems and experimental measurements in other systems like Sc-Fe 
[25] have revealed that the lowering in atomic density is due to diffusion of free volume from 
interfaces formed between glassy nano-particles. 
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2 Simulation Methods 
 

2.1 Molecular Dynamics Methodology 
 

All the computations are performed on the LAMMPS platform [26] using Stilinger-Weber 
(SW)[27] potential for silicon. Diamond cubic crystalline structures of silicon have been 
generated in simulation boxes of 3 different sizes, viz. i) 30 Å × 30 Å × 30 Å (ii) 60 Å × 60 Å 
× 60 Å and (iii) 100 Å × 100 Å × 100 Å. Periodic boundary conditions in all three directions 
were applied to the systems. NPT ensemble was applied using Noose-hover algorithm. The 
system was heated to 2000K (above 1687K, the melting point of pure silicon) to melt it 
completely and then, quenched to form amorphous silicon structure. During simulation the 
heating rate was 1.7 K ps -1while the cooling rate varied from 121.4 Kps -1 to 425 Kps -1. 
Nano-shell of amorphous silicon was extracted out of the block shaped amorphous silicon 
for further simulations. Table 1 gives the radii and centers of the spherical cavities within 
nano-spheres, which were enclosed in the cubic simulation boxes. In each case the system 
was allowed to equilibrate at 300K, 750K and 1200K under atmospheric pressure for 0.2 ns. 
In all the classical molecular dynamics simulations  the time-step was equal to 0.002 
ps. 

Table 1: Dimensions of spheres of amorphous silicon having cavities 

 

 

 

 

 

Computation of local density was carried out by mov ing a cubic sampling region, 
having dimensions of 5 Å x 5 Å x 5 Å and having edg es parallel to the edges of the 
simulation box, from one corner to the opposite cor ner of the simulation box. The 
movement of the sampling region within the simulati on box was carried out in the 
following manner. 

(a)A corner of the sampling region, in its starting  configuration, coincided with that of 
the simulation box. 

(b) The corner of the sampling region was displaced  from (0 Å, 0 Å, 0 Å) to (95 Å, 95 Å, 
95 Å) by increasing the  x, y and z coordinates fro m 0 to 95 Å  in increments of  2.5 Å,  
using nested loops. 

In this manner, the entire region within the simula tion box is systematically covered 
and the sampling box does not step outside the simu lation box. 

For each of the positions of the cubic sampling reg ion, the number of Si atoms within 
the sampling region was found out based on atomic c oordinates. The number of 
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atoms lying within the sampling region divided by t he volume of the sampling region, 
i.e., 25.0 Å3 gives the atomic density correspondin g to the center of the sampling 
region. This information was plotted as contour. Th e average atomic density was 
computed by eliminating regions with zero atomic de nsities and those regions where 
density drastically dropped to low value. These are  the computed values in sampling 
regions, which are adjacent to sampling regions hav ing zero atomic density. 

2.2 Density Functional Theory (DFT) Based Methodolo gy 
 

Eight different atomic configurations of amorphous silicon were obtained in the 
following manner. 

(1) Amorphous structures (having different atomic d ensities) were generated by 
carrying out classical MD simulation of annealing o f nano-shells at different 
temperatures. 

(2) Subsequently several10 Å x 10 Å x 10 Å cubic su b-cells were from these 
structures.  

These configurations, hereafter referred to as I, I I, III, IV, V, VI, VII and VIII had different 
number of atoms and different atomic densities. The y were used for DFT studies on 
(a) volume expansion accompanying lithium insertion  and (b) electronic structure 
resulting from the lithium insertion. For DFT simul ations, model test cells were first 
relaxed for atomic positions and then for both cell  parameters and atomic positions. 
Lithium insertion was modeled by adding 27 lithium atoms at uniform grid points 
(3x3x3) inside the simulation boxes. After inserting the lithium atoms in the four 
configurations, the lithium atoms were first relaxed, keeping the silicon atoms fixed. 
Subsequently the silicon atoms were allowed to relax along with the lithium atoms. Finally, 
the cell parameters were optimized to get overall pressure <0.1 k bar (Error! Reference 
source not found. 1).The DFT calculations were performed using projector  augmented 
wave (PAW)[28] method with GGA functional (PBE type  [29]) as implemented in VASP 
[30]. 450 eV was assigned as the wave function cuto ff and Brillouin zone was sampled 
with 2 × 2 × 2 k-point mesh. 

Formation energy with respect to bulk crystalline silicon, of different amorphous silicon 
configuration is tabulated in Table 2. Amorphous Si being metastable, formation energy is 
positive and that for different configurations are quite comparable 

Table 2: Formation energy of different structures under consideration using DFT in this study 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

The current approach is different from that adopted  by Chevrier and Dahn [31]. They 
had used a portion of pre-computed amorphous Si str ucture. Li atoms were inserted 
in the structure one at a time and each insertion w ere followed by relaxation of the 
structure. Any insertion of Li atom was done at a p oint having the maximum distance 
from its nearest neighboring atom and the subsequen t relaxation was subjected to a 
constraint, namely, the increase in the volume of t he cell as a result of intercalation of 
single Li is fixed. As our aim was to study variabi lity of volume increment, this 
method is not appropriate for our study.  

Rohrer and Albe [32] took larger simulation cell. T heir starting structure was 
crystalline Si and using DFT based molecular dynami cs they showed the structural 
changes occurring during the Li intercalation and d e-intercalation. Their work has led 
to important conclusion that poor cycle ability occ urs due to phase separation that 
accompanies the massive expansion and contraction d uring the intercalation and de-
intercalation, respectively. Like Rohrer and Albe [ 32], large enough simulation cells 
have been taken and Li atoms have been randomly ins erted in the present study. 
However, DFT-based molecular dynamics has not been used here, as there was a 
need to sample a larger number of metastable struct ures with varying atomic 
densities to study the effect of atomic density on volume expansion during Li 
intercalation.   Further, to maximize the chances o f getting stable structures, after 
starting from a random distribution of Li atoms, th e Li to Si ratio was mostly varied 
between 0.5 and 0.7. Interestingly, Kim et al. [33] found good stability of crystalline 
phase for percentage of lithiation atom varying bet ween 0.65 and 0.75.This lithiation 
level is 2.33 by our definition of lithiation level , thus significantly higher than our 
models. At higher lithiation level, crystalline pha se is expected to be stable. 
Comprehensive work on electronic and vibration prop erties of crystalline phases 
were done by Chevrier et al. [37]. 

While being computationally less demanding, regular  GGA functional (PBE) 
underestimates band gap significantly and the densi ty of states (DOS) plot do not 
show proper band gap. Therefore we have performed t he DOS calculations using 
PBE0 hybrid exchange-correlation functional. While PBE functional is known to 
severely underestimate band gap, it is fairly accur ate in predicting structure for 
materials involving s and p block  elements like li thium and silicon, while being much 
less computationally expensive than PBE0 functional . Therefore, we studied structure 
using PBE functional and calculated electronic stru cture using PBE0 functional. 
A grid-based Bader code[34] was used to analyze the Bader charges of atoms in lithiated 
silicon. In this method the simulation box was divided into several atomic zones such that the 
zone boundaries had zero electron density gradients at every point. The net charge transfer 
from lithium to silicon atoms was computed using effective Bader charge on lithium atoms.  
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Figure1: Lithiated and pristine configuration for higher (50 atoms) and lower density (43 
atoms) amorphous Si with bond connectivity. (a) and (c) show structures for high density and 
low density amorphous silicon configurations before lithiation. (b) and (d) show structures for 
high density and low density amorphous silicon configurations after lithiation. Lower 
connectivity and higher porosity in low density silicon  

3 Results and Discussion 
 

Atomic density of interconnected hollow nano-spheres of amorphous silicon, computed using 
classical MD simulations has been reported in Section 3.1. The computed atomic density in 
hollow nano-spheres was found to be lower than that in bulk amorphous silicon. DFT 
simulations for computing the volume expansion accompanying lithiation were carried out for 
eight  different configurations of amorphous silicon having different atomic densities. Section 
3.2 reports about the volume expansion during lithiation. The lowering in atomic density had 
a significant effect on the volume expansion accompanying lithiation as well as on the 
electronic state. The density of states (DOS) for two configurations,  in both de-lithiated 
and lithiated states, are reported in Section 3.3.  This section also reports charge transfer 
from lithium to silicon. 

3.1 Atomic density in interconnected hollow nano-sp heres of 
amorphous silicon 

 

Figure 2 shows atomic density contour of bulk amorp hous Si at 300 K, generated 
according to the procedure described in Section 2.1 . The nano-shells which have 
been annealed at different temperatures, subjected to periodic boundary condition, 
have been cut out from this structure.  Figure 3 an d Figure 4 show the atomic density 
contour in nano-shells, initially having the same s tructure as bulk amorphous Si at 
300 K, after annealing at 300 K and 750 K respectiv ely.  The contour pattern does not 
change as a result of annealing. However there are other effects of annealing, which 
are as follows. 
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Figure 2: Contour plot of atomic density of bulk amorphous Si at 300K  

 

Figure 3shows the contour of atomic density in amorphous silicon obtained after annealing a 
periodic array of nano-shells (shell thickness = 25Å) at 300 K. The cavity of silicon nano-
shell was more or less stable at 300K as depicted in Figure 3. Volume expansion was 
negligible at this temperature. However, the scenario was different at higher temperatures. 
As can be seen in Figure 4, at higher temperature (750 K) the thickness of shell increased 
and the cavity-size decreased due to diffusion of atoms towards the cavity or diffusion of free 
volume into the shell. The diffusion occurred over a short period of 40 ps. Due to that 
process the atomic density within the shell decreas ed, as evident from the data 
reported in Table 2 . Table 3 reports the computed average atomic density  within the 
shell region. The decrease was significant at 750 K and 1200 K (Table 3).  
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Nano-particles have extremely high surface area to volume ratio (S), which, in the case of a 
nano-shell is given by  
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Substitutingδ = ��, where δ and c are shell thickness and shell thickness to radius ratio 
respectively, we get 
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�
�

                                                                         (2) 

Equation (2) suggests that the ratio reduces with increasing c. Thus, the shrinkage of cavity 
or increase in c at 750 K was driven by lowering of free energy due to reduction in surface 
area. On the other hand, the observed lowering of atomic density would increase the energy 
per atom and hence would oppose the increase in c. In the present study the c increased to 
an equilibrium value, suggesting that the two forces are balanced.  

This shrinkage of cavity and reduction of atomic de nsity within the nano-shells occur 
in extremely short duration due to high self-diffus ivity of silicon in its amorphous 
form, which are many orders of magnitude higher tha n that in crystalline silicon. At 
750 K the drop in the average atomic density within  the nano-shells is ~15%. On the 
other hand, at 300 K, the decrease in the atomic de nsity of the nano-shell is much 
lower (for duration of 0.2 ns), due to significantl y lower self-diffusivity of Si. Thus, 
considering the following facts 

(i) The driving force to reduce surface area at the  cost of decrease in atomic 
density is present above 300 K, as suggested by the  results shown in 
Figures 3-4 and Table 3. 

(ii) The kinetics was fast enough at 750 K, leading  to ~15% reduction in 
average atomic density of the nano-shells within le ss than 0.2 ns. Kinetics 
becomes sluggish as the temperature is reduced to 3 00 K (Figures 3-4 and 
Table 3). 

(iii) Yao et al. [13] deposited the amorphous Si at ~750 K and subs equently it 
was cooled down. The deposition was done over a per iod of time (20 min) 
which is orders of magnitude higher than 0.2 ns. 
 
it can be theoretically concluded that atomic densi ty in the interconnected 
hollow nano-spheres of amorphous silicon, deposited  by Yao et al.[13], was 
at least 15% lower (see Table 3) than that in bulk amorphous silicon.  
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There are two kinds of cavities in the interconnected hollow nano-spheres: (i) hollow region 
inside a nano-sphere and (ii) inter particle void region.  It must be noted that the shrinkage of 
the latter was more prominent.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Contour plot of atomic density at 300K showing stability of the nano-shell 
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Figure 4: Contour plot of atomic density at 750K showing stability of the nano-shell 

 

 

Table 3: Average density of bulk and nano-shell amorphous silicon at different temperatures 

 

 

 

 

 

 

 

 

 

3.2 Volume expansion as a result of lithiation 
 

Volume change associated with Li insertion was studied using DFT based simulations. As a 
result of the Li insertion, simulation boxes expanded for all the configurations. The 
percentage volume expansion (hereafter referred to %VE) varied from 26.6% to 
109.8%.  Table 4 reports %VE for the eight differen t structures, having different atomic 
densities. It can be seen that the %VE depends, not  only on the pre-lithiation atomic 
density (hereafter referred to as PLAD) or pre-lith iation density (PLD), but also on the 
extent of Li insertion. Therefore, in order to stud y the effect of PLAD (or PLD) on the 
volume expansion, the %VE was normalized by the deg ree of lithiation or the Li to Si 
ratio(x). In other words the percentage volume expa nsion per degree of lithiation 
(%VE divided by x and hereafter referred to as %VE x) was computed and its variation 
with the pre-lithiation density or PLD is reported in Table 4. The same has been 
plotted in Figure 5. %VE x significantly increased with PLD. Based on the bes t fit plots 
in Figure 5 the following important conclusions can  be drawn. 

(1) The variation of %VE x with PLD can be treated as linear. 
(2) Fluctuation around best fit line through data p oints in Figure 5 is there. This is 

expected because there are subtle differences betwe en any two glassy 
structures, apart from the atomic density. 

(3) The %VEx versus PLD slope reduces with the degree of lithia tion or x.  
(4) For x varying in the range: 0.16 to 0.186, 8.53 % reduction (from 2.437 gm cm -3 

to 2.29 gm cm -3) in PLD resulted in 67.7% decrease (from 75% to 7. 3%) in the 
%VEx. Extrapolating the best fit line to ~15% reduction  in the PLD (as predicted 
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using classical MD simulation and reported in Secti on 3.1) ~119% reduction in 
the %VE x is expected.  

(5) For x varying in the range: 0.54-0.711, 8.53% r eduction (from 2.437 gm cm -3 to 
2.29 gm cm -3) in PLD resulted in ~26 % decrease (from ~71% to ~ 45%) in the 
%VEx. Extrapolating the best fit line to ~15% reduction  in the PLD (as predicted 
using classical MD simulation and reported in Secti on 3.1) ~45.7% reduction in 
the %VE x is expected.  

(6) For x varying in the range: 1.28-1.6,  8.53% reduct ion (from 2.437 gm cm -3 to 
2.29 gm cm -3) in PLD resulted in ~11% decrease (from ~74% to ~6 3% in the 
%VEx. Extrapolating the best fit line to ~15% reduction  in the PLD (as predicted 
using classical MD simulation and reported in Secti on 3.1) 19.8% reduction in 
the %VE x is expected.  
 
 
The prediction of stress by Yao et al. [13] was purely based on the geometrical 
aspect at the mesoscopic scale. Based on the geometrical considerations they 
predicted a drop in lithiation stress from >400 MPa to ~75 MPa. In the present study 
an additional phenomenon of lowering of atomic density has been shown to further 
reduce the lithiation strain and stress to significant extents, especially at early stage 
of lithiation.  
 

Table 4: Density, volume, percentage volume expansion, degree of lithiation and percentage 
volume expansion per degree of lithiation of different configurations of amorphous silicon  
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Figure 5: Variation of percentage volume expansion per degree of lithiation with density of 
initial amorphous Si 

To validate that the structure under consideration are representative, we calculated the 
lithiation energies computed from bulk lithium reference (Table 5). As the lithiation energies 
are comparable, we can establish our inference based on these set of structures. 

Table 5: Average lithiation energy for different structures 
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3.3 Effect of reduced atomic density on electronic structure of lithiated 
amorphous silicon 

 

Density functional theory (DFT) based simulations r evealed that the electronic 
structure is modified significantly upon lithium in sertion. Fig. 6 shows the DOS of two 
amorphous Si configurations, both before and after lithiation, obtained using hybrid 
density functional (PBE0). Band gap decreases due t o Li insertion, leading to metallic 
system with high Li content. The variation in band gap between different tests cells 
arise from vastly different coordination for Si ato ms. As lithium valence electrons are 
transferred to Si orbital, electronic band gap dimi nishes. Similar effects have been 
studied by Kim et. al [33]. Lithium atoms behave as ionic species in all  test cells. 
Irrespective of the model system and lithiation lev el, the charged state of Li remains 
same (~ +0.8) as calculated from Bader charges [Tab le 6]. While our results do not 
match with the results obtained by Chevrier et al. [35] but our results, agree well with 
the more recent work (0.83 e per Li atom) by Moon et al. [36]. 

Pre-lithiation atomic density had significant influ ence on DOS of both pre-lithiated 
and lithiated structures for low degree of lithiati on. For low degree of lithiation, the 
band gap is significantly higher for structure with  low pre-lithiation density. This 
suggests that atomic density also alters the electr on distribution, which is known to 
influence the fracture property. 
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Figure 6: Electronic DOS of amorphous Si configuration 1 and 4 (unit of energy = eV) for 
different degrees of lithiation calculated using hybrid functional 

Table 6: Amount of charge transfer from lithium to silicon atoms in different configurations  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 Conclusions 
 

(a)Yao et al. [13], for the first time, synthesized interconnected hollow nano-spheres of 
amorphous silicon. The interconnected nano-spheres exhibit high Li holding capacity as well 
as high cyclability when used as anode material. Although they have attributed the high Li 
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holding capacity and the high cycle ability to hollow geometry leading to significant lowering 
of intercalation stress, the present study identify another equally important mechanism 
behind lowering of intercalation stress.  

(b) Classical molecular dynamics simulations using Stilinger-Weber (SW) [27] potential for 
silicon, reveal that the atomic density of interconnected hollow nano-spheres of amorphous 
silicon is  significantly lower (~15%) than that of bulk amorphous silicon. 

(c) It was found that the lowering of atomic density significantly reduced the intercalation 
strain or the volume expansion upon lithiation. The decrease in the lithiation strain, in turn 
decreased the lithiation stress. The volume expansion upon lithiation was estimated using 
density functional theory (DFT) approach.  

(c) The lowering of atomic density also resulted in change of density of states (DOS) upon 
lithium intercalation. This also indicates possible shift to metallic character 

(d) Significant reduction in the lithiation stress result in higher cycle ability in the 
interconnected hollow nano-spheres of amorphous silicon. 

(e) Interconnected hollow nano-spheres of amorphous silicon are an example of nano-glass 
discovered by Gleiter and co-workers [23-25]. 
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Dimension of simulation 
box  (ÅxÅxÅ ) 

Coordinates of centre of sphere and cavity 
with respect to simulation box (Å, Å, Å) 

Radius of 
sphere (Å) 

Radius of 
cavity (Å) 

30 x 30 x 30 (15, 15, 15) 15 5 

60 x 60 x 60 (30, 30, 30) 30 15 

100 x 100 x 100 (50, 50, 50) 50 25 

 

Table 1: Dimensions of spheres of amorphous silicon having cavities 

 

 

 

Configuration No. of atoms Formation energy 
per Si atom (eV) 

1 40 0.285 
2 43 0.300 
3 46 0.289 
4 50 0.329 
5 38 0.298 
6 45 0.323 
7 47 0.355 
8 48 0.316 

Table 2: Formation energy of different structures under consideration using DFT in this study 

 

 

 

 

 

 

 

 

Table 3: Average density of bulk and nano-shell amorphous silicon at different temperatures 

 

 

 

Amorphous silicon structure 

Average  Density  (gm-cm
-3

 ) 

300K 750K 1200K 

Bulk 2.46 --- --- 

Nano-shell 2.33 2.04 1.77 
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Low level of lithiation: 8 Li atoms per test cell of amorphous Si 

Configuration 
No. of 
silicon 
atoms 

Before lithiation After lithiation 
Percentage 

Volume 
expansion 

(%VE) 

Degree 
of 

lithiation    
(x in 
Li xSi) 

Percentage 
Volume 

expansion 
per degree 
of lithiation 

(%VEx) 

Volume 
(Å3) 

Density 
(gm/cm3)/

PLD 

Volume 
(Å3) 

Density 
(gm/cm3) 

2 43 896.8 2.229 909.0 2.308 1.36 0.186 7.31 
4 50 953.7 2.437 1068.33 2.269 12.0 0.16 75.0 

Medium level of lithiation: 27 Li atoms per test cell of amorphous Si 

Configuration 
No. of 
silicon 
atoms 

Before lithiation After lithiation 
Percentage 

Volume 
expansion 

(%VE) 

Degree 
of 

lithiation    
(x in 
Li xSi) 

Percentage 
Volume 

expansion 
per degree 
of lithiation 

(%VEx) 

Volume 
(Å3) 

Density 
(gm/cm3)/

PLD 

Volume 
(Å3) 

Density 
(gm/cm3) 

1 40 803.2 2.315 1096.7 1.985 36.5 0.675 54.0 

2 43 896.8 2.229 1159.0 1.999 29.2 0.628 46.5 

3 46 905.2 2.326 1200.5 2.046 32.6 0.587 55.5 

4 50 953.7 2.437 1312.6 2.014 37.6 0.540 69.6 

5 38 782.8 2.264 1077.3 1.934 37.6 0.711 52.7 

6 45 920.1 2.281 1225 1.967 33.1 0.600 55.2 

7 47 919.2 2.385 1304.2 1.919 41.9 0.574 73.0 

8 48 968.6 2.311 1249.2 2.041 26.6 0.563 47.3 

Higher level of lithiation: 64 Li atoms per test cell of amorphous Si 

Configuration 
No. of 
silicon 
atoms 

Before lithiation After lithiation 
Percentage 

Volume 
expansion 

(%VE) 

Degree 
of 

lithiation    
(x in 
Li xSi) 

Percentage 
Volume 

expansion 
per degree 
of lithiation 

(%VEx) 

Volume 
(Å3) 

Density 
(gm/cm3)/

PLD 

Volume 
(Å3) 

Density 
(gm/cm3) 

1 40 803.2 2.315 1685.5 1.544 109.8 1.6 68.6 

2 43 896.8 2.229 1739.3 1.577 93.9 1.488 63.1 

4 50 953.7 2.437 1865 1.646 95.6 1.28 74.7 

 

Table 4: Density, volume, percentage volume expansion, degree of lithiation and percentage volume 
expansion per degree of lithiation of different configurations of amorphous silicon 
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Configuration  
1 8li 27li 64li 
2  -0.466 -0.462 
3 -0.646 -0.567 -0.462 
4  -0.517  
5 -0.795 -0.629 -0.495 
6  -0.532  
7  -0.566  
8  -0.627  
  -0.570  

                                   

                               Table 5: Average lithiation energy (in eV/Li atom) for different structures  

 

Configuration 
No. of silicon 

atoms 
Average electron transferred from 

each lithium atom 
Average electron transferred 

to each silicon atom 

From calculations with 8 Li atoms 

2 43 0.813 0.151 

4 50 0.835 0.134 

From calculations with 27 Li atoms 

1 40 0.815 0.55 

2 43 0.823 0.517 

3 46 0.826 0.485 

4 50 0.821 0.443 

5 38 0.821 0.584 

6 45 0.827 0.507 

7 47 0.828 0.456 

8 48 0.826 0.465 

From calculations with 64 Li atoms 

1 40 0.810 1.295 

2 43 0.806 1.20 

4 50 0.793 0.964 

Table 6: Amount of charge transfer from lithium to silicon atoms in different configurations 
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                                                                                                     (c) 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                               (d) 

Figure1: Lithiated and pristine configuration for higher (50 atoms) and lower density (43 atoms) amorphous 
Si with bond connectivity. (a) and (c) show structures for high density and low density amorphous silicon 
configurations before lithiation. (b) and (d) show structures for high density and low density amorphous 
silicon configurations after lithiation. Lower connectivity and higher porosity in low density silicon  
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Figure 2: Contour plot of atomic density of bulk amorphous Si at 300K 
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Figure 3: Contour plot of atomic density at 300K showing stability of the nano-shell 
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Figure 4: Contour plot of atomic density at 750K showing stability of the nano-shell 
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Figure 5: Variation of percentage volume expansion per degree of lithiation with density of initial amorphous Si 
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Figure 6: Electronic DOS of amorphous Si configuration 1 and 4 (unit of energy = eV) for different degrees of 
lithiation calculated using hybrid functional 
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• Interconnected  nanoshells  of amorphous Si : best available lithium ion cell anode. 

• High cycle life not understood in the light of poor KIC of amorphous Si. 

• MD  reveals: atomic density of interconnected structure is ~16% less than bulk Si. 

• Leads to drastic reduction (DFT) in lithiation σ & metal like e
-
 structure (high KIC). 

• Lowering of  lithiation σ and increase in KIC result in high cycle life. 

 


