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Abstract

This thesis presents theoretical and experimental results on plasmonic phenomena in
nanosized metallic structures. The theoretical aspect concerns the extension of the
local-response approximation, which leads to a description of metals based on the
classical dielectric function, to account for nonlocal response. The experimental work
comprises the use of electron energy-loss spectroscopy (EELS) to excite and study
both localized and propagating surface plasmons in metal structures.

Following a short introduction, we present the theoretical foundation to describe
nonlocal response in Maxwell’s equations for arbitrary geometries. We show that the
key quantity which is modified by nonlocality is the induced charge in the metal. In
particular, the induced surface charge is smeared over an Ångstrom length scale in
contrast to the delta-function induced charge distribution in the local-response ap-
proximation. Irrespective of the microscopic origin, we find that nonlocal response
modifies the electromagnetic wave equation by an additional Laplacian term. The
hydrodynamic model, which includes nonlocal response through the Thomas–Fermi
pressure of a free-electron gas, is discussed. We present also the generalized nonlo-
cal optical response model, which expands the hydrodynamic model by taking into
account the diffusion of free electrons in metals through Fick’s law. We go on to
consider the implications of these two nonlocal models in the following plasmonic
geometries: metal-insulator interface, nanosphere, dimer with nanometer-sized gaps,
core-shell nanowire with ultrathin metal shell, and a thin metal film. In all cases
we compare the nonlocal models with the local-response approximation. Below the
plasma frequency, we find that the distance between the induced positive and nega-
tive surface charges is the main indication for the importance of nonlocal response.
Specifically, the mentioned distance in nanospheres translates into a size-dependent
resonance energy and linewidth broadening of the surface plasmons, while in the dimer
a gap-dependent resonance energy and linewidth broadening is observed. Above the
plasma frequency, resonant excitations are supported by nonlocal theory due to the
inclusion of curl-free waves.

The application of EELS to study surface plasmons in nanosized metallic systems
is then presented. In particular, we discuss that EELS can provide important infor-
mation on the optical response of plasmonic structures. We perform two separate
EELS experiments and discuss their theoretical interpretations. The first experiment
concerns the study of localized surface plasmon resonances of chemically prepared sil-
ver nanoparticles with diameter sizes down to 3.5 nm dispersed on a thin substrate.
The second experiment is devoted to the investigation of propagating gap surface-
plasmon modes in gold nanogrooves, which are experimentally observed to subsist in
gaps of only 5 nm.
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Resumé

Denne afhandling præsenterer teoretiske og eksperimentelle resultater af plasmoniske
fænomener i metalstrukturer med dimensioner af nanometer størrelse. Det teoretiske
aspekt omhandler udvidelsen af lokal respons approksimationen, som medfører en
beskrivelse af metaller baseret p̊a den dielektriske funktion, til at inkludere ikke-
lokal respons. Det eksperimentelle arbejde omfatter brugen af elektron energitab
spektroskopi (EELS) til at ansl̊a og undersøge b̊ade lokaliseret og bevægende over-
fladeplasmoner i metalstrukturer.

Efter en kort introduktion præsenterer vi det teoretiske fundament for at beskrive
ikke-lokal respons i Maxwells ligninger i arbitrære geometrier. Vi viser at hovedpa-
rameteren, der modificeres af ikke-lokalitet, er den induceret ladningsfordeling i met-
allet. Mere præcist s̊a udsmøres den induceret overfladeladning over en Ångstrom
længdeskala, hvilket er i modsætning til den delta funktion lignende induceret lad-
ningsfordeling i lokal respons approksimationen. Uanset den mikroskopiske oprindelse
finder vi at ikke-lokale respons modificerer den elektromagnetiske bølgeligning ved
tilføjelsen af et Laplace-operator led. Den hydrodynamiske model, som inkluderer
ikke-lokal respons via inkluderingen af Thomas–Fermi trykket af den frie elektrongas,
diskuteres. Vi præsenterer ogs̊a den generaliseret ikke-lokal optiske respons model,
som udvider den hydrodynamiske model ved at tage hensyn til diffusion af de frie elek-
troner via Ficks lov. Vi fortsætter ved at undersøge konsekvenserne af disse to ikke-
lokale modeller i de følgende plasmoniske systemer: metal-dielektrikum grænseflade,
en nanokugle, en dimer med gab af nanometer størrelse, en kerne-skal nanotr̊ad med
en ultratynd metal skal og til sidst en tynd metalfilm. I alle tilfælde sammenligner vi
de ikke-lokale modeller med lokal respons approksimationen. Under plasmafrekvensen
finder vi at afstanden mellem den positive og negative induceret overfladeladning er
hovedindikatoren for vigtigheden af ikke-lokal respons. Mere konkret s̊a medfører
den nævnte afstand en størrelsesafhængig resonansenergi og linjebredde af overflade-
plasmonen, mens i dimeren observeres en gabafgængig resonansenergi og linjebrede.
Over plasmafrekvensen er der resonante excitationer i den ikke-lokale teori p̊a grund
af inkluderingen af rotationsfrie bølger.

Anvendelsen af EELS til at studere overfladeplasmoner i metalsystemer af nano-
størrelse præsenteres. Mere præcist s̊a argumenteres der for at EELS kan frem-
skaffe vigtig information om den optiske respons af plasmoniske strukturer. Vi
udfører to separate EELS forsøg og diskuterer deres teoretiske fortolkning. Det første
forsøg omhandler studiet af lokaliseret overfladeplasmoner af kemiske produceret sølv
nanopartikler med størrelser ned til 3.5 nm, som er fordelt p̊a et tyndt substrat. Det
andet forsøg er dedikeret til undersøgelsen af bevægende gab overfladeplasmoner i
guld nanoriller, som observeres ekperimentelt stadig at eksistere i gab p̊a kun 5 nm.
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Chapter 1

Introduction

The field of plasmonics focuses on the study of and the associated electromagnetic
phenomena due to surface plasmons (SPs) [1], which in its simplest form can be
described as the collective excitation of the conduction electrons bound to a metal-
dielectric interface. The term surface plasmons comprises a large range of differ-
ent types of electromagnetic excitations in metals, from localized surface plasmons
(LSPs) in confined geometries (e.g., single particles) to propagating surface plasmons
in extended geometries with translational invariance, i.e., waveguides. The modal
spectrum becomes even more exciting when several closely-spaced metal particles
interact electromagnetically, such that the SPs of the individual particle hybridize
to form so-called bonding and antibonding plasmon modes [2]. Some of the most
attractive properties of SPs are their ability to localize light on the subwavelength
scale (i.e., beyond the diffraction limit) [3, 4] and produce large enhancements of the
electric field on the nanoscale [5]. The properties of the SPs have found application in
a wide variety of fields; from medical applications, such as bio-sensing [6] and cancer
therapy [7], to plasmonic waveguiding [8] and on-chip circuitry [9].

The theoretical description of SPs is in most accounts based on classical electro-
magnetism governed by Maxwell’s equations, although the use of quantum mechan-
ical approaches, such as density-functional theory (DFT), has also been applied to
describe simple extended geometries (e.g., metal-vacuum interfaces) and nanometer-
sized confined geometries, mainly in the quasistatic limit [10]. The classical approach,
which describes the optical properties of metals with the dielectric function, has been
successful in describing the vast majority of effects related to SPs, in particular for
systems with feature sizes above 10 nm [11, 12] and surprisingly even in some cases
below this size limit [13]. Despite its huge success, the local-response approximation
(LRA), which leads to the dielectric function description, has been challenged on a
number of accounts. One example is the size-dependent SP linewidth broadening
observed in metal clusters and small nanoparticles [14, 15], which has to be phe-
nomenologically accounted for in the LRA [16]. Size-dependent resonance shifts of
the SP in noble metal nanoparticles have also been observed [17, 18, 19, 20]. Another
example is the multipole plasmon (sometimes also referred as the Bennet plasmon)
which, besides the usual surface-plasmon polariton (SPP), can be supported by the
simple geometry of a metal-vacuum interface [21] as a direct consequence of the spill-
out of free electrons beyond the classical metal boundary [22, 23]. Thin metal films
have also been shown to support resonant excitations above the plasma frequency due
to confined longitudinal waves [24, 25], which are not taken into account in the LRA.
More recently, advances in sample preparation and experimental techniques have led
to several experiments on metal dimers in subnanometer proximity with plasmonic
effects clearly going beyond the LRA [26, 27, 28, 29, 30, 31]. A theoretical description
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2 INTRODUCTION

of the metal based on ab initio approaches such as DFT can in principle account for
all of the observed non-classical effects. However, due to the computational demand
of such approaches, only very small system sizes (few nanometers) can be consid-
ered [32], which puts serious constraints on the feasibility of these approaches for
a generic plasmonic system. Another simpler and computationally less demanding
path is to go beyond the LRA by taking into account nonlocal response through a
hydrodynamic approach [33]. The hydrodynamic approach has at least qualitatively
been able to describe size-dependent resonance shifts of noble metal nanoparticles
and resonant excitations above the plasma frequency in thin films, and can now with
the inclusion of electron diffusion [34] also describe size-dependent damping and the
optical spectra of closely-spaced dimers. Besides being physically transparent, signif-
icant analytical progress is also possible with the hydrodynamic approach. Many of
these properties are beneficial in the theoretical studies of generic plasmonic systems
with large (> 10 nm) feature sizes.

Experimental techniques to study plasmonic effects, both classical and those be-
yond the LRA, have been based on both photons and electrons as the excitation
sources. Interestingly, the first prediction [1] and observation [35, 36] of SPs were
based on electron excitation. Specifically, the experimental technique known as elec-
tron energy-loss spectroscopy (EELS) was utilized. EELS is performed in a transmis-
sion electron microscope and has due to the advances of electron microscopy become a
very powerful spectroscopy technique to study surface plasmons [37]. With the aid of
electron monochromators and abberation correction of the electromagnetic lenses [38],
the simultaneous spatial and spectral resolution of EELS is unmatched [39]. EELS
is now often being used to study and map the SP resonances of metallic nanostruc-
tures [40, 41], and thus constitutes an ideal tool for the study of both classical and
non-classical nanoplasmonic phenomena.

1.1 Outline of this thesis

The build-up of this thesis is as follows. In Chapter 2 we study the general equa-
tions governing the electromagnetic response of metals in arbitrary geometries. We
show how the commonly employed local-response approximation leads to the formal-
ism based on the dielectric function. Afterwards, we go beyond the LRA to include
nonlocal response in a phenomenological picture, leading to a generic real-space for-
mulation of the governing equations. We then consider the governing equations of
two specific nonlocal models: the hydrodynamic model and the generalized nonlocal
optical response (GNOR) model.

Chapter 3 is devoted to comparing the nonlocal models (i.e., hydrodynamic and
GNOR models) with the LRA in specific plasmonic systems. In particular, we study
the popular systems mentioned in the introduction, e.g., the single metal-insulator
interface, the metal sphere, the plasmonic dimer consisting of two infinite nanowires,
the thin metal film, and additionally, the core-shell nanowire made of an insulating
core with a thin metal shell.

Chapter 4 deals first with the experimental and theoretical descriptions of EELS.
Afterwards, two EELS experiments and their theoretical interpretation are described.
The first EELS experiment is described in Paper I (and its supplemental material)
and further studied in Paper E. As the results of the first experiment are spread
over two papers and one supplemental material, I have combined these into a single
coherent section. Similarly, the second EELS experiment is described in Paper B
and its even-longer supplemental material, which have been combined into a single
section.

Finally, Chapter 5 concludes the thesis and presents possible future paths for both
theory and experiments.



Chapter 2

Electromagnetism in metals

In this chapter we first discuss how metals are described in the framework of classical
electromagnetism. We start with the general Maxwell’s equations and first consider
the commonly employed local-response approximation. We then go beyond the LRA
and take into account nonlocal response in Sec. 2.2, although we at first do not specify
a microscopic origin of the nonlocal response. Finally, we study two nonlocal models:
the hydrodynamic model in Sec. 2.3 and the recently introduced generalized nonlocal
optical response (GNOR) model in Sec. 2.4.

We begin our considerations with Maxwell’s equations in matter. Disregard-
ing magnetic effects since most plasmonic metals are non-magnetic, we can write
Maxwell’s equations in the frequency domain as (time convention: e−iωt)

∇ ·D(r, ω) = ρ(r, ω) + ρext(r, ω), (2.1a)

∇ ·H(r, ω) = 0, (2.1b)

∇×E(r, ω) = iωµ0H(r, ω), (2.1c)

∇×H(r, ω) = −iωD(r, ω) + J(r, ω) + Jext(r, ω), (2.1d)

where we have connected the magnetic flux density B(r, ω) to the magnetic field
H(r, ω) through the non-magnetic constitutive relation B(r, ω) = µ0H(r, ω). Fur-
thermore, we have split the free charges and currents into two contributions: one
due to induced charges and currents inside the metal, denoted by the charge den-
sity ρ(r, ω) and current density J(r, ω), respectively, and one due to external source
charges and currents, given by ρext(r, ω) and Jext(r, ω), respectively. Both the cur-
rents and charges satisfy continuity equations

∇ · J(r, ω) = iωρ(r, ω), (2.2a)

∇ · Jext(r, ω) = iωρext(r, ω). (2.2b)

The external contributions must only be taken into account when an external elec-
tromagnetic source such as a moving electron is present, as in the case of electron
energy-loss calculations [1, 37], see Chapter 4 of this thesis. For plane-wave excita-
tions, the external source is in general not needed. On the other hand the induced
currents and charges stem from the (free) conduction band electrons in the metal and
are therefore always present.

In the absence of any external currents and charges, the response of the metal due
to an electric field E(r, ω) is solely described by the displacement field D(r, ω) and the
induced current density J(r, ω). The displacement field describes the response from

3



4 ELECTROMAGNETISM IN METALS

the bound charges of the metal, i.e., the metal ions and the tightly bound electrons,
while the current density describes the response due to the conduction electrons of
the metal. For linear and isotropic media, we can relate the displacement field and
the current density to the electric field through the constitutive relations

D(r, ω) = ε0

∫
dr′ε(r, r′, ω)E(r′, ω), (2.3a)

J(r, ω) =

∫
dr′σ(r, r′, ω)E(r′, ω), (2.3b)

where ε0 is the vacuum permittivity, and ε(r, r′, ω) and σ(r, r′, ω) denote the frequency-
dependent nonlocal dielectric constant and conductivity, respectively. The nonlocal
relations in Eq. (2.3) state that the response of the metal at a given point r may de-
pend on the electric field at neighboring points r′ through the nonlocal permittivity
and conductivity, see Fig. 2.1(a) for a schematic illustration.

Since the bound charges inherently respond as an insulator, we can make the jus-
tifiable assumption that the bound charges are well described by the local-response
approximation, which allows us to write ε(r, r′, ω) = δ(r − r′)ε∞(ω) with δ(r) de-
noting the Dirac delta function. The integral in Eq. (2.3a) is then straightforwardly
performed

D(r, ω) = ε0ε∞(ω)E(r, ω). (2.4)

Here, ε∞(ω) takes into account all electric polarization effects due to the bound
charges, or put in other words, the response not due to the free electrons. To proceed
further we must now choose how to describe the conductivity σ(r, r′, ω) in Eq. (2.3b).

2.1 Local-response approximation

Before we delve into the study of nonlocal response, it is instructive to first revisit
the description of metals and the derivation of the governing equations in the local-
response approximation. This will allow us to clearly outline not only differences but
also similarities between the LRA and nonlocal response. In addition, the importance
of the LRA is further accentuated by its prevalence in the plasmonic community, being
the most commonly applied constitutive description [11]. The LRA has successfully
described a plethora of plasmonic phenomena and experiments, such as optical far-
field measurements [42, 43, 44], electron energy-loss spectroscopy [1, 40, 41, 45, 46, 47],
cathodoluminescence experiments [48, 49, 37], near-field microscopy [50], and surpris-
ingly, even for the two-dimensional material graphene [51] and plasmonic particles
with nanometer-sized gaps [13].

Our starting point will therefore be to assume that nonlocal effects due to the free
electrons are negligible and apply the local-response approximation to the conductiv-
ity, i.e., σ(r, r′, ω) = δ(r− r′)σ(ω). This simplifies Eq. (2.3b) to

J(r, ω) = σ(ω)E(r, ω). (2.5)

We now insert Eqs. (2.4-2.5) into Maxwell’s equations [Eq. (2.1)] and find

∇ ·E(r, ω) =
ρext(r, ω)

ε0ε(ω)
, (2.6a)

∇ ·H(r, ω) = 0, (2.6b)

∇×E(r, ω) = iωµ0H(r, ω), (2.6c)

∇×H(r, ω) = −iωε0ε(ω)E(r, ω) + Jext(r, ω), (2.6d)
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where we have defined the LRA dielectric constant ε(ω) ≡ ε∞(ω) + iσ(ω)/(ωε0),
which takes into account polarization effects due to both bound and free charges. We
can also write up the LRA wave equation, by taking the curl of Eq. (2.6c) and using
Eq. (2.6d)

∇×∇×E(r, ω) =
(ω
c

)2

ε(ω)E(r, ω) + iωµ0Jext(r, ω). (2.7)

We note that in the absence of external sources, the electric field within the LRA will
always be divergence free, i.e., ∇ · E(r, ω) = 0. This is an important point as this
criterion gives rise to a specific class of solutions to Maxwell’s equations. As we will
see later, this property no longer holds when nonlocal response is taken into account.

The divergence-free property can be examined further if we consider a homogenous
medium, where we can perform a spatial Fourier transform (space convention: eik·r)

k ·E(k, ω) = 0. (2.8)

Thus, we see that in the LRA the electric field in the homogeneous metal is always
transverse, i.e., the variations in the electric field occur perpendicular to the direc-
tion of propagation (k-direction). Additionally, by spatially Fourier transforming
Eq. (2.7), we can find the dispersion relation for the transverse field in homogeneous
media as

k2 =
(ω
c

)2

ε(ω). (2.9)

We remark that one should be very careful not to interchange the properties of
divergence-free and transverse fields, as the divergence-free property is more gen-
eral and applies in real space, while the transverse property strictly only applies in
homogeneous media (where the spatial Fourier transform can be easily performed).

2.1.1 Drude model

Although the LRA conductivity is not limited to a specific type of function, the Drude
model [11, 52] for the conductivity σd(ω) is commonly used to describe metals [53,
54, 55]

σd(ω) =
ε0iω

2
p

ω + iγ
. (2.10)

Here, ω2
p = e2n0

ε0m
is the plasma frequency of the metal, given in terms of the free-

electron density n0 and effective electron mass m, and γ is the free-electron collision
frequency, which phenomenologically accounts for collisions both with nuclei and
other electrons. We can hereby write the dielectric function as

εd(ω) = ε∞(ω)− ω2
p

ω2 + iγω
, (2.11)

which we denote the Drude dielectric function, even though the frequency-dependent
term ε∞(ω), which is not due to the free electron gas, is present. Eq. (2.11) will be
the main form for the dielectric constant used throughout this thesis, unless otherwise
stated.

2.2 Nonlocal response

Now that we have studied the derivation of the governing equations in the local-
response approximation, we are in a position to consider the implications of including
nonlocal response. The derivation we present in this section will follow closely the
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r

r′

J(r, ω)

E(r′, ω)

(a)

∝ ξ

(b)

Figure 2.1: (a) Schematic illustration of the nonlocal relation between the current density
(response of the material) and the electric field (driving field) in a metal, as described by
Eq. (2.3). (b) Schematic illustration of the nonlocal response function f(|r− r′|) with range
proportional to ξ, which is centered around r and plotted as a function of r′. Reproduced
from Ref. [56].

approach in Ref. [56], which has been inspired by Ref. [57]. Our starting point is
again the nonlocal relation between the current density and the electric field, given
by Eq. (2.3b). As we recognize that the LRA accounts for many of the physical
phenomena observed in studies involving metals, it seems reasonable to assume that
nonlocal effects should only slightly correct the LRA Drude conductivity, which allows
us to write for an isotropic medium

σ(r, r′, ω) = σd(ω)δ(r− r′) + f(|r− r′|, ω), (2.12)

where f(|r − r′|, ω) is the nonlocal response function associated with a homogenous
medium. Insertion of Eq. (2.12) into the constitutive relation Eq. (2.3b) then gives

J(r, ω) = σd(ω)E(r, ω) +

∫
dr′f(|r− r′|, ω)E(r′, ω). (2.13)

Besides assuming that f(|r − r′|, ω) is a small correction to the LRA conductivity
σ(ω)δ(r − r′), we furthermore make the justifiable assumptions that f(|r − r′|, ω)
should be symmetric and short-ranged. We can express these assumptions mathe-
matically through the moments of the function [56]∫

f(r, ω)dr� σd(ω), (2.14a)∫
rf(r, ω)dr = 0, (2.14b)∫
r2f(r, ω)dr = −2iωε0ξ

2, (2.14c)

where r2 ≡ (x2, y2, z2) and we have introduced the length scale ξ as the range of the
nonlocal response function [see Fig. 2.1(b) for a schematic illustration]. The prefactor
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−2iωε0 in Eq. (2.14c) has been conveniently introduced in anticipation of the final
result. Since the response function f(|r − r′|, ω) is short-ranged, we Taylor expand
the electric field in the integrand of Eq. (2.13) around r. To second order we find

Ei(r
′) ' Ei(r) + [∇Ei(r)] · (r′ − r) +

1

2
(r′ − r)T ·

[
ĤEi(r)

]
· (r′ − r), (2.15)

where we for clarity have omitted the frequency dependence of the electric field. The
Hessian matrix Ĥ has the elements Hij = ∂2/(∂i∂j) with i, j = x, y, z. Now inserting
the Taylor-expanded electric field, given by Eq. (2.15), into Eq. (2.13) and using
the assumptions stated in Eq. (2.14), we find that only the diagonal elements of the
Hessian matrix contribute to the general nonlocal constitutive relation

J(r, ω) = σd(ω)E(r, ω)− iωε0ξ
2∇2E(r, ω). (2.16)

Before commenting on this crucial result, let us derive the nonlocal wave equation by
applying the curl to Eq. (2.1c) and using Eqs. (2.1d), (2.4) and (2.16)

∇×∇×E(r, ω) =
(ω
c

)2 [
εd(ω) + ξ2∇2]E(r, ω) + iωµ0Jext(r, ω). (2.17)

Here, we emphasize the important fact that nonlocal response to lowest order in field
inhomogeneity manifests itself through the Laplacian term with a strength determined
by the nonlocal length scale ξ. This result holds irrespectively of the microscopic ori-
gin of the nonlocal response, providing great insight into the mathematical form of
any nonlocal model. At this stage, the nonlocal parameter ξ2 is an unknown variable
that must be determined either from a theoretical model, such as the hydrodynamic
or GNOR models which are to be discussed in Secs. 2.3 and 2.4, respectively, or a
more pragmatic approach can be taken, where ξ2 is fitted using experimental ob-
servations. A combination of both approaches can also be utilized, as it is done
with measurements of the dielectric constant from which the Drude parameters in
Eq. (2.11) are extracted [53, 54].

We can simplify Eq. (2.17) by using the vector identity ∇2 = ∇ (∇·) − ∇ × ∇×
and rearranging the terms. We find[

1 +
(ω
c

)2

ξ2

]
∇×∇×E(r, ω) =

(ω
c

)2 [
εd(ω) + ξ2∇ (∇·)

]
E(r, ω)

+ iωµ0Jext(r, ω).

(2.18)

Considering optical frequencies ω ≈ 1015 rad/s and expecting the nonlocal length
scale to be on the Ångstrom scale [58], i.e., ξ ≈ 10−10 m, we find that (ω/c)2ξ2 ≈ 10−8

which is negligible compared to unity, allowing us to simplify Eq. (2.18) as

∇×∇×E(r, ω) =
(ω
c

)2 [
εd(ω) + ξ2∇ (∇·)

]
E(r, ω) + iωµ0Jext(r, ω). (2.19)

We prefer the formulation of Eq. (2.19) instead of Eq. (2.17) as nonlocal response
then only alters the curl-free part of the electric field, while the divergence-free part
of the electric field remains the same as in the LRA (to be shown in detail in the next
section).

2.2.1 Helmholtz decomposition of electric field

Besides the nonlocal wave equation [Eq. (2.19)], there is another enlightening way to
write the governing nonlocal equations for the electric field. Inspired by the approach
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used for the nonlocal hydrodynamic model [59, 60, 33, 61, 62], we write two differential
equations, one for ∇ ·E(r, ω) and one for ∇×E(r, ω) as

(
∇2 + k2

nl

)
∇ ·E(r, ω) =

∇ · Jext(r, ω)

iωε0ξ2
, (2.20a)(

∇2 + k2)∇×E(r, ω) = −iωµ0∇× Jext(r, ω), (2.20b)

where k2
nl = εd/ξ

2 is the nonlocal wave vector and k2 = (ω/c)2εd is the usual LRA
wave vector, associated with the divergence-free electric field [Eq. (2.9)]. The result
in Eq. (2.20a) is derived by inserting Eq. (2.16) into Gauss’ equation [Eq. (2.1a)]
and rearranging the terms, while the starting point for Eq. (2.20b) is Eq. (2.19).
Here we first use the vector identity ∇ × ∇× = ∇(∇·) − ∇2, and then apply the
curl operator. Exploiting that the curl of a gradient is zero and that the curl and
Laplacian commute, we finally arrive at Eq. (2.20b).

Considering for clarity the case where no sources are present, we use the Helmholtz
decomposition to write the electric field as

E(r, ω) = Edf(r, ω) + Ecf(r, ω), (2.21)

where Edf(r, ω) and Ecf(r, ω) have the properties of being divergence free ∇ ·Edf =
0 and curl free ∇ × Ecf = 0, respectively. In the Fourier domain (k-space), the
divergence-free field is a transverse field, as discussed in the context of the LRA
(see Sec. 2.1), while the curl-free field corresponds to a longitudinal field, where the
propagation direction (k-direction) is parallel to the electric field. Thus, these two
properties constitute two different types of electric fields, which in a homogeneous
medium are uncoupled, but in the presence of an interface can be coupled by means
of the electromagnetic boundary conditions. We stress that the difference between
the LRA and the inclusion of nonlocal response is the presence of the curl-free (or
longitudinal) wave, which will be responsible for all nonlocal effects. By inserting
Eq. (2.21) into Eq. (2.20), we can derive the governing equations for the divergence-
free and curl-free fields, which in the absence of any sources is given by(

∇2 + k2
nl

)
∇ ·Ecf(r, ω) = 0, (2.22a)(

∇2 + k2)∇×Edf(r, ω) = 0. (2.22b)

We now clearly see that the divergence-free wave Edf has the same wave vector as
in the LRA, i.e. determined by the relation k2 = (ω/c)2εd(ω), while the curl-free
wave Ecf is described by the nonlocal wave vector k2

nl = εd(ω)/ξ(ω)2. In other words,
nonlocal response does not directly affect the divergence-free (transverse) wave (cf.
BCs), but only the curl-free (longitudinal) wave.

Lastly, we point out that we could also have performed the Helmholtz decompo-
sition on the external current density Jext as well to show that the divergence-free
(curl-free) part of the source contributes solely to the divergence-free (curl-free) part
of the electric field.

2.2.2 Additional boundary condition

Within the LRA, Maxwell’s boundary conditions, which are derived using pill-box
and current loop arguments [63], are sufficient to determine the amplitudes of the
divergence-free electric and magnetic fields. However, the presence of an additional
wave due to nonlocal response will require an additional boundary condition (ABC)
to determine the amplitude of the curl-free wave [64]. As the inclusion of nonlocal
response alters Gauss’ law [compare Eq. (2.6a) with Eq. (2.20a)], we focus on the
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boundary condition which is derived from this equation. In the following derivation,
we consider any interface between a metal and a dielectric, where relevant fields and
parameters are subscripted with m and d, respectively. For the metal we can write
up Gauss’ law [Eq. (2.1a)] as

∇ ·
(

Dm +
i

ω
Jm

)
= ρext, (2.23)

where we have used the continuity equation [Eq. (2.2a)]. In the dielectric, Gauss’ law
reads

∇ ·Dd = ρext, (2.24)

since there are no free electrons in an dielectric to conduct a current (Jd = 0). Using
the standard approach of rewriting Eqs. (2.23) and (2.24) into their integral forms
and then considering a pill-box with vanishing height [63], we find(

ε∞Em +
i

ε0ω
Jm − εdEd

)
· n̂ = 0, (2.25)

where we have removed the contribution from any surface charge density due to
the external source and introduced the unit vector perpendicular to the interface n̂.
Furthermore, we have used the relations given by Eq. (2.4) and Dd = εdEd, where
εd is the dielectric constant of the insulator.

In the LRA, we know that the current density is connected to the electric field
through the simple relation given by Eq. (2.5), thus allowing us to write the usual
LRA boundary condition

(εdEm − εdEd) · n̂ = 0, (2.26)

which states the normal component of the electric field is discontinuous across a metal-
dielectric interface. Here, εd is again the Drude permittivity given by Eq. (2.11).
However, with the inclusion of nonlocal response, an additional assumption must be
made to determine the boundary condition. Inspired by the many discussions on the
appropriate boundary conditions in the nonlocal hydrodynamic model [33, 64, 65, 66,
67, 68], we will assume that the static equilibrium free-electron density n0 has a step
profile, i.e., n0 is constant inside the metal and abruptly drops to zero at the metal-
dielectric interface. The consequence of this assumption is that the induced charge
density ρ will vanish at the metal-dielectric boundary, at which a pill-box argument
on the continuity equation [Eq. (2.2a)] reveals the additional boundary condition

Jm · n̂ = 0, (2.27)

stating that the normal component of the current density vanishes at the metal bound-
ary. We note that this additional boundary condition will not allow us to include the
quantum mechanical effect of spill-out of electrons occurring due to the finite poten-
tial difference at the metal-dielectric interface. In fact, the ABC prompts the metal
to have an infinite work function. We can rewrite this ABC by using Eq. (2.25), from
which we find

(ε∞Em − εdEd) · n̂ = 0. (2.28)

Thus, even with the inclusion of nonlocal response, the normal component of the
electric field is still discontinuous, however with a different amount compared to the
LRA, as one can appreciate by comparing Eqs. (2.26) and (2.28).

For completeness, we also mention the remaining Maxwell’s boundary conditions
for the electric and magnetic fields [63]

(Hm −Hd) · n̂ = 0, (2.29a)

(Hm −Hd)× n̂ = 0, (2.29b)

(Em −Ed)× n̂ = 0, (2.29c)
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which state that the parallel components of the electric field and all of the compo-
nents of the magnetic field are continuous across the metal-insulator interface. The
continuity of all of the components of the magnetic field is a consequence of the
assumption of the metal being non-magnetic.

2.3 Hydrodynamic theory of free-electron gas

We consider now a specific nonlocal model, known as the hydrodynamic model, for
the free-electron gas, which will allow us to determine the nonlocal length scale ξ,
or equivalently the nonlocal wave vector knl, introduced in the previous section in
Eqs. (2.16) and (2.20a), respectively. The hydrodynamic model has been examined
extensively in the past, and has in the last few years seen a rebirth both due to
numerical implementations allowing to study non-trivial structures [69, 70, 71], and
to advances in fabrication [72] and experimental techniques, allowing to measure the
signatures of nonlocality [26, 20].

2.3.1 Overview

The idea of modeling the electron gas in a continuum-field formulation was first in-
troduced by Bloch in a seminal paper in 1933 [73]. It was considered a dynamic
generalization of the static Thomas–Fermi theory [74, 75]. The hydrodynamic ap-
proach was further discussed by Jensen [76] in 1937 in the context of a spherically
restricted electron gas. Initially, the hydrodynamic approach was mostly applied in
the fields of atomic and nuclear physics, and with considerable success [77]. Due to the
prevalence of more detailed microscopic theories, the hydrodynamic approach seemed
less useful in solid-state physics until the beginning of 1970, where Bennett [22] ap-
plied the hydrodynamic model to study the effect of surface inhomogeneity in the
electron gas, by considering the electron density to decrease linearly at the surface
and not as a sudden step. In contrast to the microscopic theories, the hydrodynamic
model allowed for incorporating inhomogeneity and spatial dispersion with a clear
discussion of the physical principles involved. In 1974, Ying [77] extended Bloch’s
non-retarded approach to a more general density-functional formalism, allowing to go
beyond the Thomas-Fermi ground state, which lacked information about the correla-
tion and exchange energies of the electron gas. Shortly after Eguiluz and Quinn [78]
included retardation effects. In the 1970s and the beginning of the 1980s the hydro-
dynamic model was extensively used in the field of solid-state physics. The effect of
inhomogeneity and spatial dispersion in planar interfaces [23, 59, 64, 79], spherical
particles [60, 80, 81] and voids [82], and cylindrical particles [83, 84] was given a
considerable amount of attention. Especially, the results obtained for homogeneous
planar surfaces are in excellent agreement with experiment [33]. Furthermore, con-
fusion arose about the additional boundary conditions that are needed to solve the
hydrodynamic equations. Discussions regarding the physically correct and the num-
ber of additional boundary conditions went back and forth [23, 66, 85, 67] and was
finally thoroughly discussed and clarified by Jewsbury [68].

Recently, interest in the hydrodynamic model was rekindled when McMahon et al.
introduced a finite-element time-domain numerical implementation of the hydrody-
namic equations [69, 86], allowing them to calculate plasmon modes and extinction
cross-sections of plasmonic dimers and core-shell structures [87, 88]. However, as
afterwards shown in Paper L, the governing equations and the ABCs that McMahon
et al. implemented were inconsistent with the hydrodynamic model [33], and instead
gave rise to unphysical new plasmonic resonances below the plasma frequency. Shortly
after, the correct hydrodynamic equations and corresponding ABC were implemented
using a frequency-domain finite-element solver [70], which was utilized to study the
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plasmonic cylindrical dimer [70], surface-enhanced Raman spectroscopy [89], and
waveguiding in metallic nanostructures [90]. Simultaneously, application of trans-
formation optics to the hydrodynamic model allowed for analytical solutions of sev-
eral non-trivial plasmonic structures, even some containing singular geometric fea-
tures [91, 92, 93]. Additionally, a plethora of metallic nanostructures and plasmonic
effects have been studied using the hydrodynamic model, such as scattering and mode
analysis of cylindrical structures, including nanotubes [94, 61, 95, 90, 96, 97], rough-
ness effects on plasmonic tips [98, 99], nonlinear effects in nonlocal media [100, 101],
scattering of light off three-dimensional nanostructures [102, 26, 103], surface plas-
mon propagation in metal-insulator, metal-insulator-metal (MIM), insulator-metal-
insulator (IMI), and hourglass waveguides [104, 62, 105], epsilon-near-zero (ENZ)
effects [106, 107], influence of nonlocal response on the Casimir force [108], studies
of hyperbolic metamaterials and periodic media [109, 110, 111], and investigations of
nonlocal effects in electron energy-loss spectroscopy [112, 113]. Finally, theoretical
work has also been done to compare the hydrodynamic approach with more advanced
approaches such as density-functional theory [114, 115, 116].

2.3.2 Governing equations

The derivation and discussion in this section are based on the work in Paper L. We
will not go through a detailed derivation of the hydrodynamic model, as this has been
reported before [33, 73, 78, 117]. Instead we go through the most important steps of
the derivation and extract the essential physics of the hydrodynamic model. We begin
by expressing the collective motion of the electrons in an inhomogeneous medium in
terms of the electron density n(r, t) and the hydrodynamic velocity v(r, t). Under the
influence of macroscopic electromagnetic fields E(r, t) and B(r, t), the hydrodynamic
model is defined via [33]

[∂t + v · ∇] v = −γv − e

m
[E + v ×B]−∇δG[n]

δn
, (2.30)

along with the continuity equation

∂tn = −∇ · (nv) , (2.31)

expressing charge conservation. In the right-hand side of Eq. (2.30), the γ-term
represents bulk damping, the second term is the Lorentz force, while the third term
can take into account the correlation, exchange and the internal kinetic energy of
the electron gas, if an appropriate functional G[n] is chosen [77]. Finally, δG[n]/δn
denotes the functional derivative.

The most common, and also the simplest, approach [33, 22] is to use the Thomas-
Fermi model for the functional G[n], given as

G[n(r, t)] =

∫
3h2

10m

(
3

8π

) 2
3

n
5
3 (r, t)dr, (2.32)

which describes only the internal kinetic energy of the electron gas. For completeness,
we note that the Thomas–Fermi model has been shown to be the zeroth-order term
in the gradient of the density ∇n(r, t) of a more general expansion of the functional
G[n] [118], where the next higher-order term, proportional to ∇2n(r, t), is given by
the Weizsäcker correction [119]. The functional derivative of Eq. (2.32) can now be
performed

δG[n]

δn
=

h2

2m

(
3

8π

) 2
3

n
2
3 (r, t), (2.33)
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which upon insertion in Eq. (2.30) finally gives

[∂t + v · ∇] v = −γv − e

m
[E + v ×B]− β2

n
∇n. (2.34)

In analogy with fluid hydrodynamics [120], the third term represents a pressure that
gives rise to a nonlocal permittivity. The pressure term is proportional to β2 = 3/5v2

f

with vf denoting the Fermi velocity and describes a force that will act to homogenize
any inhomogeneity in the electron density.

In the spirit of linear-response theory, we now follow the usual approach [33,
117] to solve Eq. (2.34) and the continuity equation [Eq. (2.31)], by expanding the
physical fields in a static term (e.g., n0 is the homogeneous static electron density),
and a small (by assumption) first-order dynamic term, akin to perturbation theory,
thereby linearizing the equations of motion. In the frequency domain, we obtain for
a homogeneous medium [61, 70]

β2

ω (ω + iγ)
∇ [∇ · J(r, ω)] + J(r, ω) = σd(ω)E(r, ω), (2.35)

where J(r, ω) = −en0v(r, ω) is the induced current density, and σd(ω) is the Drude
conductivity given by Eq. (2.10). We see that in the limit of β → 0, Eq. (2.35) reduces
to Ohm’s law [Eq. (2.5)]. Now, by combining Eq. (2.35) with Maxwell’s equations
[Eqs. (2.1) and (2.4)], we can rewrite the governing equations in the hydrodynamic
model in the same form as Eq. (2.20). Thereby, we determine the nonlocal wave
vector in the hydrodynamic model to be [62]

k2
nl =

ω2 + iγω − ω2
p/ε∞(ω)

β2
, (2.36)

from which we find the hydrodynamic nonlocal parameter ξh to be [90, 34]

ξ2
h =

ε∞(ω)β2

ω2 + iγω
. (2.37)

In the absence of interband effects and bulk damping mechanisms (ε∞ = 1, γ = 0),
the nonlocal parameter is simply ξh = β/ω, which is a purely real-valued quantity. We
also see that the nonlocal strength increases with the Fermi velocity (through β) and
decreases with frequency. Since we consider optical frequencies (ω ≈ 1015 rad/s) and
since the Fermi velocity of most metals is on the order of 106 m/s, we see that ξh is
on the nanometer scale, in agreement with our expectations from deriving Eq. (2.19).
In general, the presence of interband effects and damping will render the nonlocal
parameter ξh complex-valued.

Figure 2.2 displays the real and imaginary parts of ξh (blue lines) for sodium
(Na), a simple metal which is well-described as a pure free-electron gas, and for silver
(Ag), a noble metal with significant contributions to the permittivity from interband
transitions. For Na [Fig. 2.2(a-b)], we see that both the real and imaginary parts
of ξh increase in magnitude for decreasing energy, as expected from the previous
discussion. Furthermore, the presence of a weak damping rate γ gives rise to an
imaginary part to ξh, although the imaginary part is numerically almost one order
smaller than the real part. Thus for Na, the hydrodynamic nonlocal parameter is
mainly characterized by its real part. For the case of Ag [Fig. 2.2(c-d)], the picture
is significantly more complicated since effects not due to the free-electron gas are
present, i.e., those described by ε∞(ω). While the trend for the real and imaginary
parts of ξh is quite different in Ag than Na, the magnitudes are on the same order
for the two metals, and the real part still contributes more than the imaginary part.
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Figure 2.2: Real and imaginary parts of the nonlocal length scale ξ in the GNOR theory
(black line) and hydrodynamic model (blue dashed line) as a function of energy ~ω for (a-b)
Na and (c-d) Ag. For reference, the red dash-dotted line displays the LRA (ξ = 0). Material
parameters for Na (Paper A): ~ωp = 6.04 eV, ~γ = 0.16 eV, ε∞ = 1, vf = 1.07× 106 m/s,
and D = 1.08 × 10−4 m2/s. Material parameters for Ag (Paper A): ~ωp = 8.99 eV,
~γ = 0.025 eV, vf = 1.39 × 106 m/s, and D = 3.61 × 10−4 m2/s. Due to the interband
transitions in Ag, we determine ε∞ using the recipe ε∞ = εexp +ω2

p/(ω
2 + iγω) [121], where

εexp is the experimentally measured bulk dielectric function for Ag, taken from Ref. [54].

2.4 Generalized nonlocal optical response

This section describes the recently introduced GNOR model, which is presented in
Paper C. A hitherto disregarded effect in the discussion of metallic nanostructures
and nonlocal response is the classical phenomenon of movement of electrons due to
diffusive currents [122]. While the hydrodynamic model incorporates the convective
current due to the pressure term in Eq. (2.34), it completely neglects any currents
due to diffusion. The GNOR model expands the hydrodynamic theory to also take
into account electron diffusion. We now consider the mathematical description of this
effect. The inclusion of electron diffusion alters the continuity equation, which in its
linearized form now reads

− iωen(r, ω) = D∇2[en(r, ω)] +∇ · [−en0v(r, ω)] = ∇ · J(r, ω), (2.38)

also known as the convection-diffusion equation. Here, D is the diffusion constant,
and the induced current density, given by Fick’s law, now has a diffusive contribution

J(r, ω) = −en0v(r, ω) +D∇[en(r, ω)]. (2.39)
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Combining the convection-diffusion equation and Fick’s law for the current density
with the linearized hydrodynamic equation (see Supplemental Material of Paper C),
we eventually arrive at the following constitutive relation for the current density[

β2

ω(ω + iγ)
+
D

iω

]
∇[∇ · J(r, ω)] + J(r, ω) = σd(ω)E(r, ω), (2.40)

which we immediately recognize to have the same form as the hydrodynamic consti-
tutive relation, given by Eq. (2.35). The difference lies in the prefactor of the first
term, which we can rewrite as

β2

ω(ω + iγ)
+
D

iω
=
β2 +D(γ − iω)

ω(ω + iγ)
≡ η2

ω(ω + iγ)
, (2.41)

where we have defined the parameter

η2 ≡ β2 +D(γ − iω). (2.42)

Comparing Eq. (2.40) with Eq. (2.35), we see that the mathematical considerations
from the hydrodynamic model can be mapped directly to the GNOR model using the
simple substitution β2 → η2. Thus, we straightforwardly find the nonlocal GNOR
wave vector to be

k2
nl =

ω2 + iγω − ω2
p/ε∞(ω)

η2
=
ω2 + iγω − ω2

p/ε∞(ω)

β2 +D(γ − iω)
, (2.43)

and similarly, the GNOR nonlocal parameter ξgnor is given by the relation

ξ2
gnor =

ε∞(ω)[β2 +D(γ − iω)]

ω2 + iγω
. (2.44)

Considering the case with no interband effects and no bulk damping, we see that
the diffusion constant only contributes to the imaginary part of ξ2

gnor, making the
nonlocal parameter complex-valued (in contrast to the hydrodynamic model). In the
general case, the parameters β and D will contribute to both the real and imaginary
parts of the nonlocal parameter.

For a more quantitative comparison with the hydrodynamic length scale ξh, given
by Eq. (2.37), we show in Fig. 2.2 also the real and imaginary parts of the GNOR
length scale ξgnor (black lines) for Na [Fig. 2.2(a-b)] and Ag [Fig. 2.2(c-d)]. The main
difference, when comparing the GNOR and hydrodynamic length scales, is that the
inclusion of diffusion makes the imaginary part comparable in magnitude to the real
part. For Na, we see that the presence of diffusion almost exclusively only changes the
imaginary part of ξ, while for Ag diffusion also slightly alters the real part. However,
as a general rule of thumb, one can think of the hydrodynamic parameter β ∝ vf

(or the convective current) as the main contributor to the real part of ξ, while the
imaginary part of ξ is characterized by the diffusion constant D (or the diffusive
current).



Chapter 3

Nonlocal effects in plasmonic

nanostructures

With the governing equations for the nonlocal GNOR and hydrodynamic models in
place from the last chapter, we are now in a position to solve the equations in specific
systems. This chapter is therefore devoted to studying some of the relevant plasmonic
systems, which exhibit strong features due to nonlocal response. We begin in Sec. 3.1
by considering the most fundamental plasmonic system, the simple metal-insulator
interface and its surface plasmon polariton mode. Then in Sec. 3.2 we study the
optical spectrum of a single spherical nanoparticle, where the important length scale
is the particle size. Next in Sec. 3.3 we consider the plasmonic dimer, consisting in this
case of two infinitely long cylinders, and study the dependence of the optical spectrum
on the gap size. Finally in Sec. 3.4, we also take a look at the interesting properties of
a core-shell nanowire, consisting of an insulating core and a nanometer-sized metallic
shell. We will compare the GNOR model with the hydrodynamic model and the
LRA, and, whenever possible, with more advanced calculations based on approaches
such as density-functional theory and the random-phase approximation (RPA).

3.1 Metal-insulator interface

The support of SPP at the interface between a metal and an insulator represents per-
haps the most generic theoretical electromagnetic problem in the LRA in plasmon-
ics [11, 123] and for good reasons. Many important properties of the surface-bound
plasma wave can be extracted in this simple system, such as e.g. the propagation
length, the decay length (i.e., a measure of the confinement to the metal surface)
and the surface plasmon wavelength. Thus, the metal-insulator system is a natural
starting point for investigating and discussing the implications of nonlocal response.
However, before considering the SPP mode in a nonlocal framework, we first study
the Feibelman parameter [124], which is a function defined from examining the pla-
nar metal-insulator interface and provides great insight to the features of nonlocal
response. Although these features are determined from studying the metal-insulator
system, it turns out that they are more general and in fact be mapped to more
complicated geometries, see Refs. [125, 114] and Paper A.

3.1.1 Feibelman parameter

The Feibelman parameter, denoted by d(ω) and with unit length, has a relatively
intuitive definition, which, in the nonlocal framework developed in Chapter 2, can be

15
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calculated analytically. In the many recent studies of nonlocal response, the parame-
ter has unfortunately been overlooked (besides a few publications, see Refs. [114, 115]
and Paper A), despite the fact that some of the major effects of nonlocal response
can be understood from this parameter. The real and imaginary part of d(ω) have
distinctive interpretations. As shown by Feibelman, the real part of d(ω) measures
the position of the centroid of induced charges at the surface, while the imaginary
part of d(ω) is related to the power absorption at the surface [124]. In fact, the
sign of Re[d(ω)] can be directly related to size-dependent shifts of the resonance en-
ergy of the localized surface plasmon in confined geometries [126, 125, 127, 114, 128],
where Re[d(ω)] > 0 corresponds to the situation where the free electrons spill in and
produce a blueshift of the surface plasmon resonance energy (compared to its LRA
value), while a redshift occurs due to spill-out, i.e., Re[d(ω)] < 0. Due to the relation
of Im[d(ω)] to surface absorption, the presence of a finite value for Im[d(ω)] will be
connected to a size-dependent linewidth of the LSP resonance (LSPR).

With the coordinate system shown in Fig. 3.1(a), the Feibelman parameter is
defined as [124]

d(ω) =

∫∞
−∞ zρ(z, ω)dz∫∞
−∞ ρ(z, ω)dz

, (3.1)

where ρ(z, ω) still denotes the induced charge density, however, only a z-dependence
is present due to the one-dimensional nature of the metal-insulator geometry. In
general, d(ω) will be complex-valued due to ρ(z, ω). Within the general nonlocal
framework of Sec. 2.2, the integrals can be straightforwardly performed to find

d(ω) =
i

knl
=

iξ√
εd
, (3.2)

where the additional boundary condition J · n̂ = 0 has been used to cut off the
integrals in Eq. (3.1) at the metal-insulator interface (z = 0). Furthermore, knl again
denotes the nonlocal wave vector, describing the curl-free (longitudinal) wave present
in any nonlocal theory. With the simple relation of Eq. (3.2), we can calculate
the Feibelman parameter in the LRA, the hydrodynamic model as well as in the
GNOR theory. The results for Na and Ag are shown in Figs. 3.1(b-c) and 3.1(d-e),
respectively. In the LRA, we find d(ω) = 0, which means that the induced surface
charges are situated exactly at the metal-interface interface without any absorption.
The picture is significantly different in the hydrodynamic and GNOR models. Here,
d(ω) is finite, with both a real and imaginary part. Considering first Re[d(ω)] of Na
(presented in Fig. 3.1(b)], we see that the hydrodynamic and GNOR models show
similar trends, with an always positive value for Re[d(ω)], which grows for increasing
energy and peaks at the plasma frequency ~ωp = 6.04 eV, whereafter it drops. The
always positive value for Re[d(ω)] is a direct consequence of the ABC, which forces the
induced charges to reside inside the metal. It should be added that the GNOR model
shows a slightly larger positive value for Re[d(ω)] due to the additional contribution
from diffusion. The peak at the plasma frequency can be understood from Eq. (3.2),
which displays a pole at Re[εd(ω)] = 0, which for a simple metal as Na occurs at the
plasma frequency (actually, due to a finite-valued loss rate γ a negligible redshift of the
pole compared to the ωp is observed). In Fig. 3.1(c), we consider Im[d(ω)], which in
the hydrodynamic model is zero for most energies except around the aforementioned
pole, while the GNOR model displays a finite value in the same energy range.

The trend of d(ω) in the hydrodynamic and GNOR models for Ag [shown in
Fig. 3.1(d-e)] is very similar to that of Na, despite the strong interband contributions
present only in Ag. The main consequence of the interband contribution in Ag is that
the peak observed in the real part of d(ω) occurs at the screened plasma frequency
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[Å
]

Energy ~ω [eV]
Im

(d
)

[Å
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Figure 3.1: (a) Schematic illustration of metal-vacuum interface with coordinate system,
where positive values of z indicate positions inside the metal. Real and imaginary parts of
the Feibelman parameter d(ω) in the GNOR theory (black line) and hydrodynamic model
(blue dashed line) as a function of energy ~ω for (b-c) Na and (e-f) Ag. The red dash-dotted
line displays the LRA (d = 0). The grey vertical dashed lines display the screened plasma
frequencies, determined from the relation Re[ε(ω)] = 0, which for Na is similar to the plasma
frequency ~ωp = 6.04 eV, while for Ag is significantly lower than the free-electron plasma
frequency and measures ~ωsc

p = 3.81 eV. Material parameters for Na and Ag as in Fig. 2.2.

~ωsc
p = 3.81 eV, which is much lower than the free-electron plasma frequency ~ωp =

8.99 eV.
From the analysis of d(ω) in the LRA, hydrodynamic and GNOR models, we can

expect the following properties of the LSPR in confined geometries:

• In the LRA, we expect no size-dependent shifts or broadening of the LSPR
since d(ω) = 0.

• In the hydrodynamic model, we expect a size-dependent blueshift of the LSPR
(compared to the LRA value) since Re[d(ω)] > 0 for all energies considered,
while a negligible size-dependent broadening of the LSPR is expected due to
Im[d(ω)] ≈ 0 for most energies below the plasma frequency.
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• In the GNOR model, we expect both a size-dependent blueshift and size-
dependent broadening of the LSPR (compared to the LRA value), since Re[d(ω)] >
0 and Im[d(ω)] 6= 0, respectively.

Finally, we can add that upon comparison of the calculations of Ag and Na, we
find that the hydrodynamic and GNOR models treat the two different metals quite
similarly, despite the interband contributions present in Ag.

Comparison with RPA

We can compare Re[d(ω)] from the previous section with more advanced calculations
performed by Feibelman [124]. Feibelman has used the jellium model within the
RPA to calculate the surface properties of the metal-vacuum geometry. In Fig. 3.2, we
display Re[d(ω)] as a function of frequency for metals with varying conduction electron
density, quantified by the Wigner–Seitz radius rs. For Na, rs/a0 = 3.93 [52], where
a0 is the Bohr radius, so we can with good approximation compare our calculations
of Re[d(ω)] on Na [Fig. 3.1(b)] with the curve for rs = 4 in Fig. 3.2. We see that the
nonlocal calculations based on the hydrodynamic and GNOR models show a similar
trend as the jellium calculations, with an increasing value for Re[d(ω)] for increasing
frequency which peaks at ωp, whereafter it drops again. Furthermore, the length scale
of Re[d(ω)] is for both the nonlocal models and the jellium model on the same order.
However, the difference lies in the fact that Re[d(ω)] is negative for most frequencies
below the plasma frequency in the jellium model, meaning that the centroid of induced
charges is in fact positioned outside the metal, i.e., in the vacuum. This is possible
due to the fact that the conduction electrons are allowed to spill-out through the finite
energy barrier at the metal-vacuum interface in the jellium model. As mentioned in
the discussion of the ABC, this is not possible in the nonlocal models due to the
requirement of vanishing normal component of the current density. Thus, the jellium
calculations give rise to redshift of the LSPR [114, 129, 130], which is different than the
expected blueshift occurring in nonlocal calculations. For simple metals such as Na,
the jellium model has been shown to be quite accurate [131], so we can unfortunately
not expect the nonlocal models to represent such metals precisely, at least not for
effects based on Re[d(ω)], i.e., shifts of LSPR. However, it remains unclear if effects
on the optical spectrum dominated by Im[d(ω)], i.e., linewidth broadening, which
are seen in dimer spectra (see Papers A and C), can be accurately captured by
the nonlocal GNOR model (the nonlocal hydrodynamic model does not give rise to
linewidth broadening, see Sec. 3.1.1). With these considerations in mind, studies of
Na in the nonlocal models can still be valuable, as they illustrate effects solely due
the free-electron gas and are not clouded by e.g. interband transitions (as in noble
metals).

3.1.2 Surface plasmon polariton

The dispersion relation for the SPP mode supported at the metal-dielectric interface
has been determined by Boardman et al. [59] in the absence of losses and interband
effects, and later generalized to include such contributions in Ref. [104] and Paper F.
The nonlocal retarded dispersion relation is given as

1 = −εdκd

εdκd
− δnl, (3.3a)

with

δnl =
k2

κnlκd

εd − ε∞
ε∞

, (3.3b)
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Figure 3.2: The real part of d(ω) as a function of frequency normalized to the plasma
frequency ω/ωp, calculated using a jellium model within the random-phase approximation.

Three different values for the Wigner–Seitz radius rs = [3/(4πn0)]
1
3 in units of the Bohr

radius a0 are considered. Here, n0 denotes the static equilibrium density of conduction
electrons. Reproduced from Ref. [124].

where k is the SPP propagation constant, εd is the Drude permittivity of the metal [as
given by Eq. (2.11)], εd is the permittivity of the insulator, and κ2

d = k2 − (ω/c)2εd,
κ2

d = k2 − (ω/c)2εd, and κ2
nl = k2 − k2

nl are propagation constants normal to the
interface. The important nonlocal correction δnl vanishes in the LRA. In the non-
retarded limit c→∞, Eq. (3.3) simplifies to

1 = − εd

εd
− δnr

nl , (3.4a)

with

δnr
nl = lim

c→∞
δnl =

k

κnl

εd − ε∞
ε∞

. (3.4b)

As a first consideration, we solve Eq. (3.3) for the case of an ideal lossless metal
with no interband effects, i.e., γ = 0 and ε∞ = 1, interfaced with vacuum (εd = 1).
In Fig. 3.3 we display the dispersion relation for a lossless metal computed within the
LRA (red line), the hydrodynamic model (blue line), and the GNOR model (black
line). Considering first the LRA, we see that in the lossless case, the SPP propagation
constant has no imaginary part, making the propagation length infinitely long. The
real part of the propagation constant is always larger than the light line, which
signifies that the SPP is a non-radiative bound mode. Finally, we note that as the
Re(k) grows to infinity, an asymptotic frequency is reached, determined from the

relation Re(εd) = −1, which for a lossless Drude metal corresponds to ωsp = ωp/
√

2,
also known as the surface plasmon frequency. At the SP frequency, the group velocity
vg = Re(∂ω/∂k) of the SPP mode vanishes. In the nonlocal hydrodynamic model,
the main difference is observed for large Re(k) where no asymptotic frequency is
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Figure 3.3: Normalized frequency ω/ωp as a function of the real and imaginary parts of the
normalized SPP propagation constant kc/ωp in (a) and (b), respectively, for a lossless metal-
vacuum interface in the LRA (red dash-dotted line), hydrodynamic model (blue dashed line)
and GNOR model (black solid line). The metal-vacuum interface is sketched as an inset in
(b). Material parameters correspond to Na but without losses (γ = 0).

encountered. In fact, the group velocity is bound by the relation vg ≥ β for large
Re(k) as a consequence of the nonlocal curl-free (longitudinal) wave. In the GNOR
model, we find, quite interestingly and novel, a finite Im(k) with a similar frequency
dependence as Re(k), despite the metal being lossless. This means that the diffusive
currents present in the GNOR model set a fundamental limit to the SPP propagation
length lspp = 1/[2Im(k)]. Quantitatively, we find that the group velocity is bound by

the relation vg ≥ Re(η) = Re(
√
β2 − iDω), while the slope for the curve in the ω −

Im(k) plot is determined from the relation Im(∂ω/∂k) ≥ Im(η) = Im(
√
β2 − iDω).

From these relations we can see that the nonlocal parameters β and D contribute to
both the real and imaginary parts of the SPP propagation constant. However, β [D]
will be the main cause for the value of Re(k) [Im(k)].

Having discussed the ideal case of a lossless metal interfaced with vacuum, we now
turn our attention to realistic metals. In Fig. 3.4 we display the dispersion relations for
Na and Ag, which differ markedly in comparison with the lossless case. Interestingly,
the LRA and nonlocal models show identical dispersion relations for both Na and Ag.
Furthermore, all models display a finite Im(k), i.e., a finite propagation SPP length,
as a consequence of the presence of losses in realistic metals. The SPP propagation
length is especially short at the surface plasmon energy ~ωsp due to the decrease in
SPP group velocity, which serves to amplify the material losses experienced by the
SPP mode. Finally, above ~ωsp the SPP mode bends back and even crosses the light
line (grey dashed line), where the SPP mode becomes radiative and unbound to the
surface. Thus, we see that material losses play a critical role in understanding the
properties of the SPP mode. As we will discuss in detail in the next section, the
presence of material losses is in fact the reason why there are no significant signs of
nonlocal response in this geometry.

3.1.3 Interplay between losses and nonlocality

In this section, we will in detail examine what happens to nonlocal effects in the
metal-vacuum geometry, when we start from an ideal lossless metal and gradually
increase the material losses, which is quantified by the normalized Drude damping
parameter Γ = γ/ωp. The following numerical analysis is based on the hydrodynamic
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Figure 3.4: Energy ~ω as a function of the real and imaginary parts of the SPP propagation
constant k for Na (a-b) and Ag (c-d) in the LRA (red dash-dotted line), hydrodynamic
model (blue dashed line) and GNOR model (black solid line). The horizontal dashed lines
correspond to the SP energy, determined from the relation Re[εd(ωsp)] = −1. The metal-
vacuum interface is sketched as an inset in (b). Material parameters for Na and Ag as in
Fig. 2.2.

model, but is also valid for the GNOR model. This section outlines part of the work
in Paper F.

Due to the absence of length scales associated with the geometry, the MI waveg-
uide is an ideal system to study, when considering the interplay between losses and
nonlocality of the SPP mode. In this subsection, we therefore focus on how the pres-
ence of absorption losses in the metal, i.e. a finite-valued Γ, affects the nonlocal and
local retarded modes of the MI waveguide, as described by Eq. (3.3) with and without
δnl, respectively.

The interplay between losses and nonlocality in the MI waveguide is seen in
Fig. 3.5, where we display the effect of increasing the metal losses on the local and
nonlocal hydrodynamic dispersion relations of the SPP mode, given by Eq. (3.3) with
β/c = 5 × 10−3. In the lossless case (Γ = 0), the local dispersion relation converges
towards the well-known surface plasmon energy limit for large k values, while the
nonlocal dispersion relation increases in frequency without bound, as discussed in
Sec. 2.1 and in agreement with earlier results [59]. However, in the presence of very
weak losses (Γ = 10−3) the infinite k values at the SP frequency ωsp in the LRA are
removed and the SPP mode bends back. This back-bending effect is a well-known
textbook result [11], which occurs for any positive value for Γ in the LRA. The ex-
treme sensitivity to even minute losses in the LRA is due to the vanishing group
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Figure 3.5: Local (red lines) and nonlocal (green lines) complex dispersion relations of the
SPP mode of the MI waveguide, with εd = 1 and metal losses increasing from Γ = 0 to
Γ = 10−1. Solid lines display the real part of the propagation constant, Re(k), while the
dashed lines display the imaginary part of the propagation constant, Im(k). The value
β/c = 5× 10−3 suitable for noble metals, such as Ag and Au, has been used.

velocity at ωsp [132]. In striking contrast, the nonlocal SPP mode [i.e., Re(k)] is ro-
bust due to the finite group velocity vg ≥ β. Consequently, no pronounced slow-light
enhancement of weak losses takes place and the nonlocal SPP mode does not bend
back until the losses of the system start to dominate. Although non-zero Im(k) is gen-
erated for the nonlocal SPP mode for Γ 6= 0, the real part of the propagation constant
Re(k) remains largely unaffected. It is also interesting to note that the behaviour of
Im(k), which is related to the SPP propagation length lspp, changes drastically from
Γ = 10−3 to Γ = 10−2. For Γ = 10−3 the nonlocal SPP mode propagates longer than
the local one in the frequency region ω > ωsp, while the opposite result is seen for
Γ = 10−2. At the same time Re(k) for the nonlocal mode is unchanged and substan-
tially larger than in the LRA, resulting in shorter wavelengths and thereby stronger
confinement of the SPP mode at the MI surface. Not until Γ = 10−1, which is sig-
nificantly larger than the normalized hydrodynamic parameter β/c, do the losses in
the metal dominate over nonlocality and force the nonlocal SPP mode to bend back.
At such losses, the local and nonlocal models result in almost identical solutions.
Intuitively, we may understand this result by recalling that the influence of nonlocal
effects is related to the free movement of the electron gas, which can be significantly
impaired in the case of large losses, i.e., high collision frequencies.

The transition of the nonlocal mode from being dominated primarily by nonlocality
to being dominated by losses (i.e. Γ = 10−2 → 10−1 in Fig. 3.5) is investigated in more
detail in Fig. 3.6. To explain the transition we must also consider the presence of the
high-energy branch known as the Brewster mode [12] (for clarity not shown in Fig. 3.5)
and not only the SPP mode. The Brewster mode, which is also a solution emerging
from Eq. (3.3), does not correspond to a true surface wave, since, in the lossless case,
the wave is unbound and radiative. In fact the Brewster mode corresponds to a zero-
valued reflection coefficient, which for a lossless Drude metal can be satisfied only in
the transparency window ω > ωp. In Fig. 3.6 we see the merging of two separated
modes, plotted as red and blue lines. For the lowest loss of log(Γ) = −1.7, the red
line corresponds to the continuation of the Brewster mode to frequencies lower than
ωp (see inset of Fig. 3.6), which in the lossless case would be a forbidden region (i.e.,
only purely lossy solutions exist) [12]. The blue line represents the standard, low-loss,
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Figure 3.6: Nonlocal complex dispersion relations of the SPP and Brewster modes of the MI
waveguide, both attained from solution of Eq. (3.3), with εd = 1 and metal losses increasing
from Γ = 10−1.7 to Γ = 10−1.5. Solid lines display the real part of the propagation con-
stant, Re(k), while the dashed lines display the imaginary part of the propagation constant,
Im(k). The insets show zoom-outs of the real dispersion relation and illustrate more clearly
the Brewster mode. The transition and mode-evolution from nonlocality to loss-dominated
behavior is explored. The value β/c = 5 × 10−3 suitable for noble metals, such as Ag and
Au, has been used.

nonlocal SPP mode. As the losses increase [log(Γ) = −1.6→ −1.575], the real parts
of the dispersion of the Brewster mode and SPP mode begin to merge [133]. At
approximately log(Γ) = −1.55 the mode-appearance has qualitatively changed, with
the appearance of the usual well-known loss-dominated SPP mode (in blue), which
is also present in LRA, as well as the emergence of a relatively flat-band, nonlocal
surface plasmon mode (in red) near the surface plasmon resonance ωsp [33]. We notice
that the nonlocal flat-band mode is significantly damped in comparison with the usual
SPP mode, and that the damping increases drastically with increased material loss.
In contrast, the usual SPP mode is not nearly so sensitive to the small change in
material loss from log(Γ) = −1.55 to log(Γ) = −1.5.

We now present a simple analysis to understand when the metal losses dominate
nonlocal effects in the MI waveguide. The back-bending occurs at the SP frequency
ωsp, where the propagation constant is significantly larger than the free-space propa-
gation constant. We can therefore justify to examine the simpler non-retarded disper-
sion relation given by Eq. (3.4) instead of the retarded dispersion relation [Eq. (3.3)].
From Eq. (3.4), we see that nonlocality becomes negligible when |δnr

nl | � |1 + εd/εd|.
Evaluating this condition at the SPP frequency with εd = 1 (as in Fig. 3.5) for small
Γ leads to the simple condition for loss-dominated behavior

γ

ωp
� |η|

c
, (3.5)

where η is given by Eq. (2.42). In the hydrodynamic model, where η = β, we find
Eq. (3.5) to be consistent with the numerical analysis of this section. We point out
that the loss parameter Γ is just one of several options for introducing an imaginary
part to the metal permittivity. An alternative approach to introducing losses is by
simply adding a constant imaginary part to the lossless free-electron Drude model. In
either case, the metal permittivity becomes complex-valued. To bridge these different
approaches, we can relate the condition in Eq. (3.5) to the imaginary part of the
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metal permittivity by noting that Im [εd (ω = ωsp)] = 2
√

2γωp/
(
ω2

p + 2γ2
)

in which
case Eq. (3.5) can be rewritten as

Im(εd)� |η|
c
. (3.6)

In noble metals the nonlocal parameter is of the order |η|/c ≈ 10−3 and the losses are
of the order Im(εm) ≈ 100, which in general means that metal losses largely dominate
nonlocal effects in the SPP mode of the MI waveguide [53]. In other words, in the
MI waveguide the spatial dispersion of the metal becomes invisible to the SPP mode
in the limit of infinitely high absorption losses.

Due to the absence of any geometric length scales in the MI waveguide, it is difficult
to unmask nonlocal effects from material losses. However, introducing a length scale
to enhance the nonlocal influence on the SPP mode can be achieved by considering the
SPP modes of the insulator-metal-insulator (IMI) waveguide or the gap-SPP modes
of a metal-insulator-metal (MIM) waveguide, where the relevant length scales are the
thicknesses of the metal and insulator layers, respectively. For sufficiently thin layers
(< 10 nm), nonlocal effects manifest themselves in the dispersion relation diagrams,
see Refs. [105, 107, 134, 135] and Paper F.

3.2 Sphere

The metallic spherical particle represents another archetypical geometry studied in
plasmonics due to the support of localized surface plasmons and the presence of
analytical solutions. The electromagnetic scattering problem of a metal sphere of
radius R and Drude permittivity εd(ω), which is excited by a plane monochromatic
wave and homogeneously embedded in a material with dielectric constant εb, was
first analytically solved by Mie in the LRA [136]. The exact solution provided by
Mie is commonly named Mie theory [137, 138] and takes into account retardation
effects. Later, Ruppin [80, 81] extended the Mie theory to include nonlocal response
in the metallic sphere by taking into account the curl-free wave that Mie neglected by
employing the LRA. In the simpler non-retarded limit, the multipolar polarizability
of the metal sphere was extended to include nonlocal effects [126, 125, 139, 140,
141] and used to study the optical properties of very small particles R < 10 nm,
where retardation effects can be safely neglected. Finally, a quantum mechanical
jellium model for spherical particles has also been presented in a series of papers by
Ekardt [129, 142, 143, 144].

In this section, we derive the nonlocal dipolar polarizability, which in the LRA
is described by the Clausius–Mossotti factor [11], to study the optical properties of
spheres with diameters below 20 nm. In this size range and under the excitation
of a plane wave, the effect of retardation is small and the response of the metal
sphere is dominated by the dipolar mode, as we will see in the comparison with fully
retarded calculations. By considering the poles of the nonlocal dipolar polarizability,
we directly show that the nonlocal parameters β and D relate to the SP resonance
energy and linewidth, respectively, as anticipated in our discussion on the Feibelman
parameter in Sec. 3.1.1.

3.2.1 Nonlocal Clausius–Mossotti factor

The derivation of the nonlocal Clausius–Mossotti factor presented here is based on
the work in Paper E. We consider a small isotropic metal sphere of radius R embedded
in a homogeneous dielectric environment with permittivity εb. The polarizability α
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of this sphere is a well-known result in the LRA [11, 145] and is given by

αl = 4πR3 εd − εb

εd + 2εb
, (3.7)

where εd is the classical Drude permittivity. The factor (εd−εb)/(εd+2εb) is called the
Clausius–Mossotti factor and notice that it is independent of the sphere radius [146].
The polarizability is derived in the quasistatic approximation under the assumption
of a static surrounding electric field, thus neglecting spatial variations in the exciting
electric field. Our goal is now to derive a generalization to this formula, taking
nonlocal response of the sphere into account. We begin by introducing the electric
and current scalar potentials φ and ψ, respectively, defined as

E(r, ω) = −∇φ(r, ω), J(r, ω) = −∇ψ(r, ω). (3.8)

By inserting Eq. (3.8) into the nonlocal equations described in Sec. 2.2, it can straight-
forwardly be shown that the scalar potentials inside the metal sphere are governed
by the equations (

∇2 + k2
nl

)
n(r, ω) = 0, (3.9a)

∇2φ(r, ω) =
e

ε0ε∞(ω)
n(r, ω), (3.9b)

ψ(r, ω) =
1

γ − iω
[
ε0ω

2
pφ(r, ω)− eη2n(r, ω)

]
, (3.9c)

where we have introduced the induced electron density n(r, ω), which relates to the
induced charge density as ρ(r, ω) = −en(r, ω). In the surrounding dielectric, the
current density J and electron density n vanish, and the electric scalar potential
must instead satisfy the usual Laplace equation ∇2φ(r, ω) = 0. Finally, Maxwell’s
BCs and the ABC for the scalar potentials translate into

φin = φout, ε∞
∂φin

∂r
= εb

∂φout

∂r
,

∂ψin

∂r
= 0, (3.10)

where in and out refers to inside and outside the metal, respectively. The general
solutions to the electric scalar potential and free-electron density inside and outside
the sphere are

nin =
∑
l,m

Aljl(knlr)Ylm(θ, φ), nout = 0, (3.11a)

φin =
∑
l,m

[
Dlr

l −Al e

ε0ε∞k2
nl

jl(knlr)

]
Ylm(θ, φ), (3.11b)

φout =
∑
l,m

[
Blr

l + Clr
−(l+1)

]
Ylm(θ, φ). (3.11c)

Here, jl and Ylm are the spherical Bessel function of the first kind and the spheri-
cal harmonics, respectively. The current scalar potential ψ can be determined from
Eq. (3.9c). We neglect variations in the exciting electric field and thus assume a con-
stant electric field surrounding the sphere, here directed in the ẑ direction i.e. Eout =
E0ẑ. Thus, this poses the requirement that limr→∞ φ

out = −E0z = −E0r cos(θ),
which excludes all orders of (l,m) in the sums in Eq. (3.11) except (l,m) = (1, 0).
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Applying the BCs from Eq. (3.10) and following the usual approach to introduce the
polarizability [11], we determine the nonlocal polarizability αnl to be

αnl = 4πR3
εd − εb

(
1 + δsph

nl

)
εd + 2εb

(
1 + δsph

nl

) , (3.12a)

where

δsph
nl =

εd − ε∞
ε∞

j1(knlR)

knlRj′1(knlR)
, (3.12b)

and where the prime denotes differentiation with respect to the argument. These
results constitute our nonlocal-response generalization of the Clausius–Mossotti fac-
tor of classical optics. We note that nonlocal effects enter the Clausius–Mossotti
factor as an elegant and simple rescaling of either the metal permittivity from εd

to ε̃d = εd

(
1 + δsph

nl

)−1

[147] or of the background permittivity from εb to ε̃b =

εb(1 + δsph
nl ) [148]. We point out that the rescaled metal permittivity ε̃d(ω,R) is now

both frequency- and size-dependent. Finally, we note that when η → 0 then δsph
nl → 0

in Eq. (3.12) and the classical size-independent Clausius–Mossotti factor is retrieved.

The SP resonance energy follows theoretically from the Fröhlich condition, i.e., we
must consider the poles of Eq. (3.12)

εd + 2εb

(
1 + δsph

nl

)
= 0, (3.13)

which will be given by a complex-valued resonance frequency ω = ω′+iω′′ (Paper C).
The real part ω′ gives the SP resonance frequency, while the imaginary part ω′′ is
related to the SP resonance linewidth. In the following analytical analysis based on
the GNOR model, we consider for simplicity the case of a particle in vacuum (εb = 1)
with no interband effects (ε∞ = 1) and find (to second order in 1/R)

ω′ ' ωp

3
+

√
2β

2R
, (3.14a)

ω′′ ' −γ
2
−
√

6

12

Dωp

βR
. (3.14b)

In Eq. (3.14a), the first term is the common size-independent local-response Drude
result for the SP resonance that also follows from the poles of Eq. (3.7), and the
second term gives the size-dependent blueshift due to the hydrodynamic pressure.
In Eq. 3.14b, we have again the size-independent LRA term, while the second term
shows a size-dependent linewidth due to diffusion. We can also clearly see that only a
size-dependent blueshift is present in the hydrodynamic model, while the GNOR also
accounts for a size-dependent SP linewidth, both results which are in concordance
with our discussion of the Feibelman parameter in Sec. 3.1.1. With the inclusion of
interband effects, this distinction becomes blurred, since the hydrodynamic model
will also show an extremely weak size-dependent linewidth. At this stage, we note
that a 1/R dependence on the blueshift and the linewidth of the SP resonance energy
of small Ag nanoparticles has been experimentally observed in Refs. [16, 149, 150,
151, 18, 14, 17] using optical spectroscopy.

With the nonlocal polarizability we can determine the extinction cross section
σext [138] of a metal sphere using the relation [11]

σext =
k4

b

6π
|αnl|2 + kbIm(αnl), (3.15)
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Figure 3.7: (a) Sketch of monochromatic plane wave impinging on small Ag nanoparticle.
Material parameters for Ag as in Fig. 2.2. (b) Extinction cross section, in units of geometric
cross section πR2, as a function of energy ~ω for 5 different particle diameters in the GNOR
theory (black solid line), hydrodynamic model (blue dashed line) and LRA (red dash-dotted
line). Each spectrum is vertically displaced with 2 normalized units. Resonance energy (c)
and linewidth (d) of the dipolar surface plasmon mode as a function of particle diameter 2R.

where kb = (ω/c)
√
εb is the wave vector in the background dielectric medium. Equa-

tion (3.15) allows for a more quantitative assessment of the size-dependent blueshift
and linewidth broadening of the dipolar SP resonance anticipated from the approx-
imate analytical relations in Eq. (3.14). In Fig. 3.7(b) we show the extinction cross
section of a small Ag sphere, sketched in Fig. 3.7(a), with diameter varying from
4 nm to 12 nm, calculated in the GNOR theory (black line), hydrodynamic model
(blue line) and LRA (red line). As expected, the LRA shows no change in resonance
energy or linewidth of the dipolar SP with size. The hydrodynamic model shows a
blueshift of the SP with decreasing diameter and a slightly smaller SP amplitude as
a consequence of small, but finite, surface absorption due to bulk material losses and
interband transitions, see Fig. 3.1(d). The GNOR model shows both blueshift and
linewidth broadening of the SP resonance with decreasing particle size. Quantita-
tively, we see in Figs. 3.7(c) and (d) that a blueshift of ∼ 0.2 eV and an increased
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Figure 3.8: Extinction cross section, in units of geometric cross section πR2, of Ag sphere with
diameter 2R = 10 nm as a function of energy ~ω, calculated within the GNOR (black solid
line), LRA (blue dashed line), and Kreibig (magenta dashed line) approaches, see Sec. 3.2.2.
The value A = 0.5 has been used for the Kreibig calculation.

linewidth broadening of ∼ 0.5 eV is seen when the sphere diameter decreases from
20 nm to 2 nm. We note that the size-dependent blueshift and linewidth exceeds the
1/R-dependency, given by the analytical relations in Eq. (3.14), for diameters below
10 nm (Paper I) and higher-order terms become important. The hydrodynamic model
shows the same blueshift of the SP as the GNOR model, but no significant increase in
linewidth. In particular, a weak size-dependent linewidth in the hydrodynamic model
can be seen in Fig. 3.7(d) for diameters below 5 nm, which is due to the inclusion of
bulk losses (i.e., γ 6= 0) and interband effects.

3.2.2 Size-dependent damping

The phenomenon of size-dependent damping in metal nanoparticles has been exten-
sively observed in experiments [16, 14, 15, 152, 153, 154]. The theoretical approach
to account for this effect in the LRA, proposed by Kreibig [16] and adopted widely
by researchers in the field, has been to phenomenologically modify the Drude bulk
damping parameter γ as

γ → γ +A
vf

R
, (3.16)

which only applies for spherical particles of radius R. Here, A denotes a constant,
which is related to the probability of the free electrons scattering off the surface of
the particle. Both experimental data and more advanced theoretical calculations have
been compared to this approach, resulting in a robust value for A close to unity for
different metals [15, 147, 155, 156]. In the following, we denote the method described
in Eq. (3.16) as the Kreibig approach. In Fig. 3.8, we compare the extinction cross
section of a silver sphere with diameter 2R = 10 nm, calculated within the GNOR
(black line), LRA (blue line), and Kreibig (magenta line) approaches. As we see from
Fig. 3.8 the Kreibig approach displays a size-dependent broadening as in the GNOR
theory (in contrast to the LRA), but no size-dependent resonance shift (in agreement
with the LRA). The SP linewidths are practically the same in the GNOR and Kreibig
calculations due to the chosen value for D, see the caption of Fig. 2.2 for material
parameters.
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Since the value for A has been shown to be close to unity for different metals, it
is therefore appropriate to ensure that the GNOR model agrees with this successful,
but phenomenological approach, see Paper A. To this end, we calculate the extinction
cross section of a metal sphere using the nonlocal polarizability [Eq. (3.12)] for the
GNOR calculations, while the LRA polarizability [Eq. (3.7)] is modified to include
the aforementioned additional damping [Eq. (3.16)]. We consider two values for A,
namely A = 0.5 and A = 1, since different nanoparticle preparation methods may
result in different surface properties. The diffusion constant D is varied until the full-
width at half maximum of the LSPRs for both calculations coincide. This procedure
is repeated for the range of sphere radii of 1− 10 nm, which are small enough so that
retardation does not complicate the analysis (see Sec. 3.2.3). As the fitted diffusion
constant D varies slightly with sphere radii, we use the average value for D. The
diffusion constant D along with other relevant GNOR parameters for Na, Ag, Au,
and Al are summarized in Table 3.1.

The variation in D with sphere radii, when fitted to the Kreibig approach, is due
to the Kreibig approach only being valid up to second order in 1/R. This is clear
by inserting Eq. (3.16) into the LRA of Eq. (3.14b), i.e., with D = 0. In contrast,
the GNOR model is valid up to all orders in 1/R, as also discussed in Sec. 3.2.1
in the context of Fig. 3.7. Thus, a signature of the GNOR model could be to find
the linewidth broadening of the SP resonance to exceed the 1/R-dependency given
by the Kreibig approach. Such measurements could also be used to determine the
appropriate value for D.

3.2.3 Retardation effects

In the discussion in Sec. 3.2.1, we have assumed that the optical response of a small
metal sphere (2R < 20 nm), when excited by a plane wave, is dominated by the dipole
mode, and that retardation effects can be neglected. To justify that these assumptions
are indeed appropriate, we compare calculations based on the nonlocal nonretarded
dipole polarizability [Eq. (3.12)] and retarded nonlocal Mie theory, which takes into
account all modes of the sphere (and not only the dipole mode). The nonlocal Mie
theory has been presented by several authors and can be found in Refs. [80, 81,
102, 113]. In Fig. 3.9, we show the extinction cross section of a silver sphere with
diameter 2R = 20 nm calculated using the nonlocal Mie theory (black line) and
dipolar polarizability (magenta line). The agreement between the two calculations
is remarkable and confirms that only the dipole mode is present in the spectrum.
Retardation is known to give rise to a redshift of the SP resonance with increasing
particle size [157], and here we also note the presence of a very small redshift of the
retarded calculation compared to the nonretarded. However, the shift is so small that
we can justify to study nonlocal effects of a metal sphere with diameter below 20 nm
using the simple nonlocal dipole polarizability.

~ωp [eV] ~γ [eV] vf [106ms−1] D [10−4 m2s−1]
A = 0.5 A = 1

Na 6.04 [52] 0.16 [115] 1.07 1.08 2.67
Ag 8.99 [52] 0.025 [37] 1.39 3.61 9.62
Au 9.02 [52] 0.071 [37] 1.39 1.90 8.62
Al 15.8 [52] 0.6 [37] 2.03 1.86 4.59

Table 3.1: Plasma frequencies ωp, Drude damping rates γ, Fermi velocities vf and diffusion
constants D for the metals Na, Ag, Au and Al. The method used for determining D is
described in Sec. 3.2.2.



30 NONLOCAL EFFECTS IN PLASMONIC NANOSTRUCTURES

 

 

Nonretarded GNOR

Retarded GNOR

σ
e
x
t
/
(π
R

2
)

Energy ~ω [eV]

2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

k

E

2R = 20 nm

Figure 3.9: Extinction cross section, in units of geometric cross section πR2, of Ag sphere
with diameter 2R = 20 nm as a function of energy ~ω, calculated with retarded Mie theory
(black solid line) and dipolar polarizability (magenta dashed line), given by Eq. (3.12). The
GNOR approach has been used for both calculations.

3.2.4 Nonlocal multipolar response

We have in the previous sections focused on the dipole mode of a small sphere and
shown that this mode dominates the extinction cross section spectrum for diameters
below 20 nm. However, other excitation sources, such as an electron beam or a
dipole emitter, produce significantly more inhomogeneous electric-field distribution
than the plane-wave excitation used in determining the extinction cross section [113,
121]. When in the vicinity of a metal sphere, such sources can excite higher-order
multipoles, even in spheres with diameters below 20 nm [113, 158]. Thus, it is relevant
to consider the nonlocal resonance condition for all multipoles, given in Ref. [113] as

lεd + (l + 1)
(

1 + ∆sph
nl

)
εb = 0, ∆sph

nl = l
εd − ε∞
ε∞

jl(knlR)

knlRj′l(knlR)
, (3.17)

where l is the multipole order with l = 1 denoting the dipole mode, l = 2 the
quadrupole mode, and so on. We see that for l = 1 Eq. (3.17) reduces to Eq. (3.13)
from the previous section. Ref. [113] has also shown that the solution to Eq. (3.17)
within the hydrodynamic model can be approximated as (to second order in 1/R)

ω ' ωp√
ε∞ + εb(l + 1)/l

+

√
l(l + 1)εb

ε∞

β

2R
, (3.18)

which is also in accordance with findings in Ref. [95]. The first term in Eq. (3.18) is
the size-independent LRA multipole resonance condition, while the second term is due
to nonlocal response in the hydrodynamic model. Eq. (3.18) reveals, besides a 1/R
dependence, that there is a delicate interplay in the blueshift between the material
parameters of the metal, through ε∞(ω) and β, and the background medium εB.
Furthermore, Eq. (3.18) shows that the blueshift increases with a large-permittivity
background medium and higher multipole order l. Within the GNOR model, we
can therefore anticipate, besides an l-dependent blueshift, an l-dependent linewidth
broadening as well.
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3.3 Dimer

The plasmonic dimer, which consists of two metallic nanoparticles in close proxim-
ity, constitutes another very interesting geometry. This is in particular due to the
plasmon hybridization [2, 159] occurring between the two closely-spaced nanoparti-
cles, which gives rise to strongly gap-dependent resonance energies and electric-field
enhancements. Such features have been utilized in e.g. surface-enhanced Raman
spectroscopy [160] and the plasmon ruler effect [161]. The dimer has been studied
with a variety of theoretical and experimental techniques. The simplest theoretical
approach is based on the classical LRA, which in the extreme case of a nanometer-
sized dimer gap gives rise to unphysical results, such as diverging field enhancements
in the gap of the dimer [162]. A complete breakdown of the LRA is seen in the touch-
ing configuration, where the number of hybridized bonding plasmon modes increases
without limit to form a continuum of modes [91, 92], thus setting no bound to the
resonance energies of the bonding plasmon modes and thereby the plasmon hybridiza-
tion. Advanced descriptions based on DFT regularize the unphysical consequences
of the LRA [163, 116, 114, 115, 32], where the physical mechanism for the regular-
ization is attributed to quantum tunnelling, i.e., the charge transfer that may occur
before reaching the touching configuration due to the spill-out of electrons. Results
based on the hydrodynamic model, where only nonlocal response (and not electron
spill-out) is taken into account, also display regularization of the LRA [91, 92, 70],
albeit with field enhancements in the dimer gap that are still larger than shown by
DFT simulations [115]. Measurements on dimers with vanishing gaps using both
optical techniques [27, 30] and electron energy-loss spectroscopy [29, 164] are not
in agreement with the LRA, and, in the touching case, also display limits on the
resonance energies of the bonding plasmon modes, i.e., ultimate bounds to the plas-
mon hybridization. However, the physical mechanism for the discrepancy between
LRA and the observed measurements is not conclusive with possible explanations
being provided from both quantum tunneling [114, 115] and nonlocal response [34]
perspectives.

In this section, we study a plasmonic dimer consisting of two identical Na cylin-
ders by varying the gap from separated via touching to overlapping configurations,
see Fig. 3.10 for a schematic illustration. The dimer is excited by a plane wave which
is polarized along the dimer axis to strongly excite the hybridized modes. We numer-
ically calculate the extinction cross section and the field enhancement in the gap of
the dimer in the frameworks of the LRA, hydrodynamic model and GNOR model by
using the freely available COMSOL implementation [165].

k

E

R

g

g > 0 g = 0

−g

g < 0

Figure 3.10: Sketch of the considered system, displaying the incident electric field, which is
polarized along the dimer axis, impinging on a dimer consisting of two identical cylinders
with radii R and separated by a gap g. The three cases of separated dimer (g > 0), touching
dimer (g = 0) and overlapping dimer (g < 0) are shown.
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-30 Å
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Figure 3.11: Extinction cross section, in units of cylinder diameter 2R, as a function of energy
for a Na dimer with R = 10 nm and gap size g varying from 50 Å to −50 Å in steps of 5 Å.
Simulations are done using (a) LRA, (b) hydrodynamic model, and (c) GNOR model. The
values next to the spectra denote the gap size g. Each spectrum is vertically displaced by
4.5 normalized units.

To properly understand the forthcoming optical spectra, we first discuss the plas-
mon hybridization occurring in the dimer system. When two cylinders are positioned
in close proximity, they hybridize to form new plasmon modes, which can show up as
resonances in the extinction cross section [159]. For large separation distances, the
first modes to hybridize are the individual dipolar modes (angular momentum l = 1)
of the cylinders to produce a lower-energy (with respect to the individual dipolar
mode) bonding dipolar mode and a higher-energy antibonding dipolar mode. Since
the net dipole moment of the antibonding mode is zero, this mode will be optically
dark and not show up in the extinction cross section. Thus, we leave out further
discussion of the antibonding modes. As the dimer separation decreases the plas-
mon hybridization increases and the resonance energy of the bonding dipolar mode
decreases. Furthermore, with decreasing separation distance higher-order modes of
the individual cylinders (i.e., l > 1) begin to hybridize as well. As an example the
quadrupole mode of the individual cylinders hybridize to form bonding and antibond-
ing quadrupole modes. Thus, in nanometer-proximity the dimer spectra can be quite
complex and show multiple resonances due to the hybridization between many modes
of the individual cylinder.

With this plasmon hybridization picture in mind, we consider now the extinction
cross section of a Na dimer with radius R = 10 nm in the LRA, hydrodynamic model
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and GNOR theory, see Figs. 3.11(a), (b), and (c), respectively. We vary the dimer
gap from g = 50 Å (separated dimer) via touching configuration g = 0 to g = −50 Å
(overlapping dimer). We begin our discussion by considering the LRA results for a
dimer separated by a gap of 50 Å [blue curve in Fig. 3.11(a)]. The lowest-energy
and strongest peak is due to the bonding dipole mode (BDP), while the next peak is
actually due to two spectrally-close modes, the bonding quadrupole mode (BQP) and
a higher-order mode (HOM). Of these two modes, the BQP has the largest amplitude
and lowest energy. The electric field of the HOM is concentrated at the edges of the
dimer (and not the gap, like the BDP and BQP), making it spectrally insensitive
to the gap size (see Paper A for plots of the electric field distribution of the BDP,
BQP, and HOM). As the gap decreases, the BDP and BQP redshift and additional
bonding-mode resonances appear due to the increased plasmon hybridization. In
fact as g → 0 the bonding modes continue to redshift and the number of bonding
modes increases without bound till a continuum of modes is found in the touching
configuration g = 0 [91, 92]. The extinction cross section calculation for g = 0 does
not converge in the LRA, which is why the spectrum is not present in Fig. 3.11(a).
When the dimers overlap the nature of resonant modes changes and can no longer
be considered as bonding modes. In particular, the induced charges pile up at the
sharp edges of the junction of the overlapping dimer [162]. The interaction between
the induced charges gives rise to the several resonances seen for e.g. g = −5 Å. As
the overlap increases, the sharp edges at the junction smoothen and the interaction
between the surface charges decreases, leading to a blueshift of the resonances. The
spectrum of the overlapping dimer begins to increasingly resemble that of an elongated
particle.

Turning our attention now to the results of the hydrodynamic model, see Fig. 3.10(b),
we find that the separated dimers show less redshift with decreasing gap size compared
to the results in the LRA. The size-dependent blueshift of the plasmon resonances
observed in a spherical nanoparticle (see Sec. 3.2) translates into a gap-dependent
blueshift for the bonding modes of the dimer. This gap-dependent blueshift counter-
acts the redshift due to plasmon hybridization, leading finally to a finite resonance
energy and finite number of bonding modes in the touching limit g = 0 [red curve
in Fig. 3.11(b)]. Furthermore, the increase in blueshift with angular momentum
observed for the sphere (see Sec. 3.2.4) manifests itself in the dimer spectra as an
increased blueshift for higher-order bonding modes. Thus, the BQP experiences a
stronger blueshift than the BDP, leading to a weaker plasmon hybridization for the
BQP than the BDP. This is also the reason for the lower number of resonances in the
hydrodynamic spectra of close-proximity and short-overlap dimers compared to those
of the LRA. For the overlapping dimers (g < 0) the strength of the resonant modes
are weaker in the hydrodynamic calculations than in the LRA due to the nonlocal
smearing of the surface charges at the otherwise sharp edges of the dimer junction.

Many of the considerations from the hydrodynamic results can be mapped over
to the GNOR spectra, see Fig. 3.11(c). In particular, the gap-dependent blueshift
observed in the hydrodynamic model is augmented with a gap-dependent broadening
the GNOR model. This is clear for, e.g., the touching case g = 0 (red curve) where
diffusion broadens the spectrum significantly in comparison to the sharp resonances
of the hydrodynamic spectrum. Since the broadening is also angular-momentum
dependent, many of the higher-order mode features in the spectra of the overlapping
dimers become washed out due to diffusion.

3.3.1 Comparison with density-functional theory

To facilitate comparison with time-dependent DFT (TDDFT) calculations [114, 115]
and other theoretical models based on quantum tunnelling, such as the quantum-
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Figure 3.12: (a-b) Extinction cross section as a function of energy for a Na dimer with
R = 4.9 nm and gap size g varying from −5.3 Å to 10.6 Å in steps of 0.53 Å using GNOR
and time-dependent DFT, respectively. The values next to red-colored spectra denote the
gap size g. (c-d) Electric-field enhancement at the center position of the gap of the same
Na dimer as a function of energy and gap size using GNOR and time-dependent DFT,
respectively. (b) and (d) are reproduced from Ref. [115].

corrected model (QCM) [166] and the quantum conductivity theory (QCT) [167],
we display in Fig. 3.12 the evolution of the extinction cross section [Fig. 3.12(a-
b)] and the electric-field enhancement [Fig. 3.12(c-d)] of a Na dimer with a smaller
radius of R = 4.9 nm. Comparison of TDDFT with the LRA and the hydrodynamic
model has already been shown in Refs. [114, 115], so we leave out these models in
this section. Comparing first the extinction cross sections, we see that the GNOR
theory captures quite accurately the gap-dependent broadening seen from TDDFT
simulations, although the broadening is stronger in the TDDFT calculations. This
slight discrepancy can be adjusted by increasing the value for the diffusion constant
D in the GNOR simulations. The number of resonant modes in the separated and
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overlapping dimer are also the same in both calculations. In the very narrow gap range
of −2 Å . g . 2 Å, the TDDFT spectra are significantly more broadened than those
of the GNOR model, which can be attributed to the overlap of the electron spill-out
in TDDFT calculations. However, from the strong similarity of the spectra in the two
calculations, it can be difficult to assign the broadening observed in measurements of
dimers [29, 27] as a direct consequence of overlap of electron spill-out, as the GNOR
theory does not include electron spill-out but still accounts for the gap-dependent
broadening.

In Fig. 3.12(c) we see that the electric-field enhancement amplitude and trend with
decreasing gap size are in very good agreement with TDDFT simulations [Fig. 3.12(d)].
The only discrepancy between the GNOR model and TDDFT simulations occurs at
gap sizes below approximately 5 Å but before contact, where the overlap of electron
spill-out in TDDFT calculations quenches the electric-field enhancement. The lack
of agreement with TDDFT calculations for gaps below 5 Å is due to the hard-wall
boundary conditions imposed in the GNOR model.

3.3.2 Ultimate plasmon hybridization

When the dimers are touching [red curve in Fig. 3.11(c)], the hybridization of the
bonding plasmon modes is maximal and the resonance positions of these modes de-
pend only on the dimer radius R. We have investigated the behavior of the resonance
condition of the BDP and BQP modes as a function of R in Fig. 3.13. For the
smallest dimer radii (R ≤ 10 nm), the resonance positions of the BQP mode are not
clearly distinguishable from the extinction spectra due to the weaker hybridization
in smaller dimers. As the dimer radius increases the resonance energies of both the
BDP and BQP modes decrease. This is due to the increased hybridization occurring
for larger radii as the interacting metal surfaces between the two nanowires increase.
Along with the numerical GNOR simulations (dots in Fig. 3.13), we also depict the
results using a nonlocal transformation optics (TO) approach (dashed line) [91]. Al-
though the nonlocal TO was originally used with the hydrodynamic model, we show
in Fig. 3.13 that the nonlocal TO approach is still valid within the GNOR theory,
as long as the substitution β2 → η2 [recall Eq. (2.42)] is applied. As anticipated, we
see in Fig. 3.13 that the nonlocal TO calculations agree quite well with the GNOR
simulations for both the BDP and BQP modes. The small discrepancy between the
nonlocal TO calculations and the GNOR simulations for large radii is due to lack of
retardation effects in the TO calculation (notice the retardation-induced redshift of
the GNOR simulations compared to the TO). The discrepancy for the smallest radii
is due to the WKB approximation in the nonlocal TO calculations, which becomes
inaccurate for increasing particle curvature (i.e., decreasing radii) and higher-order
modes (note the larger discrepancy for the BQP mode than for the BDP mode for
small radii).

We may deduce a simple relation for the resonance energies of the bonding plasmon
modes by examining the position of the centroid of induced charges [115], given
as the real part of the Feibelman parameter d(ω), see Sec. 3.1.1. In the GNOR
theory, the centroid of the induced charges is positioned a short distance (∼ 1− 2 Å)
within the metal boundary as discussed in Sec. 3.1.1, see also insets of Fig. 3.13.
However, within the LRA the induced charges reside on the geometrical surface. We
can therefore mimic the position of the centroid of induced charges in the GNOR
theory by considering separated dimers in the LRA with a gap of g = 2Re[d(ω)].
Within the LRA, the resonance condition of a separated dimer with gap size g has
been determined using TO [168] and is given by the relation(√

g

4R
+

√
1 +

g

4R

)4n

= Re

[
εd(ω)− 1

εd(ω) + 1

]
, (3.19)
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Figure 3.13: Resonance energies of the BDP (black) and BQP (blue) modes of touching Na
nanowires (g = 0) as a function of dimer radius R. The dots display the simulations using
the GNOR model, and the dashed lines show the results using the nonlocal TO approach.
Finally, the dash-dotted lines show the results using the local-response TO approach, given
by Eq. (3.19) with an effective gap g = 2Re[d(ω)]. The insets display the real part of the
GNOR charge distributions of the BDP and BQP for a touching dimer with R = 30 nm.

where n = 1 corresponds to the BDP mode, n = 2 corresponds to the BQP mode, and
so on. Assuming an undamped Drude model for the permittivity εd(ω) = 1− ω2

p/ω
2

and expanding Eq. (3.19) to first-order in g/R, we find the simple relation for the
LRA resonance condition for the modes of separated nanowires

ω

ωp
' √n

[
2Re(ξgnor)√
−εd(ω)R

] 1
4

, (3.20)

where we have used that g = 2Re(ξgnor)/
√
−εd(ω). Figure 3.13 displays the result

of this effective LRA approach (dash-dotted lines), given by Eq. (3.19) with gap size
g = 2Re[d(ω)]. We see that the GNOR resonance energies of touching nanowires can
quite accurately be mimicked by the LRA result of separated nanowires, when the
gap size is set to the distance between the centroid of induced charges. As anticipated
from Eq. (3.20), we also see that the slope of the BDP and BQP resonance energies are
very similar. The BQP energies simply occur at higher energies. Although diffusion
plays a crucial role in the damping of the bonding plasmon modes for decreasing
gap size (as seen in the extinction cross sections of Fig. 3.11) and in the electric-
field enhancement amplitude [see Fig. 3.12(c)], Eq. (3.20) shows that the maximal
hybridization resonance energies are mainly dependent on convection as described
by the Fermi velocity, since the value for β contributes most to Re(ξgnor) [recall
Eq. (2.44)]. Only in the extreme limit where Dω becomes comparable to β2 in
magnitude will diffusion play a role in the position of the resonance energies.
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Figure 3.14: (a) Sketch of a plane wave with electric field polarized perpendicular to cylinder
axis impinging on a coreshell nanowire with inner radius R1 = 15 nm and varying outer radius
R2. The core is insulating with permittivity εd = 1.52 corresponding to silica, while the thin
shell is Ag. (b-c) Extinction cross section, normalized to the area of the core-shell wire
πR2

2, as a function of energy ~ω and shell thickness R2 −R1 in the LRA and GNOR model,
respectively. Both plots have the same color scale.

3.4 Core-shell nanowire

By modifying the structure of the metal nanoparticle to have a dielectric core with
a metal shell, an increased tunability of the LSPRs is achieved due to the plasmon
hybridization of the inner and outer surfaces of the metal [2]. Especially the spher-
ical core-shell structure has received a considerable amount of attention in recent
years [169, 170, 171, 172] due to its excellent and tunable sensing properties, which
show great promise in biological studies such as cancer therapy [173]. The plasmon
hybridization allows one to position the LSP resonance of the nanoshell as desired by
simply varying the core size R1 and/or outer radius R2 appropriately [174].

The hybridization of the inner and outer surface plasmons increases when the metal
shell becomes thinner [174], which gives rise to significantly altered LSP resonances
compared to usual homogeneous metal nanoparticles, such as the sphere in Sec. 3.2.
Studies of the hybridization between two spherical or cylindrical metal nanoparticles
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in few-nm proximity reveal that effects of nonlocal response increase with increasing
hybridization, see Sec. 3.3 and Refs. [70, 102, 121]. We would therefore anticipate
a strong nonlocal response in the core-shell particle, since it features an ultra-thin
metallic shell with resulting strong plasmon hybridization.

To study nonlocal effects in the core-shell geometry, we consider an infinite cylin-
drical nanowire with a dielectric core and a thin metal shell excited by a plane wave,
see Fig. 3.14(a) for an illustration. By extending the nonlocal Mie theory for wires of
Ref. [175] to core-shell structures, we can analytically determine the extinction cross
section taking into account nonlocal response in the thin metal shell and retarda-
tion effects. The details of analytical expressions are presented in the appendix of
Paper H.

We focus on a particular design, consisting of an insulating core with permittivity
εd = 1.52 corresponding to silica, inner radius of R1 = 15 nm, and a thin Ag shell
(see caption of Fig. 2.2 or Table 3.1 for material parameters). We are interested
in studying the optical response of the core-shell nanowire when varying the shell
thickness R2 − R1 by changing the outer radius R2. Figure 3.14(b-c) shows the
extinction cross section as a function of energy and shell thickness in the LRA and
GNOR model, respectively. We leave out the hydrodynamic model in this study,
since, as we will see, we do not gain more insight from this model. Considering
first the LRA result, we see that the extinction cross section is dominated by a single
resonance, which redshifts for decreasing shell thickness as a consequence of increased
plasmon hybridization (in accordance to our study on dimers in Sec. 3.3). Thus, a
great tunability of the surface plasmon resonance with shell thickness is present,
allowing for tailoring of the optical response. When we consider the result from the
GNOR theory [Fig. 3.14(c)], we find quite surprisingly the same optical response
as in the LRA. In particular, we see no size-dependent resonance shift or linewidth
broadening as encountered for the sphere (Sec. 3.2), even in the extreme case of a 1 nm
thin shell. The lack of dependency on nonlocal response in this geometry was also
found in Paper H in the study of refractive-index sensing and using the hydrodynamic
model to describe the metal shell.

To find an answer to this surprising non-presence of nonlocal response, we con-
sider in more detail the plasmon hybridization occurring in the core-shell geometry.
In particular, we are interested in how the induced charges of the resonance seen in
Fig. 3.14 are distributed. In Fig. 3.15(a) we illustrate how the core-shell modes can
be understood as the hybridization between the cylinder modes and the cylindrical
void modes. Figure 3.15(b) shows specifically the hybridization of the dipole modes
of the cylinder and cylindrical void which leads to a lower-energy bonding mode and
a higher-energy antibonding mode. The bonding plasmon is optically bright and is
the mode we observe in Fig. 3.14 in both the LRA and GNOR calculations. From
Fig. 3.15 we can see that the negative and positive induced charges are isolated to
each side of the core-shell wire, thus separated by a distance of approximately the
inner cylinder diameter, i.e., 2R1 = 30 nm for the design considered in Fig. 3.15.
The smearing of induced charges over Ångstrom length scales will therefore not play
a significant role on the optical response of the bonding plasmon mode, since the
positive and negative induced charges are separated by much greater distances than
the smearing length scale. In contrast, the strong effect of nonlocal response in
spheres and dimers occur due to the induced positive and negative charges coming
in close proximity when the particle diameter and dimer gap, respectively, are de-
creased. However, the antibonding mode, which has a net dipole moment of zero and
is therefore (unfortunately) optically dark, has induced positive and negative charges
on each side of the thin metal shell, which indicates that nonlocal effects could play
a prominent role for this mode if the metal shell is sufficiently thin. As the electric
field generated by a moving electron can excite plasmonic dark modes (see Chap. 4),
a possible method to study nonlocal effects of the antibonding mode would be to use
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Figure 3.15: (a) The core-shell plasmon can be understood as the hybridization between the
cylinder plasmon and the cylindrical void plasmon. (b) The dipole modes of the cylinder
and cylindrical void hybridize to produce the lower-energy bonding mode (optically bright)
and higher-order antibonding mode (optically dark). Modified from Ref. [176].

electron energy-loss spectroscopy.

3.5 Metal film

So far in the previous Secs. 3.1-3.4, we have only been concerned with the impact
of nonlocal response on the optical spectrum for energies below the plasma energy
~ωp. These studies have been motivated by the interest for surface plasmons, whose
resonance energies mainly occur below the plasma frequency of the considered metal.
However, nonlocal response also has a quite significant signature above the plasma
frequency, where the curl-free (longitudinal) wave oscillates instead of being damped.
This means that plane-wave excitation can actually couple to the curl-free wave at
metal interfaces, producing a set of resonances above the plasma frequency for suf-
ficiently small metal structures. These resonances are standing-wave patterns in the
bulk of the metal structure and are a direct consequence of inclusion of the curl-free
wave in nonlocal response.

Such optically-excited curl-free (longitudinal) waves have been seen experimen-
tally in thin metal films (i.e., with thickness t below ∼ 10 nm). Lindau and Nils-
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son [24, 177] were the first to show experimental evidence of a few dips above the
plasma frequency in the transmittance spectra of thin silver films. They interpreted
these dips as a consequence of the resonant excitation of confined bulk waves due
to nonlocal response. Almost simultaneously, Anderegg et al. [25] provided photo-
electric yield spectra (roughly proportional to absorption spectra) of thin potassium
(K) films, showing a multitude of clear resonances above the plasma frequency. The
experimental results by Anderegg et al. showed very good agreement with theoret-
ical considerations based on the hydrodynamic model [25, 23]. Further experimen-
tal evidence of optically-excited curl-free waves in silver thin films was provided in
Refs. [178, 179], however, no dips above the plasma frequency were observed. Instead,
measurements revealed an increase in energy of the bulk plasmon resonance for de-
creasing film thickness, which could only be theoretically accounted for by inclusion of
nonlocal response. More recently, measurements on thin magnesium (Mg) films also
revealed excitations of confined curl-free waves [180] in agreement with hydrodynamic
theory.

To theoretically examine the optically-excited curl-free waves, we calculate the
absorbance spectrum of a metal film with thickness t in vacuum, which is excited
by an incident plane wave at an angle. The plane wave is polarized parallel to
the plane of incidence, see Fig. 3.16 for an illustration. The absorbance can be
determined from the reflectance R and transmittance T as A = 1 − R − T . We
favor the absorbance (over the transmittance or reflectance) since the excitations due
to confined curl-free waves are more prominent in absorbance spectra [64, 25, 181].
A detailed derivation for the nonlocal reflectance and transmittance are provided
by several authors and can be found in e.g. [64, 23, 107, 135, 181, 182]. Briefly,
the incident, reflected and transmitted waves are written up as transverse waves (as
shown in Fig. 3.16) described by a local dielectric function. Inside the thin metal film
forward and backward propagating transverse waves are present along with forward
and backward propagating longitudinal waves (not shown in Fig. 3.16). This gives
a total of six amplitudes (the incident wave is known), which are determined using
the Maxwell boundary conditions and the nonlocal ABC at the two interfaces of the
metal film.

Figure 3.17 displays the absorbance as a function of energy for three different film
thicknesses, i.e., 2, 3, and 4 nm, and two different metals, Na and Ag. Furthermore,
each spectrum is calculated within the GNOR model, hydrodynamic model, and the
LRA. Each spectrum also has labeled the position of either the free-electron plasma

t

MetalVacuum Vacuum

k
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Er

θr

Et
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Figure 3.16: Sketch of the considered system, displaying the incident electric field, which
is polarized parallel to the plane of incidence, impinging at an angle θi on a metal film of
thickness t in vacuum. In the symmetric case discussed in Sec. 3.5, the angles θr of the
reflected field and θt of the transmitted field are equal to the angle of the incident field.
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Figure 3.17: Absorbance spectra of as a function of energy ~ω in the GNOR model (black
solid lines), hydrodynamic model (blue dashed lines) and LRA (red dash-dotted lines) for
Na [left column, i.e. (a), (c) and (e)] and Ag films [right column, i.e. (b), (d) and (f)] in
vacuum. The film thicknesses are (a-b) 4 nm, (c-d) 3 nm, and (e-f) 2 nm. The angle of
the incident field is θi = 70◦.

energy (relevant for Na) or the screened plasma energy (relevant for Ag). Considering
first the LRA calculations on the Na film [red lines in Figs. 3.17(a), (c), and (e)], we
see that the main feature is a peak at the plasma frequency ωp. With decreasing film
thickness the maximum absorbance increases, but the peak resonance energy does
not change. For the hydrodynamic model and Na films [blue lines in Figs. 3.17(a),
(c), and (e)], the spectra are significantly different above the plasma frequency from
the LRA. A series of resonances are present in spectra due to confined curl-free waves
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producing standing waves inside the thin film. We note that the spectral spacing and
amplitude of the resonances increase with decreasing film thickness. In particular, it
can be shown that the resonance condition for the confined curl-free waves is quite
accurately described by the relation

ω(ω + iγ) =
ω2

p

ε∞(ω)
+
n2π2

t2
η2, (3.21)

where n denotes the number of antinodes in the standing-wave pattern of the confined
curl-free wave. With η = β in the hydrodynamic model, Eq. (3.21) shows clearly
an increasing spectral distance with decreasing thickness t. Considering finally the
GNOR calculations of the Na film [black lines in Figs. 3.17(a), (c), and (e)], we find
quite surprisingly no features due to the resonant excitations of the curl-free wave.
The reason for this is that diffusion introduces an additional loss channel, which,
depending on the value for D, may wash out the features due to the confined curl-free
modes. Mathematically, we see that the imaginary part of the resonance condition
in Eq. (3.21) becomes comparable to the real part when η2 = β2 + D(γ − iω) as in
the GNOR theory.

We now discuss the Ag films presented in Figs. 3.17(b), (d), and (f). Firstly, the
LRA (red lines) shows again a peak as in the case of Na, but now at the screened
plasma frequency ωsc

p instead of the free-electron plasma frequency as a consequence
of the interband effects in Ag. Furthermore, we see that the maximum absorbance
decreases with film thickness, which is opposite to the trend in Na. Considering
now the hydrodynamic model (blue lines), we find that the overall picture does not
change significantly from the LRA. The difference is that the absorbance is decreased,
and a subtle but important blueshift of the bulk plasma peak for decreasing film
thickness is observed. The lack of resonances above the plasma frequency is due to
the increased material losses in silver, i.e., larger Im(ε∞) in Eq. (3.21). The GNOR
model (black lines) shows the same behavior as the hydrodynamic calculations, but
with a decreased amplitude due to increased losses from diffusion.

To sum up, we find that for the simple metal Na strong resonant features above
the plasma frequency occur in the hydrodynamic model but not in the GNOR model.
Experimental measurements on other simple metals with equivalent optical response
as Na (K in Ref. [25] and Mg in Ref. [180]) show resonant excitations due to con-
fined curl-free waves, in agreement with the hydrodynamic calculations presented
in Fig. 3.17 and in disagreement with the GNOR model. Thus, it seems that the
additional dissipation channel in the GNOR model stemming from diffusion, which
accurately captures size-dependent (Sec. 3.2) and gap-dependent (Sec. 3.3) surface
plasmon damping, should not be present above the plasma frequency. This apparent
issue can be circumvented by introducing a frequency-dependent diffusion constant,
i.e., D(ω), with a very small contribution for frequencies above the plasma frequency.
For the nonlocal calculations on Ag, we find no resonant excitations above the plasma
frequency due to the significantly higher material losses in Ag than in Na. However,
the nonlocal models do show a blueshift of the bulk plasma peak for decreasing film
thickness, in agreement with the measurements of Refs. [178, 179]. The lack of res-
onances above the plasma frequency for Ag in both of the nonlocal calculations and
in the measurements of Refs. [178, 179] adds confusion to the nature of the dips
observed in the transmittance spectra of Lindau and Nilsson [24, 177], in particular
whether these dips are really caused by nonlocal response, or rather an artefact of
their experimental setup. Further perplexity is added, when the Ag film thicknesses
of Lindau and Nilsson [24] and Abelès et al. [178] are compared. Lindau and Nilsson
considered film thicknesses of 100−120 Å, while Abelès et al. studied film thicknesses
down to 6 Å. As shown in Fig. 3.17, the excitations due to confined curl-free wave
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increase in amplitude with decreasing film thickness, which makes one wonder why
Abelès et al. did not observe them, while Lindau and Nilsson did.

3.6 Concluding remarks

We have in the previous sections considered the implications of nonlocal response in
many different geometries. It would be beneficial now to take a step back and see
if a simple explanation can be deduced for when nonlocal response is important. As
a first conclusion, we point out that the difference between nonlocal response (that
is, with hard-wall ABC and homogeneous equilibrium electron density) and the LRA
is how we model the induced charges, i.e., the charges occurring due to an exciting
electric field. All of the effects (both nonlocal and in the LRA) we have seen for
frequencies below the plasma frequency are a consequence of the induced charges
at the surface. In a simplistic view, the surface plasmon is a surface-bound wave
which must inherently have a strong dependence on the induced surface charges.
In particular, the smearing of the charges beyond the geometrical surface of the
considered geometry in nonlocal response introduces a dependence on the distance
between negative and positive induced charges. For example, in the single sphere
this dependence translates into a size-dependence (or radius dependence), while in
the dimer we find a dependence on the gap size. This is further corroborated in the
core-shell structure where, despite an ultrathin metal shell, nonlocal response did not
show a significant impact on the optical response due to the large core separating the
negative and positive induced charges.

The main shortcoming of the nonlocal models is the inaccurate treatment of the
free electrons at the metal surface in the absence of an exciting electric field, i.e., the
ground-state equilibrium electron density. In particular, the free electron density is
modeled as being constant inside the metal and then abruptly dropping to zero outside
the metal. From the pioneering work on density-functional theory by Lang and
Kohn [183], we know that the equilibrium electron density should be smoothly-varying
at the metal-vacuum interface, with Friedel oscillations inside the metal and electron
spill-out outside the metal. The strength of current DFT treatments of metals is the
inclusion of a self-consistent treatment of the equilibrium electron density. However,
new results which have been published during the very end of this PhD suggest that
it is possible to properly take into account a smoothly varying equilibrium electron
density in a hydrodynamic treatment [184, 185], thus overcoming this limitation.





Chapter 4

Electron energy-loss spectroscopy

This chapter describes the experimental technique of electron energy-loss spectroscopy,
which is performed in a transmission electron microscope (TEM). We begin in Sec. 4.1
by considering how EELS is performed in a TEM from an experimental point of view
and, in this regard, we introduce relevant experimental parameters. Afterwards in
Sec. 4.2, we study EELS in the theoretical framework of classical electromagnetism to
provide a method for calculating and understanding the EEL signal. Finally, Secs. 4.3
and 4.4 are devoted to two separate EELS experiments and their theoretical interpre-
tations. Section 4.3 concerns the study of localized plasmon resonances of chemically
prepared silver nanoparticles dispersed on a TEM substrate, while Sec. 4.4 is devoted
to the investigation of gap surface-plasmon waveguide modes in gold nanogrooves,
fabricated using focused ion beam (FIB) milling.

The EELS experiments are performed using a FEI Titan scanning TEM (STEM),
which is equipped with an extra bright field emission gun, an electron monochromator,
and a spherical aberration corrector. The microscope is operated at acceleration
voltages of 120 kV and 300 kV in the experiments of Secs. 4.3 and 4.4, respectively.
The energy resolution, measured as the full-width at half-maximum of the zero-loss
peak, achieved in the experiments is 0.15± 0.05 eV.

4.1 Experimental description

Electron energy-loss spectroscopy is the measurement of the energies lost by swift
electrons due to inelastic scattering events in a thin specimen. EELS is performed
in a transmission electron microscope, which means that the initial kinetic energies
of the electrons is typically 80 − 300 keV and the electrons can therefore penetrate
samples with thicknesses up to approximately 1000 nm [186]. However, samples used
for studying plasmonic excitations with EELS are usually significantly thinner, i.e.,
below approximately 150 nm depending on the material and microscope operating
conditions, (see also e.g. Refs. [40, 41, 47, 187, 188] and Papers B and I for typical
structure sizes) to avoid specific loss features such as plural plasmon scattering, but
also to study small metallic volumes. In Fig. 4.1 we illustrate the possible excita-
tion and scattering events due to an incident electron beam. The EEL spectrum is
mainly composed of transmitted electrons that have not undergone any loss events
in penetration of the sample, i.e., the elastically scattered electrons, and the inelas-
tically scattered electrons that have lost energy due to a variety of excitations in
the specimen. The relaxation of the excitations back to the unexcited state can be
accommodated with the emission of electrons or photons. As an example, the relax-
ation of plasmonic events in metallic samples can occur with the emission of photons

45
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Figure 4.1: Schematic illustration displaying the possible excitation events due to impinging
swift electrons. Reproduced from Ref. [191].

with energies in the visible range, which can be detected using cathodoluminescence
spectroscopy [189]. The inelastic and elastic scattering events are due to the electro-
static interaction between the incident swift electron and the atomic electrons and
nucleus, respectively. Since the nuclear mass is much larger than the electron rest
mass, the elastically scattered electrons lose too little energy for detection in EELS.
On the other hand, significant energy losses (from few eV to hundreds of eV) occur
due to inelastic scattering, which comprises vast events such as plasmon excitations,
exciton excitations, and single-electron excitations due to e.g. interband transitions
and excitations of core electrons. In the EELS experiments discussed in Secs. 4.3 and
4.4, we consider only energy losses in the so-called low-loss region (i.e., below 50 eV),
so we limit our current discussion to loss events occurring in this energy range, rul-
ing out the high-energy losses due to core-loss events which can been used to map
the chemical information of a specimen [190]. In particular, we focus on inelastic
scattering due to plasmonic excitations.

A typical raw EEL spectrum acquired during the study of Ag nanoparticles, which
will be detailed in Sec. 4.3, is shown in Fig. 4.2. The EEL spectrum is acquired in
STEM mode (more info on this technique in Sec. 4.1.1) by positioning the focused
electron beam to penetrate through the center of the nanoparticle, as shown in the
insets of Fig. 4.2. In Fig. 4.2, the black line displays the EEL spectrum to scale, while
the red line is the same spectrum but multiplied by a a factor of 500 to visualize the
more subtle features. This also illustrates the magnitude of the main peak in the EEL
spectra, the so-called zero-loss peak (ZLP). The ZLP is primarily a measure of all
the incident electrons that have been elastically scattered and therefore sets the zero
energy position in the spectrum. Additionally, the ZLP also contains contributions
from inelastic scattering events with energy losses below the resolution of EELS, such
as phonon losses. In the low-loss energy region and for thin samples, the ZLP is by far
the strongest feature in the spectrum. Therefore, a number of different approaches
have been devised to remove the ZLP by post-processing the EEL spectrum such that
weak features in the spectrum can be accentuated, see Sec. 4.1.2. We also add that
the energy resolution of EELS is usually given by the full-width at half-maximum
(FWHM) of the ZLP peak, which with the aid of monochromators can be reduced
to 0.1 eV or below [192]. In the energy range 3 − 4 eV we see two peaks in the
considered EEL spectrum that are due to inelastic scattering processes by plasmonic
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Figure 4.2: A typical raw low-loss EEL spectrum with different features labeled, acquired
in the study of single Ag nanoparticles dispersed on a thin 10 nm silicon nitride TEM
membrane. The spectrum is acquired by positioning a focused electron beam in the center of
a silver nanoparticle with a diameter of approximately ∼ 11 nm. The insets show a schematic
side-view illustration and a STEM top-view image of the nanoparticle.

excitation. In particular, the lower-energy feature at approximately 3.2 eV is due
to the excitation of the dipolar LSPR, which in the LRA is given by the resonance
condition εd(ω) = −2εb as discussed in Sec. 3.2.1, while the higher-energy feature at
approximately 3.8 eV, which corresponds to the screened plasma frequency of Ag, is
due to the excitation of the bulk plasmon, given by the LRA condition Re[εd(ω)] = 0
(see Sec. 3.1.1). The rest of the EEL spectrum is relatively featureless with a steady
increase in EEL signal for increasing energy loss, which could be a sign of a broad
valence plasmon peak from the silicon nitride TEM membrane with a bulk plasmon
energy around 23 eV. Additionally, a weak feature around 8 eV from silver can be
discerned.

4.1.1 Instrumentation

We distinguish between two approaches for performing EELS [191]. We denote the
first as spectroscopy mode, where an incident highly-focused electron beam with
a subnanometer-sized probe interacts with the sample. The EEL spectrum then
contains information of the energy lost by the incident electrons from an area of the
specimen on the size of the electron probe (Fig. 4.2 shows an example of such a
spectrum). The second method is denoted energy filtering mode, where a parallel
electron beam (as used in TEM mode) visualizes a larger area of the specimen and
the image is then filtered according to the energy loss of the incident electrons. This
method is abbreviated EFTEM (energy-filtered transmission electron microscopy)
and is often used to study and image plasmonic excitations [45, 47, 193, 194, 195,
196, 197]. However, EFTEM has not been used in the experiments of Secs. 4.3 and
4.4, so we concentrate our discussion on the spectroscopy mode. This method is often
abbreviated STEM-EELS, as it is EELS performed in STEM mode, where a focused
electron probe is used instead of a parallel beam. Both methods, i.e., EFTEM and
STEM-EELS, can provide the same information on the plasmonic response [198].

A schematic illustration of the working principle of STEM-EELS is shown in
Fig. 4.3(a). The electron source, which may be a field emission gun (FEG) or a
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(a) (b)

(c)

specimen

Figure 4.3: Schematic illustration of EELS instrumentation. (a) Procedure for EELS scan-
ning TEM mode, i.e., STEM-EELS. (b-c) Magnetic prism in a plane perpendicular and
parallel to the magnetic field, respectively. In (b) the solid lines (dashed lines) represent
different trajectories of electrons with no energy loss (the same kinetic energy). Reproduced
from Ref. [186].

thermionic source, emits electrons, which are accelerated to a desired energy, typ-
ically 80 − 300 keV, and afterwards focused to a subnanometer-sized spot on the
specimen by strong electromagnetic lenses. If the electromagnetic lenses are cor-
rected for spherical abberations, the size of the probe can be below 1 Å [186]. The
semi-angle of the cone of the electron probe is denoted the convergence semi-angle and
is typically in the tens of mrad range. The scan coils raster-scan the focused electron
probe across an area of the sample, which in concerto with the annular electron de-
tector generate the image. The annular electron detector collects electrons that have
been scattered through large angles by the specimen to generate a dark-field image
of the sample, while those electrons that have been scattered with a smaller angle
are directed through a magnetic prism to the EEL detector. The largest angle of
the scattered electrons, which enter the magnetic prism, is called the collection semi-
angle and is also typically tens of mrad (like the convergence semi-angle), depending
on the position in the vertical direction of the entrance aperture, the acceleration
voltage and the setup of the microscope. In the magnetic prism, a static magnetic
field perpendicular to the direction of the electrons is present, see Figs. 4.3(b-c). Due
to the Lorentz force, the electrons are dispersed according to their velocity (or kinetic
energy). For example, compare the solid lines and dashed lines in Fig. 4.3(b) which
show the trajectories of electrons that have not and have lost energy, respectively.
Furthermore, the electromagnetic lenses in the magnetic prism are designed to also
focus the electrons which astray from the straight path but have the same kinetic
energy, see the solid lines in Fig. 4.3(b) which illustrate the different trajectories of
electrons with the same kinetic energy that after the magnetic prism are focused to
the same spot on the EEL detector.

Although there are contributions from the physical parameters of the TEM, such
as the emission current (known as the Boersch effect [38]), acceleration voltage, and
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the aberration of the lenses in the EEL spectrometer, the main source for the energy
resolution of EELS in a well-aligned STEM is the electron source. The energy spread
from a thermal tungsten filament is around 1 eV, while a cold FEG source has a
lower spread of around 0.4 − 0.5 eV. To improve the energy resolution of EELS
beyond the energy spread of the electron source, an electron monochromator is usually
utilized to filter the energy spread of the electron source. With an excited electron
monochromator and a FEG electron source, an energy resolution of 0.1−0.2 eV can be
routinely achieved [199], as is also the case for the EELS experiments in Secs. 4.3 and
4.4. The electron monochromator installed in the FEI Titan microscope is a double
focusing Wien filter [38], which is based on a Wien filter, named after its inventor
Wilhelm Wien. In its original design, the Wien filter is comprised of a static magnetic
flux density and static electric field with strengths B and E, respectively, where
both fields are orthogonal to the direction of the electron beam and also mutually
orthogonal. The deflecting forces of the electric field and magnetic flux density cancel
for electrons with velocity v0 = E/B (i.e., vanishing Lorentz force), thus selecting
only electrons with a specific kinetic energy. In particular, electrons with the velocity
v0 moving along the central axis of the filter will follow a straight-line path, while
electrons entering the filter at an off-axis position will experience the deflecting forces
of the static fields along the length of the filter, see Fig. 4.4 for a schematic illustration.
Setting the correct length of the filter, or equivalently, the strength of the static
fields, will allow to focus the off-axis electrons with velocity v0 to the central axis.
The focusing of the Wien filter only works in the dispersive plane (i.e., xz-plane in
Fig. 4.4), thus creating a line focus. To also achieve focusing in the non-dispersive
plane, such that a point focus is achieved, an additional (quadrupole) electric field is
applied. This is known as the double focusing Wien filter.

4.1.2 Zero-loss peak removal

As mentioned in the discussion of Fig. 4.2 in Sec. 4.1, the ZLP is the strongest peak
in the low-loss region when studying thin plasmonic systems. Thus, it can be bene-
ficial to remove the ZLP during post-processing of the EEL spectra to best recover
the plasmonic features. In this section, we therefore consider and compare different
techniques to remove the ZLP. Due to the instrumental resolution, the recorded EEL
spectrum J(E), where E is the energy loss, is the convolution of the ideal spectrum

Figure 4.4: Schematic illustration of a Wien filter, where electrons with velocity v0 = E/B
enter the filter both on and off the central axis. The deflection of the off-axis electrons
is dominated in turns by the deflecting electric and magnetic fields, resulting in a cycloidal
motion in the dispersive plane (xz-plane). Reproduced from the FEI monochromator manual.
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Figure 4.5: The raw EEL spectrum of Fig. 4.2 (black line) and the corresponding ZLP-
removed spectra. The reflected-tail (red line), Gaussian-Lorentzian (blue line), logarithmic
(green line), and power-law (magenta line) methods have been used to reconstruct the whole
or part of the ZLP. The methods are described in Sec. 4.1.2.

P (E) with the energy-spread function (ESF) of the microscope R(E) [38]

J(E) =

∫ ∞
−∞

dE′R(E − E′)P (E′). (4.1)

Thus, to retrieve the ideal spectrum P (E) a deconvolution scheme can be used. The
ESF can be considered the instrumental broadening, and a EEL spectrum, recorded
in the absence of the sample under investigation, can be used as input for R(E).
As an example, in the experiments on Ag nanoparticles (Sec. 4.3), an EEL spectrum
recorded at a position far away from any particles (i.e., only signal from the substrate)
could serve as an input for R(E). To perform the deconvolution, the Fourier-ratio or
Richardson–Lucy approaches can be used. The deconvolution methods can sharpen
low-loss peaks by a factor 2− 3 and are therefore useful for very weak features [38].
However, the introduction of artifacts due to the deconvolution is not uncommon [192,
200], requiring care to be taken when using these methods.

On the other hand, if the considered peaks in the EEL spectrum are sufficiently
visible (as in Fig. 4.2), it can often be adequate to fit a function to the ZLP of the
spectrum and afterwards remove it. This is the procedure used for the post-processing
of the EEL spectra in Secs. 4.3 and 4.4. In Fig. 4.5, we show four different functions
fitted to the ZLP of the raw EEL spectra (black line) and subsequently removed from
the spectra. For the reflected-tail method (red line), the negative energy part of the
ZLP (i.e., energy losses below 0 eV) are mirrored around the 0 eV energy point to
reconstruct the ZLP. In the Gaussian-Lorentzian method (blue line), a least-squares
fitting of the sum of a Gaussian and Lorentzian function is used to model the ZLP.
For the logarithmic (green line) and power-law (magenta line) fits, a logarithmic or
power-law function, respectively, is used to fit the positive-energy tail of the ZLP
(here, in the energy range 1 − 2 eV), which is extrapolated to higher energies and
subsequently subtracted from the raw EEL spectrum. The energy range used to fit
the functions is optional and must be chosen such that the ZLP tail is most accurately
modeled.

We can see that the raw EEL spectrum shows features due to resonant excita-
tions at 3 to 4 eV, which are accentuated by all of the ZLP removal techniques. In
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particular, we highlight that the resonance energy is not altered by any of the ZLP
removal techniques, which is the main parameter extracted from the EEL spectra
in the experiments of Secs. 4.3 and 4.4. The ZLP removal is useful in the subse-
quent processing of the resonance peaks, where it can be desirable to fit Gaussian or
Lorentzian functions to have accurate estimates for the resonance energy (and in some
cases linewidth). Specifically, we have used a nonlinear least-squares fit of a Gaussian
function to determine the resonance energies of the plasmon modes in our experi-
ments. The error in the resonance energy is then extracted as the 95% confidence
interval for the estimate of the position of the center of the Gaussian function.

The low-energy peaks seen around 1 eV using the reflected-tail method (red line in
Fig. 4.5) are not meaningful, as they are not present in the raw EEL spectrum, and
therefore a consequence of the ZLP removal technique. However, for energy losses
above 2 eV the reflected-tail method is in general accurate and reliable, as is also the
case in Fig. 4.5. Additionally due to the little user-input needed, we have preferred
to use the reflected-tail method to remove the ZLP from the EEL spectra in the
experiments in Secs. 4.3 and 4.4.

4.2 Theoretical modeling

In the framework of classical electromagnetism, we describe the electron beam as a
delta-function charge following a straight-line trajectory re(t) given by the parametric
function re(t) = r0 + vt [1, 37]. Here, r0 = (x0, y0, z0) denotes the impact parameter,
i.e., the position of impact of the electron beam, v denotes the electron velocity, and t
is time. Without loss of generality, we can set the electron trajectory to be along the
z-axis, such that v = vẑ. Hence, we can write the external charge density ρext(r, t)
as

ρext(r, t) = −eδ [r− re(t)] = −eδ(x− x0)δ(y − y0)δ(z − z0 − vt) (4.2)

which after a temporal Fourier transform enters Maxwell’s equations [Eq. (2.1)] as

ρext(r, ω) =
−e
v
δ(x− x0)δ(y − y0)eike(z−z0), (4.3)

where ke = ω/v is the electron wave vector. The corresponding external current
density is then

Jext(r, ω) = ρext(r, ω)v = −eδ(x− x0)δ(y − y0)eike(z−z0)ẑ. (4.4)

By solving Maxwell’s equations with the external charge density and current density,
given by Eqs. (4.3) and (4.4), respectively, it can be shown that the electric field set
up by a moving electron in vacuum Evac

e is given as [37]

Evac
e (r, ω) =

eω

2πε0v2γe
eikez

[
i

γe
K0

(
keR

γe

)
ẑ−K1

(
keR

γe

)
(x̂ + ŷ)

]
, (4.5)

where γe = 1/
√

1− v2/c2 is the Lorentz contraction factor, K0 and K1 denote the
modified Bessel functions of the second kind of zeroth and first orders, respectively,
and R2 = x2 + y2. To get a better understanding of the electric field generated by a
moving electron, we can consider the modified Bessel functions for small arguments,
i.e., for small values of R. We find

K0(z) ' − ln(z), K1(z) ' z−1, (4.6)

which shows that both the transversal (xy-plane) and longitudinal (z-direction) elec-
tric components are very localized to the trajectory of the electron. Thus, to strongly
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excite surface plasmons in metallic structures the electron beam has to be sufficiently
close to the surface or penetrate the structure [201, 202].

When the moving electron is in the presence of a sample, the interaction between
the electron and the sample will give rise to an induced electric field Eind

e , akin to
the optically scattered field generated by a dielectric or metal geometry when excited
by a plane wave [138]. The induced electric field acts back on the moving electron,
which then suffers energy losses. In particular, the total energy loss ∆E suffered by
an electron is given by the work done by the induced electric field on the electron.
The total energy loss can be written up as [1, 121]

∆E = e

∫ ∞
−∞

dtv ·Eind
e [re(t), t] =

∫ ∞
0

dω~ωΓeels(ω), (4.7)

where, in the second equality, we have dispersed the total energy loss according to
frequency and introduced the loss-probability function Γeels(ω), which corresponds to
the signal detected in EEL spectra [1]. By performing a temporal Fourier transform
of Eind

e [re(t), t] and using the property Eind
e (r, ω) = [Eind

e (r,−ω)]∗, where ∗ denotes
complex conjugation, we can write the loss-probability as [201]

Γeels(ω) =
e

π~ω

∫ ∞
−∞

dtv · Re
{

Eind
e [re(t), ω] e−iωt

}
. (4.8)

Eq. (4.8) shows that determining the loss probability is reduced to calculating the
induced electric field along the electron trajectory. The loss probability of sev-
eral high-symmetry geometries, such as spheres [158], cylinders [203, 204], and thin
films [1, 205] etc., have been calculated analytically within the LRA to which an
excellent overview is found in Ref. [37]. Significantly less analytical progress has
been seen in the context of nonlocal effects in EELS with some of the few consid-
ered geometries being cylinders [206], spheres [37], plane interfaces [207], and thin
films [208]. However, the development of numerical methods based on the boundary-
element method [209, 210, 211, 212], multiple scattering [213, 214], discrete-dipole
approximation [215, 216], and finite-element solvers [46, 13, 112] allow for calculating
arbitrarily shaped geometries, and in some cases even with the inclusion of nonlocal
response [112, 121].

For systems that are translationally invariant along the direction of the electron (z-
direction), Eq. (4.8) simplifies significantly. The loss probability pr. length Γ2D

eels(ω)
is then (Paper B)

Γ2D
eels(ω) =

ev

π~ω
Re
[
ẑ ·Eind

e (x0, y0;ω)
]
, (4.9)

where (x0, y0) denotes the transverse position of the electron beam. As we see in
Sec. 4.4, Eq. (4.9) quite accurately describes the EEL signal from gold nanogrooves
with the electron beam parallel to the direction of invariance, even though the length
of the samples studied are only 100 − 150 nm. Another interesting feature is that
for translationally invariant geometries, the loss probability is directly proportional
to the photonic local density of states (LDOS) projected along the direction of the
electron (z-direction) as [201]

Γ2D
eels(x0, y0;ω) ∝ 1

~ω
ρ̃z(x0, y0;ω), (4.10)

where ρ̃z denotes the LDOS projected along the z-direction. Thus, by studying
translationally invariant metallic structures, or realistically, structures which are in-
variant for a sufficient distance, the LDOS can be mapped with nanometer resolu-
tion, which is important for e.g. precise positioning of emitters in the proximity
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Figure 4.6: Schematic illustration of silver nanoparticles of different sizes dispersed on a
10 nm thick silicon nitride TEM membrane.

of metallic geometries to achieve controlled emitter-plasmon coupling [217]. While
some 3D metal geometries also show correlation between optical measurements and
EELS [201, 218, 219], a general relation between EELS and LDOS can not be ex-
pected [220], as EELS and optical measurements can be blind to plasmonic hot spots
and dark modes, respectively.

4.3 Blueshift of surface plasmon resonance in silver
nanoparticles

The work presented in this section is based on Papers E and I.

4.3.1 Motivation

Surface plasmons are usually well-described by the classical Drude model for nanopar-
ticles with dimensions of tens of nanometer and larger [11]. In the quasistatic limit,
i.e., when the wavelength of the exciting electromagnetic wave considerably exceeds
the dimensions of the structure, the local-response Drude theory predicts that the
resonance energy of localized SPs is independent of the size of the nanostructure,
as discussed in Sec. 3.2. These predictions are however in conflict both with ear-
lier [14, 150, 221, 222] and with more recent experimental results, which have shown
a size dependency of the localized SP resonance in noble metal nanoparticles in the
size range of 1-10 nm [19].

This dependence of the SP resonance on the size of noble metal nanostructures
is believed to be a signature of quantum properties of the free-electron gas. With
decreasing sizes of the nanoparticles, the quantum wave nature of the electrons is
theoretically expected to manifest itself in the optical response due to the effects of
quantum confinement [223, 224, 225, 226, 227] and nonlocal response [228, 121, 102,
206, 61, 70, 91], see also Chap. 2.
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In Sec. 4.3 we report the experimental study of the SP resonance of chemically
grown single Ag nanoparticles dispersed on 10 nm thick Si3N4 membranes with STEM
EELS, see Fig. 4.6 for a schematic illustration. As discussed in Sec. 4.1, STEM EELS
is perfectly suited to probe and access plasmonic nanostructures and SP resonances
at length scales where quantum mechanics is anticipated to become important. Our
measurements present a significant blueshift of the SP resonance energy from 3.2 to
3.7 eV for particle diameters ranging from 26 down to 3.5 nm. Our results also confirm
very recent experiments made with Ag nanoparticles on different substrates using
different STEM operating conditions [19], thereby strengthening the interpretation
that the blueshift is predominantly associated with the intrinsic properties of the
electron gas itself rather than having an extrinsic cause.

We initially compare our experimental data to three different models for a spherical
particle: a purely classical local-response Drude model which assumes a constant
electron density profile in the metal nanoparticle, a semiclassical local-response Drude
model where the electron density varies inside the nanoparticle and is determined
from the quantum mechanical problem of electrons moving in an infinite spherical
potential well [226], and finally, a semiclassical model based on the hydrodynamic
description of the motion of the electron gas (Sec. 2.3). As we are only concerned
with the resonance shift, and not also the linewidth broadening, it is sufficient to use
the hydrodynamic model instead of the more complete GNOR theory, see also Sec. 3.2
about nanospheres. In all three models, we model the presence of the substrate by an
effective homogeneous background permittivity. We find good qualitative agreement
between our experimental data and the two semiclassical models, thus supporting
the anticipated nonlocal nature of SPs of Ag nanoparticles in the 1 − 10 nm size
regime. The experimentally observed blueshift is however significantly larger than
the predictions by the two semiclassical models.

To better understand the quantitative discrepancy between our nonlocal model
and the experimental observations, we gradually increase the complexity of our theo-
retical model. Assuming that the discrepancy is due to the imperfect modeling of the
substrate, we consider first the dipole-dipole interaction of the spherical nanoparticle
and the image charge created in a semi-infinite insulating substrate. As we find this
model to also be inadequate at describing the larger experimental blueshift, we go
one step further and solve the full electromagnetic plane-wave scattering problem of
a spherical particle with nonlocal response situated on a finite-thickness substrate.
Even here we still only find qualitative agreement between theory and experiments.
Finally, we therefore discuss possible explanations to the discrepancy, such as the
presence of an inhomogeneous equilibrium electron density in the metal nanoparticle
and the effect of the electron probe.

4.3.2 Experimental setup

The nanoparticles are grown chemically following the method described in Ref. [229]
and subsequently stabilized in an aqueous solution with borohydride ions. The mean
size of the nanoparticles is 12 nm with a very broad size distribution ranging from 3 to
30 nm. The nanoparticle solution is dispersed on a 10 nm thick commercially available
Si3N4 membrane (TEMwindows.com), which has a refractive index of approximately
n ≈ 2.1 [230]. To characterize our nanoparticles we have used an aberration-corrected
STEM FEI Titan operated at 120 kV with a probe diameter of approximately 0.5 nm,
and convergence and collection angles of 15 mrads and 17 mrads, respectively. We
systematically performed EELS measurements at the surface and in the middle of
each nanoparticle. The EELS spectra were taken with an exposure time of 90 ms
to avoid beam damage as much as possible. To improve the signal-to-noise ratio
we accumulated ten to fifteen spectra for each measurement point. We observed no
evidence of damage after each measurement.
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The EEL spectra were processed using the reflected-tail method, and the ener-
gies of the SP resonance peaks were subsequently determined by using a nonlinear
least-squares fit of our data to Gaussian functions, as detailed in Sec. 4.1.2. Nanopar-
ticle diameters were determined by calculating the area of the imaged particle and
assigning to the area an effective diameter by assuming a perfect circular shape. The
error bars in the size therefore correspond to the deviation from the assumption of a
circular shape, which is estimated as the difference between the largest and smallest
diameter of the particle.

4.3.3 Theory

In the following theoretical analysis our hypothesis is that the blueshift of the SP res-
onance energy is related to the properties of the electron density profile in the metal
nanoparticle. Therefore, we use three different approaches to model the electron den-
sity of the Ag nanoparticle. In all three approaches, we calculate the optical response
and thereby also the resonance energies of the nanoparticle through the quasistatic
polarizability α of a sphere embedded in a homogeneous background dielectric with
permittivity εb. With this approach, we make two implicit assumptions: the first
is that we can neglect retardation effects and the second is that we can neglect the
symmetry-breaking effect of the substrate. We have validated the quasistatic ap-
proach by comparing to fully retarded calculations, which shows excellent agreement
in the particle size range we consider, see Sec. 3.2.3. The effect of the substrate will
initially be taken into account indirectly by determining an effective homogeneous
background permittivity εb using the average resonance frequency of the largest par-
ticles (2R > 20 nm) as the classical limit. In Secs. 4.3.6 and 4.3.7, we go beyond this
approximation and consider properly the electromagnetic effect of the presence of the
substrate.

The first, and simplest, approach is to assume a constant free-electron density n0 in
the metal particle, which drops abruptly to zero outside the particle. This assumption
is the starting point of the classical local-response Drude model for the response of the
Ag nanoparticle, where the polarizability is given by the Clausius–Mossotti relation
[Eq. (3.7)], which is well-known to be size independent for subwavelength particles.

The second approach is to correct the standard approximation in local-response
theory of a homogeneous electron density profile by using insight from the quantum
wave nature of electrons to model the electron density profile and take into account
the quantum confinement of the electrons. For nanometer-sized spheres, the classical
polarizability given by the Clausius–Mossotti relation must be altered to take into
account an inhomogeneous electron density. In Ref. [226], it is shown that in general
the local-response polarizability for a sphere embedded in a homogeneous material is
given as

αLQC(ω) = 12π

∫ R

0

r2dr
εd(r, ω)− εb

εd(r, ω) + 2εb
, (4.11a)

now with a spatially varying Drude permittivity [227, 226]

εd(r, ω) = ε∞(ω)− ω2
p

ω(ω + iγ)

n(r)

n0
. (4.11b)

Here, n(r) is the electron density in the metal nanoparticle. Clearly, if n(r) = n0 we
arrive at the classical Clausius–Mossotti relation Eq. (3.7) as expected. To determine
the density profile in this local-response model, we follow the approach of Ref. [226]
and assume that the free electrons move in an infinite spherical potential well. The
approach just outlined of a local-response theory with an inhomogeneous electron
density is very similar to the theoretical model used in Ref. [19] for explaining their
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Figure 4.7: Aberration-corrected STEM images of Ag nanoparticles with diameters (a)
15.5 nm, (b) 10 nm, and (c) 5.5 nm, and normalized raw EELS spectra of similar-sized
Ag nanoparticles (d-f). The EELS measurements are acquired by directing the electron
beam to the surface of the particle.

experimental results. It should be noted that any effects due to electron spill-out are
neglected in all of the approaches that we consider.

The third and final approach is to compare our experimental data with the nonlocal
hydrodynamic model in which the dynamics of the electron gas is governed by the
semiclassical hydrodynamic equation of motion, which results in an inhomogeneous
induced electron density profile (Sec. 2.3). The nonlocal hydrodynamic polarizability

is given by Eq. (3.12) with knl =
√
εd(ω)/ξh.

4.3.4 Results

Figures 4.7(a-c) display STEM images of Ag nanoparticles with diameters of 15.5,
10.0, and 5.5 nm respectively. The images show that no chemical residue is left from
the synthesis and that the particles are faceted. We find that approximately 70% of
the studied nanoparticles have a relative size error (i.e., the ratio of the size error bar
to the particle diameter) below 20% (determined from the 2D STEM images), veri-
fying that the shape of the nanoparticles is to a first approximation overall spherical
(further discussion in Sec. 4.3.5). On a subset of the particles, thickness measurements
using image recordings at different tilt angles were performed, revealing information
about the shape of the nanoparticle in the third dimension. Such 3D investigations
confirmed that the shape is overall spherical, but however could not be completed for
all particles due to stability issues: the positions of tiny nanoparticles fluctuate under
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too long exposure of the electron beam, thus preventing accurate determination of
the shape of the nanoparticle in the third dimension perpendicular to the substrate.

Figures 4.7(d-f) display raw normalized EELS data, acquired on Ag nanoparticles
with diameters 14.1, 9.8, and 6.6 nm, respectively. The peaks correspond to the exci-
tation of the SP. When the diameter of the nanoparticle decreases, the SP resonance
clearly shifts progressively to higher energies. Figs. 4.7(d-f) also display that the am-
plitude and linewidth of the SP resonances can vary from particle to particle (with
the same size) and at times show narrowing instead of the expected broadening of the
resonance for decreasing nanoparticle sizes [223, 14, 224, 34]. This is for example seen
in the linewidths in Figs. 4.7(d-f) which seem to decrease with size. However, as will
be explained in more detail in the next paragraph, we did not find a systematic trend
of the linewidths in our EELS measurements probably due to the shape variations in
our ensemble of nanoparticles.

Figure 4.8 displays the resonance energy of the SP as a function of the diameter
of the nanoparticles. A significant blueshift of the SP resonance of 0.5 eV is observed
when the nanoparticle diameter decreases from 26 to 3.5 nm. This trend is in good
agreement with the results shown in Ref. [19], despite the difference in the substrate
and the STEM operating conditions, a strong indication that the blueshift of Ag
nanoparticles is robust to extrinsic variations. Another prominent feature in Fig. 4.8
is the scatter of resonance energies at a fixed particle diameter. We mainly attribute
the spread in resonance energies at a given particle size to shape variations in our
ensemble of nanoparticles (see Sec. 4.3.5 for further discussion). Slight deviations from
perfect circular shape in the STEM images will result in a delicate dependency on the
location of the electron probe and give rise to splitting of SP resonance energies due to
degeneracy lifting. In this regard, we also note that even a perfectly circular particle
on a 2D STEM image may still possess some weak prolate or oblate deformation in the
third dimension, resulting in a departure from spherical shape. Furthermore, shape
deviations may also impact the linewidth of the SP resonance, since the electron probe
can excite the closely-spaced non-degenerate resonance energies simultaneously, which

Figure 4.8: Nanoparticle SP resonance energy as a function of the particle diameter. The
dots are EELS measurements taken at the surface of the particle and the lines are theoretical
predictions. We use parameters from Ref. [53]: ~ωp = 8.282 eV, ~γ = 0.048 eV, n0 =
5.9 × 1028 m−3 and vf = 1.39 × 106 m/s. From the average large-particle (2R > 20 nm)
resonances we determine εb = 1.53.
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may appear as a single broadened peak. This broadening mechanism could explain
the apparent linewidth narrowing for decreasing particle size seen in Figs. 4.7(d-f).
However, we cannot rule out that other effects beyond shape deviations contribute
to the spread of resonance energies and impact the SP resonance linewidth. These
could for example be the facets or the particle-to-substrate interface [231].

Along with the EELS measurements in Fig. 4.8, we show Eq. (3.7) for the local-
response Drude model (red line) and the semiclassical local-response model Eq. (4.11)
(blue line). Furthermore, the nonlocal relation of Eq. (3.12) (green solid line) and the
approximate nonlocal relation of Eq. (3.14a) (green dashed line) are also depicted,
and we see that Eq. (3.14a) is accurate for particle sizes 2R & 10 nm.

Due to the narrow energy range in consideration (∼ 3.0−3.9 eV), we approximate
ε∞(ω) as a second-order Taylor polynomial based on the frequency-dependent values
given for Ag in Ref. [53], which are similar to those in Table 3.1. We find ε∞(ω) =
(59.8 + i55.1)(ω/ωp)2 − (40.3 + i42.4)(ω/ωp) + (10.5 + i8.6). Since the refractive
index of the Si3N4 substrate varies hardly (n ≈ 2.1) in the narrow energy range
we consider [230], we assume that the background permittivity εb is constant and
determine it by approximating the average resonance energy of the largest particles
(2R > 20 nm) as the classical limit.

It is clear that the local Drude theory is inadequate to describe the measurements
of Fig. 4.8. The nonlocal quasistatic hydrodynamic model predicts a blueshift in
agreement with the experimental EELS measurements. Interestingly, the measured
blueshift is even larger than predicted. We also see that the local-response model
with an inhomogeneous electron density profile shows a similar trend as the nonlocal
hydrodynamic model, indicating that these two different models describe very similar
physical effects. The oscillations in the resonance energy in the inhomogeneous local-
response model seen for small particle diameter are due to small variations in the
density profile with decreasing size (i.e., discrete changes in the number of electrons),
as also stated in Ref. [19].

The inhomogeneous local-response model and the nonlocal hydrodynamic model,
when applied to a sphere in a homogeneous background medium, agree qualitatively
with the EELS measurements. However, they do not provide the full picture. One
of the probable issues arising is that the substrate is taken into account indirectly
through a homogeneous background medium, which however may not be adequate to
describe the effects of the presence of a dielectric substrate. It has been shown that
the dielectric substrate modifies the absorption spectrum of an isolated sphere [232]
and also the waveguiding properties of nanowires [47, 233, 234]. In Secs. 4.3.6 and
4.3.7, we therefore explore if properly accounting for the substrate in the nonlocal
hydrodynamic model can provide quantitative agreement with experimental measure-
ments. However, first we consider the impact of shape variations of the nanoparticles
on our measurements displayed in Fig. 4.8.

4.3.5 Shape analysis

The diameters of our nanoparticles are determined by using the free online image
analysis tool ImageJ [235] which includes a particle analysis package. We use the
images taken in STEM mode to measure the surface area A of the nanoparticle,
whereafter we determine the mean nanoparticle diameter D using the relation A =
π(D/2)2. The particle analysis tool also evaluates the maximum Dmax and minimum
Dmin diameters of the nanoparticle and the difference between these two diameters,
i.e., ∆D = Dmax − Dmin provides us a measure for the error in the nanoparticle
diameter (shown as the error bar in Fig. 4.8). The relative size error (∆D/D) then
represents the deviation of the shape of the particles from a perfect circle.

Figure 4.9 displays a histogram with the number of particles as function of the
relative size error (5% interval between each bar). The first observation is that the
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Figure 4.9: Histogram showing the distribution of relative size error ∆D/D. The relative
size error represents the shape deviation of the nanoparticle from a perfect circle in the 2D
STEM image.

relative error in the diameter is spread from 5% to 50% with a maximum of counts
centered on 15% deviation. We also see that more than 70% of the particles have an
error smaller than 20%, thus giving us confidence that assuming the particles to be
spherical is justified. We also emphasize that this analysis was made on STEM images
which are the projections of the 3D shapes of the nanoparticles onto the plane parallel
to the substrate. This lack of information in the third dimension leaves indeterminacy
of the exact shape of the particle. However, since the nanoparticles are fabricated in
a liquid phase suspension [229], i.e., growing identically in three dimensions, we can
to a first approximation infer that we have the same relative size error distribution
in the third dimension perpendicular to the substrate, thus assuming that particle
orientation is independent of its shape deformation.

In order to understand the scattering of the SP resonance energies observed in
Fig. 4.8, we model the deviation from the perfect spherical shape as an ellipsoidal
particle with minor and major axes. We calculate the optical polarizability of two
different types of ellipsoids: the prolate spheroid (one major and two equal minor
axes) and the oblate spheroid (two equal major and one minor axes). The polariz-
ability is calculated within the local Drude theory under two different polarizations
of the incident electric field, parallel to the major axis or parallel the minor axis [11].
The perfect spherical sphere is deformed while keeping the volume constant. We use
a relative deformation of the major (minor) axis of 20% for the prolate (oblate) parti-
cles which corresponds to the deviation of the majority of the nanoparticles studied.

The results are shown in Fig. 4.10. The red line represents the local Drude cal-
culation for a perfect sphere (same as red line in Fig. 4.8). The grey patterned area
corresponds to the span of resonance energies for the prolate particles, when a rel-
ative deviation of the major axis of 20% is allowed. The part of the area that is
above the red line (i.e., blueshifted with respect to the perfect sphere) corresponds to
a polarization along the minor axis, while the part below the red line (i.e., redshifted
with respect to the perfect sphere) is due a polarization along the major axis. For the
polarization along the minor axis, we see a blueshift of approximately 0.1 eV of the
SP resonance while we obtain a redshift of approximately 0.2 eV for the polarization
along the major axis. The increased redshift observed for the polarization along the
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Figure 4.10: Local-response calculations of the SP resonance for perfectly spherical (red line),
oblate (white patterned) and prolate (grey patterned) particles under excitation of different
polarizations.

major axis is due to the fact that a size increase of 20% on the major axis will give
only a size decrease of 9% on the minor axis (scales as 1/a2

major, where amajor is the
length of the major axis) for a constant volume. The same arguments are valid for
the oblate case with the exception that here the blueshift is higher than the redshift
(major and minor axes are inverted). However, the overall span of resonance energies
considering both type of spheroids is approximately 0.4 eV. Interestingly, this interval
is similar to the scattering of the resonance energy observed in Fig. 4.8 for particles
above 10 nm, where the local theory is still valid. However, we emphasize that the
measured resonance energies for the smallest particles (below 10 nm) exceeds this
span of resonance energies, and thus the observed blueshift cannot be explained by a
simple shape deviation argument.

In conclusion, we see that the deviation from the spherical shape into ellipsoid-like
particles and the thereby prompted dependency on the location of the EELS probe
when measuring the SP resonance gives a reasonable and probable explanation for the
spread but not the magnitude of SP resonance energies observed in our measurements.

4.3.6 Substrate effects: dipole-dipole interaction

The optical polarizability α of a single sphere in a homogeneous background εb can be
modified to take into account the presence of a semi-infinite substrate with permit-
tivity εs using a simple image charge model. In this picture, the coupling between the
sphere and the substrate is based on a dipole-dipole interaction between the dipole
moment of the sphere and the weaker dipole moment of the image charges in the sub-
strate. Taking only dipole moments into account is an approximation, which we go
beyond in Sec. 4.3.7. Due to the symmetry-breaking presence of the substrate, there
are two separate cases to be treated for the direction of the incident field: one when
the incident electric field is parallel to the substrate, the other when the incident field
is perpendicular to the substrate. It has been shown that the altered polarizability
αsub in the presence of the semi-infinite substrate is [161, 236, 12]

αsub = α

[
1− κα

4π (2R)3

εs − εb

εs + εb

]−1

, (4.12)
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Figure 4.11: The same as Fig. 4.8, but calculated using Eq. (4.12) with κ = 2, εs = 2.082

and εb = 1.

where κ = −1 for a parallel incident electric field while κ = 2 for a perpendicular
electric field. Since the electric field produced by a swift electron has electric field
components both in the directions parallel and perpendicular to the plane of the
substrate [see Eq. (4.5)], it is not immediately clear which value for κ is appropri-
ate. Thus we take a pragmatic approach and use κ = 2 as this value best fits our
experimental results.

Figure 4.11 shows calculations on the SP resonance energy performed using Eq. (4.12)
with εs = 2.082 and εb = 1. Ellipsometry measurements of the complex refractive
index n = n′ + in′′ on the Si3N4 substrate has been provided by the manufacturer
of the TEM membranes (TEMwindows.com), showing an almost constant index of
refraction of n′ ≈ 2.08 and a negligible extinction coefficient n′′ ≈ 0 in the energy
range we consider (3.0−3.9 eV). The provided measurements are very similar to that
of Ref. [230]. We emphasize that with the dipole-dipole model for the substrate no
fitting of the background permittivity has been done.

Figure 4.11 shows that the dipole-dipole interaction predicts a slightly larger res-
onance energy in the classical limit (i.e., for the largest particles) compared to the
fitted homogeneous background permittivity approach used for Fig. 4.8. However, the
blueshift in the resonance energy for decreasing particle size in the two semiclassical
models is very similar to the effective homogeneous background approach, and thus
the dipole-dipole model for the substrate cannot fully account for the significantly
larger experimental blueshift. We also see that many of the EELS measurements of
the larger particles (2R > 10 nm) lie at lower resonance energies than predicted by
any of the theoretical substrate models. These discrepancies suggest that the simple
dipole-dipole model for the substrate is inadequate to describe our experimental ob-
servations, and that a complete understanding of the effect of the substrate requires
the inclusion of higher-order multipoles and the finite thickness of the substrate,
which will be discussed in the next section.

4.3.7 Substrate effects: multipolar interaction

We consider now the case of a metal sphere described by the hydrodynamic theory and
situated on a substrate of thickness t, thus going beyond the semi-infinite substrate
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Figure 4.12: Experimental data as in Fig. 4.8. The green line represents calculations of a
silver sphere with a hydrodynamic nonlocal response in a homogeneous environment using
Eq. (3.12) with an effective background permittivity εb = 1.53. The black line represents
calculations of a hydrodynamic nonlocal silver sphere in vacuum (εb = 1) situated on a 10 nm
thick Si3N4 substrate with permittivity εs = 2.082.

presented in Sec. 4.3.6. We use an exact method based on scattering matrices and
multipole expansions to calculate the fully retarded extinction cross section of the
sphere-substrate system, when impinged by a plane wave, see Sec. 3.2 of Paper E
for detailed derivation. With this method we take into account not only the dipole
interaction but the multipolar interaction of the sphere and the associated image
charges in the dielectric substrate.

The black line in Fig. 4.12 shows the resonance energy determined from extinction
cross section calculations of a silver sphere with hydrodynamic nonlocal response in
vacuum situated on a 10 nm thick Si3N4 substrate. Here no fitting of the background
permittivity is performed and we use again εs = 2.082 as the permittivity of the sub-
strate. The substrate-based calculation shows an overall higher resonance energy for
all particle sizes, but is otherwise quite similar (in terms of trend with particle size)
to the homogeneous effective background approach (green line in Fig. 4.12). Surpris-
ingly higher order multipoles in the sphere, which are anticipated to be enhanced due
to the presence of the substrate [237], show no significant contribution in the optical
response. This is in fact due to the strongly dispersive background of the bound elec-
trons in Ag at the resonance energies of the higher order multipoles, which heavily
dampens the contribution from these modes. In summary, we have seen in detail in
Fig. 4.12 that the substrate-based calculations do not show a larger shift in energy
than the nonlocal polarizability, and does therefore not provide the explanation for
the experimentally observed larger blueshift.

4.3.8 Influence of the electron probe

So far all of the theoretical models have been based on the exciting electric field
being static (quasistatic polarizability) or a plane wave (extinction cross section),
but the electric field of a swift electron differs significantly from both of these, see
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Figure 4.13: Extinction efficiency Qext = σext/(πR2), EEL probability Γ, and normalized
LDOS ρe as a function of energy ~ω of a silver sphere in vacuum with radii R = 1.5 nm
(left column) and R = 3 nm (right column). Impact parameter is 1.5 nm from surface of
the sphere for both radii. Hydrodynamic model and LRA is shown in solid blue and dashed
gray lines, respectively. Reproduced from Supporting Information of Paper D (not included
in thesis).

Eq. (4.5). Importantly, a swift electron in the vicinity of a nanoparticle is able to
excite higher-order multipoles, such as the quadrupole mode, see e.g. Ref. [37] and
Paper D (not included in this thesis). Furthermore, the extinction cross section is
not always comparable to EEL signal, as discussed in Sec. 4.2. Thus, a discussion
about the influence of the electron probe on the excited SP modes is needed.

Figure 4.13 is reproduced from the Supporting Information of Paper D and displays
calculations of the extinction efficiency, EEL probability, and LDOS as a function of
energy for a silver sphere in vacuum. The radii of the spheres are 1.5 nm (left column)
and 3 nm (right column), and the impact parameter is 1.5 nm from the surface of
the sphere for both radii. Calculations based on the hydrodynamic model and the
LRA are shown in solid blue and dashed gray lines, respectively. For the current
discussion, we are only interested in the second row, i.e., the calculations of the EEL
probability. For the LRA we see that a resonance peak is present around an energy
of 3.3 eV, corresponding to the dipole mode of the sphere. In particular, we note
that the resonance energy is the same for both radii, since the sphere radii are in the
quasistatic limit. The peak around 5 eV is not due to plasmonic excitations and is
therefore ignored here. In the hydrodynamic model, we find as expected a blueshift
of the dipole mode of the sphere, but no signature of any higher-order modes. We
note also that the blueshift is not increased in the EEL probability compared to
the extinction cross section (compare rows 1 and 2 in Fig. 4.13). As in the case of
Sec. 4.3.7, the reason for the suppression of the higher-order modes is the losses of
the bound electrons in Ag, i.e., Im(ε∞), at the resonance energies of the higher-order
modes. Thus, proper account of the exciting electric field of a swift electron does not
seem to offer the explanation for the experimentally observed larger blueshift.

4.3.9 Further discussion

We discuss now possible issues with the theoretical models, which so far only account
quantitatively for the experimental observations. An explanation in the context of
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the inhomogeneity of the free-electron density could be the combined contribution of
both the inhomogeneous static equilibrium electron density and nonlocality, i.e., in-
cluding an inhomogeneous equilibrium density into the nonlocal model, as discussed
briefly in Sec. 3.6. The Friedel oscillations are modeled in the local quantum-confined
model given by Eq. (4.11) while nonlocality is neglected, and vice versa in the non-
local hydrodynamic model given by Eq. (3.12). As seen in Fig. 4.8, the two effects
separately give rise to similar-sized blueshifts, suggesting that the contribution of
both effects simultaneously could add up to the significantly larger experimentally
observed blueshift. Simply put, an extension of the nonlocal hydrodynamic model to
include an inhomogeneous equilibrium free-electron density [184, 185] could produce
a larger blueshift, which may be in accordance with the experimental observations.
Furthermore, such a model could also take into account the electron spill-out effect,
which in free-electron models has been argued to produce a redshift of the SP reso-
nance [128, 60, 238, 126, 228], describing adequately simple metals. In contrast, it
has also been shown that the spill-out effect in combination with the screening from
the d electrons gives rise to the blueshift seen in Ag nanoparticles [131].

Additional size effects such as changes of the electronic band structure of the
smallest nanoparticles, which are considerably more difficult to take into account,
also impact the shift in SP resonance energy [14, 10, 239].

4.3.10 Concluding remarks

We have investigated the surface plasmon resonance of spherical silver nanoparticles
ranging from 26 down to 3.5 nm in size with STEM EELS and observed a significant
blueshift of 0.5 eV of the resonance energy. We have compared our experimental
data with three different models based on the quasistatic optical polarizability of a
sphere embedded in a homogeneous material. Two of the models, a nonlocal hydro-
dynamic model and a generalized local model, incorporate an inhomogeneity of the
electron density induced by the quantum wave nature of the electrons. These two
different models produce similar results in the SP resonance energy and describe qual-
itatively the blueshift observed in our measurements. Additional attempts to unveil
the source of the discrepancy between theory and experiments included studying the
electromagnetic effects of a sphere on a substrate and the exciting electric field of a
moving electron. Unfortunately, none of the more complete theories provided better
agreement with experimental observations.

The discrepancy between the different theoretical models and the larger observed
blueshift suggest that a more detailed theoretical description of the system is needed
to fully understand the influence of the confinement of free electrons on the SP res-
onance shift in silver nanoparticles. On the experimental side, further EELS studies
of other metallic materials and on different substrates could unveil the mechanism
behind the size dependency of the SP resonance of nanometer scale particles.

4.4 Extremely confined gap plasmons in gold nanogrooves

The work presented in this section is based on Paper B.

4.4.1 Introduction

While the majority of plasmonic EELS studies have been focused on localized SP res-
onances [221, 40, 41, 240, 19, 20, 39], EELS has also been used to study propagating
SPs (i.e., waveguide modes) in e.g. metal thin films [241] and nanowires [242, 47, 188],
where standing waves are formed by forward and backward-propagating waveguide
modes. Gap SP (GSP) modes, i.e., propagating SP modes in a dielectric gap between
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Figure 4.14: Artistic impression of a single gold nanogroove with the swift electron beam
moving parallel to the groove axis. The groove is filled with silicon dioxide and the substrate
is silicon. The period and height of the grooves are determined from the STEM images, while
the thickness of the sample has been inspected in a SEM and also estimated from EELS data
using both the log-ratio method and Kramers–Kronig analysis [38].

two metals [243], have been studied with cathodoluminescence [49] and photolumines-
cence [244]. However, GSP modes have to our knowledge never been experimentally
examined with EELS. The GSP modes occur in a variety of geometries, from the
simplest 1D MIM waveguide [245, 62] and metal nanowire-on-film geometries [244],
to advanced structures such as the convex groove, V-groove, and trench and stripe
waveguides [246, 247]. Furthermore, GSP modes offer enhanced properties compared
to the usual propagating SP mode, such as extreme light confinement with improved
propagation distances [248, 249], negative refraction [250, 251], highly efficient light
absorption [246], and electrically driven circuitry [252].

In Sec. 4.4 we report on the experimental study of GSPs in ultra-sharp gold convex
nanogrooves using EELS. The geometry of these nanogrooves is characterized by
gradual, and relatively slow variations in the gap width when moving deeper inside
a groove, see Fig. 4.14 for a schematic illustration. This means that the groove GSP
modes can be considered as being formed by local MIM GSP modes (i.e., by GSP
modes supported by constant-gap MIM configurations) that are weighted accordingly.
In EELS experiments the strongly confined electric fields of moving electrons [recall
Eq. (4.5)] excite thereby local MIM GSP modes, corresponding to the position of the
electron beam inside the groove. Note, that a sample should necessarily be thin along
the groove (Fig. 4.14) in order to be transparent for an electron beam, but not too
thin with respect to the GSP wavelength. Overall, the considered groove geometry
is ideal for studying MIM GSP modes, since the width of the insulating layer (gap
size) decreases as the position of the electron probe is moved down the nanogroove,
allowing us to map the evolution of MIM GSP modes for varying gap size in a single
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Figure 4.15: (a) Sketch of MIM waveguide, consisting of a SiO2 spacer of width W sand-
wiched between two semi-infinite gold substrates. MIM GSP modes propagate along the
z-direction. (b-c) Dispersion relation for MIM symmetric and antisymmetric GSP modes
(MIM sGSP and aGSP, respectively) for W = 20 nm and W = 50 nm. The permittivity
of gold is taken from Ref. [54] and εSiO2

= 2.1. (d-e) Electric-field profiles calculated for
MIM configuration with W = 20 nm and energy E = 2 eV for the MIM sGSP and aGSP,
respectively.

groove. We will also explore how deep into the groove this local MIM picture remains
accurate.

Using the nomenclature common to transverse-light excitation, the GSP modes
can be classified according to the symmetry of their transversal electric component
with respect to the mirror-symmetry plane of the groove (yz-plane in Fig. 4.14).
The symmetric GSP (sGSP) modes have a net electric-dipole moment due to an
antisymmetric induced-charge pattern with respect to the mirror-symmetry plane,
whereas the antisymmetric GSP (aGSP) modes are optically dark due to a symmetric
induced-charge distribution. This classification is hereafter applied to both MIM
and groove GSP modes. In Sec. 4.4.2 we give a more detailed account on the field
distributions and dispersion relations of GSP modes in MIM waveguides.

In this work, we intentionally propagate the electron beam along the axis of the
groove within the mirror-symmetry plane (yz-plane, cf. Fig. 4.14) in order to allow
for probing of modes near the groove bottom, and to study the optically dark modes.
We verify experimentally the existence of the MIM aGSP mode in the crevice of
the groove, with the mode showing an increase in energy as the gap size decreases.
The presence of the MIM aGSP mode is confirmed at extremely narrow gaps of only
5 nm. Furthermore, we argue why the excitation of this mode, featuring very strong
absorption, plays a crucial role in the experimental realization of non-resonant light
absorption by ultra-sharp convex grooves with fabrication-induced asymmetry [246].
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4.4.2 Nomenclature of metal-insulator-metal waveguide modes

Before we detail the experimental results and their theoretical interpretation, we
briefly study the MIM waveguide to clarify the nomenclature we use throughout
Sec. 4.4. MIM waveguides [see Fig. 4.15(a) for an illustration] support surface waves
whose magnetic field component takes the form Hy = A(x)eiβz, where β is the
propagation constant. Due to the symmetry of the waveguide, the amplitude function
A(x) can either be symmetric or antisymmetric with respect to the center line, thus
leading to two types of modes with dispersion relations given by [245, 243, 62]

tanh

(
1

2
κdW

)
= −

{
εdκm

εmκd
, (symmetric)

εmκd
εdκm

, (antisymmetric)
, (4.13)

where W is the width of the dielectric spacer, εd is the relative permittivity of the

dielectric, εm is the relative permittivity of the metal, κm =
√
β2 − k2

0εm, κd =√
β2 − k2

0εd, and k0 = ω/c is the free-space wave number. The two modes are also
known as the MIM symmetric and antisymmetric gap surface plasmon modes (MIM
sGSP and aGSP, respectively), where MIM sGSP is the most frequently studied
mode as it is the only mode that would exist in subwavelength gaps of lossless MIM
waveguides. That said, in real MIM waveguides with ohmic losses the MIM aGSP
also subsists and is typically considerably more lossy than the MIM sGSP mode. It
should be noted that the nomenclature of the two modes refers to the symmetry of the
magnetic (Hy) or, equivalently, electric transversal (Ex) component. Accordingly, in
symmetric waveguides the MIM sGSP and aGSP are only efficiently probed by light
and electron beams, respectively. As we will see in Sec. 4.4.7, the slight asymmetry
of the fabricated nanogrooves allows optical waves to couple more strongly to the
aGSP mode of the groove, thus increasing the optical absorption beyond the case of
a symmetric groove.

Figures 4.15(b-c) display solutions of Eq. (4.13) for a gold-SiO2-gold waveguide
with subwavelength gaps. The effective refractive index of the two modes, neff =
β/k0, increases with decreasing gap width, showing a maximum in Re{neff} at energy
E ' 2.35 eV which corresponds to the surface plasmon resonance. Additionally, we
note that the propagation length l = 1/[2k0Im(neff)] of the MIM aGSP mode at
the SP resonance energy (E ' 2.35 eV) is around 50 nm for a MIM waveguide with
a width of 50 nm, and decreases for decreasing gap size. Typical mode profiles of
MIM sGSP and aGSP can be found in Figures 4.15(d) and 4.15(e), respectively,
where the oscillatory behavior of the electric field into the gold for MIM aGSP is a
consequence of Re{neff} < Im{neff}. The mode profiles clearly show the symmetric
and antisymmetric nature of the transversal electric field component Ex for the sGSP
and aGSP modes, respectively.

4.4.3 Fabrication

The fabrication of the gold nanogrooves is performed using a focused ion beam (FIB)
setup. A gold film of 1.8 µm in thickness is deposited on a silicon substrate, after
which areas of the gold are milled by the FIB to create the groove structure. With
this technique ultra-sharp grooves with a 1D period of approximately 350 nm are
fabricated (see Methods section of Paper B for details). Inside the FIB chamber, a
layer of silicon dioxide is then deposited to separate the grooves from the top platinum
layer used for protecting the sample during the preparation of the TEM lamella. The
thickness of the silicon dioxide layer (approximately 500 nm) is sufficient to avoid
the influence of the platinum layer when performing EELS measurements inside the
groove. With a micromanipulator, the nanogroove sample is attached to a TEM
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Figure 4.16: STEM images of (a) sample overview with material labels, (b) single groove
zoom-in and (c) ultra-sharp groove crevice. The STEM images display the periodicity of
the structure and the similarity in shape of each groove. Furthermore, the grooves are quite
symmetric along the center line [dashed line in (b)] and extremely sharp, with around 5 nm
gap sizes in the crevice.

lift-out grid such that the electron beam passes perpendicularly to the section of
the sample and parallel to the axis of the groove, as illustrated in Fig. 4.14. In
order to characterize the grooves in the TEM with EELS, we use the FIB to thin
the nanogrooves along the z-direction to a thickness of approximately 150 nm. This
ensures that the sample is sufficiently transparent for the electron beam. Note that
as a consequence of the thinned sample, the structure can only be considered as
a waveguide facilitating propagating modes when the electron beam probes MIM
GSP modes at the base of the grooves, generally speaking when the groove width is
considerably smaller than the sample thickness of ∼150 nm. In particular, for the
study of propagating MIM aGSP modes the propagation length of the MIM aGSP
mode at a given groove width should be comparable or less than the sample thickness.

Figure 4.16 shows typical STEM images of the gold nanogroove sample. In
Fig. 4.16(a) an overview image of the sample is displayed with the gold nanogroove
on top of a silicon substrate. The grooves are filled with silicon dioxide and the top
platinum layer can also be seen. While slight fluctuations in shape and groove depths
may be seen, overall the grooves are impressively similar (which is also reflected in our
subsequent EELS measurements). Fig. 4.16(b) shows a zoom-in of a single groove,
indicating the almost perfect symmetry with respect to the mirror-symmetry plane of
the groove [see also the dashed white line in Fig. 4.16(b)]. However, as we will discuss
later, the slight geometric asymmetry of the groove is crucial in understanding the
plasmonic black gold effect studied in Ref. [246]. Finally, Fig. 4.16(c) is a close-up of
a groove crevice, showing its extremely sharp nature. The side-to-side width of the
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groove from the top to the bottom is calculated with an in-house image analysis code
(written in MATLAB) and ranges from 320 nm down to widths smaller than 5 nm,
thus confirming the ultra-sharp shape of the grooves. In the image analysis code, we
connect the depth of the groove and the position of the electron probe with the width
of the groove by considering each horizontal line of pixels of the image separately.
The greyscale in the dark field STEM images is primarily determined by the atomic
number of the material and the thickness of the sample crossed by the electron probe.
The former explains the image intensity difference between the silicon dioxide and
the gold layers, i.e., lower image intensity for silicon dioxide than gold. In order to
determine the position of the interface between the gold and the silicon dioxide, we
looked for the steepest change in intensity in each line of pixels. We numerically de-
termined the derivative of the intensity profile for each line, which showed two peaks
corresponding to the steepest changes on each interface of the groove. For a perfectly
sharp intensity change, i.e., a step function, the derivative will give a Dirac function,
while for a more gradual change of intensity the derivative will give a Gaussian-like
function. Subsequently, we fitted these two peaks to Gaussian functions and the dif-
ference between the centers of these functions gave us the corresponding width of the
groove. We quantified the error in the groove width as the sum of the FWHMs of the
two Gaussian functions. The errors are plotted as horizontal bars in Figs. 4.17, 4.18,
and 4.23(c). This conservative estimate for the error accounts for the convolution of
the electron probe profile with the structure [on the order of the spatial resolution
of the beam (∼ 0.5 nm)], the surface roughness of the gold surface in the groove,
misalignment of the axis of the electron probe compared to the axis of the groove and
other sources of indeterminacy such as the possible residues left in the bottom of the
groove by the FIB milling.

4.4.4 Experimental results

As mentioned in the introduction to this chapter, we characterize the grooves with
a FEI Titan STEM operated at an acceleration voltage of 300 kV. The EELS data
were recorded using both automated line-scan acquisition and single-spectrum ac-
quisition, with optimized acquisition times ranging from 80 ms to 2.5 s, where the
longer acquisition times were needed close to the groove crevice and also when ac-
quiring spectra through the bulk gold. To further improve the signal-to-noise ratio
we summed up to 20 spectra for each measurement point. As described in Sec. 4.1.2,
we use the reflected-tail method to remove the ZLP from the spectra, and a nonlin-
ear least-squares fit of a Gaussian function to determine the resonance energy. We
performed a detailed analysis of six grooves on the same sample by systematically
collecting EELS data from the top to the bottom of the groove. Since the results
obtained for these six grooves are very similar [see Fig. 4.17], we focus our discussion
on the results for two of the grooves only.

The EELS data along with their corresponding electron probe positions in the
groove are displayed in Figs. 4.18(a-b). The EELS data are relatively featureless for
a broad range of energies, but do show clear resonance peaks due to the excitation
of SP mode(s). As the most prominent feature, we observe that the resonance peak
blueshifts from 2.1 eV to approximately 2.6 eV when the position of the electron probe
is moved from the top towards the bottom of the groove. This spectral sensitivity to
the groove width, especially apparent for small groove widths, is a clear indication
that the MIM aGSP mode (which is related to the local width of the groove) is probed
in the crevice rather than (global) groove GSP modes, whose peak positions should
not depend on the electron position in the groove. This interpretation is supported
by simulations in Sec. 4.4.5.

In Fig. 4.18(c) we plot the energy of the resonance peak E as a function of the width
W for two different grooves. The plot first shows a slow increase of the resonance
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Figure 4.17: (a) Measured EELS peak as a function of groove width for six different grooves,
confirming the consistency in measurements for other grooves in the same sample. (b)
Histogram displaying the number of resonance energies within bin intervals of 0.03 eV [pro-
jection of data in (a) onto the E-axis], corresponding to the average energy error bar size.
In Sec. 4.4.4 we focus on two grooves (named grooves 1 and 2).

energy from 2.1 eV to 2.3 eV as the groove width decreases from 250 nm down
to 100 nm. This behavior is then followed by a stronger blueshift from 2.3 eV to
2.6 eV for widths decreasing from 100 nm to 5 nm. Numerically calculated EELS
data of groove waveguides (to be discussed in Sec. 4.4.5) display the same trend,
and we therefore interpret the dependence E(W ) as a result of two (spectrally-close)
modes being excited simultaneously but with different strengths which depend on
the position of the electron probe. For widths W & 100 nm, the MIM aGSP mode
is weakly excited due to the increased distance between the electron and the metal-
insulator interfaces. This suggests the excitation of localized SPs supported by the
top of the grooves.

Accordingly, the slow increase in resonance energy as the groove width decreases
from 250 nm down to 100 nm represents the transition from localized SP excitations
to propagating MIM aGSP modes. In the case of groove widths W . 100 nm, on
the other hand, the MIM aGSP mode dominates the EELS data, which is signified
by the strong dependence of the resonance peak on the groove width. We note that
the MIM aGSP resonance energy in the crevice is very close to the measured bulk
mode resonance energy of gold [2.7 eV, black solid line in Fig. 4.18(c)], which makes
experimentally distinguishing the two modes difficult. For extremely narrow groove
widths (W < 10 nm) the field delocalization of the electron beam [202] will eventually
cause interactions with the bulk plasmons even for perfectly straight grooves. In the
real experiment, additional effects of surface roughness of the walls, as well as from
the convergence angle of the focused electron probe will be present. The convergence
semi-angle is approximately 16 mrad, resulting in the displacement of the electron
trajectory from the straight-line path by around 2.5 nm at the exit of the groove
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Figure 4.18: (a) Waterfall plot of experimental EELS measurements at the corresponding
positions indicated on the groove image in (b). The bottom black line displays the exper-
imental EELS spectrum of bulk Au. (c) Peak resonance energy as a function of groove
width for two different grooves, along with the measured bulk resonance energy of Au (solid
black line with grey area displaying the error bar). (d) Histogram displaying the number of
resonance energies within bin intervals of 0.04 eV [projection of data in (c) onto the E-axis].
The bin interval is chosen as the average energy error bar size.

(under the assumption that the focus point of the beam is at the front plane of the
groove). Thus, at very narrow widths there is the possibility that both MIM aGSP
and bulk plasmons are excited. Owing to the energy resolution of the microscope
(0.15±0.05 eV), it therefore becomes increasingly difficult to distinguish between the
MIM aGSP resonance energy (at 2.6 eV) and the resonance energy of bulk gold (at
2.7 eV) in the EELS data. In fact, we cannot distinguish the two resonance peaks
from a single spectrum, since their difference in energy is below the resolution of
the microscope. However, depending on the exact position of the electron probe, we
can excite one resonance more efficiently than the other, allowing us to determine
the energy of one resonance in particular. This effect is visible in the spread of the
resonance energies for narrow widths in Fig. 4.18(c), and is also confirmed in the
histogram in Fig. 4.18(d). This histogram represents the statistics of all measured
energy positions of resonance peaks (in both grooves 1 and 2), i.e. the data points in
Fig. 4.18(c) projected onto the energy axis and binned into energy intervals of 0.04 eV.
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The histogram shows a larger number of counts both at the resonance energy of the
MIM aGSP mode (at 2.6 eV) and at the bulk resonance energy of gold (at 2.7 eV),
with a dip in between these energies, thus supporting the interpretation that two
different resonances close in energy are present.

The two different grooves in Fig. 4.18(c) show almost identical trends for the
EELS peaks, indicating that the shape variation from groove to groove is small. More
astonishing is that both grooves support MIM aGSPs in even extremely narrow gaps
of only 5 nm. The two energy-shift regions, i.e., the slow increase for W & 100 nm and
the faster increase for W . 100 nm, and the presence of the MIM aGSP close to the
bulk resonance energy in ultra-narrow gaps, are also observed for all other grooves
studied during this work, see Fig. 4.17. Additionally, note that the interpretation
of the EELS peak from the wide part of the grooves (W & 100 nm) as a localized
SP resonance is in agreement with control experiments, in which a thinning of a
sample resulted in a blueshift of the EELS peak for the wide region in the top part of
the groove (see Sec. 4.4.8), thus representing the expected blueshift of localized SPs
for structures with either reduced sizes or decreasing aspect ratios in the direction
parallel to the polarization of the applied electric field.

4.4.5 Numerical simulations

To support the interpretation of the experimental EELS data in Figures 4.17 and
4.18, we have performed fully retarded EEL calculations using the commercial soft-
ware COMSOL Multiphysics. For the numerical analysis we consider the nanogroove
structure to be infinite in the direction of the electron beam, i.e., z-direction, which
allows us to simplify the problem to 2D. In the calculations, we only model a single
unit cell of the one-dimensional groove array, applying periodic boundary conditions
to the vertical sides of the cell. The parameters used for the single symmetric unit
cell of the groove model in Fig. 4.19(b) are Λ = 317 nm, H = 467 nm, a = 85 nm,
r = 60 nm, δ = 0.5 nm, and α = 2◦. The lower boundary of the simulation domain,
representing the truncation of the optically thick gold substrate, behaves as a perfect
electric conductor, while the silicon dioxide glass domain above the grooves is trun-
cated using perfectly matched layers. The electron beam, moving in the z-direction
(i.e., the direction of invariance), is modeled as an out-of-plane line current as de-
scribed by Eq. (4.4). The loss probability pr. length Γ2D

eels, which is proportional to
the measured EEL spectra, is then calculated using Eq. (4.9). Although the finite
thickness of the sample is thus neglected, we can still expect the 2D approximation
to be accurate for narrow groove widths (which is the region of interest) where the
width-to-sample thickness ratio is low. Additionally, in the interpretation of the EELS
spectra, the 2D approximation allows us to emphasize the importance of propagating
MIM and groove GSP modes, which are typically properties of extended waveguide
structures. Finally, we assume that the groove has perfect mirror symmetry, thereby
neglecting any slight geometric asymmetries present in the sample.

The results of the theoretical analysis are summarized in Fig. 4.19. Fig. 4.19(a)
shows calculated EELS data at the electron beam positions indicated in Fig. 4.19(b),
displaying flat spectra with distinct resonances visible, in accordance with our exper-
imental measurements. Furthermore, the same blueshift trend of the resonance peak
is present in our simulations when the position of the electron probe is moved to-
wards the bottom of the groove. The SP resonance shifts from approximately 2.3 eV
to 2.5 eV. In Fig. 4.19(d) the black line displays the calculated resonance energy as a
function of the groove width. We see that the initial slow blueshift for W & 100 nm
followed by a steep blueshift for W . 100 nm is accurately captured in our theoretical
model. Furthermore, for W . 50 nm the calculations show a plateau at the resonance
energy of 2.5 eV, which is close to the bulk resonance energy of gold (red dash-dotted
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Figure 4.19: (a) Waterfall plot of theoretical EELS calculations at the corresponding position
indicated on the groove model in (b). (c) Longitudinal component of the scattered electric
field (total E-field subtracted the E-field of the electron) for an electron beam probing at the
resonance energy of four different groove widths W . (d) Peak resonance energy determined
from EELS calculations as a function of width for the groove model in (b) (black line),
MIM (Au-SiO2-Au) waveguide (blue line), and bulk gold (red dash-dotted line). The green
dash-dotted line represents the resonance energy of the groove aGSP mode. (e) Longitudinal
component of the electric field of the groove aGSP mode at E = 2.35 eV. Permittivity for
gold is taken from Ref. [54]. We use εSiO2 = 2.1.

line). This is again in excellent agreement with our experimental observations, al-
though the bulk resonance energy of gold from the data in Ref. [54] is slightly lower
than the bulk resonance energy of our sample [at 2.7 eV, see Fig. 4.18(c)]. Fig. 4.19(c)
displays the longitudinal component of the scattered E-field for an electron beam
probe at the resonance energy of four different groove widths, demonstrating that
the MIM aGSP mode is indeed excited for widths W . 100 nm, as confirmed by the
local field distribution in the convex groove. Figure 4.20 complements Fig. 4.19(c) by
displaying the induced-charge distributions in the grooves, confirming the symmetric
induced-charge distribution and the local nature of the MIM aGSP excitations in the
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Figure 4.20: The panels show calculations of induced charge distributions in the convex gold
groove for the electron beam positioned at four different widths W , but in each case at the
corresponding resonance energy. The resonance energies for the four widths W = 3, 30, 100,
and 230 nm are E = 2.5, 2.5, 2.38, and 2.35 eV, respectively. The induced charge distribution
is calculated from the requirement of charge conservation, leading to ρ = −i/ω∇·Jind, where
Jind = −iωε0(εm− εd)E is the induced current, and E is the electric field in the metal. The
induced-charge plots complement Fig. 4.19, confirming that only a local excitation (related
to the existence of the MIM aGSP mode) occurs in the crevice of the groove.

crevice of the groove. In contrast, we see a noticeable field distribution at the top of
the groove for W & 100 nm, indicating the excitation of a groove aGSP mode and
not a MIM aGSP mode. As revealed by mode analysis (see Supplementary Figure 2
of Paper B for details), the groove waveguide under study supports a single groove
aGSP mode whose mode profile [Fig. 4.19(e)] agrees well with the field generated by
the electrons in the top of the groove. This interpretation is further substantiated by
the fact that the energy of the EELS resonance peak in Fig. 4.19(d) approaches the
energy of the groove aGSP mode (green dash-dotted line) for large groove widths. In
summary, the width dependence of the single peak observed in the theoretical EELS
data originates from the strong excitation of MIM aGSP modes in the bottom of the
groove, with decreasing strength as the electron probe moves up the groove, while at
the same time the excitation efficiency of the groove aGSP mode increases. It should
be emphasized that the explanations for leveling of the EELS peak dependence for
larger groove widths are different for our experimental results [Fig. 4.18(c)] and 2D
simulations [Fig. 4.19(d)], since, for the former (as argued in Sec. 4.4.4), this occurs
due to the excitation of the localized SP resonance.

4.4.6 Metal-insulator-metal interpretation

To test the analogy between the MIM aGSP mode excited in convex grooves and
the corresponding mode in MIM waveguides, we have also performed EELS calcu-
lations on the MIM (Au-SiO2-Au) waveguide. As in the simulations of the groove,
we position the electron probe in the center of the MIM waveguide and calculate the
resonance energy of the MIM aGSP mode as a function of the width of the insulating
layer. The almost identical EELS spectra for the two types of waveguides can be seen
in Fig. 4.21 for two different MIM and groove widths (20 nm and 50 nm). We see
that the amplitude and peak positions are very similar for the width W = 50 nm and
become almost identical with decreasing width. Additionally, the induced-charge dis-
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Figure 4.21: EELS calculations for two widths (W = 20 nm and 50 nm) of the MIM waveguide
and EEL spectra for the electron beam positioned at the corresponding widths in the groove
waveguide. EELS spectra are obtained with the electron beam positioned at the center line
of the two types of waveguides. It is clear that the two types of waveguides produce almost
identical EELS spectra, both with respect to amplitude and peak positioning (including a
nearly identical blue shift of the peak positions for narrower gaps) and with very similar
induced-charge distributions (see insets).

tributions (shown as insets in Fig. 4.21) are similar, strengthening the interpretation
of the MIM aGSP mode being excited in the crevice of the groove. The blue line in
Fig. 4.19(d) displays the main result, where we map the resonance energy of the MIM
waveguide as a function of width. We see that the energy of the EELS peak is close,
for W . 125 nm, to that pertaining to the MIM aGSP mode, becoming identical for
W . 50 nm. As discussed in Sec. 4.4.2, we find that the propagation length of the
MIM aGSP mode at the resonance energy is around 50 nm for a MIM waveguide with
a width of 50 nm. Furthermore, the propagation length decreases with decreasing
width, thus supporting the validity of the 2D approximation in our calculations when
in the bottom of the groove.

When comparing the experimental EELS measurements with the theoretical groove
simulations, we find that the experimentally measured resonance energy spans a
broader range (2.1–2.6 eV) compared to the simulations (2.3–2.5 eV). As argued
earlier, we attribute the discrepancy at narrow widths (W . 50 nm) to the difference
in the permittivity of gold found in Ref. [54] used in our theoretical calculations and
the permittivity of the gold in our sample. We substantiate this point of view by
the fact that the procedure of thinning the sample using FIB leads to some gallium
contamination and surface amorphization of the gold, which (depending on the FIB
conditions used) can influence up to tens of nanometers for each of the groove sur-
faces [253, 254]. Note that despite the fact that this (probably) FIB-related damage
affects the gold permittivity in the entire energy range considered, the discrepancy
between measurements and 2D simulations at large groove widths (W & 100 nm) is
in any case expected as the EELS peaks are related to physically different phenomena
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Figure 4.22: (a) Geometrical parameters defining the profile of the groove arrays. The
small asymmetry in the groove profile is introduced by choosing a1 6= a2 and r1 6= r2.
(b) Reflection spectra for normal incident light for a symmetric (a1 = a2 = 85 nm and
r1 = r2 = 60 nm) and asymmetric (a1 = 85 nm, a2 = 50 nm, r1 = 60 nm, and r2 = 20 nm)
groove array. The other parameters are as in Sec. 4.4.5. Inset shows geometric profiles of
the considered grooves.

(3D localized SP and 2D groove aGSP mode, respectively).

4.4.7 Optical response from asymmetric groove arrays

The results obtained in the course of our EELS study allow us to add an impor-
tant element to the interpretation of very efficient and broadband light absorption by
ultra-sharp convex grooves in gold, presented in Ref. [246]. The incident light, which
propagates downwards (i.e., in the xy-plane) for this purpose, couples through scat-
tering off the groove wedges to the MIM sGSP mode (not probed by our EELS setup),
which is adiabatically focused and, consequently, absorbed as it propagates into the
depth of the groove. Quite surprisingly, the experimental measurements showed even
better light absorption than the simulations in Ref. [246]. Those simulations were
based on a completely symmetric groove geometry and (for the most part) normally
incident light. However, the grooves are neither perfectly symmetric, as discussed in
the context of Fig. 4.16, nor is the light in the experimental setup a perfect plane
wave impinging normally to the surface. Thus, incoming light will, due to the in-
clined propagation and the slight asymmetry of the groove, in practice also couple to
the significantly more lossy MIM aGSP mode, which we studied here with EELS. In
fact, it was already shown in the supplementary information of Ref. [246] that a small
inclined angle (∼ 20◦) of the incident light moderately improves the overall absorp-
tion, which we can now ascribe to excitation of the MIM aGSP mode. To test our
hypothesis and to explain the unexpectedly high absorption of ’black gold’, we have
numerically calculated the light reflection from a symmetric and slightly asymmetric
groove array for normal incident light. The introduction of a small asymmetry results
in a weak excitation of the MIM aGSP mode, so that the absorption is still domi-
nated by the MIM sGSP mode. Figure 4.22(a) shows a sketch of the groove structure
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Figure 4.23: (a) SEM image of the control sample after thinning further down a 5 µm-wide
section. A clear step in thickness separates the thin (right side of the image) and the thick
(left side of the image) part of the sample. (b) Zoom-in on grooves located in the thin part
of the sample. (c) Peak resonance energy as a function of groove width for two different
grooves belonging to the thin part (grooves B1 and B2) and two other grooves belonging to
the thick part (grooves B3 and B4).

and light polarization, while Figure 4.22(b) presents the calculated reflectivity. It is
clear that the effect of slight asymmetry mostly affects the energy region E > 1.7 eV
with an overall lower reflectivity. The increased absorption is particularly noticeable
for energies E > 2 eV, with increases as high as ∼ 40% compared to the symmetric
configuration, thus confirming the importance of the MIM aGSP mode to explain the
black gold effect observed in Ref. [246].
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4.4.8 Control experiment: influence of groove thickness

In this section, we detail additional experiments performed on a thinner sample (i.e.,
shorter distance parallel to the axis of the groove) to clearly show the nature of the
two different types of modes observed in Sec. 4.4.4, i.e., the presence of localized SP
modes on top of the groove and MIM aGSP propagating modes in the crevice. With
a thinner sample, we study the influence of the thickness on the resonance energies of
the groove. For this purpose, we prepared a second sample (denoted control sample
in this section) using the same fabrication method as for the main nanogroove sample
(described in Sec. 4.4.3). The groove has a similar shape, but with slightly different
geometrical parameters. Figure 4.23(a) displays a SEM image of the control sample
with a geometry similar to the main sample, but with a periodicity of Λ = 250 nm,
and a height of H = 340 nm [Fig. 4.23(b)]. Using the FIB, we thinned down a 5 µm-
wide section of the control sample, such that the influence of the sample thickness
could be studied, see Fig. 4.23(a).

We performed EELS measurements on the control sample following the same pro-
tocol used for the main sample, see Sec. 4.4.4. Additionally we have taken EELS
spectra with a larger energy dispersion (from 0 to 100 eV) and used them to estimate
the thickness of the thin and the thick regions of the control sample, using both the
log-ratio method and Kramers–Kronig analysis [38]. The results show a constant
thickness profile inside the groove for both thin and thick regions of the sample with
respective thicknesses of approximately 100 nm and 135 nm.

In Fig. 4.23(c) we plot the energy of the resonance peak as a function of the groove
width for two different grooves belonging to the thin region (grooves B1 and B2) and
for two other grooves belonging to the thick region (grooves B3 and B4). Despite the
different geometrical parameters (i.e., periodicity and groove height), we observe the
same overall behavior for the resonance energies between the main sample and the
control sample, i.e., a weakly blueshifting mode for large widths and a more rapid
blueshift for widths below approximately 70 nm. Interestingly, we also see a consistent
energy difference between the thick and the thin regions of the control sample for
widths above 70 nm. A more thorough analysis shows that the average energy of
these modes for the thick region is 2.18 eV while the average energy is 2.24 eV for the
thin region (an energy difference that is slightly larger than the average energy error
bar: 0.05 eV). This observation is consistent with the blueshift observed in localized
SP excitations for structures with either reduced sizes or decreasing aspect ratios in
the direction parallel to the polarization of the applied electric field [12].

Moreover, the width at which the blueshift becomes stronger in both parts of the
sample is different, as illustrated by the dashed vertical lines in Fig. 4.23(c). The
onset of the stronger blueshift appears around 45 nm and 60 nm for the thin and
the thick regions, respectively. As mentioned in Sec. 4.4.3, propagating plasmons are
only expected for widths smaller than the thickness of the sample, in which case the
sample can be considered as a two-dimensional system. Hence, reducing the thickness
of the sample should lead to the onset of the propagating mode for smaller widths,
as we observe experimentally in Fig. 4.23(c). The fact that the strong blueshift is
similar for narrow widths, independent of the exact geometry and thickness of the
samples (main sample and control sample), sustains our claim that the modes probed
in this region correspond to the propagating MIM aGSP modes.

4.4.9 Concluding remarks

We have reported the application of EELS to the characterization of extremely con-
fined GSP modes excited by electrons in nanometer-wide gaps. Using ultra-sharp
convex grooves in gold, we have recorded the EELS data with high spatial (< 1 nm)
and energy (∼0.15 eV) resolution in the mirror-symmetry plane of the groove cross



4.4. EXTREMELY CONFINED GAP PLASMONS IN GOLD NANOGROOVES 79

section. Both experimental and theoretical EELS data have revealed resonance be-
havior associated with the excitation of the antisymmetric MIM GSP mode for ex-
tremely small gap widths, down to ∼5 nm. We believe that the excitation of this
mode, featuring very strong absorption, can be related to the experimental results
obtained in the recent study devoted to the phenomenon of plasmonic black gold, in
which very efficient and broadband light absorption by ultra-sharp convex grooves has
been observed [246]. Since realistically fabricated grooves are not perfectly symmet-
ric, a part of the unexpectedly strong light absorption in the grooves can be ascribed
to the MIM aGSP excitation due to fabrication induced asymmetry. The aGSP mode
absorption thereby represents an additional (efficient) channel of energy dissipation
that should be taken into account in the design of plasmonic nanophotonic circuits
and devices.





Chapter 5

Conclusions and outlook

This thesis has been concerned with the theoretical aspects of nonlocal response and
the experimental technique EELS. We have studied two models incorporating non-
local response, the hydrodynamic model and the recently introduced GNOR model,
which expands the hydrodynamic model by taking into account the diffusion of elec-
trons. These models have been compared to the local-response approximation, which
is commonly employed in the study of optical response of plasmonics systems. We
have used EELS to study the localized surface plasmons supported by Ag nanoparti-
cles with diameters ranging from 2 to 30 nm, and propagating gap surface plasmons
in gold convex nanogrooves with extremely sharp crevices (down to 5 nm in width).

Specifically, we studied in Chapter 2 the general nonlocal equations governing
the electromagnetic response of metals in arbitrary geometries. Without specifying
the microscopic origin of the nonlocal response, we showed using a phenomenological
approach that nonlocal response modifies the usual Maxwell wave equation by adding
an additional Laplacian term, whose strength is proportional to the nonlocal length
scale ξ. The presence of curl-free (longitudinal) waves in a nonlocal formalism required
an additional boundary condition, which we derived to be the vanishing of the normal
component of the induced current in the metal, under the assumption of a constant
equilibrium electron density. We then considered two specific models for nonlocal
response, the hydrodynamic model and the GNOR model. When comparing the
nonlocal length scale ξ for the two models, we found that the two models had a
similar frequency-dependent Re(ξ), but differed in the Im(ξ). The GNOR model had
a considerably larger Im(ξ) than the hydrodynamic model due to the inclusion of
diffusive currents quantified by the diffusion constant D.

In Chapter 3 we compared the two nonlocal models with the LRA in specific plas-
monic systems. Firstly, we studied the SPP mode supported by the metal-insulator
interface, which in the case of a lossless metal differed significantly from the LRA at
the SP frequency. In particular, the nonlocal models showed no asymptote at the
SP frequency as in the LRA. Instead a linear increase with Re(k) was observed in
the nonlocal models with a slope proportional to Re(η). Additionally, the GNOR
model also showed the same trend for Im(k) due to the additional loss channel of
diffusion. In the realistic cases of metals with finite losses, signatures of nonlocal
response were damped due to material losses and the nonlocal models did not differ
from the LRA. Secondly, we studied the LSPR of a metal nanosphere. Here, we de-
rived a nonlocal generalization to the Clausius–Mossotti factor and applied the result
to calculate the extinction cross section of the sphere. In contrast to the LRA, we
found a size-dependence on the LSPR (i.e., blueshift with decreasing size) in both
of the nonlocal models and furthermore a size-dependent linewidth broadening (i.e.,
increase in broadening with decreasing size) in the GNOR model. Importantly, we
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hereby showed that the well-known size-dependent broadening observed in nanopar-
ticles several decades ago is in fact a sign of nonlocal response. Thirdly, we examined
the optical spectra of a dimer consisting of two infinite nanowires in close proximity.
Here, we found a gap-dependent resonance energy (for both nonlocal models) and a
gap-dependent linewidth broadening (only for the GNOR model) of the bonding plas-
mon modes. Comparison of the GNOR spectra with DFT spectra showed very good
agreement, thus providing an alternative explanation not based on quantum tunnel-
ing to the recent experimental observations on dimers. Additionally, we showed an
ultimate limit to the plasmon hybridization due to nonlocal response, which could
be described by a simple analytical relation using transformation optics. Fourthly,
we studied the extinction cross section of the core-shell nanowire, which surprisingly
showed no signature of nonlocal response even in the extreme case of a metal shell
with thickness of only 1 nm. We deduced that the lack of dependence on nonlocal re-
sponse was due to the induced charge distribution of the hybridized mode, which had
the positive and negative induced charges separated by a distance given by approxi-
mately the diameter of the insulating core (which is much larger than the Ångstrom
length scale of nonlocal response). Finally, we studied the absorbance of a thin metal
film above the plasma frequency of the metal. We found resonant excitations above
the plasma frequency in the hydrodynamic model for Na due to confined curl-free
waves in the thin film. These excitations were damped in the GNOR model due to
diffusion. In the study of a silver thin film, no resonant excitations were found due
to the increased material losses compared to Na, but a slight blueshift of the bulk
plasma peak in agreement with experiments was observed in both of the nonlocal
models.

Chapter 4 was devoted to the experimental technique of EELS. In this first two
sections we provided general experimental and theoretical descriptions of EELS. Af-
terwards, two EELS experiments and their theoretical interpretation were described.
In the first EELS experiment, we studied the size dependence of the LSPR in silver
spheres with diameters ranging from 30 nm down to 3.5 nm. Here, we found exper-
imentally a blueshift of the LSPR of approximately 0.5 eV with decreasing particle
diameter. The theoretical interpretation of the observations were based on two mod-
els, the hydrodynamic model using the derived Clausius–Mossotti factor and a LRA
model with a spatially varying equilibrium electron density. Both models showed only
qualitative agreement. In an attempt to find quantitative agreement between theory
and measurements, we expanded the hydrodynamic model to properly take into ac-
count the substrate. Unfortunately the agreement did not improve significantly and
we discussed possible reasons for the discrepancy, such as the influence of the elec-
tron probe and the inclusion of a spatially varying equilibrium electron density in the
hydrodynamic model. In the second EELS experiment, we studied the propagating
gap surface plasmon supported by gold convex nanogrooves. We mapped out the en-
ergy dependence of the antisymmetric GSP mode as function of groove width, which
showed excellent agreement with the numerical simulations. Additionally, support
for the theoretical interpretation of the aGSP mode of the groove at given a width
being akin to the aGSP mode of the simpler MIM waveguide of the same width was
also presented. Finally, it was shown that the optical excitation of the aGSP mode
in slightly asymmetric grooves significantly increased the absorption of the structure,
providing an additional explanation to the plasmonic black gold effect previously
reported.

5.1 Outlook

From a theoretical point-of-view, the next step in modeling the optical response
of nanoplasmonic systems could be to incorporate a spatially-varying equilibrium
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electron density into the nonlocal response models. Excitingly, Refs. [184, 185] have
already presented a path to do this in the hydrodynamic model. At a first glance,
the addition of electron diffusion into the models of Refs. [184, 185] should not pose
additional computational efforts. Such a model, i.e., GNOR with spatially-varying
static electron density, should be able to account for all of the non-classical phenomena
mentioned in the Introduction. Additionally, it might account for the large blueshift
of the LSPR experimentally observed in Sec. 4.3.

On the experimental side, there is definitely need for more studies of small metal
nanoparticles with EELS. Mapping of the LSPR with size for other metals, such
as gold or aluminum, could provide insight into the size-dependency mechanism ob-
served for silver. Another approach could be to experimentally rule out the effect
of the substrate by studying silver (or other metal) nanoparticles encapsulated in a
dielectric. Such a system is also theoretically simpler to describe, as it should be
quite well approximated by a particle in a homogeneous embedding material.

While the majority of EELS experiments have been on the study of LSPs, there are
significantly less studies of propagating surface plasmons, in particular for the case
when the electron beam is parallel to direction of invariance. Thus, it seems that
a vast category of geometries (i.e., extended structures with different cross sections)
and their associated modes are left unexplored. The interesting part of studying
translationally invariant structures is the direct connection between the EEL signal
and the LDOS, as discussed in Sec. 4.2. Systematic mapping of the EEL signal of
extended structures could thus be used as a fingerprint of the LDOS, which in the
future perhaps could be utilized for the precise positioning of quantum emitters.
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rard, D. Taverna, I. Pastoriza-Santos, L. M. Liz-Marzan, and C. Colliex, ‘Map-
ping surface plasmons on a single metallic nanoparticle’, Nature Phys. 3, 348
(2007).

[41] M. Bosman, V. J. Keast, M. Watanabe, A. I. Maaroof, and M. B. Cortie,
‘Mapping surface plasmons at the nanometre scale with an electron beam’,
Nanotechnology 18, 165505 (2007).

[42] J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J.
Garćıa de Abajo, ‘Optical properties of gold nanorings’, Phys. Rev. Lett. 90,
057401 (2003).
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[149] K.-P. Charlé, F. Frank, and W. Schulze, ‘The optical properties of silver micro-
crystallites in dependence on size and the influence of the matrix environment’,
Ber. Bunsenges. Phys. Chem. 88, 350 (1984).
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[214] F. J. Garćıa de Abajo, ‘Multiple scattering of radiation in clusters of dielectrics’,
Phys. Rev. B 60, 6086 (1999).

[215] B. T. Draine and P. J. Flatau, ‘Discrete-dipole approximation for scattering
calculations’, J. Opt. Soc. Am. A 11, 1491 (1994).

[216] N. W. Bigelow, A. Vaschillo, V. Iberi, J. P. Camden, and D. J. Masiello, ‘Char-
acterization of the electron- and photon-driven plasmonic excitations of metal
nanorods’, ACS Nano 6, 7497 (2012).

[217] A. Huck, S. Kumar, A. Shakoor, and U. L. Andersen, ‘Controlled coupling of
a single nitrogen-vacancy center to a silver nanowire’, Phys. Rev. Lett. 106,
096801 (2011).

[218] B. S. Guiton, V. Iberi, S. Li, D. N. Leonard, C. M. Parish, P. G. Kotula,
M. Varela, G. C. Schatz, S. J. Pennycook, and J. P. Camden, ‘Correlated optical
measurements and plasmon mapping of silver nanorods’, Nano Lett. 11, 3482
(2011).

[219] M. Husnik, F. von Cube, S. Irsen, S. Linden, J. Niegemann, K. Busch, and
M. Wegener, ‘Comparison of electron energy-loss and quantitative optical spec-
troscopy on individual optical gold antennas’, Nanophotonics 2, 241 (2013).



98 REFERENCES

[220] U. Hohenester, H. Ditlbacher, and J. R. Krenn, ‘Electron-energy-loss spectra
of plasmonic nanoparticles’, Phys. Rev. Lett. 103, 106801 (2009).

[221] F. Ouyang, P. Batson, and M. Isaacson, ‘Quantum size effects in the surface-
plasmon excitation of small metallic particles by electron-energy-loss spec-
troscopy’, Phys. Rev. B 46, 15421 (1992).

[222] S. Berciaud, L. Cognet, P. Tamarat, and B. Lounis, ‘Observation of intrinsic
size effects in the optical response of individual gold nanoparticles’, Nano Lett.
5, 515 (2005).

[223] L. Genzel, T. P. Martin, and U. Kreibig, ‘Dielectric function and plasma reso-
nance of small metal particles’, Z. Phys. B 21, 339 (1975).

[224] W. A. Kraus and G. C. Schatz, ‘Plasmon resonance broadening in small metal
particles’, J. Chem. Phys. 79, 6130 (1983).

[225] W. P. Halperin, ‘Quantum size effects in metal particles’, Rev. Mod. Phys. 58,
533 (1986).

[226] O. Keller, M. Xiao, and S. Bozhevolnyi, ‘Optical diamagnetic polarizability of
a mesoscopic metallic sphere: transverse self-field approach’, Opt. Comm. 102,
238 (1993).
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Within our recently proposed generalized nonlocal optical response (GNOR) model, where nonlocal response is
included by taking into account both convective and diffusive currents of the conduction electrons, we revisit
the fundamental problem of an optically excited plasmonic dimer.We consider the transition from separated dimers
via touching dimers to finally overlapping dimers. In particular, we focus on the touching case, showing a funda-
mental limit on the hybridization of the bonding plasmonmodes due to nonlocality. Using transformation optics, we
determine a simple analytical equation for the resonance energies. © 2015 Optical Society of America
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One of the most fundamental and intriguing problems
in plasmonics is the electromagnetic interaction of two
metallic nanostructures, i.e., the dimer structure. The
gap-dependent electric-field enhancement and bonding
plasmon resonance energies have been utilized in e.g.,
surface-enhanced Raman spectroscopy and the plasmon
ruler effect. The dimer has been studied with a variety of
theoretical and experimental techniques. The simplest
theoretical approach is based on the classical local-
response approximation (LRA), which in the case of a
nanometer-sized dimer gap gives rise to unphysical re-
sults, such as extreme field enhancements in the gap
of the dimer [1]. A complete breakdown of the LRA
is seen in the touching configuration, where the number
of hybridized bonding plasmon modes increases without
limit to form a continuum of modes [2], thus setting no
ultimate bound to the resonance energies of the bonding
plasmon modes and thereby the plasmon hybridization
[3]. Advanced descriptions based on density-functional
theory (DFT) regularize the unphysical consequences of
the LRA [4–7], where the physical mechanism for the
regularization is attributed to quantum tunneling, i.e.,
the charge transfer that may occur before reaching the
touching configuration due to the spill-out of electrons.
DFT simulations of optically excited dimers show a limit
on the hybridization of bonding plasmon modes, yet no
general relation for this limit has been extracted. Results
based on the hydrodynamic model, where only nonlocal
response (and not electron spill-out) is taken into
account, also display regularizations of the LRA [2,8,9],
albeit with field enhancements in the dimer gap that are
still larger than shown by DFT simulations [7]. Measure-
ments on dimers with vanishing gaps using both optical
techniques [10,11] and electron energy-loss spectroscopy
[12,13] are not in agreement with the LRA, and, in the
touching case, also display limits on the resonance ener-
gies of the bonding plasmon modes, i.e., ultimate bounds
to the plasmon hybridization. However, the physical
mechanism for the discrepancy between LRA and the
observed measurements is not conclusive with possible
explanations being provided from both quantum tunnel-
ing [7] and nonlocal response [14] perspectives.

We revisit the problem of an optically excited plas-
monic dimer (see Fig. 1) within the framework of our
recently proposed GNOR model in which nonlocal re-
sponse is caused both by convection and diffusion [14].
In contrast to DFT, the physically more transparent
GNOR model allows for analytical results. We study the
evolution of both the extinction cross-section and the
electric-field enhancement in the dimer gap as the gap
size varies from separated to overlapping dimers. In par-
ticular, we focus on the touching dimer and derive, using
transformation optics (TO), a simple analytical relation
for the resonance energies of the bonding plasmon
modes. Furthermore, we show that previous nonlocal TO
methods used for the hydrodynamic model [2] are accu-
rate also for the GNOR model.

Given the nonlocal constitutive relation D�r;ω� �R
dr0ε�r; r0�E�r0;ω�, the wave equation is

∇ × ∇ × E�r;ω� �
�
ω

c

�
2
Z

dr0ε�r; r0�E�r0;ω�: (1)

Under the assumptions of a linear, isotropic, and short-
ranged response function, Eq. (1) can be recast as [17]

∇ × ∇ × E�r;ω� �
�
ω

c

�
2
�εD�ω� � ξ2∇2�E�r;ω�; (2)

where ξ describes the nonlocal correction to the local-
response Drude permittivity εD�ω� � ε∞�ω� − ω2

P∕�ω2�
iγω�. Here, ε∞�ω� accounts for effects not due to the free

Fig. 1. Incident electric field, polarized along the dimer axis,
impinges on a dimer consisting of two identical metal cylinders
with radii R and separated by a gap g. The three studied cases of
separated dimer (g > 0), touching dimer (g � 0), and overlap-
ping dimer (g < 0) are shown.
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electrons, such as interband transitions. Within the
hydrodynamic model, the nonlocality parameter is ξ2H �
ε∞�ω�β2∕�ω2 � iωγ� [17], where γ is the free-electron
damping rate and β2 � 3∕5v2F with vF denoting the Fermi
velocity of the conduction electrons. Nonlocal response
in the hydrodynamic model arises from the inclusion of
the Thomas–Fermi kinetic energy of the free electrons.
The GNOR model expands the hydrodynamic model by
taking into account the effects of electron diffusion [14].
Within the GNOR model, ξ2GNOR � ε∞�ω�η2∕�ω2 � iωγ�,
where η2 � β2 � D�γ − iω�, and D is the diffusion con-
stant. Although the mathematical formalism of the GNOR
model is similar to the hydrodynamic model, with the
simple substitution β2 → η2, the physical differences are
pronounced. In contrast to the hydrodynamic model, the
GNOR model accurately captures the size-dependent
damping of localized surface plasmons in individual
particles [18] and reproduces DFT absorption spectra of
dimers [7,14].
Before discussing the results of the nanowire dimer,

we first outline the procedure to determine the diffusion
constant D for different metals. The size-dependent
damping of localized surface plasmons in nanoparticles
has extensively been observed experimentally [18]. The
phenomenological approach to account for this effect in
the LRA, i.e., Eq. (2) with ξ � 0, has been to modify the
Drude damping parameter as γ → γ � AvF∕R [18], which
only applies for spherical particles of radius R. Here, A
is a constant, which is related to the probability of the
electron scattering off the surface of the particle. Both
experimental data and more advanced theoretical calcu-
lations have been compared to this approach, resulting in
a robust value for A close to unity for different metals
[18]. It is therefore appropriate to ensure that the GNOR
model agrees with this successful, but phenomenological
approach. To this end, we calculate the extinction
cross-section of a metal sphere using the nonlocal polar-
izability [19] for the GNOR calculations, while the LRA
polarizability is modified to include the aforementioned
additional damping with both A � 0.5 and A � 1. Two
different values for A are considered, since different
nanoparticle preparation methods may result in different
surface properties. The diffusion constant D is varied
until the full width at half-maximum of the localized sur-
face plasmon resonances for both calculations coincide.
This procedure is repeated for the range of sphere radii
of 1–10 nm. As the fitted diffusion constant D varies
slightly with sphere radii, we use the average value for D.
The diffusion constantD along with other relevant GNOR
parameters for Na, Ag, Au, and Al are summarized in
Table 1. We also add that the nonfree-electron response
ε∞�ω� can be determined from experimentally measured
bulk dielectric functions [20].
Using the freely available COMSOL implementation of

the GNOR theory [8], we calculate the extinction cross-
section and electric-field enhancement of a large Na
dimer with radius R � 30 nm when varying the gap dis-
tance. Figure 2(a) displays a waterfall plot of the extinc-
tion cross-section for two values of D (solid and dashed
lines, respectively), when the gap is varied from �30 Å
(separated) to −30 Å (overlapping) in steps of 3 Å. For
separated nanowires, we see three distinct modes, the
bonding dipole mode (BDP), bonding quadrupolar mode

(BQP), and the higher order mode (HOM), also labeled in
Fig. 2(a). The electric field norm of these three modes
for a gap of 30 Å are displayed in Figs. 2(b)–2(d). As the
gap decreases, the BDP and BQP redshift and dampen
due to increased plasmon hybridization [8] and increased

Fig. 2. (a) Extinction cross-section (in units of cylinder diam-
eter 2R) of a Na nanowire dimer of radius R � 30 nm with gap
size g varying from 30 Å (separated) to −30 Å (overlapping) for
two diffusion constant values: D � 1.08 × 10−4 m2 s−1 (solid
lines) and D � 2.67 × 10−4 m2 s−1 (dashed lines). Each spec-
trum is vertically displaced with 2.5 normalized units. (b-d)
Electric field amplitudes jEj of the BDP, BQP, and HOM, respec-
tively, for a dimer with g � 30 Å [blue curve in (a)]. (e)–(f)
Electric-field enhancement in the center of the dimer gap for
dimers with R � 30 nm and R � 4.9 nm, respectively. Parame-
ters for Na as in Table 1 with ε∞ � 1.

Table 1. Plasma Frequencies ωP, Damping Rates γ,
Fermi Velocities vF, and Diffusion Constants D for the

Metals Na, Ag, Au, and Ala

ℏωP [eV] ℏγ [eV] vF [106 ms−1]

D�10−4 m2 s−1�
A � 0.5 A � 1

Na 6.04 [15] 0.16 [7] 1.07 1.08 2.67
Ag 8.99 [15] 0.025 [16] 1.39 3.61 9.62
Au 9.02 [15] 0.071 [16] 1.39 1.90 8.62
Al 15.8 [15] 0.6 [16] 2.03 1.86 4.59
aFor determination of D, see the main text.
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absorption at the metal surfaces in the vicinity of the gap,
respectively. However, the resonance energy of the HOM
is unaffected by the gap size as the electric field of this
mode is mainly distributed at the dimer edges, and not
in the gap [see Fig. 2(d)]. When the gap vanishes [red line
in Fig. 2(a)], the hybridization of the bonding modes is
maximal, and no further resonance shifts or damping can
occur. As the dimers begin to overlap (g < 0), the bond-
ing modes disappear, and the charge transfer plasmons
[labeled CTP1 and CTP2 in Fig. 2(a)] appear. The CTP1
and CTP2 blueshift with increasing dimer overlap as the
dimer effectively becomes a single structure. Compari-
son of the two values for D [solid and dashed lines in
Fig. 2(a)] reveal that the main features are robust with
respect to D, and that an increased value for D primarily
increases the widths of the bonding-mode resonances.
In Fig. 2(e), we show the evolution of the electric-field
enhancement, probed at the center point of the gap. As
the gap size decreases, the electric-field enhancement in-
creases due to increased interaction between the metal
surfaces. Furthermore, as the bonding plasmon modes
redshift, so does the maximal field enhancement. To
facilitate comparison with DFT calculations [7], we also
display in Fig. 2(f) the electric-field enhancement evolu-
tion of a Na dimer with a smaller radius of R � 4.9 nm.
Here we see that the electric-field enhancement ampli-
tude and trend with decreasing gap size are in very good
agreement with DFT simulations of Ref. [7]. The only dis-
crepancy between the GNORmodel and DFT simulations
occurs at gap sizes below approximately 5 Å but before
contact, where the overlap of electron spill-out in DFT
calculations quenches the electric-field enhancement.
However, the GNOR model can still be seen providing
a useful upper limit to the ultimate plasmon hybridization
that might be tested experimentally.
When the dimers are touching, the hybridization of

the bonding plasmon modes is maximal, and the reso-
nance positions of these modes depend only on the dimer
radius R. We have investigated the resonances of the
BDP and BQP modes as a function of R in Fig. 3. For the

smallest dimer radii (R ≤ 10 nm), the resonance posi-
tions of the BQP mode are not clearly distinguishable
from the extinction spectra due to the weaker hybridiza-
tion in smaller dimers. As the dimer radius increases,
the resonance energies of both the BDP and BQP modes
decrease. This is due to the increased hybridization
occurring for larger radii as the interacting metal surfa-
ces between the two nanowires increase. Along with
the GNOR simulations, we also depict the results using
a nonlocal TO approach (dashed lines in Fig. 3) [2].
Although the nonlocal TO was originally used with the
hydrodynamic model, we show in Fig. 3 that this ap-
proach is still valid within the GNOR theory, as long as
the substitution β2 → η2 is applied. As expected, we see
that the nonlocal TO calculations agree quite well with
the GNOR simulations for both the BDP and BQP modes.

We may deduce a simple relation for the resonance en-
ergies of the bonding plasmon modes by examining the
position of the centroid of induced charges [7], given as
the real part of the Feibelman parameter d�ω� [21]. Using
the definition of the Feibelman parameter [21], we find
that d�ω� � i∕kNL where kNL �

�������������
εD�ω�

p
∕ξGNOR is the non-

local longitudinal wave vector. In the GNOR theory, the
centroid of the induced charges is positioned a short dis-
tance {Re�d�ω��≃ vF∕ωP ≈ 1 Å} within the metal boun-
dary, see insets of Fig. 3 (as a consequence of the
additional boundary condition of vanishing free-electron
current in the radial direction [14]). However, within the
LRA, the induced surface charges reside on the geomet-
rical surface. We can therefore mimic the position of
the centroid of induced charges in the GNOR theory by
considering separated dimers in the LRA with a gap of
g � 2Re�d�ω��. This approach is similar to the model of
Ref. [9], however the effective gap size g of Ref. [9] is
larger due to the application of a different additional
boundary condition. Within the LRA, the resonance
condition of a separated dimer with gap size g has been
determined using TO [22] and is given by

� ������
g
4R

r
�

���������������
1� g

4R

r �4n

� Re
�
εD�ω� − 1
εD�ω� � 1

�
; (3)

where n � 1 corresponds to the BDP mode, n � 2
corresponds to the BQP mode, and so on. Assuming
an undamped Drude model for the permittivity εD�ω� �
1 − ω2

P∕ω2 and expanding Eq. (3) to first-order in g∕R, we
find the simple relation for the LRA resonance condition
for the hybridized modes of separated nanowires

ω

ωP
≃

����
n

p �
2Re�ξGNOR�����������������

−εD�ω�
p

R

�1
4

; (4)

where we have used that g � 2Re�ξGNOR�∕
����������������
−εD�ω�

p
.

Figure 3 displays the result of this effective LRA ap-
proach (dashed–dotted lines), given by Eq. (3) with gap
size g � 2Re�d�ω��. We see that the GNOR resonance en-
ergies of touching nanowires can quite accurately be
mimicked by the LRA result of separated nanowires,
when the gap size is set to the distance between the cent-
roid of induced charges. As anticipated from Eq. (4), we
also see that the slopes of the BDP and BQP resonance
energies are very similar. The BQP energies occur at

Fig. 3. Logarithmic plot of the resonance energies of the BDP
(black) and BQP (blue) modes of touching Na nanowires as a
function of dimer radius R. The dots display the GNOR simu-
lations, and the dashed lines show the results using the nonlocal
TO approach. The dashed–dotted lines show the results using
the local-response TO approach, given by Eq. (3) with an effec-
tive gap g � 2Re�d�ω��. The insets display the imaginary part of
the GNOR charge distributions of the BDP and BQP for a touch-
ing dimer with R � 30 nm.
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higher energies because of the
����
n

p
in Eq. (4). Although

diffusion plays a crucial role in the damping of the bond-
ing plasmon modes for decreasing gap size [as seen in the
extinction cross sections of Fig. 2(a)] and in the electric-
field enhancement amplitude [see Figs. 2(e)–2(f)], Eq. (4)
shows that the maximal hybridization resonance ener-
gies are mainly dependent on convection as described
by the Fermi velocity, since the value for β contributes
most to Re�ξGNOR�. Only in the extreme limit where Dω
becomes comparable to β2 in magnitude will diffusion
play a role in the position of the resonance energies.
We have theoretically studied the extinction cross-

section and electric-field enhancement of a plasmonic
dimer consisting of two large Na cylinders using the
GNOR model. As the gap size decreases, the extinction
cross-section shows a damping of the bonding plasmon
resonances, while the electric-field enhancement in the
gap increases, but stays finite. Both trends are in good
agreement with DFT calculations and experimental mea-
surements on dimers. We have also examined the touch-
ing dimer and, using transformation optics, derived a
simple analytical relation [Eq. (4)] for the resonance en-
ergies of the bonding plasmon modes that we propose to
test experimentally. Finally, we have shown the first suc-
cessful application of nonlocal TO to the GNOR model.

We thank Yu Luo for stimulating discussions. CNG is
funded by the Danish National Research Foundation,
Project DNRF58. N. A. M. and M. W. acknowledge
financial support by Danish Council for Independent
Research–Natural Sciences, Project 1323-00087. S. I. B.
acknowledges financial support by European Research
Council, Grant 341054 (PLAQNAP).

References

1. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de
Abajo, Opt. Express 14, 9988 (2006).

2. A. I. Fernández-Domínguez, A. Wiener, F. J. García-Vidal,
S. A. Maier, and J. B. Pendry, Phys. Rev. Lett. 108, 106802
(2012).

3. E. Prodan, C. Radloff, N. Halas, and P. Nordlander, Science
302, 419 (2003).

4. J. Zuloaga, E. Prodan, and P. Nordlander, Nano Lett. 9, 887
(2009).

5. L. Stella, P. Zhang, F. J. García-Vidal, A. Rubio, and P.
García-González, J. Phys. Chem. C 117, 8941 (2013).

6. K. Andersen, K. L. Jensen, N. A. Mortensen, and K. S.
Thygesen, Phys. Rev. B 87, 235433 (2013).

7. T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov,
Opt. Express 21, 27306 (2013).

8. G. Toscano, S. Raza, A.-P. Jauho, N. A. Mortensen, and M.
Wubs, Opt. Express 20, 4176 (2012).

9. Y. Luo, A. I. Fernández-Domínguez, A. Wiener, S. A. Maier,
and J. B. Pendry, Phys. Rev. Lett. 111, 093901 (2013).

10. K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J.
Aizpurua, and J. J. Baumberg, Nature 491, 574 (2012).

11. H. Cha, J. H. Yoon, and S. Yoon, ACS Nano 8, 8554
(2014).

12. J. A. Scholl, A. Garcia-Etxarri, A. L. Koh, and J. A. Dionne,
Nano Lett. 13, 564 (2013).

13. S. Kadkhodazadeh, J. B. Wagner, H. Kneipp, and K. Kneipp,
Appl. Phys. Lett. 103, 083103 (2013).

14. N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, and S. I.
Bozhevolnyi, Nat. Commun. 5, 3809 (2014).

15. N. W. Ashcroft and N. D. Mermin, Solid State Physics
(Saunders College Publishing, 1976).

16. F. J. García de Abajo, Rev. Mod. Phys. 82, 209 (2010).
17. G. Toscano, S. Raza, W. Yan, C. Jeppesen, S. Xiao, M. Wubs,

A.-P. Jauho, S. I. Bozhevolnyi, and N. A. Mortensen,
Nanophotonics 2, 161 (2013).

18. U. Kreibig and M. Vollmer, Optical Properties of Metal
Clusters (Springer-Verlag, 1995).

19. S. Raza, W. Yan, N. Stenger, M. Wubs, and N. A. Mortensen,
Opt. Express 21, 27344 (2013).

20. F. J. García de Abajo, J. Phys. Chem. C 112, 17983 (2008).
21. P. J. Feibelman, Prog. Surf. Sci. 12, 287 (1982).
22. A. Aubry, D. Y. Lei, S. A. Maier, and J. B. Pendry, Phys. Rev.

Lett. 105, 233901 (2010).

842 OPTICS LETTERS / Vol. 40, No. 5 / March 1, 2015

OPT. LETT. 40, 839 (2015) 105





Paper B

S. Raza, N. Stenger, A. Pors, T. Holmgaard, S. Kadkhodazadeh, J. B. Wag-
ner, K. Pedersen, M. Wubs, S. I. Bozhevolnyi, and N. A. Mortensen

Extremely confined gap surface-plasmon modes excited by
electrons

Nat. Commun. 5, 4125 (2014)

Author contributions
N. S., S. I. B. and N. A. M. conceived the experiment. S. K. aligned the
microscope and imaged the sample. S. R., N. S. and S. K. performed the
EELS measurements. S. R. and N. S. performed the EELS data analysis.
S. R. and J. B. W. performed the sample thickness analysis. A. P. and
S. R. performed the simulations. T. H. and K. P. fabricated the sample
with groove arrays. S. R. created the figures of the main manuscript.
S. R., N. S. and A. P. wrote the manuscript and supplemental informa-
tion. All authors were involved in discussing the obtained results and in
correcting the manuscript.

107



ARTICLE

Received 9 Dec 2013 | Accepted 14 May 2014 | Published 18 Jun 2014

Extremely confined gap surface-plasmon
modes excited by electrons
Søren Raza1,2,*, Nicolas Stenger1,3,*, Anders Pors4,*, Tobias Holmgaard5, Shima Kadkhodazadeh2,

Jakob B. Wagner2, Kjeld Pedersen5, Martijn Wubs1,3, Sergey I. Bozhevolnyi4

& N. Asger Mortensen1,3

High-spatial and energy resolution electron energy-loss spectroscopy (EELS) can be used for

detailed characterization of localized and propagating surface-plasmon excitations in metal

nanostructures, giving insight into fundamental physical phenomena and various plasmonic

effects. Here, applying EELS to ultra-sharp convex grooves in gold, we directly probe

extremely confined gap surface-plasmon (GSP) modes excited by swift electrons in

nanometre-wide gaps. We reveal the resonance behaviour associated with the excitation of

the antisymmetric GSP mode for extremely small gap widths, down to B5 nm. We argue that
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S
urface plasmons (SPs), that is, the collective excitation of
the conduction electrons localized at the metal surface,
allow for subwavelength localization and guiding of light1,2,

and electric field enhancements on the nanoscale3. These
attractive properties of the SPs have found application in a
wide variety of fields, that is from medical applications, such as
bio-sensing4 and cancer therapy5, to plasmonic waveguiding6.
However, the experimental mapping of SPs on the nanoscale
using light remains an inherently difficult task owing to the
diffraction limit. In contrast, the use of swift electrons to excite
SPs offers a powerful spectroscopic technique known as electron
energy-loss spectroscopy (EELS)7. Performing EELS in state-of-
the-art transmission electron microscopes (TEMs) equipped with
a monochromator and aberration corrector offers unmatched
simultaneous spatial and spectral resolution7,8. Ritchie predicted
the excitation of SPs using electrons9, and, more recently, low-
loss EELS has become an increasingly popular technique in
plasmonics, especially in the study and mapping of localized SP
resonances8,10–15. Although the majority of plasmonic EELS
studies have been focused on localized SP resonances, EELS has
also been used to study propagating SPs (that is, waveguide
modes) in, for example, metal thin films16 and nanowires17–19,
where standing waves are formed by forward- and backward-
propagating waveguide modes. Gap SP (GSP) modes, that is,
propagating SP modes in a dielectric gap between two metals20,
have been studied with cathodoluminescence21 and
photoluminescence22. However, GSP modes have, to our
knowledge, never been experimentally examined with EELS.
The GSP modes occur in a variety of geometries, from the
simplest one-dimensional (1D) metal–insulator–metal (MIM)
waveguide23,24 and metal nanowire-on-film geometries22 to
advanced structures such as the convex groove, V-groove and
trench and stripe waveguides25,26. Furthermore, GSP modes offer
enhanced properties compared with the usual propagating SP
mode, such as extreme light confinement with improved
propagation distances27,28, negative refraction29,30, highly
efficient light absorption25 and electrically driven circuitry31, to
name a few important and distinct features of GSP modes in
plasmonics.

Here, we report an experimental study of GSPs in ultra-sharp
gold convex nanogrooves using EELS. The geometry of these
nanogrooves is characterized by gradual and relatively slow
variations in the gap width when moving deeper inside a groove.
This means that the groove GSP modes can be considered as
being formed by local MIM GSP modes (that is, by GSP modes
supported by constant-gap MIM configurations) that are
weighted accordingly, a representation which is widely used in
integrated optics and plasmonics for effective-index approxima-
tion26. In EELS experiments (Fig. 1), the strongly confined
electrical fields of moving electrons excite thereby local MIM GSP
modes, corresponding to the position of the electron beam inside
the groove. Note that a sample should necessarily be thin along
the groove (Fig. 1) in order to be transparent for an electron
beam, but not too thin with respect to the GSP wavelength.
Overall, the considered groove geometry is ideal for studying
MIM GSP modes, as the width of the insulating layer (gap size)
decreases as the position of the electron probe is moved down the
nanogroove, thus allowing us to map the evolution of MIM GSP
modes for varying gap size in a single groove. We will also explore
how deep into the groove this local MIM picture remains
accurate.

Using the nomenclature common to transverse-light excitation,
the GSP modes can be classified according to the symmetry of
their transversal electric component with respect to the mirror-
symmetry plane of the groove (yz plane in Fig. 1). The symmetric
GSP (sGSP) modes have a net electric-dipole moment associated

with an induced-charge pattern that is antisymmetric with respect
to the mirror-symmetry plane, whereas the antisymmetric GSP
(aGSP) modes are optically dark because of a symmetric induced-
charge distribution. This classification is hereafter applied to both
MIM and groove GSP modes. For a more detailed account on the
field distributions and dispersion relations of GSP modes in
convex groove and MIM waveguides, we refer to Supplementary
Figs 1 and 2, as well as Supplementary Notes 1 and 2.

In this work, we intentionally propagate the electron beam
along the axis of the groove within the mirror-symmetry plane
(yz plane, cf. Fig. 1) in order to allow for probing of modes near
the groove bottom and to study the optically dark modes. We
verify experimentally the existence of the MIM aGSP mode in the
crevice of the groove, with the mode showing an increase in
energy as the gap size decreases. The presence of the MIM aGSP
mode is confirmed at extremely narrow gaps of only 5 nm.
Furthermore, we argue why the excitation of this mode, featuring
very strong absorption, has a crucial role in the experimental
realization of non-resonant light absorption by ultra-sharp
convex grooves with fabrication-induced asymmetry25.

Results
Fabrication. The fabrication of the gold nanogrooves is per-
formed using a focused ion beam (FIB) setup. A gold (Au) film of
1.8 mm in thickness is deposited on a silicon (Si) substrate, after
which areas of the gold are milled by the FIB to create the groove
structure. With this technique, ultra-sharp grooves with a 1D
period of B350 nm are fabricated (see Methods section for
details). Inside the FIB chamber, a layer of silicon dioxide (SiO2)
is then deposited to separate the grooves from the top platinum
layer used for protecting the sample during the preparation of the
TEM lamella. The thickness of the SiO2 layer (B500 nm) is
sufficient to avoid the influence of the platinum layer when
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Figure 1 | Gold nanogroove. Artistic impression of a single gold

nanogroove with the swift electron beam moving parallel to the groove

axis. The groove is filled with SiO2 and the substrate is Si. The period and

height of the grooves are determined from the STEM images, while the

thickness of the sample has been inspected in a scanning electron

microscope and also estimated from EELS data using both the log-ratio

method and Kramers–Kronig analysis42.
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performing EELS measurements inside the groove. With a
micromanipulator, the nanogroove sample is attached to a TEM
lift-out grid such that the electron beam passes perpendicularly to
the section of the sample and parallel to the axis of the groove, as
illustrated in Fig. 1. In order to characterize the grooves in the
TEM with EELS, we use the FIB to thin the nanogrooves along
the z direction to a thickness of B150 nm. This ensures that the
sample is sufficiently transparent for the electron beam, while at
the same time mechanically stable. Note that as a consequence of
the thinned sample, the structure can only be considered as a
waveguide facilitating propagating modes when the electron
beam probes MIM GSP modes at the base of the grooves, that is,
when the groove width is considerably smaller than the sample
thickness of B150 nm.

Figure 2 shows typical scanning TEM (STEM) images of the
gold nanogroove sample. In Fig. 2a, an overview image of the
sample is displayed with the gold nanogroove on top of a Si
substrate. The grooves are filled with SiO2 and the top platinum
layer can also be seen. Figure 2b shows a zoom-in of a single
groove, indicating the almost perfect symmetry with respect to
the mirror-symmetry plane of the groove (see also the dashed
white line in Fig. 2b). However, as we will discuss later, the slight
geometric asymmetry of the groove is crucial in understanding
the plasmonic black gold effect studied in ref. 25. Finally, Fig. 2c is
a close-up of a groove crevice, showing its extremely sharp nature.
The side-to-side width of the groove from the top to the bottom is
calculated with an in-house written image analysis code (see
Methods section) and ranges from 320 nm down to widths
smaller than 5 nm, thus confirming the ultra-sharp shape of the
grooves. Although slight fluctuations in shape and groove depths
may be seen, overall the grooves are impressively similar (which is
also reflected in our subsequent EELS measurements).

Electron energy-loss spectroscopy. To characterize the grooves,
we use an aberration-corrected FEI Titan STEM operated at an

acceleration voltage of 300 kV (corresponding to an electron
velocity of v¼ 0.776c) and with an electron probe size (that is, full
width at half maximum (FWHM) of the probe profile) of B5 Å.
The system is equipped with a monochromator, allowing us to
perform EELS measurements with an energy resolution of
0.15±0.05 eV. We performed a detailed analysis of six grooves on
the same sample by systematically collecting EELS data from the
top to the bottom of the groove (see Methods section). Since the
results obtained for these six grooves are very similar (Supple-
mentary Fig. 3), we present results for two of the grooves only.

The EELS data along with their corresponding electron probe
positions in the groove are displayed in Fig. 3a,b. The only data
treatment of the EELS data has been to subtract the zero-loss peak
from the raw data using the reflected-tail method (see Methods
section). The EELS data are relatively featureless for a broad range
of energies, but do show clear resonance peaks owing to the
excitation of SP mode(s). As the most prominent feature, we
observe that the resonance peak blueshifts from 2.1 to B2.6 eV
when the position of the electron probe is moved from the top
towards the bottom of the groove. This spectral sensitivity to the
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Figure 2 | STEM micrographs of a gold nanogroove. STEM images of

(a) sample overview with material labels; (b) single groove zoom-in; and

(c) ultra-sharp groove crevice. The STEM images display the periodicity of

the structure and the similarity in shape of each groove. Furthermore, the

grooves are quite symmetric along the center line (dashed line in b) and

extremely sharp, with B5 nm gap sizes in the crevice.
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groove width, especially apparent for small groove widths, is a
clear indication that the MIM aGSP mode (which is related to the
local width of the groove) is probed in the crevice rather than
(global) groove GSP modes, whose peak positions should not
depend on the electron position in the groove. This interpretation
is supported by simulations (see text below and Fig. 4 along with
Supplementary Figs 4 and 5).

In Fig. 3c, we plot the energy of the resonance peak E as a
function of the width W for two different grooves. The plot first
shows a slow increase of the resonance energy from 2.1 to 2.3 eV
as the groove width decreases from 250 nm down to 100 nm. This
behaviour is then followed by a stronger blueshift from 2.3 to
2.6 eV for widths decreasing from 100 to 5 nm. Numerically

calculated EELS data of groove waveguides (to be discussed
below) display the same trend, and we therefore interpret the
dependence E(W) as a result of two (spectrally close) modes being
excited simultaneously but with different strengths that depend
on the position of the electron probe. For widths W\100 nm, the
MIM aGSP mode is weakly excited because of the increased
distance between the electron and the metal–insulator interfaces.
This suggests the excitation of localized SPs supported by the top
of the grooves.

Accordingly, the slow increase in resonance energy as the
groove width decreases from 250 nm down to 100 nm represents
the transition from localized SP excitations to propagating MIM
aGSP modes. In the case of groove widths Wt100 nm, on the
other hand, the MIM aGSP mode dominates the EELS data,
which is signified by the strong dependence of the resonance peak
on the groove width. We note that the MIM aGSP resonance
energy in the crevice is very close to the measured bulk mode
resonance energy of gold (2.7 eV; black solid line in Fig. 3c),
which makes it difficult to experimentally distinguish the two
modes. For extremely narrow groove widths (Wo10 nm), the
field delocalization of the electron beam32 will eventually cause
interactions with the bulk plasmons even for perfectly straight
grooves. In the real experiment, additional effects of surface
roughness of the walls, as well as from the convergence angle of
the focused electron probe will be present. This convergence
semi-angle is B16 mrad, resulting in the displacement of the
electron trajectory from the straight-line path by B2.5 nm at the
exit of the groove (under the assumption that the focus point of
the beam is at the front plane of the groove). Thus, at very narrow
widths, there is the possibility that both MIM aGSP and bulk
plasmons are excited. Owing to the energy resolution of the
microscope (0.15±0.05 eV), it therefore becomes increasingly
difficult to distinguish between the MIM aGSP resonance energy
(at 2.6 eV) and the resonance energy of bulk gold (at 2.7 eV) in
the EELS data. In fact, we cannot distinguish the two resonance
peaks from a single spectrum, as their difference in energy is
below the resolution of the microscope. However, depending on
the exact position of the electron probe, we can excite one
resonance more efficiently than the other, allowing us to
determine the energy of one resonance in particular. This effect
is visible in the spread of the resonance energies for narrow
widths in Fig. 3c, and is also confirmed in the histogram in
Fig. 3d. This histogram represents the statistics of all measured
energy positions of resonance peaks (in both Grooves 1 and 2),
that is, the data points in Fig. 3c projected onto the energy axis
and binned into energy intervals of 0.04 eV. The histogram shows
a larger number of counts both at the resonance energy of the
MIM aGSP mode (at 2.6 eV) and at the bulk plasmon energy of
gold (at 2.7 eV), with a dip in between these energies, thus
supporting the interpretation that two different resonances close
in energy are present.

The two different grooves in Fig. 3c show almost identical
trends for the EELS peaks, indicating that the shape variation
from groove to groove is small. More astonishing is that both
grooves support MIM aGSPs in even extremely narrow gaps of
only 5 nm. The two energy-shift regions, that is, the slow increase
for W\100 nm and the faster increase for Wt100 nm, and the
presence of the MIM aGSP close to the bulk plasmon energy in
ultra-narrow gaps, are also observed for all other grooves studied
during this work (Supplementary Fig. 3). In addition, note that
the interpretation of the EELS peak from the wide part of the
grooves (W\100 nm) as a localized SP resonance is in agreement
with control experiments, in which a thinning of a sample
resulted in a blueshift of the EELS peak for the wide region in the
top part of the groove (Supplementary Fig. 6 and Supplementary
Note 3), thus representing the expected blueshift of localized SPs
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Figure 4 | Theoretical EELS data. (a) Waterfall plot of theoretical EELS

calculations at the corresponding position indicated on the groove model in

b. (c) Longitudinal component of the scattered electric field (total E-field

subtracted the E-field of the electron) for an electron beam probing at the

resonance energy of four different groove widths W. (d) Peak resonance

energy determined from EELS calculations as a function of width for the

groove model in b (black line), MIM (Au–SiO2–Au) waveguide (blue line),

and bulk gold (red dash-dotted line). The green dash-dotted line represents

the resonance energy of the groove aGSP mode. (e) Longitudinal

component of the electric field of the groove aGSP mode at E¼ 2.35 eV.

Permittivity for gold is taken from ref. 33. We use eSiO2
¼ 2:1.
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for structures with either reduced sizes or decreasing aspect ratios
in the direction parallel to the polarization of the applied electric
field (Supplementary Note 3).

Numerical simulations. To support the interpretation of the
experimental EELS data in Fig. 3, we have performed fully
retarded EELS calculations using the commercial software
COMSOL Multiphysics (see Methods section). For the numerical
analysis, we consider the nanogroove structure to be infinite in
the direction of the electron beam, that is, z direction, which
allows us to simplify the problem to two dimensional (2D).
Although the finite thickness of the sample is thus neglected, we
can still expect the 2D approximation to be accurate for narrow
groove widths (which is the region of interest), in which the
width-to-sample thickness ratio is low. In addition, in the inter-
pretation of the EELS spectra, the 2D approximation allows us to
emphasize the importance of propagating MIM and groove GSP
modes, which are typically properties of extended waveguide
structures. Finally, we assume that the groove has perfect mirror
symmetry, thereby neglecting any slight geometric asymmetries
present in the sample.

The results of the theoretical analysis are summarized in Fig. 4.
Figure 4a shows calculated EELS data at the electron beam
positions indicated in Fig. 4b, displaying flat spectra with distinct
resonances visible, in accordance with our experimental measure-
ments. Furthermore, the same blueshift trend of the resonance
peak is present in our simulations when the position of the
electron probe is moved towards the bottom of the groove. The
SP resonance shifts from B2.3 to 2.5 eV. In Fig. 4d, the black line
displays the calculated resonance energy as a function of the
groove width. We see that the initial slow blueshift for
W\100 nm followed by a steep blueshift for Wt100 nm is
accurately captured in our theoretical model. Furthermore, for
Wt50 nm, the calculations show a plateau at the resonance
energy of 2.5 eV, which is close to the bulk plasmon energy of
gold (red dash-dotted line). This is again in excellent agreement
with our experimental observations, although the bulk plasmon
energy of gold from the data in ref. 33 is slightly lower than the
bulk plasmon energy of our sample (at 2.7 eV; Fig. 3c). Figure 4c
displays the longitudinal component of the scattered E-field for
an electron beam probe at the resonance energy of four different
groove widths, demonstrating that the MIM aGSP mode is indeed
excited for widths Wt100 nm, as confirmed by the local field
distribution in the convex groove (for induced-charge distribu-
tions, see Supplementary Fig. 4). In contrast, we see a noticeable
field distribution at the top of the groove for W\100 nm,
indicating the excitation of a groove aGSP mode (that is,
symmetric induced-charge distribution). As revealed by mode
analysis (Supplementary Fig. 2), the groove waveguide under
study supports a single groove aGSP mode whose mode profile
(Fig. 4e) agrees well with the field generated by the electrons in
the top of the groove. This interpretation is further substantiated
by the fact that the energy of the EELS resonance peak in Fig. 4d
approaches the energy of the groove aGSP mode (green dash-
dotted line) for large groove widths. Finally, the peculiar
dispersion of the single peak observed in the theoretical EELS
data originates from the strong excitation of MIM aGSP modes in
the bottom of the groove, with decreasing strength as the electron
probe moves up the groove, while at the same time the excitation
efficiency of the groove aGSP mode increases. It should be
emphasized that the explanations for levelling of the EELS peak
dependence for larger groove widths are different for our
experimental results (Fig. 3c) and 2D simulations (Fig. 4d), as,
for the former (as argued above), this occurs because of the
excitation of the localized SP resonance.

MIM model. To test the analogy between the MIM aGSP mode
excited in convex grooves and the corresponding mode in MIM
waveguides, we have also performed EELS calculations on the MIM
(Au–SiO2–Au) waveguide. As in the simulations of the groove, we
position the electron probe in the centre of the MIM waveguide
and calculate the resonance energy of the MIM aGSP mode as a
function of the width of the insulating layer. The blue line in Fig. 4d
displays the main result, while the almost identical EELS spectra for
the two types of waveguides can be seen in Supplementary Fig. 5.
We see that the energy of the EELS peak is close, for Wt125 nm,
to that pertaining to the MIM aGSP mode, becoming identical for
Wt50 nm. From dispersion relation calculations of the MIM
waveguide (Supplementary Fig. 1), we also find that the propaga-
tion length of the MIM aGSP mode at the resonance energy
(2.5 eV) is below 10 nm for a MIM waveguide with a width of
50 nm. Furthermore, the propagation length decreases with
decreasing width, thus supporting the validity of the 2D approx-
imation in our calculations when in the bottom of the groove.

When comparing the experimental EELS measurements with
the theoretical groove simulations, we find that the experimen-
tally measured resonance energy spans a broader range (2.1–
2.6 eV) compared with the simulations (2.3–2.5 eV). As argued
earlier, we attribute the discrepancy at narrow widths (Wt50
nm) to the difference in the permittivity of gold found in ref. 33
used in our theoretical calculations and the permittivity of the
gold in our sample. We substantiate this point of view by the fact
that the procedure of thinning the sample using FIB leads to some
gallium contamination and surface amorphization of the gold,
which (depending on the FIB conditions used) can influence up
to tens of nanometres for each of the groove surfaces34,35. Note
that despite the fact that this (probably) FIB-related damage
affects the gold permittivity in the entire energy range considered,
the discrepancy between measurements and 2D simulations at
large groove widths (W\100 nm) is in any case expected as the
EELS peaks are related to physically different phenomena (three-
dimensional (3D) localized SP and 2D groove aGSP mode,
respectively).

The results obtained in the course of our EELS study allow us
to add an important element to the interpretation of very efficient
and broadband light absorption by ultra-sharp convex grooves in
gold25. The incident light, which propagates downwards (that is,
in the xy plane) for this purpose, couples through scattering off
the groove wedges to the MIM sGSP mode (not probed by our
EELS setup), which is adiabatically focused and, consequently,
absorbed as it propagates into the depth of the groove. Quite
surprisingly, the experimental measurements showed even better
light absorption than the simulations. Those simulations were
based on a completely symmetric groove geometry and (for the
most part) normally incident light. However, the grooves are
neither perfectly symmetric, as discussed in the context of Fig. 2,
nor is the light in the experimental setup a perfect plane wave
impinging normally to the surface. Thus, incoming light will,
owing to the inclined propagation and the slight asymmetry of
the groove, in practice also couple to the significantly more lossy
MIM aGSP mode, which we studied here with EELS. In fact, it
was already shown in the Supplementary Information of ref. 25
that a small inclined angle (B20�) of the incident light
moderately improves the overall absorption, which we can now
ascribe to excitation of the MIM aGSP mode. It should be stressed
that the introduction of a small asymmetry results in a weak
excitation of the MIM aGSP mode, so that the absorption is still
dominated by the MIM sGSP mode. In addition, we have
performed light-scattering simulations of slightly asymmetric
grooves with normal incident light (Supplementary Fig. 7 and
Supplementary Note 4), which confirm the increased (by B40%)
absorption relative to the symmetric configuration.
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Discussion
We have reported the application of EELS to the characterization
of extremely confined GSP modes excited by electrons in
nanometre-wide gaps. Using ultra-sharp convex grooves in gold,
we have recorded the EELS data with high-spatial (o1 nm) and
energy (B0.15 eV) resolution in the mirror-symmetry plane of
the groove cross-section. Both experimental and theoretical EELS
data have revealed resonance behaviour associated with the
excitation of the antisymmetric MIM GSP mode for extremely
small gap widths, down to B5 nm. We believe that the excitation
of this mode, featuring very strong absorption, can be related to
the experimental results obtained in the recent study devoted to
the phenomenon of plasmonic black gold, in which very efficient
and broadband light absorption by ultra-sharp convex grooves
has been observed25. Since, as opposed to simulations used to
account for the observed effect, realistically fabricated grooves are
not perfectly symmetric, a part of the unexpectedly strong light
absorption in the grooves can be ascribed to the MIM aGSP
excitation owing to fabrication-induced asymmetry (Supple-
mentary Fig. 7 and Supplementary Note 4). We note that such
a direct comparison between EELS measurements and optical
response is in general possible but challenging, as electrons and
photons excite different linear combinations of plasmonic
eigenstates36–38. Furthermore, complications in carrying out
EELS and optical spectroscopy under different environmental
conditions can lead to slight energy shifts when confronting the
two types of spectra (see ref. 39 and references therein).

Finally, it should be stressed that the MIM aGSP mode
excitation should be expected to occur at any asymmetric
junction/bend of GSP-based (gap or slot) plasmonic waveguides
typically used in various plasmonic circuits31,40,41. The aGSP
mode absorption thereby represents an additional (efficient)
channel of energy dissipation that should be taken into account in
the design of plasmonic nanophotonic circuits and devices.

Methods
Fabrication. The samples were prepared by first depositing 1.8-mm-thick gold
films on a plasma-cleaned Si substrate by direct current sputtering at a deposition
rate of 1 Å s� 1. Arrays of ultra-sharp grooves in gold were fabricated using a cross-
beam system (FIB and scanning electron microscope), where a beam with a con-
stant current (50 pA) of Gaþ ions is focused onto the gold surface at normal
incidence, with the position of the beam controlled by a lithography system. To
fabricate deep and narrow grooves, several consecutive runs (using single-line
writing) of each groove were performed. Using this method, a 350-nm-period 1D
array of ultra-sharp convex grooves featuring practically parallel walls at the bot-
tom were fabricated.

The array of grooves was then filled and covered with a B500 nm SiO2 layer by
in situ deposition utilizing a gas injection system and e-beam deposition with the
electron column. A layer of platinum was then deposited in order to protect the
array of grooves. The TEM lamella was cut free on three sides and at the bottom (in
the Si substrate) before welding the lamella to an etched tungsten tip using in situ
platinum deposition. The lamella was detached from the sample using the FIB and
welded on a TEM grid using the gas injection system. Finally, the lamella was
carefully thinned to B150 nm with the FIB to allow investigation in the TEM.

EELS measurements. The EELS measurements were performed with a FEI Titan
TEM equipped with a monochromator and a probe aberration corrector. The
microscope was operated in STEM mode at an acceleration voltage of 300 kV,
providing a probe diameter of 0.5 nm and a zero-loss peak width of 0.15±0.05 eV.
The EELS data were recorded using both automated line-scan acquisition and
single-spectrum acquisition, with optimized acquisition times ranging from 80 ms
to 2.5 s, where the longer acquisition times were needed close to the groove crevice
and also when acquiring spectra through the bulk gold. To further improve the
signal-to-noise ratio, we summed up to 20 spectra for each measurement point.

The EELS data were analysed by first removing the zero-loss peak using the
reflected-tail method42. Afterwards, the resonances were fitted to Gaussian
functions using a nonlinear least-squares fit, from which the resonance energies
were extracted. The error in the resonance energy is given by the 95% confidence
interval for the estimate of the position of the centre of the Gaussian function. Our
conclusions remain unchanged when performing data analysis beyond the
reflected-tail method, that is, with a power-law removal of the zero-loss peak

combined with the elimination of the above-plasmon resonance background
because of substrate effects43.

Image analysis. The analysis of the STEM images were done in MATLAB. To
connect the depth of the groove and the position of the electron probe with the
width of the groove, we considered each horizontal line of pixels of the image
separately. The greyscale in the dark-field STEM images is primarily determined by
the atomic number of the material and the thickness of the sample crossed by the
electron probe. The former explains the image intensity difference between the
SiO2 and the gold layers, that is, lower image intensity for SiO2 than gold. In order
to determine the position of the interface between the gold and the SiO2, we looked
for the steepest change in intensity in each line of pixels. We numerically deter-
mined the derivative of the intensity profile for each line that showed two peaks
corresponding to the steepest changes on each interface of the groove. For a per-
fectly sharp intensity change, that is, a Heaviside step function, the derivative will
give a Dirac function, whereas for a more gradual change of intensity the derivative
will give a Gaussian-like function, which is akin to the derivative of the error
function in statistics. Subsequently, we fitted these two peaks to Gaussian functions,
and the difference between the centres of these functions gave us the corresponding
width of the groove. We quantified the error in the groove width as the sum of the
FWHMs of the two Gaussian functions. The errors are plotted as horizontal bars in
Fig. 3 and in Supplementary Figs 3 and 6c. This conservative estimate for the error
accounts for the convolution of the electron probe profile with the structure (on the
order of the spatial resolution of the beam (B0.5 nm)), the surface roughness of the
gold surface in the groove, misalignment of the axis of the electron probe compared
with the axis of the groove and other sources of indeterminacy, such as the possible
residues left in the bottom of the groove by the FIB milling.

Simulations. All modelling results are performed using the commercially available
finite-element software (COMSOL Multiphysics, version 4.3b). In the calculations,
we only model a single unit cell of the 1D groove array, applying periodic boundary
conditions to the vertical sides of the cell. The parameters used for the single
symmetric unit cell of the groove model in Fig. 4b are L¼ 317 nm, H¼ 467 nm,
a¼ 85 nm, r¼ 60 nm, d¼ 0.5 nm and a¼ 2�. The lower boundary of the simula-
tion domain, representing the truncation of the optically thick gold substrate,
behaves as a perfect electric conductor, while the SiO2 glass domain above the
grooves is truncated using perfectly matched layers. The electron beam, moving in
the z direction (that is, the direction of invariance), is modelled as an out-of-plane
line current jz R;oð Þ ¼ eud R�R0ð Þe� ike z , where d is the Dirac delta function and
R¼ (x,y) with R0¼ (x0,y0) being the transverse location of the electron beam. Here,
e is the charge of the electron, v¼ 0.776c is the electron speed corresponding to an
acceleration voltage of 300 keV, c is the speed of light in vacuum, and ke¼o/v. The
loss probability GEELS, which is proportional to the measured EELS spectra, can be
calculated as GEELS oð Þ ¼ eu= p‘oð ÞRe Eind

z R0;oð Þ
� �

, where ‘ is the reduced
Planck constant and Eind

z is the z component of the induced electric field at the
position of the electron7. The permittivity of gold is described by interpolated
experimental values33, whereas the permittivity of SiO2 assumes the constant value
eSiO2 ¼ 2:1 in the considered energy range. Note that a related COMSOL approach
was recently used in an independent study of bow-tie antennas44, but alternative
modelling packages exist45,46.
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Supplementary Figure 1: Gap surface plasmon modes in MIM waveguides. (a) Sketch of

MIM waveguide, consisting of a SiO2 spacer of width W sandwiched between two semi-infinite

gold substrates. MIM GSP modes propagate along the z-direction. (b,c) Dispersion relation for

MIM symmetric and antisymmetric GSP modes (MIM sGSP and aGSP, respectively) for

W = 20 nm and W = 50 nm. The permittivity of gold is taken from experimental data1 and

εSiO2 = 2.1. (d,e) Electric-field profiles calculated for MIM configuration with W = 20 nm and

energy E = 2 eV for the MIM sGSP and aGSP, respectively.
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Supplementary Figure 3: Peak resonance energy as a function of groove width. (a) Measured

EELS peak as a function of groove width for six different grooves. The vertical error bars

correspond to the 95% confidence interval for the estimate of the position of the resonance energy

in our experimental data and the horizontal error bars represent the indeterminacy in measuring

the width of the grooves based on the intensity contrast in our STEM images (see Methods). (b)

Histogram displaying the number of resonance energies within bin intervals of 0.03 eV

[projection of data in (a) onto the E-axis], corresponding to the average energy error bar size. In

the main text we address two grooves (named grooves 1 and 2) both belonging to the main

sample. Here, (a) confirms the consistency in measurements for other grooves in the same sample.

Moreover, we see a weak blueshift for widths W & 100 nm followed by a stronger blueshift for

W . 100 nm, while (b), showing two maxima for E & 2.6 eV with a noticeable reduction of bin

counts in between, indicates the presence of two resonance energies in the bottom of the groove:

the excitation of the MIM aGSP mode at ∼ 2.6 eV and the bulk plasmon of gold at ∼ 2.7 eV.
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Supplementary Figure 4: EELS induced-charge plots at the resonance energy of four

different groove widths. The panels show calculations of induced charge distributions in the

convex groove studied in the main text for the electron beam positioned at four different widths

W , but in each case at the corresponding resonance energy. The resonance energies for the four

widths W =3, 30, 100, and 230 nm are E =2.5, 2.5, 2.38, and 2.35 eV, respectively. The induced

charge distribution is calculated from the requirement of charge conservation, leading to

ρ = −i/ω∇ · Jind (time convention: e−iωt) where ω is the angular frequency,

Jind = −iωε0(εm − εd)E is the induced current, ε0 is the vacuum permittivity, εd is the relative

permittivity of the dielectric, εm is the relative permittivity of the metal, and E is the electric field

in the metal. The induced-charge plots complement Fig. 4(c) in the main text, confirming that

only a local excitation (related to the existence of the MIM aGSP mode) occurs in the crevice of

the groove.
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Supplementary Figure 5: EELS spectra for MIM and convex groove waveguides. In the

main text we demonstrated perfect agreement between the spectral position of the EELS peak of

MIM and groove waveguides for electron beams probing the groove structure below W ∼ 50 nm

(see Fig. 4(d) in the main text). To further substantiate the point that the EELS response in the

crevice of convex grooves is determined by the groove width (corresponding to the electron beam

position) in the same fashion as that of MIM waveguides, we show EELS calculations for two

widths (W = 20 nm and 50 nm) of the MIM waveguide and EELS spectra for the electron beam

positioned at the corresponding widths in the groove waveguide. EELS spectra are obtained using

Comsol Multiphysics with the electron beam positioned at the center line of the two types of

waveguides and having the velocity v = 0.776c. Metal and insulator are assumed to be gold and

SiO2, respectively. It is clear that the two types of waveguides produce almost identical EELS

spectra, both with respect to amplitude and peak positioning (including a nearly identical blue

shift of the peak positions for narrower gaps) and with very similar induced-charge distributions.
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Supplementary Figure 6: Control experiment. (a) SEM image of the control sample after

thinning further down a 5 µm-wide section. A clear step in thickness separates the thin (right side

of the image) and the thick (left side of the image) part of the sample. (b) Zoom-in on grooves

located in the thin part of the sample. (c) Peak resonance energy as a function of groove width for

two different grooves belonging to the thin part (grooves B1 and B2) and two other grooves

belonging to the thick part (grooves B3 and B4). The vertical error bars correspond to the 95%

confidence interval for the estimate of the position of the resonance energy in our experimental

data and the horizontal error bars represent the indeterminacy in measuring the width of the

grooves based on the intensity contrast in our STEM images (see Methods).
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Supplementary Figure 7: Reflection from groove arrays. (a) Geometrical parameters defining

the profile of the groove arrays. The small asymmetry in the groove profile is introduced by

choosing a1 ̸= a2 and r1 ̸= r2. (b) Reflection spectra for normal incident light for a symmetric

(a1 = a2 = 85 nm and r1 = r2 = 60 nm) and asymmetric (a1 = 85 nm, a2 = 50 nm, r1 = 60 nm,

and r2 = 20 nm) groove array. The other parameters are as in the main text: Λ = 317 nm,

H = 467 nm, δ = 0.5 nm, and α = 2◦. The metal is assumed to be gold with permittivity taken

from the supplementary material of Ref. 1, whereas the dielectric medium is SiO2 with

permittivity εSiO2 = 2.1. Inset shows profiles of the considered grooves.
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Supplementary Note 1: Metal-insulator-metal waveguides

Metal-insulator-metal (MIM) waveguides support surface TM waves whose magnetic field com-

ponent, cf. Supplementary Fig. 1(a), takes the form Hy = A(x)eiβz, where β is the propagation

constant. Due to the symmetry of the waveguide, the amplitude function A(x) can either be sym-

metric or antisymmetric with respect to the center line, thus leading to two types of modes with

dispersion relations given by2–4

tanh

(
1

2
κdW

)
= −





εdκm
εmκd

, (symmetric)

εmκd
εdκm

, (antisymmetric)

, (1)

where W is the width of the dielectric spacer, εd is the relative permittivity of the dielectric, εm is

the relative permittivity of the metal, κm =
√

β2 − k2
0εm, κd =

√
β2 − k2

0εd, and k0 is the free-

space wave number. The two modes are also known as the MIM symmetric and antisymmetric

gap surface plasmon modes (MIM sGSP and aGSP, respectively), where MIM sGSP is the most

frequently studied mode as it is the only mode that would exist in subwavelength gaps of lossless

MIM waveguides. That said, in real MIM waveguides with Ohmic losses the MIM aGSP also sub-

sists and is typically considerably more lossy than the MIM sGSP mode5. It should be noted that

the nomenclature of the two modes refers to the symmetry of the magnetic (Hy) or, equivalently,

electric transversal (Ex) component. Accordingly, in symmetric waveguides [Fig. 1(a)] the MIM

sGSP and aGSP are only efficiently probed by light and electron beams, respectively.

Supplementary Fig. 1(b,c) displays solutions of Eq. (1) for a gold-SiO2-gold waveguide with

subwavelength gaps. As expected, the effective refractive index of the two modes, neff = β/k0, in-

8
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creases with decreasing gap width, showing a maximum in Re{neff} at energy E ≃ 2.35 eV which

corresponds to the surface plasmon resonance. Typical mode profiles of MIM sGSP and aGSP can

be found in Supplementary Figs. 1(d) and 1(e), respectively, where the oscillatory behavior of the

electric field into the gold for MIM aGSP is a consequence of Re{neff} < Im{neff}.

Supplementary Note 2: Convex groove waveguides

The convex groove waveguide consists of a periodic array of grooves, one of which is sketched in

Supplementary Fig. 2(a). The geometrical parameters are the same as those used in the main text:

Λ = 317 nm, H = 467 nm, δ = 0.5 nm, α = 2◦, a = 85 nm, and r = 60 nm. The corresponding

groove GSP modes are then found by assuming a solution of the form E(x, y)eiβz for the electric

field, which converts the electric wave equation into an eigenvalue problem for [β,E] that is solved

using Comsol Multiphysics. Supplementary Fig. 2(b,c) shows the dispersion relations for groove

GSP modes in the interval 1.25 − 3 eV, with longitudinal electric field component and induced

charge distribution for the four modes displayed in Supplementary Fig. 2(d-l). Using the same

nomenclature as for MIM GSP modes, calculations show three symmetric and one antisymmetric

groove GSP mode, where the groove sGSP modes clearly increase in mode order for increasing

energy (see the number of nodes in the electric-field profiles along the groove wall). It should be

stressed that for an electron beam positioned along the center line of the groove only the groove

aGSP mode of Supplementary Fig. 2(d) can be excited, and that this mode, due to its field concen-

tration at the top of the groove, is not probed in the crevice. For this reason, the lower part of the

groove is expected to behave similarly to a MIM waveguide with respect to the EELS response for

9
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symmetric excitation.

Supplementary Note 3: Control experiment: The influence of groove thickness

In order to clarify the nature of the two different types of modes, i.e., the presence of localized SP

modes on top of the groove and MIM aGSP propagating modes in the crevice, we studied the in-

fluence of the thickness (parallel to the axis of the groove) on the resonance energies of the groove.

For this purpose, we prepared a second sample (control sample) using the method described in

the Methods section. The groove has a similar shape, but with slightly different geometrical pa-

rameters. Supplementary Fig. 6(a) displays a SEM image of the control sample with a geometry

similar to the main sample (see main text), but with a periodicity of Λ = 250 nm, and a height

of H = 340 nm [Fig. 6(b)]. Using the FIB, we thinned down a 5 µm-wide section of the control

sample, such that the influence of the sample thickness could be studied, see Fig. 6(a).

We performed EELS measurements on the control sample following the same protocol used for

the main sample. For the grooves in the thin and thick parts of the control sample, we acquired a

series of EELS spectra from the top to the bottom of the groove, along the mirror-symmetry plane

of the groove inside the dielectric section. Additionally, we have taken EELS spectra with a larger

energy dispersion (from 0 to 100 eV) and used them to estimate the thickness of the thin and the

thick regions of the sample. The results show a constant thickness profile inside the groove for

both thin and thick regions of the sample with respective thicknesses of approximately 100 nm and

135 nm.

In Supplementary Fig. 6(c) we plot the energy of the resonance peak as a function of the groove

10
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width for two different grooves belonging to the thin region (grooves B1 and B2) and for two

other grooves belonging to the thick region (grooves B3 and B4). Despite the different geometri-

cal parameters (i.e., periodicity and groove height), we observe the same overall behavior for the

resonance energies between the main sample and the control sample, i.e., a weakly blueshifting

mode for large widths and a more rapid blueshift for widths below approximately 70 nm. Inter-

estingly, we also see a consistent energy difference between the thick and the thin region of the

control sample for widths above 70 nm. A more thorough analysis shows that the average energy

of these modes for the thick region is 2.18 eV while the average energy is 2.24 eV for the thin

region (an energy difference that is slightly larger than the average energy error bar: 0.05 eV). This

observation is consistent with the blueshift observed in localized SP excitations for structures with

either reduced sizes or decreasing aspect ratios in the direction parallel to the polarization of the

applied electric field (See Chapter 12 in supplementary material of Ref. 6).

Moreover, the width at which the blueshift becomes stronger in both parts of the sample is dif-

ferent, as illustrated by the dashed vertical lines in Supplementary Fig. 6(c). The onset of the

stronger blueshift appears around 45 nm and 60 nm for the thin and the thick regions, respectively.

As mentioned in the main text, propagating plasmons are only expected for widths smaller than

the thickness of the sample, in which case the sample can be considered as a two-dimensional

system. Hence, reducing the thickness of the sample should lead to the onset of the propagating

mode for smaller widths, as we observe experimentally. The fact that the strong blueshift is similar

for narrow widths, independent of the exact geometry and thickness of the samples (main sample

and control sample), sustains our claim that the modes probed in this region correspond to the

11
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propagating MIM aGSP modes.

Indeed, for a width of 50 nm the calculated propagation constant for the MIM aGSP mode is

less than 10 nm, one order of magnitude smaller than the thicknesses measured in both the main

sample and the control sample, excluding the possibility that standing or localized modes deep in

the groove were probed.

Supplementary Note 4: Reflection from asymmetric groove arrays

With the experimental verification of the presence of the lossy MIM aGSP mode in the crevice

of convex groove arrays, it is evident that the mode may play an important role in the strong

broadband light absorption that was experimentally observed in similar groove arrays7. So far,

the strong absorption has been explained by excitation of the MIM sGSP mode at the top of the

groove, which is then adiabatically focused and absorbed as it propagates down into the groove7.

The fabricated structures, however, possess a small degree of asymmetry which, together with

inclined incident light, allow for excitation of the MIM aGSP mode that may contribute noticeably

to the overall absorption. To test our hypothesis and to explain the unexpectedly high absorption

of ’black gold’, we have numerically calculated the light reflection from a symmetric and slightly

asymmetric groove array for normal incident light. Supplementary Fig. 7(a) shows a sketch of

the groove structure and light polarization, while Supplementary Fig. 7(b) presents the calculated

reflectivity. It is clear that the effect of slight asymmetry, which we ascribe to the excitation of the

MIM aGSP mode, mostly affects the energy region E > 1.7 eV with an overall lower reflectivity.

12
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The increased absorption is particularly noticeable for energies E > 2 eV, with increases as high

as ∼ 40% compared to the symmetric configuration.
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S
tudies of transport and wave dynamics in complex and
confined geometries1 are now bridging several fields
ranging from nanoplasmonics2–4 and metamaterials5 to

molecular electronics6 and mesocopic quantum transport7,8, with,
for example, charge carriers responding to externally perturbing
fields as well as exhibiting stochastic kinetics and entropic effects
such as diffusion9. When considering ultrafast responses of
optically driven collective plasma oscillations in nanoscale
geometries, it is expected that the optical response should
exhibit both quantum properties of the electron gas as well as
classical diffusion dynamics of the optically induced charge. The
coexistence and interplay of quantum and classical effects have
profound implications for our understanding of light–matter
interactions at the nanoscale, with direct relevance to the
emerging field of quantum plasmonics10.

The behaviour of plasmon resonances of individual silver
metallic nanoparticles (MNPs)11,12 and gold MNP dimers13

seems to be possible to understand only by invoking quantum-
mechanical effects, that is, quantum electron transitions and
quantum tunnelling, respectively. At the same time, one might
question the necessity of considering numerous quantum-level
transitions in nm-sized NPs (that is, consisting of thousands of
atoms and with a size much exceeding the Fermi wavelength) in
the case of monomers and the very possible existence of ultrafast
tunnelling phenomena (that is, tunnelling currents oscillating at
optical frequencies) in the case of dimers. While classical
electrodynamics in a Drude local response approximation
(LRA) unambiguously fails to explain the observed phenomena,
we show that the possibility for semiclassical accounts has not
been exhausted.

Linear response theory is inherent to our understanding of
situations where matter is subject to externally perturbing fields.
Common strategies assume a temporally instantaneous and
spatially local response, while nature is rich in examples where
underlying degrees of freedom are responsible for a much more
complex response. Materials exhibiting frequency dispersion are
well known for having complex-valued response functions due to
Kramers–Kronig relations that originate from the ubiquitous
principle of causality. By contrast, spatial dispersion can usually
be neglected and most materials are well treated within LRA.
Insulators represent a prime example since the polarization of one
particular atom in the crystal is only weakly affected by coupling
to neighbouring atoms. Conducting media constitute a clear
exception to this picture14,15 and despite the widespread use of
LRA approaches, the free carriers may mediate a response over
finite distances that cannot necessarily be neglected in a
nanoplasmonic context.

In terms of the Maxwell equations, the electrical field in a
medium with non-local response is formally governed by

r�r�EðrÞ ¼ o
c

� �2
Z

dr0eðr; r0ÞEðr0Þ ð1Þ

where e(r, r0) is the non-local response function. This general
concept of non-local response of conducting media originates
from the competing mechanisms of pressure-driven convective
flow of charge as well as disorder- or entropy-driven diffusion of
charge14. Quite surprisingly, while the literature is rich on
discussions of the former effect within hydrodynamic models, the
importance of the latter in nanoplasmonic systems remains
unexplored, and, according to our knowledge, there is no unifying
real-space description applicable to realistic plasmonic
nanostructures. Pioneering works focused on pressure-driven
convective flow of charge in ideal geometries16–19, while the
exploration of non-local response in arbitrarily shaped metal
nanostructures has only recently been initiated20, emphasizing
real-space rigorous formulations of semiclassical hydrodynamic

equations21 and different solution strategies22–26. Thus, large
blueshifts in nanoscale noble metal plasmonic structures11,27,28

have been interpreted in the context of the quantum pressure-
related non-local response27,28, while quantum confinement11

and surface-screening29 explanations have also been proposed.
Here we develop a semiclassical generalized non-local optical

response (GNOR) theory that incorporates both quantum
pressure effects and induced charge diffusion kinetics. We
show that the GNOR approach can account for the main features
observed in recent optical experiments with plasmonic nano-
structures11,13,28,30 without accounts for quantized-energy
transitions and without invoking quantum tunnelling that
should not, as we argue later on, be important at optical
frequencies.

Results
Isotropic and short-range non-local response. We take
equation (1) as our starting point, while assuming a generic short-
range isotropic response. Irrespective of the detailed microscopic
mechanism behind the non-local response, the wave equation in
the metal can then be reframed as31

r�r�EðrÞ ¼ o
c

� �2 eDþ x2r2
� �

EðrÞ; ð2Þ

where eD is the Drude dielectric function usually associated with
Ohmic local response of the electron gas (possibly generalized to
also include interband effects), while the GNOR parameter x
represents a phenomenological length scale associated with the
short-range non-local correction to the local response Drude part.
Importantly, the GNOR parameter accounts for mechanisms of
very different origins that may compete or play in concert, while
causing the same Laplacian-type correction to the LRA. For
example, both convection and diffusion can lead to spatial
dispersion in conducting media14. Within LRA, the induced
charge density Dn is a delta function at the surface of the metal
and diffusion will naturally smear this charge density with the
short-time dynamics characteristic for pure diffusion (Fig. 1c).
Also, convection tends to spread the charge density and within
the common hydrodynamic Drude model, convection maps
directly to the form of equation (2), that is, with a Laplacian
correction to the local response Drude part24. In the following, we
treat both dynamical effects on an equal footing by considering
both propagating longitudinal pressure waves (in a hydrodynamic
model) and diffusion (in convection-diffusion model). The main
result of our analysis is the following expression for the GNOR
parameter:

x2 ’ b2

o2
� i

D
o

ð3Þ

where bpuF is a characteristic velocity associated with pressure
waves in the electron gas (uF being the Fermi velocity) while
D is the diffusion constant for the charge-carrier diffusion.
The former is already known to cause frequency shifts
(blueshifts)17,21,22, while the latter turns out to cause line
broadening, that is the GNOR parameter x is in general a
complex-valued quantity. As also anticipated from more general
discussions14, our rigorous semiclassical treatment shows that
non-local effects may manifest themselves over distances greatly
exceeding atomic dimensions and become comparable to
characteristic structure dimensions, such as the radius R of a
nanoparticle (Fig. 1a) or the gap distance g in a dimer (Fig. 1b).
As a main result, we show that the GNOR even dominates
more pure quantum-mechanical effects in the electromagnetic
response at optical frequencies, such as the anticipated effect
of quantum-mechanical tunnelling currents in dimers with
sub-nanometre gaps (Fig. 1b).
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Semiclassical response models. We consider the standard
equation-of-motion for an electron in an external electrical field
subject to the continuity equation. The common LRA simply
neglects effects of quantum pressure as well as the diffusion
contributions to the induced currents. We address these two
aspects in turn and finally discuss how they play in concert to
result in a complex-valued GNOR parameter.

Within the hydrodynamic model (including quantum pressure,
but neglecting diffusion), the response is governed by a general-
ized constitutive equation21,22

b2

oðoþ igÞ= = � Jconvð Þþ Jconv ¼ sDE ð4Þ

where sD is the usual Drude conductivity. Within Thomas–Fermi
theory, b2 ¼ ð3=5Þu2

F and g¼ 1/t is the damping rate also present
in the Drude theory.

Taking the opposite standpoint (including diffusion, while
neglecting quantum pressure), linearization of the problem gives
(Supplementary Note 1)

D
io

= = � Jdifð Þþ Jdif ¼ sDE ð5Þ

as also derived recently in the context of metamaterial wire
media32. Our key observation is that this result is mathematically
similar to equation (4), while the different physical origins cause
different prefactors for the non-local correction to Ohm’s law.

Turning to the Maxwell wave equation, the above non-local
=(= � J) corrections to Ohm’s law can be rewritten as a Laplacian
correction to the Drude dielectric function24,31, as anticipated in
equation (2). The convection and diffusion components of
the current are of the same mathematical form and subject to
the same boundary conditions. Thus, in the linear response the
considered non-local contributions add up (as in semiconductor
drift-diffusion theory), as confirmed by linearizing the full
hydrodynamic diffusion-convection problem (Supplementary
Note 1), revealing how both quantum and classical kinetic
effects can play in concert contributing to the non-local response.
Therefore, we arrive at equation (2) with

x2 ¼ b2

oðoþ igÞ � i
D
o
¼ b2þDðg� ioÞ

oðoþ igÞ ; ð6Þ

which becomes equation (3) when neglecting damping. Note that
for higher o, diffusion becomes relatively more important
compared with convection. Another important practical
observation is that diffusion effectively causes the following
modification of the non-local b-parameter appearing in prior
hydrodynamic work: b2-b2þD(g� io). We explicitly neglect
electron spill-out and the possible existence of associated
quantum-tunnelling phenomena (see also Supplementary Note
2). Consequently, boundary conditions remain unchanged in the
presence of diffusion (n � J¼ 0 on the metal surfaces so that no
electrons escape the metal volumes). Thus, existing numerical
schemes and methods22–26 can readily be exploited to implement
the GNOR approach for various plasmonic configurations.

The diffusion constant is generally interlinked with other
transport parameters such as the scattering time, that is,
Dpt¼ g� 1. For ocg, we thus recover equation (3) for the
GNOR parameter that now explicitly exposes the two competing
length scales that were previously discussed only qualitatively14,
that is, the convection length b/o on the one hand and the
diffusion length

ffiffiffiffiffiffiffiffiffiffi
D=o

p
on the other hand. The damping

associated with the latter is an important new finding that
turns out to be crucial when approaching the nanoscale. Diffusion
degrades plasmonic excitations, providing an additional
broadening mechanism that, mathematically, is enacted by an
imaginary contribution to x2.

Validity domain. For classical gases (such as dilute plasmas,
electrolytes and weakly doped semiconductors), the velocity
distribution is governed by Maxwell–Boltzmann statistics and
D is proportional to the temperature, as given by the Einstein
relation. For metals on the other hand, Fermi–Dirac statistics
implies a narrow transport velocity distribution14 with a
characteristic velocity uF. As a result, the diffusion constant is
simply D ’ u2

Ft, corresponding to a mean-free path of c¼ uFt.
We point out that our diffusive model is valid for structural
dimensions exceeding the mean-free path that in pure single
crystals33 can be of the order of 100 nm for Ag and Au, down to
B3 nm for Na (see Supplementary Table 1). Moreover, in
realistic plasmonic nanostructures, c depends on actual material-
processing conditions, becoming shorter than in single-crystalline
bulk metals. This enlarges the validity domain of a diffusion
description to include structures with dimensions of only a few
nanometres. For even smaller dimensions, electrons will move
ballistically between the surfaces of the structure, and surface
scattering might become important. For metals, equation (6)
simplifies to x2 ¼ u2

F
o2 ð35� iogÞþOðg=oÞ. This result leads to an

important insight into the interplay of different broadening
mechanisms: the lower the Ohmic loss and absorption, the more
important is the non-local response due to long-range diffusion
of the induced charge. Re-introducing the diffusion constant

Increasing time

g
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π4Dt
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Figure 1 | Nanoplasmonic monomer and dimer structures. (a) Spherical

particle of radius R, known to experimentally exhibit size-dependent

damping37,38 and resonant shifts11,12,28. (b) Nanowires of radius R arranged

parallel to each other with a dimer gap g. Dimers are known experimentally

to exhibit gap size-dependent broadening and shifts of hybridized

plasmonic resonances13,30. (c) Diffusive temporal spreading of an initially

pure surface charge B0 into the metal volume (orange-shaded area) of a

plasmonic nanoparticle. By accounting for diffusion of charge, the GNOR

theory can explain size-dependent broadening and shifts of nanoparticle

resonances, as well as gap size-dependent broadening and shifts for

dimer resonances. Unlike other theories (including the QCM52), our GNOR

theory does not invoke quantum tunnelling to explain gap size-dependent

spectral broadening.
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and the b-parameter we arrive at equation (3) that holds if the
mean-free path significantly exceeds the convective length, that is,
c44uF/o. The existence of spatial dispersion in homogenous
media, as for example, appearing within the common
hydrodynamic Drude model, can be derived from higher-level
descriptions such as the Boltzmann equation or the random-
phase approximation (RPA). Beyond hydrodynamics, confined
structures with broken translational invariance constitute a
largely unexplored territory, with few attempts dealing with
RPA aspects of localized plasmon resonances34. In support of our
prediction of diffusive broadening, recent RPA studies reveal an
increased plasmon linewidth associated with Landau damping35,
that is, electron-hole pair excitation near the surface of
nanostructures as also observed in studies based on time-
dependent density functional theory (TD-DFT)36.

We provide in the following two key examples of the GNOR
approach, demonstrating that the interplay of quantum pressure
and diffusion has a remarkable impact on the optical response of
plasmonics nanostructures and solving long-standing open
problems.

Size-dependent damping. In general, the hydrodynamic correc-
tions give a blueshift of resonances as the characteristic dimen-
sions are reduced17,22,27,28, which is in qualitative accordance
with recent optical spectroscopy on gold-particle gap structures27

and electron-energy loss spectroscopy (EELS) studies of silver
nanoparticles11,28. With the complex-valued GNOR parameter x
at hand, we now anticipate the blueshift to occur along with
broadening of the resonant response when decreasing
characteristic structure dimensions. In the case of a spherical
particle, the blueshift has a b/R dependence28, leading us to
foresee that the line-broadening scales as 1/R as well. In the
quasi-static limit (l44R), one can straightforwardly work
out the complex-valued resonance frequency o¼o0 þ io00

by considering the polarizability pole (Supplementary Note 3).
As usual, the real part o0 gives the surface plasmon reso-
nance frequency, while the imaginary part o00 is related to the
resonance linewidth. For simplicity, we consider the case of
a particle in vacuum with no interband effects and find (to second
order in 1/R)

o0 ’ opffiffiffi
3
p þ

ffiffiffi
2
p

b
2R

; ð7Þ

o00 ’ � g
2
�

ffiffiffi
6
p

24
Dop

bR
: ð8Þ

It transpires clearly that the 1/R size-dependent non-local effects
are present in both the resonance frequency and linewidth. It
should be emphasized that, until now, line shifts have been
explained by non-local response (and competing theories),
whereas the line broadening was ‘put in by hand’. Here by
using the GNOR theory we have arrived at a unified explanation
of both experimentally observed phenomena by non-local effects.
Line broadening has been seen experimentally in the extinction
of small particles37–41 and EELS measurements on plasmons in
thin nanowires and bow-tie antennas have also revealed plasmon
losses exceeding the expectations based on bulk-damping
parameters42,43. In the literature such line broadening has often
been phenomenologically accounted for by a size-dependent
damping rate37–41, but without placing it in the context of
non-local semiclassical equations of motion.

The phenomenology introduced by Kreibig37,38 describes the
linewidth broadening by introducing a size-dependent correction
to the damping rate: g-gþAuF/R. Equipped with the GNOR
theory, one does not need to assume the 1/R dependence: it

comes immediately out as a consequence of the GNOR correction
to the dipolar sphere polarizability. By comparison with the

Kreibig model, we formally find that A ¼
ffiffiffiffi
1

24

q
Dop

buF
. For metals this

implies that ABopt/4. Use of bulk values for noble metals (see
Supplementary Table 1) would estimate a too high A parameter
compared with experiments where for spheres A is found to be of
the order unity37,38.

So far, we have assumed that the transport time is given by the
bulk relaxation time t0. However, in the experiments dealing with
plasmonic nanostructures, it has been found that one has to
increase the collision frequency44,45 or the imaginary part of
permittivity46 by several times as compared with the bulk metal
(gold) parameters for the simulations to better correspond to the
experimental observations. This size-independent correction
factor was ascribed to the influence of the surface scattering
and grain boundary effects in nanostructures44–46. In our case, we
can simply introduce the characteristic relaxation time ts

associated with these effects, which can be estimated from the
condition that AB1 as tsB4/op.

With the above refinement at hand we can demonstrate using
numerical simulations (Fig. 2) that, in agreement with equations
(7) and (8), the hydrodynamic response causes a blueshift
(Fig. 2a), whereas the diffusion causes an additional broadening
(Fig. 2b). In the latter figure, it is also shown that a similar
resonance broadening (but not the blueshift) is predicted by the
LRA with additional Kreibig damping.

Our real-space non-local wave equation (equation (2)) along
with the GNOR parameter (equation (3)), which unravels the
fundamental link between diffusive broadening and the Kreibig-
like surface scattering thereby enables one to solve a long-
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Figure 2 | Extinction cross-section for the dipole resonance in a metal

sphere. The sphere radius R is varied from 2 to 6 nm. (a) LRA (b¼D¼0)

versus hydrodynamic non-local response (ba0, D¼0), showing a blueshift

Do (indicated by blueshifting-dashed lines) with respect to the common

local response resonance at op=
ffiffiffi
3
p

(indicated by vertical-dashed lines).

(b) LRA (including 1/R Kreibig damping38 with the experimentally relevant

value of A¼ 1) versus the GNOR model (ba0, Da0), with the latter

capturing both the line shift and broadening. The metal parameters for

sodium are used49,38: op¼ 5.89 eV, g¼0.16 eV, uF¼ 1.05� 106 m s� 1,

b¼0.81� 106 m s� 1, D¼ 2.04� 10�4 m2 s� 1, and A¼ 1.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4809

4 NATURE COMMUNICATIONS | 5:3809 | DOI: 10.1038/ncomms4809 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

NAT. COMMUN. 5, 3809 (2014) 133



standing open problem: surface-related scattering can now be
computationally accounted for also in complex-shaped geome-
tries beyond that of spherical symmetry and low radius of
curvature.

Nanowire dimers. Plasmonic dimers (Fig. 1b) are rich on
hybridization phenomena as the gap distance g is reduced47 and
non-local hydrodynamic effects on both hybridization and field
enhancement have been anticipated22. To elucidate the diffusion
contribution to non-local effects, we may consider dimers of
nanowires where the nanowire radius R itself is too large to cause
either non-local hydrodynamic effects or increased damping of
the Kreibig kind. Nevertheless, we expect that the dimer would
exhibit non-local effects once the dimer gap distance g turns
comparable in magnitude to x, resulting in additional broadening
in the vicinity of the gap as uF/g increases. With our present
formalism, this can now be quantified without any need to invoke
ad hoc assumptions specifically for dimers.

Although diffusion is of a classical origin, the discussion of its
effect in dimers ties up with very recent experiments on dimers in
the quantum-tunnelling regime13. Ab initio approaches show a
crossing from the classical hybridization of localized surface
plasmon resonances to tunnelling-mediated charge-transfer
plasmons (CTPs)36,48–50. Being able to push experiments into
this intriguing regime13,30,51, commonly associated with
expectations of quantum physics, leaves an open question: Can
this regime be adequately described with semiclassical models?
While non-local response within the hydrodynamic semiclassical
model has been found unsuccessful in explaining features from
TD-DFT48–50, there have been phenomenological attempts of
classically modelling the crossover regime. The ‘quantum-
corrected model’ (QCM)52 adds an artificial conducting and
lossy material in the gap to mimic short-circuiting currents
associated with quantum tunnelling. While apparently successful
in qualitatively fitting results of ab initio simulations49,50,52, the
model raises concerns regarding its physical foundation. The
well-established understanding of mesoscopic quantum electron
transport7 is that the tunnelling through the classically forbidden
gap region is elastic (ballistic transport) while energy relaxation
takes place inside the metallic contact regions. Opposite to that,
the artificial gap material introduced in the QCM causes
dissipation within the gap, while there is no associated
relaxation occurring on the metal sides of the junction.

While ab initio works emphasize tunnelling52,49,50, recent
experiments on dimers13,30 do not offer explicit evidence that the
broadening is associated with quantum tunnelling. The formation
of a sub-nanometre gap is evident from the observed DC voltage-
driven tunnelling current13, while there is no explicit
confirmation of AC tunneling currents caused by the optical
driving. Optical rectification phenomena are possible by photon-
assisted inelastic tunnelling currents53, while earlier time-resolved
elastic-tunnelling experiments have reported tunnelling RC times
(i.e. the characteristic time scale of the equivalent resistor-
capacitor circuit) in the picosecond range54, thus suggesting a
suppression of optical frequency tunneling currents that would
take place in femtoseconds. This apparently makes quantum-
tunnelling dynamics too slow and a less likely mechanism
to explain the broadening of dimer modes at optical frequencies.
Applying the GNOR framework, we demonstrate in the
following that the diffusion offers a strong competing damping
mechanism. In fact, for fast driving of the junction55,
diffusion may completely dominate the dissipation of the dimer
junction as we illustrate by a circuit analysis (see Supplementary
Note 2).

The diffusion-driven damping occurs right inside the surface of
the metals (not in the gap), becoming progressively more

pronounced for smaller gaps and vanishing for large gaps.
To exemplify this in detail, we revisit recent non-local (hydro-
dynamic) simulations49, while making sure to account for the
diffusive broadening as well by use of the complex-valued GNOR
parameter (Fig. 3). For relatively large gaps, one observes the
bonding-dipole plasmon (BDP) along with higher-order modes
known to appear below the plasma frequency within the LRA56

(for a larger radius this becomes particularly clear, see
Supplementary Fig. 1). As the gap is reduced to the non-local
regime gtuF/o, as considered in Fig. 3 for R¼ 4.9 nm,
resonances are slightly blueshifted with respect to the LRA
result22. When the gap shrinks further, progressively stronger
hybridization47 and accordingly larger BDP redshifts are clearly
seen. At the same time, the BDP is gradually suppressed owing to
the increasing role of diffusion as the contact point, g¼ 0, is
approached. This is in strong contrast to predictions from both
the LRA56 (with even diverging field enhancement) and from
previous non-local theories that treated the b-parameter real-
valued22,49,50,57 (see Supplementary Fig. 1). As we enter the
contact regime, the BDP fades away, vanishing completely for
go0. For touching wires, the CTP appears, whose resonance
blueshifts and grows in strength for larger wire overlaps. We note
that, for gB0, the diffusive broadening is so strong that only
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Figure 3 | Extinction cross-section for a nanowire dimer with a

sub-nanometre gap within the GNOR model. The radius of the sodium

wires is R¼4.9 nm with the gap g varying from � 19 to þ 19 Å.

Progressively stronger hybridization occurs as the gap narrows, with both a

clear redshift and broadening of the BDP. As the gap closes, the CTP

develops and blueshifts as the wires start to overlap. Higher-order modes

(also indicated by dashed lines) exhibit hybridization and broadening too.

The diffusion with constant D¼ 1.36� 10�4 m2 s� 1 causes GNOR

spectra in accordance with TD-DFT calculations49 and in overall agreement

with the broadening observed experimentally13,30.
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higher-order modes persist (as the induced surface charge is
located away from the contact point), while both BDP and the
CTP are strongly suppressed. This makes a discussion on their
possible coexistence problematic51. Finally, we note that in the
anticipated tunnelling regime the extinction spectra are strongly
broadened by the complex non-local response. In fact, our
semiclassical approach is in remarkable agreement with the
TD-DFT results48–50, with the diffusion contribution being
responsible for ‘repairing’ the apparent incompatibility of
TD-DFT calculations and earlier hydrodynamic predictions49,50.
Our semiclassical GNOR theory thereby pinpoints induced
charge diffusion as the dominant broadening mechanism in
recent EELS and optical experiments on plasmonic dimers13,30,
thus challenging tunnelling-current interpretations for which the
phenomenological QCM was constructed.

Discussion
In this article we have presented a semiclassical (GNOR) approach
that is offering a long-sought unification of non-local response
mechanisms having both quantum-mechanical and classical
origins. The GNOR theory places established observations of
size-dependent damping into the context of non-local response
and offers an accurate classical explanation of spectral broadening
in MNP monomers and dimers without invoking quantum-
mechanical tunnelling, whose efficiency at optical frequencies is
questionable. We have so far considered degenerate electron
systems such as metals, where screening is strong and non-local
effects manifest themselves in the nanometre to sub-nanometre
regime. In the search for a new mesoscopic regime, where
plasmons potentially exhibit both semiclassical dynamics and
quantum effects, low-density-doped semiconductors and tunable
low-dimensional materials (including the graphene family of two-
dimensional materials) appear attractive58. Quantum light–matter
interactions59 and non-local response60 were already considered
for graphene plasmonics, and, for such non-degenerate systems,
our theory anticipates temperature-dependent non-local response
that might lead to novel non-local effects accessible via
experimental observations.

Methods
The optical response of dimers was obtained by solving the non-local wave
equation with the aid of a commercially available finite-element method. The
numerical code is an extension to the COMSOL 4.2a RF Module, which
incorporates non-local hydrodynamic effects in the optical response of arbitrarily
shaped nanoplasmonic structures, possessing one dimension with translational
symmetry. The code is freely available from http://www.nanopl.org and the
implementation, testing and performance are reported elsewhere22,24. Prior results
on dimers49 were obtained with the same code, while only utilizing a real-valued
b-parameter. All numerical results can alternatively be calculated with the aid
of a non-local boundary-element method26. Similarly, the complex-valued GNOR
parameter can be substituted in non-local transformation optics approaches
originally developed with a real-valued b-parameter in mind57.
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−16 Å
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Supplementary Figure 1: Extinction cross section for a nanowire dimer with a sub-nanometer

gap taking the nonlocal hydrodynamic-diffusion response into account. The radius of the sodium

wires is R = 25 nm with the gap g varying from −19 Å to +19 Å. Calculations are for the same

parameters as in Figure 3 in the main text. For comparison, the solid black lines show the nonlocal

response in the absence of diffusion (β ̸= 0 and D = 0).
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Supplementary Figure 2: Circuit model for diffusion-tunneling dynamics in the dimer gap region.
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Fermi Mean-free Convection Diffusion Scattering

wavelength path length length time

λF ℓ = vFτ vF/ωp

√
D/ωp ωpτ

Ag/Au 0.52 nm 103 nm 0.10 nm 1.9 nm 103 [1]

Ag 0.52 nm 40 nm 0.10 nm 1.1 nm 421 [2]

Au 0.52 nm 50 nm 0.11 nm 1.3 nm 465 [2]

Na 0.68 nm 2.6 nm 0.12 nm 0.32 nm 21 [2]

Na 0.68 nm 4.4 nm 0.12 nm 0.42 nm 37 [3]

Na 0.68 nm 2.3 nm 0.12 nm 0.31 nm 20 [4]

Supplementary Table 1: Table of central length scales and parameters for Au, Ag, and Na. The

entries for different metals are based on Fermi wavelengths (λF), Fermi velocities (vF), and plasma

frequencies (ωp) taken from Ref. 1, while the values for τ originate from various references as

indicated in the right-most column of the table.
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Supplementary Note 1

In this section we offer the detailed derivation of the hydrodynamic-diffusion problem of an elec-

tron responding to an external electric field. We start from the linearized hydrodynamic equation-

of-motion for an electron in an electric field5, 6

∂tv = −γv +
(−e)

m
E − β2

n0

∇n1. (1)

Here, v is the velocity correction to the static sea of electrons and for the density n(r, t) = n0 +

n1(r, t) the latter term is likewise the small (n1/n0 ≪ 1) induced density variation associated with

the driving E field. Now, rather than the usual simple form for the continuity equation we instead

have the linearized convection-diffusion equation

∂t(−e)n1 = D∇2(−e)n1 − ∇ · {(−e)n0v} = −∇ · J (2)

where the current density is then given by Fick’s law

J = (−e)n0v − D∇(−e)n1. (3)

Multiplying the equation-of-motion, Supplementary Equation (1), by the equilibrium density n0,

taking the time-derivative ∂t and re-arranging we get

(∂t + γ)∂t{(−e)n0v} =
n0e

2

m
∂tE − β2∇{∂t(−e)n1}. (4)

Using Fick’s law, Supplementary Equation (3), we then find

(∂t + γ) [∂tJ + D∇(∂t(−e)n1)] =
n0e

2

m
∂tE − β2∇{∂t(−e)n1}. (5)

4
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From the diffusion-convection equation, Supplementary Equation (2), we consequently get

(∂t + γ) [∂tJ − D∇(∇ · J)] =
n0e

2

m
∂tE + β2∇(∇ · J). (6)

Finally, Fourier transforming with respect to time and re-arranging the terms we get

[
β2

ω(ω + iγ)
+

D

iω

]

︸ ︷︷ ︸
ξ2

∇(∇ · J) + J =
e2n0

m

−iω + γ︸ ︷︷ ︸
σD

E. (7)

This is the generalized constitutive equation with a complex nonlocal correction to the local-

response Ohm’s law. According to our previous work7, the Maxwell’s equation can then be re-

written in the form of the equations in the main text, i.e. Equation (2) with ξ2 given by Equa-

tion (6).

In our use of Supplementary Equation (7) we neglect electron spill-out and the associated

boundary conditions used in prior nonlocal hydrodynamics6–9 remain unchanged in the presence

of diffusion. This means that n · J = 0 on the metal surfaces, implying that no electrons escape

the metal volumes. This is an appropriate description of noble metals commonly employed in

plasmonics while spill-out effects are important in less common metals like sodium3, 10, 11.

The local-response approximation (LRA) neglects the Laplacian term in Supplementary

Equation (7) and in problems using such a constitutive equation the induced charge ∆n becomes

a delta function at the surface of the metal. The nonlocal correction will smear this density pro-

file due to both convection and diffusion. Related phenomena and formalisms are known from

semiconductor drift-diffusion theory12 as well as from fluid mechanics and chemical engineer-

5
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ing, where convection-diffusion systems may exhibit an increased effective diffusivity of chemical

species known as Taylor dispersion13, 14.

In Supplementary Table 1 we summarize characteristic length scales and parameters for no-

ble metals commonly considered in experimental realizations as well as in recent theoretical works.

Supplementary Note 2

For the dimer we here address the relative importance of diffusive damping (characterized by a

resistance Rdif in a circuited model) and the damping associated with the relaxation of a possible

quantum tunneling current (characterized by Rtun) short-circuiting the classically forbidden capac-

itive gap (characterized by a capacitance C). In a simple picture, C and Rtun constitute a parallel

circuit15 connected in series with Rdif , see Supplementary Figure 2. The circuit impedance is then

Z = Rdif +
Rtun

1 + iωτtun

= Rdif − i

ωC
+ O[1/(ωτtun)

2] (8)

where τtun = RtunC is the tunneling RC time15. The tunneling dynamics simplifies in the slow

adiabatic-following regime and the limit of fast external driving16. This analysis suggests that the

high-frequency dimer dynamics can become entirely dominated by the diffusive broadening and

the junction capacitance. Tunneling dynamics has been explored in the context of the mesoscopic

capacitance17 and ultra-fast tunneling experiments have reported tunneling RC times in the pi-

cosecond range15, 18. Thus, at optical frequencies the plasmon response is expected to be fast on

the scale of the characteristic RC time and from the experiments it seems reasonable to assume

that ωτtun ≫ 1. Consequently, the relaxation is dominated by diffusive broadening rather than the

6
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short-circuiting tunneling current.

We note that the above circuit analysis is completely independent on whether tunneling re-

laxation occurs within the gap (as it is the case in the quantum-corrected model19) or if it takes

place inside the metal surfaces (in agreement with the common understanding of relaxation within

mesoscopic quantum electron transport).

In Supplementary Figure 1 we show the extinction for dimers of R = 25 nm wires and with a

gap g varying from −19 Å to +19 Å. While the wires themselves have a too large radius (R ≫ |ξ|)

to support nonlocal effects, the small gap (g ∼ |ξ|) causes a strong broadening associated with the

complex-valued nonlocal response.

Supplementary Note 3

We consider a metal sphere of radius R embedded in a homogeneous background dielectric en-

vironment with permittivity εb. In the quasi-static limit, the optical response of the sphere is

described by the dipole polarizability α that features a nonlocal generalization of the Clausius–

Mossotti factor, and is given as20, 21

α = 4πR3 εD − εb (1 + δnl)

εD + 2εb (1 + δnl)
, δnl =

εD − ε∞
ε∞

j1(knlR)

knlRj′
1(knlR)

, (9)

where εD = ε∞ − ω2
p/(ω

2 + iγω) is the Drude dielectric function, k2
nl = (ω2 + iωγ − ω2

p)/(β
2 +

Dγ − iDω) is the wave vector of the longitudinal wave, and j1 is the spherical Bessel function of

first order.

7
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Abstract: We study the blueshift of the surface plasmon (SP) resonance
energy of isolated Ag nanoparticles with decreasing particle diameter, which
we recently measured using electron energy loss spectroscopy (EELS) [1].
As the particle diameter decreases from 26 down to 3.5 nm, a large blueshift
of 0.5 eV of the SP resonance energy is observed. In this paper, we base
our theoretical interpretation of our experimental findings on the nonlocal
hydrodynamic model, and compare the effect of the substrate on the SP
resonance energy to the approach of an effective homogeneous background
permittivity. We derive the nonlocal polarizability of a small metal sphere
embedded in a homogeneous dielectric environment, leading to the nonlocal
generalization of the classical Clausius–Mossotti factor. We also present an
exact formalism based on multipole expansions and scattering matrices to
determine the optical response of a metal sphere on a dielectric substrate
of finite thickness, taking into account retardation and nonlocal effects. We
find that the substrate-based calculations show a similar-sized blueshift as
calculations based on a sphere in a homogeneous environment, and that
they both agree qualitatively with the EELS measurements.

© 2013 Optical Society of America

OCIS codes: (240.6680) Surface plasmons; (250.5403) Plasmonics; (160.4236) Nanomateri-
als; (000.1600) Classical and quantum physics; (260.3910) Metal optics.
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(1967).

39. F. Forstmann and H. Stenschke, “Electrodynamics at metal boundaries with inclusion of plasma waves,” Phys.
Rev. Lett. 38, 1365–1368 (1977).

40. G. Barton, “Some surface effects in the hydrodynamic model of metals,” Rep. Prog. Phys. 42, 963–1016 (1979).

#194714 - $15.00 USD Received 26 Jul 2013; revised 20 Sep 2013; accepted 20 Sep 2013; published 4 Nov 2013
(C) 2013 OSA 4 November 2013 | Vol. 21,  No. 22 | DOI:10.1364/OE.21.027344 | OPTICS EXPRESS  27345

OPT. EXPRESS 21, 27344 (2013) 149



41. J. D. Jackson, Classical electrodynamics, 3rd ed. (Wiley, 1998).
42. I. Villo-Perez, Z. Mišković, and N. Arista, “Plasmon spectra of nano-structures: A hydrodynamic model,” in
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1. Introduction

The use of metal nanoparticles to create astonishing colors in stained glass dates back to ancient
Roman times. However, the mechanism behind the color generation was not fully understood
until Mie in 1908 rigorously and exactly solved Maxwell’s electrodynamical equations for the
problem of plane wave scattering off a sphere [2]. From Mie’s solution it follows that resonant
modes of the metal sphere, which we now refer to as localized SPs [3], give rise to large ab-
sorption cross sections at specific wavelengths, resulting in the colorful stained glass. In Mie’s
treatment of the problem it is assumed that the material properties of the sphere can be described
by a single frequency-dependent function, the local-response dielectric function ε(ω). While
in most cases a classical treatment based on the dielectric function is justified, important ef-
fects due to surface structure [4–8], nonlocal response [9–16] and quantum size effects [17–20]
manifest themselves in the response of metal nanoparticles, when the particle sizes are below
∼ 10 nm. Many experiments on tiny nanoparticles using both optical measurements [21–25]
and electron energy-loss studies [1, 26, 27] have shown that the classical approach is insuffi-
cient to describe the experimental observations. The interpretation of these results has been
based on semi-classical models, such as the nonlocal hydrodynamic [28] and semi-classical in-
finite barrier (SCIB) [29] approaches, or more complicated quantum calculations using density
functional theory [4].

Recently, we performed EELS on chemically synthesized Ag nanoparticles with diameters
ranging from 3.5 to 26 nm [1]. We observed a large blueshift of the localized SP resonance en-
ergy from 3.2 eV to 3.7 eV, when the particle size decreased. We interpreted these non-classical
observations using two different semi-classical models, the hydrodynamic model and the model
presented by Keller et al. [20], which both only qualitatively could explain the observations. In
this paper, we focus on the hydrodynamic model and derive the nonlocal polarizability of a
hydrodynamic sphere in a homogeneous environment, which leads to the nonlocal generaliza-
tion of the Clausius–Mossotti factor. We also study the effect of the substrate on the resonance
energy of the nanoparticle. Specifically, we develop an exact formalism to calculate the opti-
cal response of a metal sphere on a dielectric substrate of finite thickness, taking into account
both retardation and nonlocal response. The theoretical calculations are compared to the EELS
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. (a) Schematic image of the Ag nanoparticles deposited on 10 nm thick Si3N4 sub-
strate. (b) Bright-field TEM image of sample. (c-f) Bright-field TEM images of single
nanoparticles with diameters 3, 6, 10 and 13 nm, respectively. All scale bars are 10 nm
long.

measurements.

2. Experiment: electron energy loss spectroscopy

The silver nanoparticles are chemically synthesized [30] and afterwards stabilized in an aque-
ous solution with borohydride ions to prevent aggregation. Subsequently, the solution with
nanoparticles is deposited on a plasma-cleaned 10 nm thick Si3N4 TEM membrane purchased
from TEMwindows.com. The mean particle diameter is 12 nm with a broad size distribution
from 2 nm up to 30 nm, see Fig. 1, which gives us the advantage of being able to perform all of
the measurements on the same sample.

The EELS measurements are performed with a FEI Titan transmission electron microscope
(TEM) equipped with a monochromator and a probe aberration corrector. The microscope is
operated in scanning TEM (STEM) mode at an acceleration voltage of 120 kV, providing a
probe diameter of 0.5 nm and a zero-loss peak width of 0.15±0.05 eV. In a spherical particle
only the amplitude of the SP, and not the resonance energy, is dependent on the position of
the electron beam [31]. We therefore acquire the EELS spectra by directing the electron probe
close to the surface of the silver nanoparticle (aloof trajectory), thereby enhancing the excitation
of the SP. Details on the data analysis and further experimental information can be found in
Ref. [1].

3. Theory: hydrodynamic model

In the following theoretical approaches we will assume that the shape of the nanoparticles can
be approximated to be spherical. Details and discussion about this approximation can be found
in Ref. [1]. Here, we note from the TEM images in Figs. 1(b)-(f) that the overall shape of the
nanoparticles is spherical, especially for particle sizes below 10 nm in diameter, which justifies
our approximation. Furthermore, large shape deviations from a sphere, such as hemispherical
or disk-shaped particles, would also manifest themselves in the EELS spectra in terms of new
resonances or electron beam position-dependent resonances [32], which we do not observe.

#194714 - $15.00 USD Received 26 Jul 2013; revised 20 Sep 2013; accepted 20 Sep 2013; published 4 Nov 2013
(C) 2013 OSA 4 November 2013 | Vol. 21,  No. 22 | DOI:10.1364/OE.21.027344 | OPTICS EXPRESS  27347

OPT. EXPRESS 21, 27344 (2013) 151



We base the interpretation of our experimental results on the hydrodynamic model. We first
derive the exact nonlocal polarizability of a metal sphere embedded in a homogeneous material,
thereby generalizing the well-known Clausius–Mossotti factor to nonlocal response. The free
electrons of the sphere are described by the semiclassical hydrodynamic model, which takes
into account nonlocal response but neglects the spill-out of the electrons outside the spheres
due to the finiteness of their confining potential. Secondly, the effect of the substrate is taken
into account. Here, we present an exact formalism to calculate the retarded optical response of
a sphere with hydrodynamic nonlocal response, on a dielectric substrate of finite thickness.

The starting point of the hydrodynamic model is Maxwell’s equations in terms of the free-
electron density n and free-electron current J [28, 33, 34]

∇ ·D = −en, (1a)

∇ ·H = 0, (1b)

∇×E = iωμ0H, (1c)

∇×H = −iωD+J, (1d)

where the constitutive relation B = μ0H for non-magnetic materials has been utilized. Here,
we introduce the polarization effects due to the bound charges through the constitutive relation
for the displacement field D = ε0ε∞E, where ε∞ in general is frequency-dependent and takes
into account those polarization effects that are not due to the free electrons, such as interband
transitions. The continuity equation, which connects the free-electron density and the free-
electron current, follows directly from Eqs. (1a) and (1d),

∇ ·J = −iωen. (2)

To complete the description of the electromagnetic response of the metal, a relation which
connects the free-electron current to the electric field is needed. To this end, we consider the
linearized nonlocal hydrodynamic equation [28, 35], which in its real-space formulation be-
comes [15, 36, 37]

β 2

ω(ω + iγ)
∇(∇ ·J)+J = ε0σE, (3)

where σ = iω2
P /(ω + iγ) is the classical Drude conductivity, and β 2 = 3/5v2

F with vF being the
Fermi velocity. Within a hydrodynamic description the pressure of the electron gas is included,
which gives rise to the presence of compression (longitudinal) waves and leads to spatial disper-
sion that is observable in truly nanoplasmonic systems. Equations (1)-(3) constitute the basic set
of equations within the retarded hydrodynamic approach. At an interface between two materi-
als, these equations are supplemented by boundary conditions (BCs). In this study we consider
only metal-dielectric interfaces, where Maxwell’s BCs must be augmented by a single addi-
tional boundary condition (ABC) which states that the normal component of the free-electron
current density must vanish [33, 36, 38–40]. The ABC can be derived as a consequence of ne-
glecting the spill-out of electrons.

3.1. Hydrodynamic sphere in homogeneous environment: nonlocal Clausius–Mossotti factor

We consider a small isotropic metal sphere of radius R embedded in a homogeneous dielectric
environment with permittivity εB. The polarizability α of this sphere is a well-known result in
classical optics [3, 41] and is given by

α = 4πR3 εD − εB

εD +2εB

, (4)
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where εD = ε∞ −ω2
P /(ω2+ iγω) is the classical Drude permittivity. The factor (εD −εB)/(εD +

2εB) is called the Clausius–Mossotti factor and notice that it is independent of the sphere radius.
The polarizability is derived in the quasistatic approximation under the assumption of a static
surrounding electric field, thus neglecting spatial variations in the exciting electric field. Our
goal is now to derive a generalization to this formula, taking hydrodynamic nonlocal response
of the sphere into account. We begin by introducing the electric and current scalar potentials φ
and ψ , respectively, defined as

E = −∇φ , J = −∇ψ. (5)

By inserting Eq. (5) into the hydrodynamic Eqs. (1)-(3), it can straightforwardly be shown that
the scalar potentials inside the metal sphere are governed by the equations [42]

(
∇2 + k2

NL

)
n = 0, (6a)

∇2φ = e
ε0ε∞

n, (6b)

ψ = 1
iω−γ

(
ε0ω2

P φ − eβ 2n
)
, (6c)

where the nonlocal longitudinal wave vector is given as k2
NL = (ω2 + iωγ − ω2

P /ε∞)/β 2. In
the surrounding dielectric, the current density J and electron density n vanish, and the electric
scalar potential must instead satisfy the usual Laplace equation ∇2φ = 0. Finally, Maxwell’s
BCs and the hydrodynamic ABC for the scalar potentials translate into

φ in = φ out, ε∞
∂φ in

∂ r
= εB

∂φ out

∂ r
,

∂ψ in

∂ r
= 0, (7)

where in and out refers to inside and outside the metal, respectively. The general solutions to
the electric scalar potential and free-electron density inside and outside the sphere are

nin = ∑
l,m

Al jl(kNLr)Ylm(θ ,φ), nout = 0, (8a)

φ in = ∑
l,m

[
Dlr

l −Al
e

ε0ε∞k2
NL

jl(kNLr)
]

Ylm(θ ,φ), (8b)

φ out = ∑
l,m

[
Blr

l +Clr
−(l+1)

]
Ylm(θ ,φ). (8c)

Here, jl and Ylm are the spherical Bessel function of the first kind and the spherical harmon-
ics, respectively. The current scalar potential ψ can be determined from Eq. (6c). We neglect
variations in the exciting electric field and assume a constant electric field surrounding the
sphere, here directed in the ẑ direction i.e. Eout = E0ẑ. Thus, this poses the requirement that
limr→∞ φ out = −E0z = −E0r cos(θ), which excludes all orders of (l,m) in the sums in Eq. (8)
except (l,m) = (1,0). Applying the BCs from Eq. (7) and following the usual approach to
introducing the polarizability [3], we determine the nonlocal polarizability αNL to be

αNL = 4πR3 εD − εB (1+δNL)

εD +2εB (1+δNL)
, δNL =

εD − ε∞

ε∞

j1(kNLR)
kNLR j′1(kNLR)

, (9)

where the prime denotes differentiation with respect to the argument. We see that nonlocal
effects enter the Clausius–Mossotti factor as an elegant and simple rescaling of either the
metal permittivity from εD to ε̃D = εD (1+δNL)

−1 or of the background permittivity from εB

to ε̃B = εB(1+δNL). Both approaches are equally valid, but we choose to examine the rescaled
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Fig. 2. (a) Extinction cross section based on the nonlocal Clausius–Mossotti factor, Eq. (9),
as a function of diameter 2R and normalized frequency ω/ωP. The real and imaginary
parts of the normalized rescaled background permittivity ε̃B/εB as a function of normalized
frequency are shown in (b) and (c), respectively, for three different sphere radii: 2 nm
(red), 4 nm (green) and 8 nm (blue). Free-electron gas parameters used for the calculations:
γ/ωP = 0.05, β/c = 5×10−3, ε∞ = 1 and εB = 1.

background permittivity since the nonlocal blueshift of the SP resonance, which is discussed in
the following, can be more easily understood in terms of a change in the background permittiv-
ity, and this approach also follows the line of reasoning in the recent work of Ref. [43]. We point
out that the rescaled background permittivity ε̃B is now both frequency- and size-dependent. Fi-
nally, we note that when β → 0 then δNL → 0 in Eq. (9) and the classical size-independent
Clausius–Mossotti factor is retrieved.

With the nonlocal polarizability we can determine the extinction cross section σext of a metal
sphere using the relation [3]

σext =
1

πR2

[
(ω/c)4

6π
|αNL|2 +(ω/c)Im(αNL)

]
. (10)

In Fig. 2(a) we show the extinction cross section as a function of diameter and frequency for
a model sphere in vacuum and with only a free-electron response. The blueshift of the SP res-
onance energy for decreasing particle diameter, which is known to be present from generalized
nonlocal Mie theory [9], is captured accurately by the simple nonlocal Clausius–Mossotti fac-
tor in Eq. (9). Furthermore, we see that as the particle diameter increases the resonance energy
approaches the well-known classical limit ω/ωP = 1/

√
3 ≈ 0.577. For the smallest diameters

(2R < 5 nm) a series of strongly size-dependent resonances above the plasma frequency can
be distinguished. These are resonant pressure-type (longitudinal) waves that arise due to the
confinement of the free electron gas. Comparison with the generalized Mie theory [9] (not dis-
played) shows that the spectral location and spectral width of the pressure resonances predicted
by the nonlocal Clausius–Mossotti factor are exact.

Using the nonlocal Clausius–Mossotti factor we can deduce a simple approximate, but ac-
curate relation which determines the resonance frequencies of the pressure modes. The poles
of the nonlocal correction δNL in Eq. (9) determine the spectral position of the pressure modes,
which provides us with the condition j′1(kNLR) = 0. We rewrite this condition in terms of the
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standard Bessel functions and use the large-argument asymptotic form of the Bessel function
Jl(x) �

√
2/(πz)cos(z− lπ/2−π/4), since the product kNLR ≥ 1 due to the high frequencies

(ω > ωP) at which these resonances occur. After some straightforward algebraic manipulations
we find (for negligible damping) the relation

ω2 � ω2
P

ε∞
+

β 2π2

R2 n2, (11)

where formally n = 1,2,3, ... However, upon comparison with extinction cross section calcu-
lations we find that the mode n = 1 is optically dark and therefore does not show up in the
extinction spectrum [44].

Figures 2(b) and 2(c) display the frequency dependency of the real and imaginary parts of
the rescaled background permittivity ε̃B(ω,R), respectively, for three different radii. In Fig. 2(b)
we see that below the plasma frequency Re(ε̃B)/εB decreases from unity with decreasing radii,
leading to the size-dependent blueshift observed in the extinction cross section. In the same
frequency interval, we see from Fig. 2(c) that Im(ε̃B)/εB does not vary significantly and is
close to zero. Above the plasma frequency both Re(ε̃B)/εB and Im(ε̃B)/εB display periodic
variations, which give rise to the pressure resonances in the extinction cross section. Finally, as
the radius increases the frequency dependence of both Re(ε̃B)/εB and Im(ε̃B)/εB weakens, and
the classical limits Re(ε̃B)/εB → 1 and Im(ε̃B)/εB → 0 are approached.

The above derivation of the nonlocal polarizability αNL of a metal sphere in a homogeneous
dielectric environment is expected to describe many experimental situations of spheres in glass
or gels [22, 23, 45]. It can also be used, although its accuracy remains to be tested, in case an
inhomogeneous environment is described with an effective homogeneous background dielectric
function, see Sec. 4.

3.2. Hydrodynamic sphere on substrate of finite thickness

We consider next the case of a metal sphere situated on a substrate, as in the experiment, so
we drop the assumption that the background is homogeneous. We present here an exact method
based on scattering matrices and multipole expansions to calculate the extinction cross section
of the sphere-substrate system, when impinged by a plane wave [46]. The dielectric constant
and the thickness of the substrate are denoted εS and t, respectively.

The system in study consists of a metal sphere in contact with a dielectric substrate, where
the origin of the coordinate system is located at the contact point and the z-axis is taken nor-
mal to the substrate. The incident plane wave and scattered wave are expanded in spherical
waves [47] with aσ

lm and bσ
lm denoting the expansion coefficients of the incident and scattered

waves, respectively. Here, σ = 1,2 represent TE and TM polarizations, respectively.
In the absence of the substrate, the incident and scattered spherical wave amplitudes are

related through Mie’s scattering matrix for the metal sphere as bσ ′
l′m′ = Tlmσ

l′m′σ ′aσ
lm, where

Tlmσ
l′m′σ ′ = t(σ)

l δll′δmm′δσσ ′ , (12)

is Mie’s scattering matrix, which takes retardation effects into account, and δii′ is the Kronecker
delta.

Here, the coefficients t(σ)
l are the nonlocal Mie scattering coefficients given as [9, 14]

t(1)l = − jl(xD) j′l(xB)− jl(xB) j′l(xD)

jl(xD)h
(1)′
l (xB)−h(1)l (xB) j′l(xD)

, (13a)

t(2)l = −
[
cl + j′l(xD)

]
εB jl(xB)− εD jl(xD) j′l(xB)[

cl + j′l(xD)
]

εBh(1)l (xB)− εD jl(xD)h
(1)′
l (xB)

, (13b)
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where xB = ω
√

εBR/c, xD = ω
√

εDR/c and h(1)l denotes the spherical Hankel function of the
first kind. The nonlocal correction cl to the Mie coefficients is given as

cl = l(l +1)
jl(xNL) jl(xD)

xNL j′l(xNL)

εD − ε∞

ε∞
, (13c)

with xNL = kNLR. We note that for l = 1 the nonlocal correction in Eq. (13c) has the same
structural form as δNL in the nonlocal Clausius–Mossotti factor, Eq. (9). In fact they are related
as c1 = 2 j1(xD)δNL.

In the presence of the substrate, reflections from the substrate must be taken into account,
which changes Mie’s scattering matrix T to the total scattering matrix M given as

M = (I−TS)−1T. (14)

The total scattering matrix M takes into account the interactions between the substrate and
the sphere through the substrate scattering matrix S. To derive M, we use the transformation
relations between plane waves and spherical waves, and characterize the interactions between
the scattered spherical waves b and the substrate by the plane wave reflections. In particular, S
is given as

Slm1
l′m′1 = smm′

ll′

∫∫
dkxdky

f1y(1)lm y(1)l′−m′ + f2y(2)lm y(2)l′−m′

kBz
, (15a)

Slm2
l′m′2 = smm′

ll′

∫∫
dkxdky

f2y(1)lm y(1)l′−m′ + f1y(2)lm y(2)l′−m′

kBz
, (15b)

Slm2
l′m′1 = −smm′

ll′

∫∫
dkxdky

f2y(1)lm y(2)l′−m′ + f1y(2)lm y(1)l′−m′

kBz
, (15c)

Slm1
l′m′2 = −smm′

ll′

∫∫
dkxdky

f1y(1)lm y(2)l′−m′ + f2y(2)lm y(1)l′−m′

kBz
, (15d)

with

smm′
ll′ =

2il
′−l(−1)l+m+m′+1

kB

√
l′(l′ +1)

√
l(l +1)

, y(1)lm =
∂Ylm(ΩkB)

∂θkB

, y(2)lm =
mYlm(ΩkB)

sinθkB

, (16)

where kB represents the wavevector of the plane wave in the background with |kB| = kB =√
εBω/c, kBz is the z component of kB with the imaginary part being positive, sinθkB is defined

as sinθkB =
√

k2
x + k2

y/kB, and the integration ranges of kx and ky are both from −∞ to ∞. The

coefficients fσ in Eq. (15) represent the reflection coefficients of the substrate for TE and TM
polarized plane waves, respectively, in which the substrate plays its role. The coefficients fσ
are expressed as

fσ =
rσ [1− exp(ikSz2t)]
1− r2

σ exp(ikSz2t)
exp(ikBz2R), (17a)

where kSz represents the z component of the wavevector in the substrate. Furthermore, rσ is the
reflection coefficient between the background and the semi-infinite substrate given as

r1 =
kBz − kSz

kBz + kSz
, r2 =

εSkBz − εBkSz

εSkBz + εBkSz
. (17b)

#194714 - $15.00 USD Received 26 Jul 2013; revised 20 Sep 2013; accepted 20 Sep 2013; published 4 Nov 2013
(C) 2013 OSA 4 November 2013 | Vol. 21,  No. 22 | DOI:10.1364/OE.21.027344 | OPTICS EXPRESS  27352

156 OPT. EXPRESS 21, 27344 (2013)



Nonlocal w. substrate
Nonlocal C-M

1/(2R) [nm−1]

E
[e
V
]

2R [nm]
0.05 0.1 0.15 0.2 0.25 0.35 10 15 20 25

3

3.2

3.4

3.6

3.8

4
(a) (b)

Fig. 3. EELS measurements of the SP resonance energy E plotted as a function of (a) di-
ameter 2R and (b) inverse diameter 1/(2R). In (b), the black solid line is a linear fit to the
experimental data and serves as a guide to the eye, while the blue dashed line represents cal-
culations of a nonlocal sphere in a homogeneous environment [nonlocal Clausius–Mossotti
factor, Eq. (9)]. From the average large-particle (2R > 20 nm) resonances we fit εB = 1.53.
The red solid line represents calculations of a nonlocal sphere in vacuum situated on a
10 nm thick Si3N4 substrate with permittivity εS = 4.4 [49]. Material parameters for Ag
are taken from Ref. [50] and the Fermi velocity is vF = 1.39×106 m/s.

At this stage, we add that the reflection coefficients in Eq. (17b) can be exchanged with their
nonlocal expressions, see e.g. [48], to describe the interactions between a metal sphere and
metal film, while taking nonlocal response into account in both metal structures. Such a system
was recently studied experimentally in Ref. [16].

With the total scattering matrix M, we can numerically compute the extinction cross section
of the metal sphere on a substrate of finite thickness, using the relation

σext = − 1

k2
B|E0|2

Re(aTMa∗), (18)

where |E0| is the amplitude of the incident field, and superscripts T and * denote the transpose
and complex conjugate, respectively. From the extinction cross section we determine the SP
resonance energy.

4. Results

In Fig. 3(a), we show the EELS measurements of the SP resonance energy E as a function of
the particle diameter 2R. Two distinct features are present. The first is the spread of the res-
onance energy at a fixed particle diameter. In [1], we argue in detail that the spread is due to
shape variations of the nanoparticle. Briefly, from the 2D STEM images we determine the area
of the particle A and assign it a diameter, assuming a spherical shape

(
i.e. A = πR2

)
. Different

particles with slight deviations from spherical shape can lead to the same area and ultimately
the same diameter. However, their SP resonance changes and this is what we observe experi-
mentally. The important second feature we observe is a significant blueshift of the resonance
energy of 0.5 eV as the particle diameter decreases. The blueshift is in good agreement with ear-
lier results [24,26,27]. A classical local-response theory based on a size-independent dielectric
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function of the material does not predict any frequency shift at all.
Figure 3(b) displays again the SP resonance energy E, now as a function of the inverse par-

ticle diameter 1/(2R). The experimental measurements suggest a linear relationship between
the energy and inverse particle diameter. The nearly linear trend is also seen in the theoretical
calculations based on the hydrodynamic model, shown with dashed and solid lines in Fig. 3(b),
albeit with a smaller slope. We point out that the apparent 1/(2R) dependent blueshift is only
a first-order approximation in the hydrodynamic theory [1]. The dashed line in Fig. 3(b) cor-
responds to calculations of a hydrodynamic sphere embedded in a homogeneous environment,
i.e. the nonlocal Clausius–Mossotti factor described in Sec. 3.1. The permittivity of the back-
ground dielectric is fitted to the average resonance of the largest particles (2R > 20 nm) to
ensure the correct classical SP resonance. We find εB = 1.53. The solid line shows the reso-
nance energy determined from extinction cross section calculations of a hydrodynamic sphere
in vacuum situated on a 10 nm thick Si3N4 substrate, as described in Sec. 3.2. Here no fitting
of the background permittivity is performed and we use εS = 4.4 as the permittivity of the
substrate, suitable for Si3N4 [49]. The same material parameters for the Ag sphere are used in
both calculations [50]. While the substrate-based calculation shows an overall lower resonance
energy for all particle sizes, both approaches show a linear tendency with a nearly identical
slope. Compared to a free-space environment the presence of the dielectric substrate should
induce a larger blueshift in the hydrodynamic model [1], and indeed it does (comparison not
shown in Fig. 3). The fitted effective background permittivity in the calculations based on the
nonlocal Clausius-Mossotti relation is larger than that of free space, and this makes that the
two theoretical curves in Fig. 3(b) become almost parallel. Especially for the smallest particles[
1/(2R)> 0.1 nm−1

]
the trend is striking similar, which indicates that (i) only the dipole mode

of the sphere is important and (ii) the dipole mode is not significantly altered by the presence of
the substrate. However, for larger particle diameters

[
1/(2R)< 0.1 nm−1

]
the substrate alters

the dipole mode, which is visible in the slight convex curvature of the solid line in Fig. 3(b),
in contrast to the concave curvature of the dashed line. Surprisingly higher order multipoles in
the sphere, which are anticipated to be enhanced due to the presence of the substrate [51], show
no significant contribution in the optical response. This is in fact due to the large interband ab-
sorption present in Ag at the resonance energies of the higher order multipoles, which heavily
dampens the contribution from these modes.

From Fig. 3(b) we see that the experimentally observed blueshift exceeds the theoretical
blueshift predicted by the nonlocal Clausius–Mossotti factor. In [1], we conjectured that the
presence of the substrate could induce the experimentally observed larger blueshift, but from
Fig. 3(b) we see in more detail that the substrate-based calculations do not show a larger shift
in energy than the nonlocal Clausius–Mossotti factor.

5. Conclusions

We have studied the experimentally observed blueshift of the SP resonance energy of Ag
nanoparticles, when the particle diameters decrease from 26 nm to 3.5 nm. To interpret the
measurements we considered two different systems within the theory of the nonlocal hydro-
dynamic model: a metal sphere embedded in a homogeneous environment and a metal sphere
situated on a dielectric substrate of finite thickness. Surprisingly, we find that both systems
give rise to similar-sized blueshifts with decreasing particle size, despite the presence of the
symmetry-breaking substrate. Both theoretical calculations are in qualitative agreement with
the measurements, but the theoretically calculated blueshift is smaller than the blueshift ob-
served in the EELS measurements. Thus, we conclude that the inclusion of the substrate in
the theoretical calculations can not quantitatively explain the measurements. This leads us to
believe that the deviation between theory and experiment are to be sought for in the intrinsic
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properties of silver, such as the spill-out of electrons in combination with the screening from
the d electrons [52,53] and size-dependent changes in the electronic band structure [23], which
are not taken into account in a hydrodynamic description.
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We investigate the effects of nonlocal response on the surface-plasmon polariton guiding properties of the
metal-insulator (MI), metal-insulator-metal (MIM), and insulator-metal-insulator (IMI) waveguides. The nonlocal
effects are described by a linearized hydrodynamic model, which includes the Thomas-Fermi internal kinetic
energy of the free electrons in the metal. We derive the nonlocal dispersion relations of the three waveguide
structures taking into account also retardation and interband effects, and examine the delicate interplay between
nonlocal response and absorption losses in the metal. We also show that nonlocality breaks the complementarity
of the MIM and IMI waveguides found in the nonretarded limit.
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I. INTRODUCTION

Guiding of light at metal-dielectric interfaces has attracted
a lot of attention in recent years due to the subwavelength
light confinement achievable by excitation of propagating
surface-plasmon polariton (SPP) modes.1,2 SPP guiding in
a number of configurations is not limited by the diffraction
limit, allowing for the manipulation and concentration of
light on the nanoscale.3 At the same time, stronger SPP
mode confinement is typically associated with stronger mode
absorption in the metal, resulting in a trade-off between light
confinement and propagation distances.4 This trade-off can be
tailored by considering various waveguide structures, where
especially waveguides based on thin metal films or narrow
dielectric gaps between two metal surfaces have shown to
provide a considerably better trade-off.5,6 Symmetric metal-
insulator-metal (MIM) and insulator-metal-insulator (IMI)
waveguides, see Fig. 1, are the most fundamental of this class
of waveguide structures and provide a solid foundation for
the understanding of more complex plasmonic waveguides.
The key property of the IMI waveguide is its ability to
support the so-called long-range SPP mode, which exhibits
considerably low propagation loss. Furthermore, the MIM
configuration forms the basis for the effective-index modeling
(EIM) technique of more complex waveguiding structures,
such as V-groove, slot, and trench waveguides.5,7

The MIM and IMI waveguides have been extensively stud-
ied experimentally8–12 and theoretically.6,13–16 A key feature of
any theoretical description of SPPs involves a suitable choice
for the modeling of the response of free electrons of the metal.
By far, the most common approach in the literature has been
to apply the local-response approximation (LRA). The LRA
solutions for the MIM and IMI structures were determined
very early by Economou17 and comprise two SPP modes being
of even and odd symmetry with respect to the electric and
magnetic fields, respectively. The properties of these modes
are determined by their respective dispersion relations, i.e., by
the relations between the frequency ω and the SPP propagation
constant k, which are given by transcendental equations. In the

nonretarded limit of the LRA, the surface modes of the MIM
and IMI structures become identical,18 which is an interesting
property that stems from Babinet’s principle of complementary
structures.19–21

However, issues with the approach of the LRA arise when
either considering large values of k, where an unphysical limit
is found for the frequency, or considering narrow insulator
or metal widths (w < 10 nm), where singularities occur.4,22

In particular when investigating extremely narrow V-grooves,
as recently realized experimentally,23 with techniques such as
EIM, the inadequacy of the LRA manifests itself. Nonlocal
response (or spatial dispersion) has been shown to remove
this flawed behavior of the SPP modes in waveguiding
structures such as single metal-dielectric interfaces,24 infinite
cylinders,25 and more recently, hyperbolic metamaterials,26

conical tips,27,28 hybrid plasmonic waveguides,29 wedges, and
V-grooves.30

Extensive theoretical work has been done on the fundamen-
tal MIM and IMI waveguides, yet only a few studies24,31–33

have focused on nonlocal effects in these structures. In this
paper, we fill this gap by determining the dispersion relations
of SPP modes of the IMI and MIM waveguides taking
into account nonlocal response, retardation effects as well
as interband transitions in the metals. We also revisit the
simple metal-insulator (MI) waveguide structure. The nonlocal
response is described by a linearized semiclassical hydrody-
namic model,34,35 which includes the quantum kinetics of the
free-electron gas described by Thomas-Fermi theory.

The derivations and corresponding results for the nonlocal
retarded dispersion relations of the IMI, MIM, and MI
waveguides are presented in Sec. II. With the dispersion
relations for the three waveguides at hand, we examine in detail
the interplay between losses and nonlocality in the metal by
gradually increasing the absorption losses. The fundamental
influence of losses versus nonlocality on the SPP dispersion
has, to our knowledge, not yet been investigated. Furthermore,
we compare modes of the IMI and MIM waveguides with and
without retardation and nonlocality and show that only in the
nonretarded LRA do the modes of these two complementary

115401-11098-0121/2013/88(11)/115401(9) ©2013 American Physical Society

162 PHYS. REV. B 88, 115401 (2013)



SØREN RAZA et al. PHYSICAL REVIEW B 88, 115401 (2013)

waveguides become identical. Retardation and nonlocality
are shown to break their complementarity. These topics are
discussed in Sec. III. Finally, Sec. IV concludes the paper.

II. THEORY

A. Nonlocal theory for thin-film systems

To determine the modes of thin-film systems, we first
outline the main equations for the electric and magnetic fields
that must be solved. We then consider the class of guided
solutions with transverse magnetic (TM) polarization. The
boundary conditions for the metal-dielectric interfaces are also
discussed.

The free-electron gas of the metals comprising the thin-film
waveguides is described by a nonlocal hydrodynamic equation
of motion.35,36 An intuitive way of describing the effect of
nonlocal response is that it serves to smear out the charges
at the surface of the metal on the scale of the Thomas-Fermi
screening length.37–39 One of the key impacts of this charge
smearing is the removal of field divergences that are known
to occur in the LRA.40–44 The hydrodynamic equation relating
the current density J(r,ω) to the electric field E(r,ω) is given
by36,40

β2
F

ω(ω + iγ )
∇ [∇ · J(r,ω)] + J(r,ω) = σ (ω)E(r,ω), (1)

where σ (ω) = iε0ω
2
p/(ω + iγ ) is the Drude conductivity

and β2
F = (3/5)v2

F is the nonlocal parameter obtained from
Thomas-Fermi theory, where vF is the Fermi velocity of the
metal. By combining Eq. (1) with Maxwell’s equations, the
general equations describing the electric field E(r,ω) in a
metal with hydrodynamic nonlocal response can be compactly
written as24,36,45

(∇2 + k2
m

)∇ × E(r,ω) = 0, (2a)(∇2 + k2
nl

)∇ · E(r,ω) = 0, (2b)

where km ≡ k0
√

εm is the usual wave vector in the metal while

knl ≡
√
ω2 + iγ ω − ω2

p/ε∞/βF is the additional longitudinal
wave vector present in a nonlocal description of the metal.
Here, k0 ≡ ω/c is the vacuum wave vector, εm ≡ ε∞(ω) −
ω2

p/(ω2 + iγ ω) is the local-response Drude permittivity in-
cluding additional frequency-dependent polarization effects
through ε∞(ω) not due to the free-electron plasma response.

At this stage, we point out that for a homogeneous
material, we may advantageously Fourier transform Eq. (1)
and Maxwell’s equations to k space. Using the Helmholtz
decomposition, we can uniquely decompose the electric
field and current density into transverse (FT · k = 0) and
longitudinal (FL × k = 0) components. The transverse εT and
longitudinal εL components of the permittivity tensor of the
homogeneous material are then determined as35

εT(ω) = εm(ω) = ε∞(ω) − ω2
p

ω(ω + iγ )
, (3a)

εL(k,ω) = ε∞(ω) − ω2
p

ω(ω + iγ ) − β2k2
, (3b)

M I M I M

w

I M I

w
x

z

y

FIG. 1. The three waveguide systems: metal-insulator (MI),
metal-insulator-metal (MIM), and insulator-metal-insulator (IMI)
along with the chosen coordinate system.

where the k dependence (which in the real-space representation
corresponds to nonlocal response) is only present in the
longitudinal component of the permittivity tensor. Just as the
influence of the electric field also at preceding times results in
the frequency dispersion of the material response, so does the
influence of the electric field also at neighboring locations
result in momentum dispersion. For the inhomogeneous
structures that we consider in this paper, i.e., MI, MIM, and
IMI, the full k-space approach is not particularly practical, due
to the breaking of symmetry along the out-of-plane direction,
and we instead opt to consider all equations in real space
initially.

The electric field in the insulator regions with permittivity
εd is described by the Helmholtz equation

(∇2 + k2
d

)
E(r,ω) = 0, (4)

where kd ≡ k0
√

εd is the wave vector in the insulator.
Once the electric field has been determined, the magnetic

field H(r,ω) can be found from Faraday’s law

H(r,ω) = 1

iωμ0
∇ × E(r,ω), (5)

and then the free-electron current density J(r,ω) in the metal
can be found as

J(r,ω) = ∇ × H(r,ω) + iωε0ε∞(ω)E(r,ω). (6)

Without loss of generality, we set the propagation direction
along the z axis and define the x axis as perpendicular to the
propagation plane, as in Fig. 1. Then the electric and magnetic
fields for TM polarization can be simplified to

E(r,ω) = [Ex(x)êx + Ez(x)êz] eikz, (7a)

H(r,ω) = Hy(x)eikz êy, (7b)

where k is the SPP propagation constant. With the definitions
in Eqs. (7), we can simplify the general expressions of Eqs. (2)
and (4)–(6) to the following component form:

(
∂2

∂x2
− κ2

nl

) [
kEz(x) − i

∂Ex(x)

∂x

]
= 0, (8a)(

∂2

∂x2
− κ2

m

) [
kEx(x) + i

∂Ez(x)

∂x

]
= 0, (8b)

Hy(x) = 1

ωμ0

[
kEx(x) + i

∂Ez(x)

∂x

]
, (8c)

Jx(x) = −ikHy(x) + iωε0ε∞Ex(x), (8d)
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which are to be solved in the metal regions, while in the
insulator regions the governing equations are(

∂2

∂x2
− κ2

d

)
Ex(x) = 0, (9a)

Ez(x) = i

k

∂Ex(x)

∂x
. (9b)

The magnetic fields in the insulator regions are also determined
using Eq. (8c). For convenience, we have defined a propagation
constant normal to the interfaces in the respective regions given
as

κ2
j ≡ k2 − k2

j for j ∈ {m,d,nl}. (10)

With Eqs. (8) and (9), solutions for the electric field,
magnetic field, and current density can be determined in the
metal and insulator regions. At the metal-dielectric interfaces,
we must connect the solutions using boundary conditions
(BCs). Maxwell’s BCs provide two of the three needed, namely
the continuity of the tangential components of the electric and
magnetic fields (Ez and Hy , respectively). In our treatment,
we neglect effects due to electron spill-out and quantum
tunneling, which unambiguously determines the third and
additional BC to be the vanishing of the normal component
of the free-electron current density (Jx).26,35,36,46 With this
assumption, we reduce our range of consideration to widths
larger than 1 nm for the MIM waveguide.47,48

B. Single metal-insulator (MI) interface

Before considering thin-film waveguides, it is instructive to
revisit the fundamental problem of SPPs propagating at a single
MI interface. The MI problem with hydrodynamic nonlocal
response in the metal has been solved by Boardman et al.,24

in the simplest of cases where interband contributions and
intraband damping were neglected. These results were recently
generalized to include such contributions,33 however, without
considering the delicate interplay between the absorption
losses and nonlocality in the metal, which we examine in
Sec. III.

The retarded nonlocal dispersion relation for a single MI
interface is exactly given as

1 = −εmκd

εdκm
− δnl, (11)

where δnl is an important nonlocal correction that will also
appear below for the more complex thin-film waveguides and
is given as

δnl = k2

κnlκm

εm − ε∞
ε∞

. (12)

We emphasize that when βF → 0, the local-response disper-
sion relation in Ref. 17 is retrieved since δnl → 0. We also
note that the k solutions of the radical equation in Eq. (11) can
be obtained analytically by the standard method for solving
radical equations through squaring, and can be represented in
terms of the solutions of a third-order polynomial.

For completeness, we also note that in the nonretarded limit
c → ∞, the nonlocal correction δnl simplifies to

δnr
nl ≡ lim

c→∞ δnl = k

κnl

εm − ε∞
ε∞

, (13)

and the dispersion relation for a single MI interface Eq. (11)
simplifies to

1 = −εm

εd
− δnr

nl . (14)

The nonretarded local-response dispersion relation is retrieved
by letting δnr

nl → 0 in Eq. (14).

C. Metal-insulator-metal (MIM)

The problem of determining the SPP modes of the MIM
waveguide can, as in the LRA, be simplified by considering the
even and odd modes separately. The symmetry considerations
apply to the electric field. The exact retarded nonlocal
dispersion relation for the fundamental, even mode is

tanh

(
κdw

2

)
= −εdκm

εmκd
(1 + δnl) , (15a)

while for the odd mode, we find

coth

(
κdw

2

)
= −εdκm

εmκd
(1 + δnl) , (15b)

where w is the width of insulator slab. These equations are in
agreement with recent results.33 In the nonretarded limit, Eqs.
(15) simplifies to

tanh

(
kw

2

)
= − εd

εm

(
1 + δnr

nl

)
, (16a)

coth

(
kw

2

)
= − εd

εm

(
1 + δnr

nl

)
. (16b)

As previously mentioned, inclusion of nonlocal response
regularizes the unphysical divergences encountered in the
LRA. This property is also preserved for the MIM waveguide,
and we may see how it comes about by examining the limit
w → 0 for the fundamental mode (which in the LRA produces
a singularity). In this regard, we may neglect retardation effects
and additionally simplify Eq. (16a) by using the small-x
expansion tanh(x) � x. This yields

k = −2εd

εm
[w − 
MIM]−1 , 
MIM = iεd(εm − ε∞)

2knlεmε∞
, (17)

where 
MIM is the nonlocal correction, which vanishes in
the local-response limit βF → 0. We emphasize that k stays
finite even in the case of w = 0 in contrast to the diverging
local-response relation22 given by Eq. (17) with 
MIM = 0.

D. Insulator-metal-insulator (IMI)

The two SPP modes of the IMI waveguide can be classified
into even and odd modes, as in the case of the MIM waveguide.
However, while the symmetry characterization applied to the
electric field for the MIM waveguide, here it is with respect
to the magnetic field.26 The nonlocal modes for the IMI
waveguide have previously been studied in the case of a
lossless metal without interband contributions.31 Here, we
generalize these results to include such contributions, which
are important in realistic waveguides. The retarded nonlocal
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dispersion relation for the odd and even modes are

coth

(
κmw

2

)
= −εmκd

εdκm
− δnl coth

(
κnlw

2

)
, (18a)

tanh

(
κmw

2

)
= −εmκd

εdκm
− δnl tanh

(
κnlw

2

)
. (18b)

We note that, in contrary to the MIM waveguide, the odd mode
Eq. (18a) is in fact the fundamental mode.

In the nonretarded limit, Eqs. (18a) and (18b) simplify to

coth

(
kw

2

)
= −εm

εd
− δnr

nl coth

(
κnlw

2

)
, (19a)

tanh

(
kw

2

)
= −εm

εd
− δnr

nl tanh

(
κnlw

2

)
. (19b)

As in the case for the MIM waveguide, we can again
examine the limit of w → 0 for the fundamental mode.
Neglecting retardation effects and using the small-x expansion
coth(x) � 1/x, we find

k = − 2εd

wεm

[
1 −

(

IMI

w

)2
]

, (20a)


IMI = 2εd

knlεm

√
εm − ε∞
εmε∞

. (20b)

Here, 
IMI is the nonlocal correction for the IMI waveguide
that vanishes for vanishing βF. Unlike the MIM waveguide,
the nonlocal correction does not regularize the diverging k

when w = 0. Due to the confinement of the electron plasma
in the IMI waveguide, as opposed to the MIM waveguide, the
regularization of the dispersion likely requires inclusion of
electron spill-out, which is not treated here, see Sec. II A.
Further elaboration on the comparison of Eqs. (20) with
Eq. (17), in the context of complementarity, is done in
Sec. III B.

III. RESULTS

The dispersion relations introduced in Sec. II are complex-
valued transcendental equations of the implicit form F (ω,k) =
0, with the propagation constant in general being a complex
number k = k′ + ik′′. Thus to determine the waveguide modes,
solutions to the dispersion relations must be found in the
complex k plane for each frequency, which in general is a
nontrivial task. Fortunately, a robust and reliable numerical
scheme suitable for determining the zeros in the complex
plane, based on the Cauchy integral formula, has been
previously developed49,50 and is employed in this work.

In the following, we focus on the free-electron properties
(i.e., ε∞ = 1) of the modes of the three different waveguides.
This allows us to rescale the dispersion relations with normal-
ized quantities, here introduced as � = ω/ωp, K = kc/ωp,
� = γ /ωp, η = βF/c, and for the IMI and MIM waveguides,
W = wωp/c. The normalized parameters � and η characterize
the losses and the strength of nonlocality in the metals,
respectively.

This section is divided into two parts: Sec. III A concerns the
interplay between metal losses and nonlocality. Here, we first
study this interplay in the simple MI waveguide that does not
contain any geometric length scales, whereafter we examine

how nonlocal effects are enhanced in confined waveguides
such as the MIM and IMI waveguides. Section III B deals
with the breaking of complementarity in the MIM and IMI
waveguides due to nonlocal response.

A. Losses and nonlocality

1. MI waveguide

Due to the absence of length scales associated with the
geometry, the MI waveguide is an ideal system to study, when
considering the interplay between losses and nonlocality of the
SPP mode. An additional benefit of studying the MI structure
is that it is not obscured by the effects of multiple interface
reflections that is present in the MIM and IMI structures, such
that only the intrinsic properties of free electrons affect the
waveguiding properties. In this section, we therefore focus
on how the presence of absorption losses in the metal, i.e., a
finite-valued �, affects the nonlocal and local retarded modes
of the MI waveguide, as described by Eq. (11) with and without
δnl, respectively.

The interplay between losses and nonlocality in the MI
waveguide is seen in Fig. 2, where we display the effect
of increasing the metal losses on the local and nonlocal
dispersion relations of the SPP mode, given by Eq. (11) with
η = 5 × 10−3. In the lossless case (� = 0), the local dispersion
relation converges towards the well-known �SP = 1/

√
2εd

limit for large K values, while the nonlocal dispersion relation
increases in frequency without bound, in agreement with
earlier results.24 However, in the presence of very weak
losses (� = 10−3) the infinite K values at the frequency �SP

in the LRA are removed and the SPP mode bends back.
This back-bending effect is a well-known textbook result,4

which occurs for any positive value for � in the LRA. The
extreme sensitivity to even minute losses in the LRA is due
to the vanishing group velocity vg = ∂ω/∂k at �SP.51 In
striking contrast, the nonlocal SPP mode [i.e., Re(K)] is robust
due to the finite group velocity vg � βF. Consequently, no
pronounced slow-light enhancement of weak losses takes place
and the nonlocal SPP mode does not bend back until the losses
of the system start to dominate. Although nonzero Im(K) is
generated for the nonlocal SPP mode for � 
= 0, the real part
of the propagation constant Re(K) remains largely unaffected.
It is also interesting to note that the behavior of Im(K),
which is related to the SPP propagation length lSPP through
lSPP = 1/[2Im(K)], changes drastically from � = 10−3 to
10−2. For � = 10−3, the nonlocal SPP mode propagates longer
than the local one in the frequency region � > �SP, while the
opposite result is seen for � = 10−2. At the same time, Re(K)
for the nonlocal mode is unchanged and substantially larger
than in the LRA, resulting in shorter wavelengths and thereby
stronger confinement of the SPP mode at the MI surface.
Not until � = 10−1, which is significantly larger than the
nonlocal parameter η, do the losses in the metal dominate
over nonlocality and force the nonlocal SPP mode to bend
back. At such losses, the local and nonlocal models result
in almost identical solutions. Intuitively, we may understand
this result by recalling that the influence of nonlocal effects is
related to the free movement of the electron gas, which can
be significantly impaired in the case of large losses, i.e., high
collision frequencies.
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FIG. 2. (Color online) Local and nonlocal complex dispersion relations of the SPP mode of the MI waveguide, given by Eq. (11), with
εd = 1 and metal losses increasing from � = 0 to 10−1. Local results are shown in red, while nonlocal are shown in green. Solid lines display
the real part of the propagation constant, Re(K), while the dashed lines display the imaginary part of the propagation constant, Im(K). The
value η = 5 × 10−3 suitable for noble metals has been used.

The transition of the nonlocal mode from being dominated
primarily by nonlocality to being dominated by losses (i.e.,
� = 10−2 → 10−1 in Fig. 2) is investigated in more detail in
Fig. 3. To explain the transition, we must also consider the
presence of the high-energy branch known as the Brewster
mode52 (for clarity not shown in Fig. 2) and not only the SPP
mode. The Brewster mode, which is also a solution emerging
from Eq. (11), does not correspond to a true surface wave,
since, in the lossless case, the wave is unbound and radiative.
In fact, the Brewster mode corresponds to a zero-valued
reflection coefficient, which for a lossless Drude metal can
be satisfied in the transparency window � > 1. In Fig. 3,
we see the merging of two separated modes, plotted as red
and blue lines. For the lowest loss of log(�) = −1.7, the red
line corresponds to the continuation of the Brewster mode
to frequencies lower than � = 1 (see inset of Fig. 3), which
in the lossless case would be a forbidden region (i.e., only
purely lossy solutions exist).52 The blue line represents the

standard, low-loss, nonlocal SPP mode. As the losses increase
[log(�) = −1.6 → −1.575], the real parts of the dispersion
of the Brewster mode and SPP mode begin to merge.53

At approximately log(�) = −1.55, the mode-appearance has
qualitatively changed, with the appearance of the usual well-
known loss-dominated SPP mode (in blue), which is also
present in LRA, as well as the emergence of a relatively
flat-band, nonlocal surface plasmon mode (in red) near the
surface plasmon resonance �SP.35 We notice that the nonlocal
flat-band mode is significantly damped in comparison with the
usual SPP mode, and that the damping increases drastically
with increased material loss. In contrast, the usual SPP
mode is not nearly so sensitive to the small change in
material loss from log(�) = −1.55 to −1.5. A similarly abrupt
qualitative merging of two modes was previously studied
in Ref. 53 in the context of mode-interaction in spatially
separated waveguiding structures in a local description, by
consideration of complex-frequency poles of the dispersion

0 3
0

1.5

0 3
0

1.5

0 3
0

1.5

0 3
0

1.5

0 3
0
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FIG. 3. (Color online) Nonlocal complex dispersion relations of the SPP and Brewster modes of the MI waveguide, both attained from
solution of Eq. (11), with εd = 1 and metal losses increasing from � = 10−1.7 to 10−1.5. Solid lines display the real part of the propagation
constant, Re(K), while the dashed lines display the imaginary part of the propagation constant, Im(K). The insets show zoom-outs of the
real dispersion relation and illustrate more clearly the Brewster mode. The transition and mode evolution from nonlocality to loss-dominated
behavior is explored. The value η = 5 × 10−3 suitable for noble metals has been used.
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equation, migrating across the real-frequency axis for increas-
ing loss.

We now present a simple analysis to understand when
the metal losses dominate nonlocal effects in the MI waveg-
uide. The back-bending occurs at the frequency �SP, where the
propagation constant is significantly larger than the free-space
propagation constant. We can therefore justify to examine the
simpler nonretarded dispersion relation given by Eq. (14)
instead of the retarded dispersion relation [see Eq. (11)].
From Eq. (14), we see that nonlocality becomes negligible
when |δnr

nl | � |1 + εm/εd|. Evaluating this condition at the SPP
frequency with εd = 1 (as in Fig. 2) for small � leads to the
simple condition for loss-dominated behavior

� � η, (21)

which is consistent with our numerical analysis. We point out
that the loss parameter � is just one of several options for
introducing an imaginary part to the metal permittivity. An
alternative approach to introducing losses is by simply adding
a constant imaginary part to the lossless free-electron Drude
model. In either case, the metal permittivity becomes complex-
valued. To bridge these different approaches, we can relate
the condition in Eq. (21) to the imaginary part of the metal
permittivity by noting that Im[εm(� = �SP)] = 2

√
2�/(1 +

2�2) in which case Eq. (21) can be rewritten as

Im(εm) � vF

c
. (22)

In noble metals, the nonlocal parameter is of the order
vF/c ≈ 10−3 and the losses are of the order Im(εm) ≈ 100,
which in general means that metal losses largely dominate
nonlocal effects in the SPP mode of the MI waveguide.54 In
other words, in the MI waveguide, the spatial dispersion of
the metal becomes invisible to the SPP mode in the limit of
infinitely high absorption losses.

2. MIM and IMI waveguides

Figure 4 displays the effect of increasing losses on nonlo-
cality for the fundamental modes of the MIM (first row) and
IMI waveguides (second row) given by Eqs. (15a) and (18a),
respectively. The normalized width of the waveguides is set
to W = 0.25, which corresponds to a width of w ≈ 5nm for
Ag and Au (ωp ≈ 9 eV). Considering the MIM waveguide
first, we see that in the lossless case nonlocal response within
the hydrodynamic model predicts a blueshift compared to the
LRA (for a fixed K). As the losses in the metal increase
(� = 10−2), the local dispersion relation [Re(K)] immediately
bends back and the propagation length is significantly shorter
than for the nonlocal case. Both of these effects are similar
to those observed for the MI waveguide. When � = 10−1 the
nonlocal dispersion relation also bends back and the nonlocal
propagation length becomes comparable to LRA, albeit for
� < �SP nonlocal response gives rise to longer propagation
lengths than in the LRA. Although the nonlocal dispersion
relation bends back at these large losses, nonlocal response
still reveals a blueshift and larger values of Re(K) than in the
LRA.

The trend is very similar for the IMI waveguide (see second
row of Fig. 4). In fact, in the LRA, the difference between
the fundamental modes of the IMI and MIM waveguides is

FIG. 4. (Color online) Local and nonlocal complex dispersion
relations of the fundamental mode of the MIM (first row) and IMI
(second row) waveguides, given by Eqs. (15a) and (18a), respectively,
with W = 0.25, εd = 1, η = 5 × 10−3, and metal losses increasing
from � = 0 to 10−1. Local results are shown in red, while nonlocal are
shown in green. Solid lines display the real part of the propagation
constant Re(K), while the dashed lines display the imaginary part
of the propagation constant Im(K). The black lines represent the
approximate nonlocal dispersion relations given by Eqs. (17) and
(20) for the MIM and IMI waveguides, respectively.

practically negligible. As for the nonlocal case, the biggest
difference between the IMI and MIM waveguides is seen for
� = 10−1, where nonlocal response shows a slight increase in
the maximum values of both the Re(K) and Im(K) for the IMI
waveguide.

In Fig. 4, we have also examined the validity of the
approximate relations for the nonlocal fundamental modes of
the MIM and IMI waveguides given by Eqs. (17) and (20),
respectively. They are plotted as black lines for the lossless
case. We see that the approximate relations are in excellent
agreement with the exact calculations when KW � 1.

The important feature for both waveguides is that even
for large losses (of order � = 10−1) the nonlocal and local
dispersion relations are different, in stark contrast to the MI
waveguide. The nonlocal dispersion relations show larger
values of Re(K) than in the LRA for both waveguides. Thus
the limitations and undesired properties of metal losses are
counteracted by nonlocality, which gives rise to a shorter
wavelength of the SPP mode and thereby an increase of the
mode confinement. These interesting features arise due to
the multiple reflections present in the IMI/MIM waveguides,
introducing a new length scale given by the scaled width
of the slab W . The importance of nonlocal effects increases
with decreasing width (or, in general, size),36 and it is clear
from the nonlocal dispersion relations for the IMI and MIM
waveguides that the strength of nonlocality is different in
these two waveguide structures, as also observed in Fig. 4.
This difference arises due to the presence of confined nonlocal
pressure waves, which are naturally only present in the IMI
waveguide.
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B. Breaking of complementarity due to nonlocal response

It is well known that the LRA dispersion relations for the
SPP modes of the MIM and IMI waveguides are identical in
the nonretarded limit,4,18 which is also clear from comparing
Eqs. (16) to Eqs. (19) with δnr

nl = 0. This property of identical
surface modes in complementary waveguide structures, such
as the MIM and IMI waveguides, is broken when retardation
effects are included in the LRA, which become important for
SPP propagation values K close to the light line K0 = �.18

Here, we show explicitly that nonlocal response also breaks
the symmetry by considering the SPP modes of the MIM
and IMI waveguides in the nonretarded limit, i.e., in the limit
where K � K0. In the following, we divide the discussion
of breaking of complementarity into two parts: one due to
retardation effects alone in the LRA, and one solely due to
nonlocal response in the nonretarded limit. For the latter, we
consider the nonretarded limit to ensure that the breaking of
complementarity is due to nonlocal response rather than being
attributed to retardation.

Breaking of complementarity is illustrated in Fig. 5.
In Fig. 5(a), we plot the SPP modes of the MIM and

FIG. 5. (Color online) Plots of both surface modes of the lossless
IMI and MIM waveguides (a) with and without retardation in the
LRA and (b) with and without nonlocal response (η = 5 × 10−3) in
the nonretarded limit. The light line is shown in grey. The widths of
the waveguides are (a) W = 1 and (b) 0.25.

IMI waveguides only in the LRA, displaying the effect of
retardation. First, we note, as already mentioned, that the SPP
modes of the MIM and IMI modes in the nonretarded limit
are completely identical and overlap in Fig. 5(a) (black lines).
When retardation effects are included the MIM (green lines)
and IMI (red lines) surface modes are no longer identical for K

values close to the light line. The main consequence of properly
taking retardation into account is that no guided modes exist
above the light line (grey line). In Fig. 5(a), we clearly see
that the retarded modes terminate at the light line, unlike the
nonretarded modes.

Figure 5(b) shows the nonlocal and local SPP modes of the
MIM and IMI waveguides calculated in the nonretarded limit.
We see clearly that nonlocal response distinguishes between
the MIM and IMI waveguide modes, for both of the two
surface modes. This effect was observed upon earlier,55 but
not elaborated on. As the propagation constant increases, both
of the nonlocal modes of both waveguides converge towards
the hydrodynamic nonlocal large-K limit K = �/η, as for the
MI waveguide,24,26 and become indistinguishable. Finally, we
also note the characteristic shift to higher frequencies of both
nonlocal SPP modes compared to the LRA.

The breaking of the complementarity property of the MIM
and IMI waveguides due to nonlocal response can of course
be understood from the fact that the dispersion relations for
the two waveguides are different even in the nonretarded limit,
as seen by comparison of Eqs. (16) with Eqs. (19). We can
quantify this difference for the fundamental mode of the two
structures by considering the difference 
k = kMIM − kIMI,
where kMIM and kIMI are given by the approximate relations in
Eqs. (17) and (20), respectively. Using a Padé approximation,
we find to the lowest order in w that


k � −2εd

εm


2
IMI

w3
. (23)

From Eq. (23), we clearly see that in the absence of nonlocal
response (
IMI = 0), the difference between the fundamental
modes of the MIM and IMI waveguides vanishes. Additionally,
we observe that the dispersion-difference depends strongly
on the width. At very narrow widths, we therefore expect a
strong breaking of complementarity. Thus, in the presence
of nonlocality, a thin film of electron gas embedded in an
insulator behaves qualitatively different from a thin insulator
gap embedded in an electron gas.

In an intuitive, but simplified picture of nonlocality, one
could be inclined to attribute the complementarity breaking
to the nonlocal smearing of the induced surface charge. In
the nonlocal hydrodynamic model the induced surface charge
is smeared over a length scale comparable to the Thomas-
Fermi screening length, leading to an effective width increase
(decrease) for the MIM (IMI) waveguide. In this picture, the
dispersion relations of the nonlocal IMI and MIM SPP modes
should then be below and above the local dispersion relations,
respectively, which is not the case, see Fig. 5(b). In fact, the
nonlocal IMI and MIM SPP modes are always above the
local results, discrediting the simple interpretation of nonlocal
response as local response with effective size parameters.

The complementarity breaking originates from the inclu-
sion of pressure waves in the description of a metal with
nonlocal response. More precisely, the breaking is due to the
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confinement of these pressure waves in the IMI waveguide,
which becomes more important for narrower widths. This
confinement results in a significantly different description of
the IMI waveguide compared to the MIM waveguide, where
the pressure waves are not confined. For this reason, nonlocal
effects are also stronger in the IMI waveguide, as can be
seen from the presence of only the nonlocal IMI correction
in Eq. (23). In contrast, in the nonretarded LRA, the absence
of both retardation and the pressure waves leads to a faulty
identical treatment of the MIM and IMI waveguides.

IV. CONCLUSIONS

The effects of nonlocal response, described by a linearized
hydrodynamic model, on the waveguiding properties of the
MI, MIM, and IMI waveguides have been investigated. The
corresponding dispersion relations for the three waveguides
have been derived, taking into account nonlocality, interband
transitions, and retardation. The intriguing transition from
nonlocal- to loss-dominated waveguiding behavior, which has
not previously been studied extensively, was examined for
the MI system, demonstrating that nonlocal response can
counteract the effects of low metal losses. In the LRA, the
presence of even minute losses drastically alters the dispersion
relation of the SPP mode due the slow-light regime at the
surface plasmon frequency �SP. For larger losses, the effects
of nonlocality in the MI structure is less important, and
the difference between local and nonlocal response becomes
negligible. In general, for the MI structure, the impact of metal

losses is much more pronounced than that of nonlocal effects,
partially due to the high losses in metals and partially due to
the absence of any geometric length scale in the MI structure.

Conversely, for the MIM and IMI structures, the presence
of an additional length scale, given by the geometric width of
the waveguide, yields a comparative boost to the effect of
nonlocality vis-à-vis the effect of metal losses. In turn,
the increased strength of nonlocality gives rise to larger
propagation constants and thereby an increased plasmonic
confinement of the SPP modes. Nonlocal effects are shown to
be slightly stronger in the IMI waveguide due to the presence
of confined longitudinal pressure waves, which are absent in
the MIM structure.

Lastly, we also examined the complementarity property
of the MIM and IMI waveguides in the context of Babinet’s
principle. In the nonretarded limit of the LRA, the waveguide
modes of the MIM and IMI modes are known to be identical.
When retardation is taken into account, this symmetry is
broken. In addition, we have shown that in the nonretarded
limit the symmetry is also broken by the inclusion of nonlocal
effects due to the presence of nonlocal pressure waves.
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Abstract We study the refractive-index sensing proper-
ties of plasmonic nanotubes with a dielectric core and
ultrathin metal shell. The few nanometer thin metal
shell is described by both the usual Drude model and
the nonlocal hydrodynamic model to investigate the
effects of nonlocality. We derive an analytical expres-
sion for the extinction cross section and show how sens-
ing of the refractive index of the surrounding medium
and the figure of merit are affected by the shape and
size of the nanotubes. Comparison with other localized
surface plasmon resonance sensors reveals that the
nanotube exhibits superior sensitivity and comparable
figure of merit.

Keywords Refractive-index sensing ·
Nanoplasmonics · Hydrodynamic Drude model

Introduction

It is well known that metallic nanoparticles can sustain
localized surface plasmon (LSP) oscillations, whose
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resonance frequencies in the quasistatic limit depend
solely on the geometry of the nanoparticle, the per-
mittivity of the metal, and the surrounding permittiv-
ity. The dependency of the LSP resonance (LSPR)
on the surrounding medium makes metallic particles
extremely good sensors, progressing towards the de-
tection of single molecules [1]. However, the weak
effect of retardation on the LSP resonance in nano-
sized metal particles leaves only one parameter to truly
engineer: the geometry. By modifying the structure of
the metal nanoparticle to have a dielectric core with
a metal shell, an increased tunability is achieved due
to the plasmon hybridization of the inner and outer
surfaces of the metal [2]. Especially the spherical core–
shell structure has received a considerable amount of
attention in recent years [3–6] due to its excellent and
tunable sensing properties, which show great promise
in biological studies such as cancer therapy [7]. The
plasmon hybridization allows one to position the LSP
resonance of the nanoshell as desired by simply vary-
ing the core size r1 and/or outer radius r2 appro-
priately [8].

The hybridization of the inner and outer surface
plasmons increases when the metal shell becomes thin-
ner [8], which gives rise to significantly altered LSP
resonances compared to usual homogeneous metal
nanoparticles. Studies of the hybridization between two
spherical [9] or cylindrical [10] metal nanoparticles in
few nanometer proximity reveal that the effects of non-
local response increase with increasing hybridization.
Furthermore, nanosized metal particles [11–14] and
metal films [15] are also strongly affected by nonlocal
effects. The core–shell particle thus calls for a nonlocal
description, since it features an ultrathin metallic shell
with a resulting strong plasmon hybridization.
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The use of arrays of nanotubes with high aspect
ratio for biosensing [16] and hydrogen sensing [17]
has yielded impressive results, yet only few theoretical
studies have been performed on the nanotube [18, 19].
Schröter et al. investigate the plasmonic modes and
dispersion relations of the nanotube [18], while Zhu
et al. perform calculations using the discrete dipole
approximation to discuss the changes of the resonance
wavelength of the nanotube due to variations of the
aspect ratio [19]. Thus, to our knowledge, no systematic
study has yet been performed that addresses which pa-
rameters determine the LSPR refractive-index sensitiv-
ity of a nanotube-based sensor. In this paper, we fill this
gap with a systematic study of the sensing and scattering
properties of a single infinitely long cylindrical core–
shell nanowire, see inset of Fig. 1, which is a good
description of dilute arrays of noninteracting nanotubes
with a high aspect ratio. On the basis of this study, we
propose how to optimize a nanotube-based sensor to
achieve the utmost sensitivity for the refractive-index
sensing of both gases and liquids.

The outline of this paper is as follows. In the section
“Theory,” we discuss the physical principles of local

Fig. 1 Extinction cross sections as a function of incident photon
energy for TM-polarized light normally incident on a (r1, r2) =
(40 nm, 45 nm) silica–Au cylinder in vacuum. The three curves
correspond to the nonlocal and local models without interband
transitions (solid green and dashed blue curves, respectively) and
the nonlocal model with interband transitions (solid red curve).
Free-electron parameters for Au as in [20]: �ωp = 7.872 eV, �γ =
0.0530 eV, and vF = 1.39 × 106 m/s. Interband parameters for
Au are also as in [20] and valid up to 5 eV. The panel on the
right shows the normalized intensity distributions |E|2/|E0|2 in
the nonlocal model without interband transitions at the dipole
and quadrupole resonance frequencies. Here, E0 is the incident
electric field. Inset: Schematic diagram of core–shell structure
with relevant parameters

and nonlocal response and introduce the sensitivity
and figure of merit (FOM) as quantitative measures of
the performance of a LSPR-based sensor. The section
“Results and Discussion” is dedicated to the study
of a nanotube with a silica core and gold shell. We
determine the dependency of the sensitivity and FOM
on the shape and size of the nanotube, using both
local and nonlocal theory to model the response of the
gold shell. Our conclusions and outlook on nanotube-
based sensors is given in the section “Conclusions and
Outlook,” and details on the analytical calculations are
in the Appendix.

Theory

The ability of LSPR-based sensors to detect changes
in the refractive index of their surrounding medium
is usually quantified by the sensitivity and FOM [1].
The sensitivity ∂λ/∂nb is determined as the shift in
wavelength of the considered LSP resonance in the
extinction spectrum of the sensor, when varying the
background refractive index nb = √

εb, while the FOM
is given as

FOM = |∂λ/∂nb|
�λ

(1)

where �λ is the resonance linewidth, calculated as the
FWHM of the considered LSP resonance in the extinc-
tion spectrum. Thus, to determine the performance of
the nanotube as a LSPR sensor, we must calculate its
extinction cross section, as this quantifies the extinction
spectrum and therefore allows us to determine the
sensitivity and FOM.

Predictions for the extinction cross section depend
on how the optical response of electrons in the metal
is modeled. The common approach to describe the
response of metals is by making the local approxi-
mation which assumes that the response field at a
certain position is proportional to the driving field at
that position, with the proportionality function being a
position- and frequency-dependent dielectric function.
This approach has the rather unphysical consequence
that all surface charges reside on an infinitely thin layer
on the boundaries of the metal, thereby neglecting
the actual extent (or wave nature) of the electrons.
While the local approximation is justified as long as
the metal boundaries are far apart such that the in-
teraction between electrons due to their extent can be
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neglected (i.e., large metallic structures), it cannot be
safely assumed for nanosized metal particles where the
wavelength of the electron becomes comparable in size
to the metal particle. By describing the metal using the
semiclassical hydrodynamic Drude model [14], we relax
the local approximation by allowing the existence of
local inhomogeneity in the density of the electron gas,
which gives rise to pressure waves. The electron-gas
pressure waves provide a means to transport energy
in the metal in addition to the electromagnetic waves,
which gives rise to nonlocal response: the response of
the metal at a certain spatial point can depend on the
driving field at other nearby points (on the length scale
of the Fermi wavelength) in the metal.

In the Appendix, we provide an analytical expression
for the extinction cross section in the cases of both non-
local and local response, for a normally incident trans-
verse magnetic (TM)-polarized wave (see the inset of
Fig. 1). We have checked the analytical expression with
our numerical implementation of the hydrodynamic
Drude model [10], which showed a perfect agreement
(not shown in this paper).

Results and Discussion

We consider the specific core–shell structure, where the
core is silica (SiO2) with dielectric constant εc = 1.52

and the shell is gold (Au) modeled with the data by
Rakić et al. [20]. To clearly show the difference in
extinction cross section in local and nonlocal response,
we start by examining the case where interband effects
in Au are neglected. Figure 1 depicts the extinction
cross section for a (r1, r2) = (40 nm, 45 nm) silica–Au
cylinder in vacuum comparing the local and nonlocal
model. The local approximation shows three distinct
peaks, two at low frequencies (dipole and quadrupole
peaks) and one at a high frequency (near 7 eV). These
are due to the interaction between the localized plas-
mons at the inner and outer surface of the nanoshell or,
equivalently, the interaction between a cavity mode and
a cylinder mode [8]. The nonlocal description allows
the same classification of peaks as the local approx-
imation [10, 14], although the high-frequency peak is
blueshifted compared to the local model. Since sensing
depends on peak shifts, it is important to take pos-
sible nonlocal blueshifts into account. However, the
low-frequency resonances show no noticeable blueshift
because the strength of the nonlocal blueshift does not
only increase with decreasing thickness of the metal
layer [9, 13–15] but it also depends on the frequency,

with a decreasing blueshift for lower frequencies. Thus,
we find that there is an intricate interplay between
plasmon hybridization and nonlocal response: Since a
thinner metal shell produces stronger plasmon hybrid-
ization, the dipole and quadrupole peaks are pushed to
such low frequencies that the nonlocal blueshift effect
due to nanosized metallic features is counteracted by
the low frequency of the resonances.

The panel on the right of Fig. 1 shows the nonlocal
normalized intensity distribution in the metal at the
dipole and quadrupole resonance frequencies, illus-
trating the expected dipole and quadrupole nature of
the resonances. Above the plasma energy �ωp, we see
the characteristic additional resonances in the nonlocal
model due to the excitation of longitudinal modes, as
previously reported for different metal nanoparticles
[13, 14, 21].

The difference between the red and green curves
in Fig. 1 shows the importance of taking into account
interband transitions in the response of the metal shell.
The implications on the dipole and quadrupole reso-
nances are that they are redshifted and damped due
to interband transitions, with greatest impact on the
quadrupole peak. In the remaining part of this paper,
we will always use measured values for the dielectric
function [20], i.e., we take interband transitions into
account. We will concentrate on the dipole resonance,
since this peak is the strongest, is close to visible and
infrared frequencies, and can be affected by the shape
and size of the cylinder and the background permittiv-
ity. Furthermore, the shift due to hybridization of the
dipole resonance to lower energies is advantageous as
it reduces the effects of Drude and interband damping.

There are two geometrical properties that can be
modified in the nanotube structure: the first is the shape
defined by the r1/r2 ratio and the second is the overall
size, that is, varying the outer radius r2 but keeping r1/r2

constant. In Fig. 2, we show the effect of shape varia-
tions of the nanotube on its sensing abilities, which is
quantified through the change in the dipole resonance
wavelength when the background refractive index is
increased. We see that regardless of the shape, the
dependency is always approximately linear. However,
as shown in Fig. 2(i), there is no significant dependency
on the background refractive index for low r1/r2 ra-
tios, indicating the lack of ability to sense. Figure 2(i)
illustrates that thicker tubes are less good as refractive-
index sensors because the peak intensity is maximal
near the inner rather than the outer surface. Only when
the shell becomes thin (r1/r2 → 1) does the resonance
wavelength shift with the refractive index. The thinner
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Fig. 2 The dipole resonance wavelength calculated with both
local and nonlocal response taking into account interband tran-
sitions as a function of the background refractive index for four
different r1/r2 ratios: (i) 0.7, (ii) 0.9, (iii) 0.95, and (iv) 0.98. The
outer radius of the nanotube is kept constant at r2 = 100 nm. The
panel on the right shows the normalized intensity distribution
|E|2/|E0|2 in the nonlocal model at the vacuum dipole resonance
wavelength for the corresponding four different shapes

the shell, the greater is the average slope of the curves.
Relaxing the nonlocal description to a local one does
not change this trend because the dipole resonances
occur at too low energies for the nonlocal blueshift to
kick in. Furthermore, the resonance wavelength shifts
to higher wavelengths when the shell becomes thinner
because the coupling between the cavity and cylinder
modes increases. Thus, even though Fig. 2(iv) repre-
sents a nanotube with a 2-nm thin metal shell, where
nonlocal blueshifts are expected to be very promi-
nent, the local approximation predicts sensitivities that
are almost identical to the nonlocal description. So,
as in Fig. 1, here in Fig. 2 we see that for ultrathin
nanotubes, the usual observation of larger nonlocal
blueshifts for smaller structures does not occur. The
nonlocal blueshift cancels out with the decrease of the
resonance energy due to increased hybridization.

For a more quantitative description of the sensitivity
of the nanotube, we present sensitivity and FOM calcu-
lations of the nanotube structures shown in Fig. 2 at the
refractive index of air and water in Table 1. As in Fig. 2,
it is again clear from Table 1 that increased sensitivity
can be achieved for thinner metal shells. Comparing the
sensitivity of the nanotube with other LSPR sensors
based on different nanoparticle geometries [22, 23],
where the sensitivity is in the range 90 − 801 nm per
refractive index unit (RIU), shows that the nanotube is
comparable in sensitivity for ratios r1/r2 > 0.7, while it
is superior for very high r1/r2 ratios. Comparison of the

Table 1 Sensitivity and figure of merit calculations (Eq. (1)) in
the nonlocal description at the refractive index of air nb = 1 (for
gas sensing) and water nb = 1.333 (for liquid sensing) for the four
different shapes of Fig. 2

(r1, r2) ∂λ/∂nb (nm/RIU) FOM
nb = 1 nb = 1.333 nb = 1 nb = 1.333

(70 nm, 100 nm) 58 −103 0.3 0.4
(90 nm, 100 nm) 298 261 1.6 1.2
(95 nm, 100 nm) 470 539 1.9 1.9
(98 nm, 100 nm) 790 788 2.4 2.2

FOM with other nanoparticle LSP sensors also shows
equally good performance by the nanotube, although
the FOM is mainly dependent on the properties of Au
and not easily improved by changing the geometry [24].
The sensitivity values in Table 1 also reveal that the
nanotube has a high sensitivity at both the refractive
index of air and water, which shows the versatility of
a nanotube-based sensor and its applicability as both a
gas and liquid sensor.

Besides shape variations, we also varied the size r2

of the nanotube while keeping r1/r2 constant. Figure 3
depicts the dipole resonance wavelength as a function
of the background refractive index for three different
sizes with r1/r2 = 0.9. The sensing ability of the nan-
otube is not as dependent on size as it is on shape, which
can be seen by the three almost parallel lines in Fig. 3.
Even though the sensitivity does not change much with

Fig. 3 The dipole resonance wavelength calculated with both
local and nonlocal response taking into account interband tran-
sitions as a function of the background refractive index for three
different r2 values: (i) 30 nm, (ii) 50 nm, and (iii) 80 nm. The
shape of the nanotube is kept constant by setting r1/r2 = 0.9.
The panel on the right shows the normalized intensity distribu-
tion |E|2/|E0|2 in the nonlocal model at the vacuum resonance
wavelength for the corresponding three different sizes. Inset: The
LSPR sensitivity at the refractive index of air (nb = 1) and water
(nb = 1.333) calculated with the nonlocal model as a function of
outer radius while keeping r1/r2 = 0.9
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increasing size, there is still an optimum size which
occurs at r2 = 50 nm and r2 = 70 nm for liquid and gas
sensing, respectively, see the inset of Fig. 3. The fact
that it is neither the smallest nor the biggest nanotube
size that gives the highest sensitivity can be explained
by a trade-off between the total structure size and the
shell thickness. If the size of the structure is too small,
then we have a weak LSP excitation and thereby poor
sensing ability, but if the structure size is too big (with
the shape kept constant), the absolute shell thickness
increases, which also decreases the sensing ability, as
we saw in Fig. 2. Therefore, for a larger r1/r2 value, the
optimum size will also be larger.

In Fig. 3, we also show the calculations using the local
approximation. As seen, effects are surprisingly well
accounted for even with a local description, despite the
fact that we actually consider very thin metallic shells,
for instance a 3-nm shell in Fig. 3(iii), with concomitant
strong plasmon hybridization. The strong hybridization
in ultrathin metal shells shifts the dipole resonance
to very low energies, where the nonlocal blueshift
is weak. The sensitivity and consequently the FOM
are therefore weakly influenced by nonlocal response.
Although it is hardly visible in Fig. 3, the local reso-
nances do in fact occur at slightly longer wavelengths
than in the nonlocal description, revealing a small non-
local blueshift.

Conclusions and Outlook

We have examined the infinite single dielectric-metal
nanotube structure as an approximation for a dilute
array of nanotubes with high aspect ratio. We calcu-
late the extinction properties of a silica–gold nanotube
analytically for both local and nonlocal response by
extending the Mie theory for nanowires to nanotube
geometries. Our investigation reveals that in contrast
to the spherical nanoshell [6], the sensing ability of
the nanotube is highly dependent on the shape of the
structure, where few nanometer thin shells produce
extreme sensitivities. The sensitivity is shown to be less
dependent on the overall structure size. The sensitivity
at the refractive index of air and water of ultrathin
nanotubes is superior to other nanoparticle geometries,
making nanotubes very promising for both gas and
liquid sensing.

Our results also show unexpectedly that nonlocal
response has a negligible influence on the extinction
and sensing properties of the nanotube, even though
the metal shell is ultrathin (a few nanometer) because

the hybridization in the nanotube is so strong that
the dipole resonance is pushed to very low energies.
The strength of the nonlocal blueshift is an interplay
between the metal thickness and the resonance energy,
where a thinner shell produces a stronger blueshift
while a lower energy produces a weaker blueshift. This
interplay is surprisingly well balanced in the nanotube
structure because a thinner shell gives rise to lower
resonance energies.

With the high sensitivity and good FOM of the
nanotube geometry, we propose a sensor based on
ultrathin nanotubes. The robustness of the sensitivity
of the nanotube to size variations provides desirable
advantages, since fluctuations in size due to imperfect
fabrication will have a less impact. In the special case
of gas sensing, the sensitivity may be further improved
by a factor of 2 by designing the nanotube to have a
hollow core. With a hollow core, the inner surface of the
metal shell is also exposed to the surrounding medium,
which significantly improves the sensitivity. However,
mechanical stability is sacrificed with a hollow core if
for instance the nanotubes are to stand vertically on a
substrate.

Appendix

The nonlocal optical properties of the nanotube are de-
termined by solving Maxwell’s wave equation coupled
to the hydrodynamic equation for the current [14]. We
solve the coupled set of equations by extending the Mie
theory for wires of Ref. [25] to core–shell structures. By
expanding the electromagnetic fields in the dielectric
core, metal shell, and surrounding medium in cylin-
drical Bessel functions, we can most easily take into
account Maxwell’s boundary conditions along with the
additional boundary condition of a vanishing normal
component of the current in the nonlocal case [14].
Although quantum tunneling is not taken into account
with this treatment, we do not expect any such effects
to be important in this structure [26, 27].

To determine the extinction property of the infinite
cylindrical nanotube we calculate the extinction cross
section [28]

σext = − 2

k0r2

∞∑

n=−∞
Re{an}, (2)

where k0 = √
εbω/c is the background wave vector, εb

is the background permittivity, and an is a cylindrical
Bessel-function expansion coefficient for the scattered
electromagnetic field. We consider a normally incident
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electric-field polarization perpendicular to the cylinder
axis (TM), as sketched in the inset of Fig. 1. The

nonlocal-response scattering coefficient is calculated
analytically as

an = −
√

εb Jn(k0r2)
[
Cn + J′

n Pn − H′
n Qn

] − √
ε J′

n(k0r2)
[
Jn Pn − Hn Qn

]
√

εb Hn(k0r2)
[
Cn + J′

n Pn − H′
n Qn

] − √
εH′

n(k0r2)
[
Jn Pn − Hn Qn

] . (3)

Here, Jn and Hn are the Bessel and Hankel functions
of the first kind, kt = √

εω/c, and ε(ω) = εother(ω) −
ω2

p/(ω[ω + iγ ]) is the Drude local-response function
that includes interband effects through εother(ω). The
arguments of the Bessel and Hankel functions are ktr2

unless written explicitly otherwise.
The coefficients Pn, Qn, and Cn are given by

Pn = pnαn + Jn(kcr1)
[
Hn(ktr1)δn + Hnτn

]
, (4)

Qn = qnαn + Jn(kcr1)
[
Jn(ktr1)δn + Jnτn

]
, (5)

Cn = in
k0r2

[
Hn(klr2)cn − Jn(klr2)dn

]
, (6)

where kc = √
εcω/c and εc is the dielectric constant of

the core. Furthermore, k2
l = (ω2 + iωγ − ω2

p/εother)/β
2

and β2 = 3v2
F/5 with vF being the Fermi velocity of the

metal shell. The coefficients pn, qn, αn, δn and τn of
Eqs. (4–5) are given as

pn = √
ε J′

n(kcr1)Hn(ktr1) − √
εc Jn(kcr1)H′

n(ktr1), (7)

qn = √
ε J′

n(kcr1)Jn(ktr1) − √
εc Jn(kcr1)J′

n(ktr1). (8)

αn =
(

klεother

k0

)2

× [
J′

n(klr2)H′
n(klr1) − H′

n(klr2)J′
n(klr1)

]
, (9)

δn = −kln2√εcεother(ε − εother)

ktk2
0r2

1

× [
J′

n(klr2)Hn(klr1) − H′
n(klr2)Jn(klr1)

]
, (10)

τn = −kln2√εcεother(ε − εother)

ktk2
0r1r2

× [
H′

n(klr1)Jn(klr1) − J′
n(klr1)Hn(klr1)

]
, (11)

while the coefficients cn and dn of Eq. (6) are given as

cn = fn
[
J′

n(klr2)ηn + Jn(klr1)κn
]

+ J′
n(klr1)gn

[
Jn pn − Hnqn

]
, (12)

dn = fn
[
H′

n(klr2)ηn + Hn(klr1)κn
]

+ H′
n(klr1)gn

[
Jn pn − Hnqn

]
, (13)

where

gn = inklεother(ε − εother)

k0ktr2
, (14)

fn = in
√

εc(ε − εother)

k0ktr1
Jn(ktr1), (15)

ηn = kl
[
Jn(ktr1)H′

n(ktr1) − Hn(ktr1)J′
n(ktr1)

]
, (16)

κn = n2(ε − εother)

ktr2r1

[
Jn(ktr1)Hn − Hn(ktr1)Jn

]
. (17)

The local-response result can be retrieved in the limit of
a vanishing Fermi velocity for which Pn = pn, Qn = qn,
and Cn = 0.
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  Blueshift of the surface plasmon resonance in 
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  Abstract:   We study the surface plasmon (SP) resonance 

energy of isolated spherical Ag nanoparticles dispersed 

on a silicon nitride substrate in the diameter range 

3.5 – 26  nm with monochromated electron energy-loss 

spectroscopy. A significant blueshift of the SP reso-

nance energy of 0.5 eV is measured when the particle 

size decreases from 26 down to 3.5 nm. We interpret the 

observed blueshift using three models for a metallic 

sphere embedded in homogeneous background mate-

rial: a classical Drude model with a homogeneous elec-

tron density profile in the metal, a semiclassical model 

corrected for an inhomogeneous electron density asso-

ciated with quantum confinement, and a semiclassi-

cal nonlocal hydrodynamic description of the electron 

density. We find that the latter two models provide a 

qualitative explanation for the observed blueshift, but 

the theoretical predictions show smaller blueshifts than 

observed experimentally.  
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1     Introduction 

 Surface plasmons are collective excitations of the electron 

gas in metallic structures at the metal/dielectric interface 

[ 1 ]. The ability to concentrate light with SPs [ 2 ] and to 

enhance light-matter interaction on a subwavelength scale 

enables few and even single-molecule spectroscopy when 

the size of the metallic structures is decreased to a few 

nanometers [ 3 ]. These collective excitations are usually 

well-described by the classical Drude model for nanopar-

ticles with dimensions of tens of nanometer and larger 

[ 1 ]. In the quasistatic limit, i.e., when the wavelength of 

the exciting electromagnetic wave considerably exceeds 

the dimensions of the structure, the local-response Drude 

theory predicts that the resonance energy of localized SPs 

is independent of the size of the nanostructure [ 4 ], and 

that the field enhancement created in the gap between 

two metallic nanostructures diverges for vanishing gap 

size [ 5 ]. These predictions are however in conflict both 

with earlier [ 6  –  9 ] and with more recent experimental 

results, which have shown a size dependency of the local-

ized SP resonance in noble metal nanoparticles in the 

size range of 1 – 10 nm [ 10 ] and pronounced deviations for 

dimer geometries [ 11 ,  12 ]. 

 This dependence of the SP resonance on the size of 

noble metal nanostructures is believed to be a signature of 

quantum properties of the free-electron gas. With decreas-

ing sizes of the nanoparticles, the quantum wave nature 

of the electrons is theoretically expected to manifest itself 

in the optical response due to the effects of quantum con-

finement [ 13  –  17 ], quantum tunneling [ 17  –  20 ], as well as 

nonlocal response [ 21  –  27 ]. Nonlocal effects are a direct 

consequence of the inhomogeneity of the electron gas, 

which arises due to the quantum wave nature and the 

many-body properties of the electron gas. 

 The recent developments in analytical scanning 

transmission electron microscopes (STEM) equipped 

with a monochromator and electron energy-loss spec-

troscopy (EELS) [ 28 ] give the possibility of accessing the 

near-field energy distribution of the plasmon resonance 

of individual nanoparticles on a subnanometer scale with 

an energy resolution better than 0.2 eV. This method has 
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been used for the imaging of surface plasmons in many 

different metallic nanostructures [ 10 ,  29  –  32 ]. With STEM 

EELS it is possible to correlate the structural and chemi-

cal information on the nanometer scale, such as the shape 

and the presence of organic ligands, with the spectral 

information of the SP resonance of single isolated nano-

particles. STEM EELS is thus perfectly suited to probe and 

access plasmonic nanostructures and SP resonances at 

length scales where quantum mechanics is anticipated to 

become important. 

 In this paper we report the experimental study of the 

SP resonance of chemically grown single Ag nanoparticles 

dispersed on 10  nm thick Si 
3
 N 

4
  membranes with STEM 

EELS. Our measurements present a significant blueshift 

of the SP resonance energy from 3.2 to 3.7 eV for particle 

diameters ranging from 26 down to 3.5 nm. Our results also 

confirm very recent experiments made with Ag nanopar-

ticles on different substrates using different STEM operat-

ing conditions [ 10 ], thereby strengthening the interpreta-

tion that the blueshift is predominantly associated with 

the tight confinement of the plasma and the intrinsic 

quantum properties of the electron gas itself rather than 

having an extrinsic cause. 

 We compare our experimental data to three different 

models: a purely classical local-response Drude model 

which assumes a constant electron density profile in the 

metal nanoparticle, a semiclassical local-response Drude 

model where the electron density is determined from the 

quantum mechanical problem of electrons moving in an 

infinite spherical potential well [ 16 ], and finally, a semi-

classical model based on the hydrodynamic description of 

the motion of the electron gas which takes into account 

nonlocal response through the internal quantum kinetics 

of the electron gas in the Thomas-Fermi (TF) approxima-

tion [ 33 ,  34 ]. We find good qualitative agreement between 

our experimental data and the two semiclassical models, 

thus supporting the anticipated nonlocal nature of SPs of 

Ag nanoparticles in the 1 – 10 nm size regime. The experi-

mentally observed blueshift is however significantly larger 

than the predictions by the two semiclassical models.  

2    Materials and methods 
 The nanoparticles are grown chemically following the 

method described in Ref. [ 35 ] and subsequently stabilized 

in an aqueous solution with borohydride ions. The mean 

size of the nanoparticles is 12 nm with a very broad size dis-

tribution ranging from 3 to 30 nm. The nanoparticle solu-

tion is dispersed on a 10 nm thick commercially available 

Si 
3
 N 

4
  membrane (TEMwindows.com), which has a refrac-

tive index of approximately  n  ≈ 2.1 [ 36 ]. To  characterize our 

nanoparticles we have used an aberration-corrected STEM 

FEI Titan (www.FEI.com) operated at 120 kV with a probe 

diameter of approximately 0.5 nm, and convergence and 

collection angles of 15 mrads and 17 mrads, respectively. 

The Titan is equipped with a monochromator allowing us 

to perform EELS with an energy resolution of 0.15  ±  0.05 eV. 

We systematically performed EELS measurements at 

the surface and in the middle of each nanoparticle. The 

EELS spectra were taken with an exposure time of 90 ms 

to avoid beam damage as much as possible. To improve 

the signal-to-noise ratio we accumulated 10–15 spectra 

for each measurement point. We observed no evidence of 

damage after each measurement. 

 The experimental data were analyzed with the aid 

of commercially available software (Digital Micrograph) 

and three different methods were used to reconstruct and 

remove the zero-loss peak (ZLP): the first method is the 

reflected tail (RT) method, where the negative-energy half 

part of the ZLP is reflected about the zero-energy axis to 

approximate the ZLP at positive energies, while the second 

method is based on fitting the ZLP to the sum of a Gauss-

ian and a Lorentzian functions. The third method is to pre-

record the ZLP prior to each set of EELS measurements. All 

three methods yielded consistent results. 

 The energies of the SP resonance peaks were deter-

mined by using a nonlinear least-squares fit of our data 

to Gaussian functions. The error in the resonance energy 

is given by the 95 % confidence interval for the estimate of 

the position of the center of the Gaussian peak. Nanopar-

ticle diameters were determined by calculating the area of 

the imaged particle and assigning to the area an effective 

diameter by assuming a perfect circular shape. The error 

bars in the size therefore correspond to the deviation from 

the assumption of a circular shape, which is estimated as 

the difference between the largest and smallest diameter 

of the particle. 

3    Theory 
 In the following theoretical analysis our hypothesis is that 

the blueshift of the SP resonance energy is related to the 

properties of the electron density profile in the metal nan-

oparticle. Therefore, we use three different approaches 

to model the electron density of the Ag nanoparticle. In 

all three approaches, we calculate the optical response 

and thereby also the resonance energies of the nanopar-

ticle through the quasistatic polarizability   α   of a sphere 

embedded in a homogeneous background dielectric with 

Brought to you by | provisional account
Unauthenticated | 192.38.90.48

Download Date | 7/16/14 4:14 PM

NANOPHOTONICS 2, 131 (2013) 181



S. Raza et al.: Blueshift of the surface plasmon resonance       133© 2013 Science Wise Publishing & 

permittivity   ε   
B
 . With this approach, we make two implicit 

assumptions: the first is that we can neglect retardation 

effects and the second is that we can neglect the symme-

try-breaking effect of the substrate. We have validated 

the quasistatic approach by comparing to fully retarded 

calculations [ 37 ], which shows excellent agreement in the 

particle size range we consider. The effect of the substrate 

will be taken into account indirectly by determining an 

effective homogeneous background permittivity   ε   
B
  using 

the average resonance frequency of the largest particles 

(2 R   >  20 nm) as the classical limit. 

 The first, and simplest, approach is to assume a con-

stant free-electron density  n  
0
  in the metal particle, which 

drops abruptly to zero outside the particle. This assump-

tion is the starting point of the classical local-response 

Drude model for the response of the Ag nanoparticle, 

where the polarizability is given by the Clausius-Mossotti 

relation, which is well-known to be size independent for 

subwavelength particles. The classical local-response 

polarizability   α   
L
  is [ 1 ] 

    
( )

( )

( )
ε ω ε

α ω π
ε ω ε+

3 D B
L

D B

-
=4 ,

2
R

 
(1) 

 where  R  is the radius of the particle and 

  ( ) ( ) ( )ε ω ε ω ω ω γω∞ +2 2

D p= - / i  is the classical Drude permit-

tivity taking additional frequency-dependent polarization 

effects such as interband transitions into account through 

  ε   ∞   (  ω  ), not included in the plasma response of the free-

electron gas itself. 

 The second approach is to correct the standard 

approximation in local-response theory of a homoge-

neous electron density profile by using insight from 

the quantum wave nature of electrons to model the 

electron density profile and take into account the 

quantum  confinement of the electrons. For nano meter-

sized spheres, the classical polarizability given by the 

Clausius-Mossotti relation must be altered to take into 

account an inhomogeneous electron density. In Ref. 

[ 16 ], it is shown that in general the local-response 

polarizability for a sphere embedded in a homogeneous 

material is given as 

    
( ) ( )

( )
ε ω ε

α ω π
ε ω ε+∫ 2 B

LQC
0

B

, -
=12 d ,

, 2

R rr r
r  (2) 

 now with a spatially varying Drude permittivity [ 16 ,  17 ] 

    
( ) ( )

( )
( )ω

ε ω ε ω
ω ω γ∞ +

2

p

0

, = - .
n rr

i n  
(3) 

 Here,  n ( r ) is the electron density in the metal nanoparti-

cle. Clearly, if  n ( r ) =  n  
0
  we arrive at the classical Clausius-

Mossotti relation Eq. (1) as expected. To determine the 

density profile in this local-response model, we follow the 

approach of Ref. [ 16 ] and assume that the free electrons 

move in an infinite spherical potential well. The approach 

just outlined of a local-response theory with an inhomo-

geneous electron density is very similar to the theoretical 

model used in Ref. [ 10 ] for explaining their experimental 

results. It should be noted that any effects due to electron 

spill-out and quantum tunneling are neglected in all of 

the approaches that we consider. 

 The third and final approach is to compare our experi-

mental data with a linearized nonlocal hydrodynamic 

model in which the electron density is allowed to deviate 

slightly from the constant electron density used in classi-

cal local-response theories [ 22 ,  38  –  40 ]. The dynamics of 

the electron gas is governed by the semiclassical hydro-

dynamic equation of motion [ 25 ,  26 ,  34 ], which results in 

an inhomogeneous electron density profile. The nonlocal 

hydrodynamic polarizability   α   
NL

 (  ω  ) is exactly given as 
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 and these results constitute our nonlocal-response gene-

ralization of the Clausius-Mossotti relation of classical 

optics. Here,   2 2

L p- / /k iω ωγ ω ε β∞= +  is the wave vector of 

the additional longitudinal wave allowed to be excited in 

the hydrodynamic nonlocal theory [ 25 ,  34 ], and  j  
1
  is the 

spherical Bessel function of first order. Finally, within TF 

theory   
2 2

F3/5 ,vβ =  where   ν   
F
  is the Fermi velocity [ 34 ]. We 

emphasize that for   β   → 0, the local-response Drude result is 

retrieved, since   δ   
NL

  → 0 and Eq. (4) simplifies to the classi-

cal Clausius-Mossotti relation Eq. (1). 

 The SP resonance energy follows theoretically from 

the Fr ö hlich condition, i.e., we must consider the poles 

of Eq. (4). For sufficiently small blueshifts and neglecting 

damping, the resonance frequency can be approximated 

by 

    

ω ε β
ω

ε ωε ω ε ∞∞

⎛ ⎞+ + ⎝ ⎠+
P B

2

B

2 1
= ,

Re[ ( )] 2Re[ ( )] 2
O

R R  
(6) 

 where the first term is the common size-independent 

local-response Drude result for the SP resonance that also 

follows from Eq. (1), and the second term gives the size-

dependent blueshift due to nonlocal corrections. At this 

stage, we note that a 1/(2 R ) dependence was experimen-

tally observed in Refs. [ 6 ,  7 ] using optical spectroscopy. 

However, Eq. (6) reveals, besides a 1/(2 R ) dependence, 

that there is a delicate interplay in the blueshift between 

the material parameters of the metal, through   ε   
 ∞ 

 (  ω  ) and 
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  β  , and the background medium   ε   
B
 . Furthermore, Eq. (6) 

shows that the blueshift can be enhanced with a large-

permittivity background medium.   

4    Results 
  Figures 1 (A–C) display STEM images of Ag nanoparticles 

with diameters of 15.5, 10.0, and 5.5 nm, respectively. The 

images show that no chemical residue is left from the 

synthesis and that the particles are faceted. We find that 

approximately 70% of the studied nanoparticles have 

a relative size error (i.e., the ratio of the size error bar to 

the particle diameter) below 20% (determined from the 

2D STEM images), verifying that the shape of the nano-

particles is to a first approximation overall spherical (see 

Supplementary Figure 1). On a subset of the particles, 
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 Figure 1      Aberration-corrected STEM images of Ag nanoparticles 

with diameters (A) 15.5 nm, (B) 10 nm, and (C) 5.5 nm, and normal-

ized raw EELS spectra of similar-sized Ag nanoparticles (D-F). The 

EELS measurements are acquired by directing the electron beam to 

the surface of the particle.    

thickness measurements using image recordings at dif-

ferent tilt angles were performed, revealing information 

about the shape of the nanoparticle in the third dimen-

sion. Such 3D investigations confirmed that the shape is 

overall spherical, but however could not be completed for 

all particles due to stability issues: the positions of tiny 

nanoparticles fluctuate under too long exposure of the 

electron beam, thus preventing accurate determination of 

the shape of the nanoparticle in the third dimension per-

pendicular to the substrate.  

 Figures 1(D–F) display raw normalized EELS data, 

acquired on Ag nanoparticles with diameters 14.1, 9.8, and 

6.6 nm, respectively. The peaks correspond to the excitation 

of the SP. When the diameter of the nanoparticle decreases, 

the SP resonance clearly shifts progressively to higher ener-

gies. Figures 1(D–F) also display that the amplitude and 

linewidth of the SP resonances can vary from particle to 

particle (with the same size) and at times show narrowing 

instead of the expected broadening of the resonance for 

decreasing nanoparticle sizes [ 6 ,  13 ,  14 ]. This is for example 

seen in the linewidths in Figures 1(D–F) which seem to 

decrease with size. However, as will be explained in more 

detail in the next paragraph, we did not find a systematic 

trend of the linewidths in our EELS measurements probably 

due to the shape variations in our ensemble of nanoparticles. 

 Figure 2 displays the resonance energy of the SP as a 

function of the diameter of the nanoparticles. A significant 

blueshift of the SP resonance of 0.5 eV is observed when 
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 Figure 2      Nanoparticle SP resonance energy as a function of the 

particle diameter. The dots are EELS measurements taken at the 

surface of the particle and analyzed using the RT method, and 

the lines are theoretical predictions. We use parameters from 

Ref. [ 41 ]:   p =8.282ω�  eV,   =0.048γ�  eV,  n  
0
  = 5.9  ×  10 28  m -3  and 

  ν   
F
  = 1.39  ×  10 6  m/s. From the average large-particle (2 R   >  20 nm) 

 resonances we determine   ε   
B
  = 1.53.    
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the nanoparticle diameter decreases from 26 to 3.5 nm. 

This trend is in good agreement with the results shown in 

Ref. [ 10 ], despite the difference in the substrate and the 

STEM operating conditions, a strong indication that the 

blueshift of Ag nanoparticles is robust to extrinsic varia-

tions. Another prominent feature in Figure 2 is the scatter of 

resonance energies at a fixed particle diameter. We mainly 

attribute the spread in resonance energies at a given parti-

cle size to shape variations in our ensemble of nanoparti-

cles (see Supplementary Material). Slight deviations from 

perfect circular shape in the STEM images will result in a 

delicate dependency on the location of the electron probe 

and give rise to splitting of SP resonance energies due to 

degeneracy lifting. In this regard, we also note that even 

a perfectly circular particle on a 2D STEM image may still 

possess some weak prolate or oblate deformation in the 

third dimension, resulting in a departure from spherical 

shape. Calculations using the local response model show 

that a 20% deformation of a sphere into an oblate or prolate 

spheroid results in a 0.4 eV spread in resonance energy 

(see Supplementary Figure 2), which is approximately the 

spread in resonance energy we observe for particles larger 

than 10 nm. Furthermore, shape deviations may also 

impact the linewidth of the SP resonance, since the elec-

tron probe can excite the closely-spaced non-degenerate 

resonance energies simultaneously, which may appear as a 

single broadened peak. This broadening mechanism could 

explain the apparent linewidth  narrowing for decreasing 

particle size seen in Figures 1(D–F). However, we cannot 

rule out that other effects beyond shape deviations con-

tribute to the spread of resonance energies and impact the 

SP resonance linewidth. These could for example be the 

facets or the particle-to-substrate interface [ 42 ].  

 Along with the EELS measurements in Figure 2, we 

show Eq. (1) for the local-response Drude model (red line) 

and the semiclassical local-response model Eq. (3) (blue 

line). Furthermore, the nonlocal relation of Eq. (3) (green 

solid line) and the approximate nonlocal relation of Eq. 

(6) (green dashed line) are also depicted, and we see that 

Eq. (6) is accurate for particle sizes   >
�

2 10R  nm. 

 Due to the narrow energy range in consideration 

(∼3.0 – 3.9 eV), we approximate   ε   
 ∞ 

 (  ω  ) as a second-order 

Taylor polynomial based on the frequency-dependent 

values given for Ag in Ref. [ 41 ]. We find   ε   
 ∞ 

 (  ω  ) = (59.8 +  i 55.1)

(  ω / ω   
P
 )  2  -(40.3 +  i 42.4)(  ω / ω   

P
 ) + (10.5 + i8.6). Since the refrac-

tive index of the Si 
3
 N 

4
  substrate varies hardly ( n  ≈ 2.1) in 

the narrow energy range we consider [ 36 ], we assume that 

the background permittivity   ε   
B
  is constant and determine 

it by approximating the average resonance energy of the 

largest particles (2 R   >  20 nm) as the classical limit, i.e., the 

first term of Eq. (6). 

 It is known that local Drude theory produces size-

independent resonance frequencies of subwavelength 

particles, but this theory is clearly inadequate to describe 

the measurements of Figure 2. The nonlocal quasistatic 

hydrodynamic model predicts a blueshift in agreement 

with the experimental EELS measurements. Interestingly, 

the measured blueshift is even larger than predicted. We 

also see that the local-response model with an inhomoge-

neous electron density profile shows a similar trend as the 

nonlocal hydrodynamic model, indicating that these two 

different models describe very similar physical effects. 

The oscillations in the resonance energy in the inhomoge-

neous local-response model seen for small particle diam-

eter are due to small variations in the density profile with 

decreasing size (i.e., discrete changes in the number of 

electrons), as also stated in Ref. [ 10 ]. 

 The inhomogeneous local-response model and the 

nonlocal hydrodynamic model, when applied to a sphere 

in a homogeneous background medium, agree qualita-

tively with the EELS measurements. However, they do 

not provide the full picture. One of the probable issues 

arising is that the substrate is taken into account indirectly 

through a homogeneous background medium, a state-of-

the-art procedure [ 10 ] which however may not be adequate 

to describe the effects of the presence of a dielectric sub-

strate. It has been shown that the dielectric substrate mod-

ifies the absorption spectrum of an isolated sphere [ 43 ] and 

also the waveguiding properties of nanowires [ 31 ,  44 ,  45 ]. 

In an attempt to include the symmetry breaking effect of 

the substrate in our theoretical analysis, we apply a simple 

image charge model. The main effect of the substrate in 

this picture stems from the interaction of the dipole mode 

of the nanoparticle with the induced dipole mode in the 

substrate [ 46  –  48 ]. However, we find that such a dipole-

dipole model for the substrate is inadequate to describe the 

large blueshift observed experimentally (see Supplemen-

tary Material). Indeed, it has been shown that the induced 

image charges in the substrate can make the contributions 

of higher order multipoles in the nanoparticle important 

[ 49 ], and it has also been observed theoretically that higher 

order multipoles produce larger blueshifts in the nonlocal 

hydrodynamic model (Figure 2 in Ref. [ 50 ]). The impact of 

the substrate on the electron density inhomogeneity and 

thereby the SP resonance energy depends on the thickness 

and refractive index of the substrate, which may explain 

the quantitative agreement between theory and experi-

ment reported in Ref. [ 10 ], since thinner substrates with 

smaller refractive indexes were used in their experiments. 

In order to completely address this issue, one would need 

to go beyond the dipole-dipole model for the substrate, 

thus future 3D EELS simulations taking nonlocal effects 
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and/or inhomogeneous electron densities into account 

would be needed. 

 Another complementary explanation in the context of 

the inhomogeneity of the free-electron density could be 

the combined contribution of both the inhomogeneous 

static equilibrium electron density and nonlocality. It is 

well-known that the static equilibrium electron density 

is inhomogeneous, even in a semi-infinite metal [ 51 ], due 

to Friedel oscillations and the electron spill-out effect at 

the metal surface. The Friedel oscillations are modeled in 

the local quantum-confined model given by Eq. (3) while 

 nonlocality is neglected, and  vice versa  in the nonlocal 

hydrodynamic model given by Eq. (3). As seen in Figure 2, 

the two effects separately give rise to similar-sized 

blueshifts, suggesting that the contribution of both effects 

simultaneously could add up to the significantly larger 

experimentally observed blueshift. Simply put, an exten-

sion of the nonlocal hydrodynamic model to include an 

inhomogeneous equilibrium free-electron density could 

produce a larger blueshift, which may be in accordance 

with the experimental observations. Furthermore, such a 

model could also take into account the electron spill-out 

effect, which in free-electron models has been argued to 

produce a redshift of the SP resonance [ 21 ,  50 ,  52  –  54 ], 

describing adequately simple metals. In contrast, it has 

also been shown that the spill-out effect in combination 

with the screening from the  d  electrons gives rise to the 

blueshift seen in Ag nanoparticles [ 55 ]. 

 Additional size effects such as changes of the elec-

tronic band structure of the smallest nanoparticles, which 

are considerably more difficult to take into account, also 

impact the shift in SP resonance energy [ 6 ].  

5    Conclusion 
 We have investigated the surface plasmon resonance of 

spherical silver nanoparticles ranging from 26 down to 

3.5 nm in size with STEM EELS and observed a significant 

blueshift of 0.5 eV of the resonance energy. We have 

compared our experimental data with three different 

models based on the quasistatic optical polarizability of 

a sphere embedded in a homogeneous material. Two of 

the models, a nonlocal hydrodynamic model and a gene-

ralized local model, incorporate an inhomogeneity of the 

electron density induced by the quantum wave nature 

of the  electrons. These two different models produce 

similar results in the SP resonance energy and describe 

qualitatively the blueshift observed in our measure-

ments. Although our exact hydrodynamic generaliza-

tion of the Clausius-Mossotti relation predicts a nonlocal 

blueshift that grows fast [as 1/(2 R )] when decreasing the 

dia meter and increases even faster for the smallest parti-

cles (2 R   <  10 nm), the observed blueshifts are nevertheless 

larger than predicted. 

 The quantitative agreement between the two differ-

ent theoretical models and the discrepancy with the larger 

observed blueshift suggest that a more detailed theoretical 

description of the system is needed to fully understand the 

influence of the substrate and the effect of the confinement 

of free electrons on the SP resonance shift in silver nano-

particles. On the experimental side, further EELS studies of 

other metallic materials and on different substrates could 

unveil the mechanism behind the size dependency of the 

SP resonance of nanometer scale particles.   
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  Supplemental data 

1    Shape analysis 

 The diameters of our nanoparticles are determined by 

using the free online image analysis tool ImageJ [1] which 

includes a particle analysis package. We use the 2D 

images taken in STEM mode to measure the surface area 

 A  of the nanoparticle, whereafter we determine the mean 

nanoparticle diameter  D  using the relation  A  =   π  ( D /2) 2 . The 

particle analysis tool also evaluates the maximum  D  
max

  

and minimum  D  
min

  diameters of the nanoparticle and the 

difference between these two diameters, i.e.,  Δ  D  =  D  
max

  –

  D  
min

  provides us a measure for error in the nanoparticle 

diameter (shown as the error bar in Article Figure 2). The 

relative size error ( Δ  D / D ) then represents the deviation of 

the shape of the particles from a perfect circle. 

 Supplementary Figure 1 displays a histogram with the 

number of particles as function of the relative size error 

(5% interval between each bar). The first observation is 

that the relative error in the diameter is spread from 5% 

to 50% with a maximum of counts centered on 15% devia-

tion. We also see that more than 70% of the particles have 

an error smaller than 20%, thus giving us confidence that 

assuming the particles to be spherical is justified. We 

also emphasize that this analysis was made on 2D images 

which are the projections of the 3D shapes of the nanopar-

ticles onto the plane parallel to the substrate. This lack of 

information in the third dimension leaves indeterminacy 

of the exact shape of the particle. However, since the nan-

oparticles are fabricated in a liquid phase suspension [2], 

i.e., growing identically in three dimensions, we can to a 

first approximation infer that we have the same relative 

size error distribution in the third dimension perpendicu-

lar to the substrate, thus assuming that particle orienta-

tion is independent of its shape deformation.  

 In order to understand the scattering of the SP reso-

nance energies observed in Article Figure 2, we model the 

deviation from the perfect spherical shape as an ellipsoi-

dal particle with minor and major axes. We calculate the 

optical polarizability of two different types of ellipsoids: 

the prolate spheroid (one major and two equal minor 

axes) and the oblate spheroid (two equal major and one 

minor axes). The polarizability is calculated within the 

local Drude theory under two different polarizations of 

the incident electric field, parallel to the major axis or 

parallel to the minor axis [3]. The perfect spherical sphere 

is deformed while keeping the volume constant. We use 

a relative deformation of the major (minor) axis of 20% 
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 Supplementary Figure 1      Histogram showing the distribution of 

relative size error  Δ  D / D . The relative size error represents the 

shape deviation of the nanoparticle from a perfect circle in the 2D 

STEM image.    
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 Supplementary Figure 2      Local-response calculations of the SP 

resonance for perfectly spherical (red line), oblate (white patterned) 

and prolate (gray patterned) particles under excitation of different 

polarizations.    
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for the prolate (oblate) particles which corresponds to the 

deviation of the majority of the nanoparticles studied. 

 The results are shown in Supplementary Figure 2. 

The red line represents the local Drude calculation for a 

perfect sphere (same as Article Figure 2). The gray pat-

terned area corresponds to the span of resonance ener-

gies for the prolate particles, when a relative deviation 

of the major axis of 20% is allowed. The part of the area 

that is above the red line (i.e., blueshifted with respect 

to the perfect sphere) corresponds to a polarization 

along the minor axis, while the part below the red line 

(i.e., redshifted with respect to the perfect sphere) is due 

a polarization along the major axis. For the polariza-

tion along the minor axis, we see a blueshift of approxi-

mately 0.1 eV of the SP resonance while we obtain a red-

shift of approximately 0.2 eV for the polarization along 

the major axis. The increased redshift observed for the 

polarization along the major axis is due to the fact that 

a size increase of 20% on the major axis will give only a 

size decrease of 9% on the minor axis (scales as   2

major1/ ,a  

where  a  
major

  is the length of the major axis) for a constant 

volume. The same arguments are valid for the oblate 

case with the exception that here the blueshift is higher 

than the redshift (major and minor axes are inverted). 

However, the overall span of resonance energies con-

sidering both type of spheroids is approximately 0.4 eV. 

Interestingly, this interval is similar to the scattering of 

the resonance energy observed in Article Figure 2 for 

particles above 10 nm, where the local theory is still 

valid. However, we emphasize that the measured reso-

nance energies for the smallest particles (below 10 nm) 

exceeds this span of resonance energies, and thus the 

observed blueshift cannot be explained by a simple 

shape deviation argument.  

 In conclusion, we see that the deviation from the 

spherical shape into ellipsoid-like particles and the 

thereby prompted dependency on the location of the EELS 

probe when measuring the SP resonance gives a reason-

able and probable explanation for the spread but not for 

the magnitude of SP resonance energies observed in our 

measurements.  

2     Substrate effects: dipole-dipole 
interaction 

 The optical polarizability   α   of a single sphere in a homoge-

neous background   ε   
B
  can be modified to take into account 

the presence of a semi-infinite substrate with permittivity 

 ε  
S
  using a simple image charge model. In this picture, the 

coupling between the sphere and the substrate is based 

on a dipole-dipole interaction between the dipole moment 

of the sphere and the weaker dipole moment of the image 

charges in the substrate. Taking only dipole moments into 

account is an approximation. Due to the symmetry-break-

ing presence of the substrate, there are two separate cases 

to be treated for the direction of the incident field: one 

when the incident electric field is parallel to the substrate, 

the other when the incident field is perpendicular to the 

substrate. It has been shown that the altered polarizability 

  α   
sub

  in the presence of the semi-infinite substrate is [4 – 6] 

    ( )
κα ε ε

α α
π ε ε

⎡ ⎤
⎢ ⎥+⎣ ⎦

-1

S B
sub 3

S B

-
= 1- ,

4 2R   (S1) 

 where   κ   = -1 for a parallel incident electric field while   κ   = 2 

for a perpendicular electric field. The interesting case for 

our EELS measurements is when   κ   = 2, since the electric 

field produced by a swift electron is predominantly in the 

same direction as the movement of the electron, i.e., per-

pendicular to the substrate. 

 Supplementary Figure 3 shows calculations on the SP 

resonance energy performed using Eq. (S1) with  ε  
S
  = 2.08 2 

 and  ε  
B
  = 1. Ellipsometry measurements of the complex 

refractive index  n  =  n  ′  +  in  ′′  on the Si 
3
 N 

4
  substrate has been 

provided by the manufacturer of the TEM membranes 

(TEMwindows.com), showing an almost constant index 

of refraction of   ≈′ 2.08n  and a negligible extinction coef-

ficient   ≈′′ 0n  in the energy range we consider (3.0 – 3.9 eV). 

The provided measurements are very similar to that of Ref. 

[7]. We emphasize that with the dipole-dipole model for 

the substrate no fitting of the background permittivity has 

been done.  
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 Supplementary Figure 3      The same as Article Figure 2, but calcu-

lated using Eq. (S1) with   κ   = 2,  ε  
S
  = 2.08 2  and  ε  

B
  = 1.    
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 Supplementary Figure 3 shows that the dipole-dipole 

interaction predicts a slightly larger resonance energy 

in the classical limit (i.e., for the largest particles) com-

pared to the fitted homogeneous background permittivity 

approach used for Article Figure 2. However, the blueshift 

in the resonance energy for decreasing particle size in the 

two semiclassical models is very similar to the effective 

homogeneous background approach, and thus the dipole-

dipole model for the substrate cannot fully account for the 

significantly larger experimental blueshift. We also see 

that many of the EELS measurements of the larger particles 

(2 R   >  10 nm) lie at lower resonance energies than predicted 

by any of the theoretical substrate models. These discrep-

ancies suggest that the simple dipole-dipole model for the 

substrate is inadequate to describe our experimental obser-

vations, and that a complete understanding of the effect of 

the substrate requires the inclusion of higher-order multi-

poles and the finite thickness of the substrate [8, 9].   
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We study the nonlocal response of a confined electron gas within the hydrodynamical Drude model. We address
the question as to whether plasmonic nanostructures exhibit nonlocal resonances that have no counterpart in the
local-response Drude model. Avoiding the usual quasistatic approximation, we find that such resonances do
indeed occur, but only above the plasma frequency. Thus the recently found nonlocal resonances at optical
frequencies for very small structures, obtained within quasistatic approximation, are unphysical. As a specific
example we consider nanosized metallic cylinders, for which extinction cross sections and field distributions can
be calculated analytically.

DOI: 10.1103/PhysRevB.84.121412 PACS number(s): 78.67.Uh, 71.45.Gm, 71.45.Lr, 78.67.Bf

Nanoplasmonics1,2 is presently entering an era where the
metallic structures offer nanoscale features that will eventually
allow both photons and electrons to exhibit their full wave na-
ture. This regime challenges the existing theoretical framework
resting on a local-response picture using bulk-material param-
eters. In tiny metallic nanostructures, quantum confinement3–7

and nonlocal response8–18 are believed to change the collective
plasmonic behavior with resulting strong optical fingerprints
and far-reaching consequences for, e.g., field enhancement and
extinction cross sections. Within nonlocal response, Maxwell’s
constitutive relation between the displacement and the electric
fields reads

D(r,ω) = ε0

∫
d r ′ ε(r,r ′,ω) · E(r ′,ω). (1)

The dielectric tensor ε(r,r ′,ω) reduces to ε(r,ω)δ(r − r ′) in
the local-response limit. Historically, there has been a strong
emphasis on nonlocal response in extended systems with
translational invariance (TI),10 where a k-space representation
is useful. However, for the present problem of metallic
nanostructures, TI is broken and a real-space description is
called for.

Recent theoretical studies of nanoscale plasmonic struc-
tures have predicted considerable differences in the field
distributions and scattering cross sections between local
and nonlocal response theories, both in numerical imple-
mentations of a simplified hydrodynamic Drude model,14–18

and in corresponding analytical calculations.15 Importantly,
additional resonances of the free-electron plasma were found,
also at optical frequencies, which have no counterparts in
local-response theories. Such resonances have already gained
interest both from a fundamental7 and an applied19 perspective.
At present, the status of these optical nonlocal resonances is
unclear, since in Ref. 13 the same nonlocal model was used as
in Refs. 14–18, and yet no corresponding modes were found
at visible frequencies. Resolving this issue is important for the
engineering of ultrasmall plasmonic structures with optimized
functionalities.19–21

In this Rapid Communication we report that unusual
resonances due to nonlocal response do exist in nanoplasmonic
structures, but only above the plasma frequency, not in the
visible. We illustrate this property of arbitrary plasmonic

structures by exact calculations for metallic cylinders. We
also clarify that different implementations of the common
quasistatic approximation9,11 are the reason for the conflicting
results in Refs. 13–18. Here we refrain from making this
approximation altogether, and by comparison analyze the
validity and implementation of the quasistatic approximation
in the hydrodynamic model.

The hydrodynamic Drude model. We express the collective
motion of electrons in an inhomogeneous medium in terms of
the electron density n(r,t) and the hydrodynamical velocity
v(r,t).8 Under the influence of macroscopic electromagnetic
fields E(r,t) and B(r,t), the hydrodynamic model is defined
via10

[∂t + v · ∇] v = −γ v − e

m
[E + v × B] − β2

n
∇n, (2)

along with the continuity equation ∂tn = −∇ · (nv), express-
ing charge conservation. In the right-hand side of Eq. (2), the
γ term represents damping, the second term is the Lorentz
force, while the third term is due to the internal kinetic energy
of the electron gas, here described within the Thomas-Fermi
model, with β proportional to the Fermi velocity vF. In analogy
with hydrodynamics, the third term represents a pressure that
gives rise to a nonlocal dielectric tensor, since energy may
be transported by mechanisms other than electromagnetic
waves.

We follow the usual approach11 to solve Eq. (2) and the
continuity equation, by expanding the physical fields in a
zeroth-order static term, where, e.g., n0 is the homogeneous
static electron density, and a small (by assumption) first-
order dynamic term, thereby linearizing the equations. In the
frequency domain, we obtain

β2∇[∇ · J] + ω(ω + iγ ) J = iωω2
pε0 E (3a)

for a homogeneous medium, where J(r) = −en0v(r) is
the current density, and ωp is the plasma frequency which
also enters the Drude local-response function ε(ω) = 1 −
ω2

p/[ω(ω + iγ )]. We focus on the plasma, leaving out bulk
interband effects present in real metals that could be easily
taken into account,14,22 as well as band-bending effects at the
metal surface.
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The electromagnetic wave equation. The retarded linearized
hydrodynamic model is then fully described by Eq. (3a),
together with the Maxwell wave equation

∇ × ∇ × E = ω2

c2
E + iωμ0 J . (3b)

In order to see that these coupled equations (3) indeed describe
a nonlocal dielectric response, one can in Eq. (3b) rewrite the
current density J as an integral over the Green’s tensor of
Eq. (3a) and the electric field, whereby the nonlocal dielectric
tensor of Eq. (1) can be identified.

In a local-response description it is commonplace to
introduce the quasistatic or curl-free assumption that ∇ × E =
0.23 This well-established approximation lies at the heart of
most treatments and interpretations of electromagnetic wave
interactions with subwavelength structures. Intuitively, one
might expect that it can be extended to the nonlocal case and in-
deed several nonlocal treatments use this assumption.9,11,13–17

However, as we shall demonstrate, one should proceed with
care.

Three models. Here we solve Eqs. (3) directly, without
further assumptions or approximations. We also compare
the nonlocal model with two other models obtained by
further assumptions. The curl-free nonlocal model enforces
the condition ∇ × E = 0, which with Eq. (3a) implies that
also ∇ × J = 0 in the medium. For the differential-operator
term in Eq. (3a), from now on denoted L̂J , this has the
consequence that ∇[∇·] simplifies to the Laplace operator ∇2,
which gives the model used by Ruppin in the context of exciton
physics in Ref. 27, and recently in plasmonics by McMahon
et al.14–17 and also by ourselves.18 Finally, by assuming L̂J = 0
in the hydrodynamic treatment (3a), the familiar local model
is obtained, with J and E related by Ohm’s law.

We assume that the static density of electrons n0 vanishes
outside the metal of volume V , while it is constant and equal
to the bulk value inside V , thus neglecting tunneling effects
and inhomogeneous electron distributions associated with
quantum confinement.3,6 As a consequence, J = 0 outside
V for all three models.

Boundary conditions. In the local model the current J
has the same the spatial dependence as the E field. Thus,
in this case there are no additional boundary conditions
(ABCs) to those already used in Maxwell’s equations. For
the nonlocal-response models, on the other hand, ABCs are
in general needed.10,16,24–26 From discussions in the literature
it might appear that the number of necessary ABCs is a
subtle issue, but we emphasize that there should be no
ambiguity. The crucial point is that the required number of
ABCs depends on the assumed static electron density profile
at the boundaries.26 For the present problem with the electron
density vanishing identically outside the metal, only one ABC
is needed in the nonlocal model to obtain unique solutions,26

and it is readily found from the continuity equation and
Gauss’ theorem: n̂ · J = 0 on the boundary, where n̂ is a
normal vector to the surface, i.e., the normal-component of
the current vanishes,10,24,26 for all three models. On the other
hand, in general, the tangential current n̂ × J is nonzero. This
“slip” of the current is not surprising, since the hydrodynamic
equation (2) describes the plasma as a nonviscous fluid.

TABLE I. Summary of the three different response models. V is
the volume of the nanostructure, and ∂V its boundary.

r ∈ V r ∈ ∂V r �∈ V

∇ × J L̂J n̂ · J n̂ × J J

Local �=0 0 0 �=0 0
Nonlocal �=0 β2∇[∇·] 0 �=0 0
Nonlocal
(curl-free)

0 β2∇2 0 0 0

Likewise, in several implementations of the quasistatic
approximation, no further ABCs are needed to uniquely
determine the electric field and current density.11,13 In contrast,
in the curl-free nonlocal model of Refs. 14–18 and 27,
one more ABC is needed. It is assumed that the tangential
components of J vanish at the boundary (n̂ × J = 0), so that
both normal and tangential components of the current field
vanish on the boundary. In the different context of exciton
physics27 these are often referred to as Pekar’s additional
boundary conditions. There, the vanishing of the tangential
boundary currents is motivated by the physical assumption that
exciton wave functions vanish on the boundary.27,28 Instead,
in the hydrodynamical theory of metals, the ABC n̂ × J = 0
seems more ad hoc: not a direct consequence of the quasi-static
approximation, and not correct if that approximation is not
made. The different boundary conditions are summarized in
Table I.

Extinction cross section of metallic nanowires. To illustrate
the surprisingly different physical consequences of the three
models, we consider light scattering by a nanowire. Rather
than solving Eqs. (3) numerically for a general cross-sectional
geometry, we here limit our analysis to cylindrical wires
whereby significant analytical progress is possible. We use an
extended Mie theory, developed by Ruppin,27,29 to calculate
the extinction cross section σext of an infinitely long spatially
dispersive cylindrical metal nanowire in vacuum. Outside the
wire there are incoming and scattered fields (both divergence
free), whereas inside the wire both divergence-free and curl-
free modes can be excited, the latter type only in the case of
nonlocal response. The cross section is30

σext = − 2

k0a

∞∑
n=−∞

Re{an}, (4)

where a is the radius, k0 = ω/c is the vacuum wave vector,
and an is a cylindrical Bessel-function expansion coefficient
for the scattered fields. We consider a normally incident plane
wave with the electric-field polarization perpendicular to the
cylinder axis (TM). The expression for the coefficients an

depends on the particular response model and the associated
ABCs. For the curl-free nonlocal model, the an are known.27

For the full hydrodynamic model we follow the approach of
Ref. 29, where the ABC of Ref. 25 is employed. This ABC is
for metals in free space equivalent to n̂ · J = 0. We obtain

an = −
[
dn + J ′

n(κta)
]
Jn(k0a) − √

εJn(κta)J ′
n(k0a)[

dn + J ′
n(κta)

]
Hn(k0a) − √

εJn(κta)H ′
n(k0a)

, (5)
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FIG. 1. (Color online) Extinction cross sections σext as a function
of frequency for TM-polarized light normally incident on a metallic
cylinder in vacuum. Parameters for Au as in Ref. 14: h̄ωp = 8.812 eV,
h̄γ = 0.0752 eV, and vF = 1.39 × 106 m/s. Inset: Frequency shift of
the maximum σext(ω) for nonlocal against local response, as a function
of radius.

where Jn and Hn are Bessel and Hankel functions of the first
kind and κ2

t = ε(ω)k2
0. The dn coefficients are

dn = n2

κla

Jn(κla)

J ′
n(κla)

Jn(κta)

κta
[ε(ω) − 1] , (6)

where κ2
l = (ω2 + iωγ − ω2

p)/β2. In the limit β → 0, the dn

vanish and the an of Eq. (5) reduce to the local Drude scattering
coefficients,30 which confirms that the nonlocal response in our
model requires moving charges.

Are there nonlocal resonances? Figure 1 depicts the extinc-
tion cross section of Eq. (4) for two cylinder radii, comparing
the nonlocal models with the local Drude model. The main
surface-plasmon resonance peak at ωp/

√
2 is blueshifted as

compared to the local model, and more so for smaller radii.
Similar blueshifts have been reported for other geometries12

and in the curl-free nonlocal model.14,27

Figure 1 shows the unusual resonances mentioned in the
title of this Rapid Communication: Additional peaks do appear
in the nonlocal theory but only for frequencies above the
plasma frequency ωp (h̄ωp = 8.9 eV for Ag and Au; 1.5–3 eV
is visible). These peaks (such as P2 in Fig. 1) are due to
the excitation of confined longitudinal modes, which are
bulk-plasmon states with discrete energies above h̄ωp due
to confinement in the cylinder.13 These peaks are analogous
to discrete absorption lines above the band gap in quantum-
confined semiconductor structures. Interestingly, contrary to

FIG. 2. (Color online) Field distributions in the three different
models, for TM-polarized light normally incident on a cylinder of
radius a = 2 nm. (a) Normalized displacement field |D|2/|Din|2 at
the frequency ω = 0.6503ωp (P1 in Fig. 1). Din = ε0 Ein and Ein

is the incident electric field. (b) Analogous plots of |E|2/|Ein|2 for
ω = 1.1963ωp (P2 in Fig. 1).

the common belief that light does not scatter off bulk plasmons,
which is correct in the local theory (i.e., no peak around ωp in
Fig. 1), here in the nonlocal model we do find such a coupling
to longitudinal modes. The corresponding resonances could
therefore be observed with electron loss spectroscopy but also
with extreme UV light. The curl-free model also exhibits these
resonances.

The striking difference between the two nonlocal-response
models is that the curl-free nonlocal model shows additional
stronger resonances, both above and below the plasma fre-
quency, such as P1 in Fig. 1, in particular also at optical
frequencies. These peaks do not show up in the full hydro-
dynamical model, and thus originate from a mathematical
approximation rather than a physical mechanism. It would,
however, be premature to conclude that the quasistatic ap-
proximation breaks down, because in Ref. 13 the modes of
cylinders in the hydrodynamical Drude model were found after
making the quasistatic approximation, and the only different
modes found were the confined bulk plasmon modes above
ωp. Figure 1 also illustrates that for increasing radii, σext in
the two nonlocal models converges toward the local-response
value. This convergence is slower for the curl-free model.

In Fig. 2(a) we depict the scaled displacement-field dis-
tributions for the three models at the frequency marked P1
in Fig. 1, where only the curl-free nonlocal model has a
(spurious) resonance. Correspondingly, in Fig. 2(a) we find
a standing-wave pattern only in that model. Its appearance in
the displacement field illustrates that the spurious resonance
is a transverse resonance, i.e., occurring in the divergence-free
components of E and J . Figure 2(b), on the other hand, shows
the normalized electric-field intensity for a true resonant mode
at the frequency P2 of Fig. 1. Only the two nonlocal models
give rise to resonant electric-field patterns. These confined
bulk plasmon modes are longitudinal and would not produce
standing waves in the displacement field.

121412-3
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Origin of spurious resonances. By eliminating the electric
field from Eqs. (3), it follows that the exact hydrodynamic
current satisfies the pair of third-order equations(

β2∇2 + ω2 + iωγ − ω2
p

)∇ · J = 0, (7a)

[c2∇2 + ω2ε(ω)]∇ × J = 0, (7b)

which reduce to the more symmetric Boardman equations31

in the absence of damping. For arbitrary geometry, Eq. (7a)
has damped solutions of ∇ · J for ω < ωp and finite-width
resonances for ω > ωp, as seen in Fig. 1. Both solutions can
be consistent with the quasistatic approximation ∇ × J = 0
that trivially solves Eq. (7b). On the other hand, we find
that the spurious resonances have resonant divergence-free
components of E and J. However, these cannot at the same
time be curl free. Thus the curl-free nonlocal model has
resonant solutions with nonvanishing curl, which is logically
inconsistent. But how could this arise? Once the ∇ × J = 0
assumption has been invoked to simplify the differential
operator into L̂J = β2∇2, the resulting Laplacian equation
analogous to (3a) carries no information that the resulting
solution should also be curl free. Thus, the solutions found for
this equation are not necessarily self-consistent.

Conclusions. We have shown that plasmonic nanostructures
exhibit unique resonances due to nonlocal response in the
hydrodynamic Drude model, but only above the plasma
frequency. The recently reported nonlocal resonances in the
visible14–18 agree with older work,27 but are a surprisingly pro-
nounced consequence of an implementation of the quasistatic
approximation that is not self-consistent. For nanowires, we
find extinction resonances without making the quasistatic
approximation that agree with the quasistatic modes of Ref. 13,
so we do not claim a general breakdown of the approximation
itself. Even though there are no nonlocal resonances in the
visible, plasmonic field enhancements are affected by nonlocal
response. For arbitrary geometries, numerical methods must be
used to quantitatively assess their importance. Self-consistent
versions of the versatile time-domain14–17 and frequency-
domain18 implementations of the hydrodynamical model can
do just that.
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