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Abstract: This paper address the issue of structural change, caused by ice accretion, on
UAVs by utilising a Neyman Pearson (NP) based statistical change detection approach, for
the identification of structural changes of fixed wing UAV airfoils. A structural analysis is
performed on the nonlinear aircraft system and residuals are generated, where a generalised
likelihood ratio test is applied to detect faults. Numerical simulations demonstrate a robust
detection with adequate balance between false alarm rate and sensitivity.
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1. INTRODUCTION

Structural changes due to ice accretion are common causes
for unmanned aerial vehicle incidents in cold and humid
regions. For fixed wing UAVs the leading edge of airfoil
surfaces is the primary surface exposed to these changes,
causing a significant reduction in aerodynamic ability, i.e.
decreasing lift and manoeuvrability, and increasing drag,
weight, and consequently power consumption. Timely de-
tection of such changes could potentially prevent icing
related UAV incidents.

The use of unmanned aerial vehicles (UAV)s has increased
significantly within the last decade, operating in surveil-
lance and reconnaissance primarily. UAVs are very well
suited for operating in conditions that are deemed un-
safe for humans, Arctic operations being relevant and
significant mentioning. Consequently, reliable and efficient
UAV operation in harsh environments, as the Arctic, is
desirable.

In aviation, icing conditions are atmospheric conditions
that can lead to the formation of ice on aircraft. In-
flight icing can occur when an aircraft passes through air
that contain droplets of water (humid air), and where the
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temperature at the point of the droplets impact with the
aircraft, is 0◦ C or colder.

The risks of aircraft icing have been known since the early
1900’s. The effects of icing depends upon the location,
and the type, of the formed ice. Icing can occur on
wings, control surfaces, horizontal and vertical stabilizers,
fuselage nose, landing gear doors, engine intakes, fuselage
air data ports and sensors, and drain system outputs. In
this paper focus is on detecting ice forming on the leading
edge of a UAV wings.

In the literature there exists numerous approaches to fault
detection and isolation (FDI) techniques applied for the
detection and isolation of actuator and sensor faults on
UAVs, see Bateman et al. (2011), Ducard (2009), and
Ducard and Geering (2008) for the former and for the
later see Fravolini et al. (2009). Detection of control surface
defects was studied in Blanke and Hansen (2013), where
fault parameter adaptation and fault diagnosis was at-
tempted simultaneously. For the specific detection problem
addressed in this paper, literature is more sparse. In Tousi
and Khorasani (2009) and Tousi and Khorasani (2011) ic-
ing is diagnosed through an observer-based fault diagnosis
technique that detects and estimates the percentage of ice
present on the aircraft wing, relying on a linearised lateral
model of the aircraft. In Cristafaro et al. (2015) a multiple
models adaptive estimation framework is proposed and in
Cristafaro and Johansen (2015) an input observer frame-
work for designing icing diagnosis filters is developed and
validated through a case study.
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This paper addresses the issue of detecting ice when it
occurs on the leading edge of small scale UAV wings, in
flight, by means of a structural change detection and iden-
tification approach using a nonlinear longitudinal model
of the aircraft. Under the assumption that model uncer-
tainties, such as unknown aerodynamic coefficients, are
a priori estimated, the scheme is based on a structural
analysis performed on the system, with residual generation
as an outcome. A generalised likelihood ratio test (GLRT)
is then utilised to detect any changes in the generated
residuals, where any constant change would constitute an
occurance of a fault.

The remainder of the paper is organized as follows. In
Section 2, background theories and modelling used in the
paper are reviewed. Section 3 provides the main contri-
bution of the paper, where the proposed fault diagnosis
system for detecting and isolating faults caused by icing on
UAVs is presented. A performance assessment is conducted
through simulations in Section 4. Finally, the paper is
concluded in Section 5.

2. PRELIMINARIES

This section provides background information needed to
develop the proposed fault diagnosis solution. First the
consequences of icing is described followed by a presenta-
tion of the aircraft model used throughout the paper.

2.1 Icing Consequences

In flight icing forming on the leading edge of an aircraft
causes a disruption to the airflow around the wings, i.e.
a change in the aerodynamic properties of the wing.
The consequences are identified as a reduction in lift
and controllability, as well as an increase in drag and
weight. Most UAVs are equipped with an autopilot. The
autopilot will control the aircraft to maintain a certain
height above ground, a certain forward airspeed, and a
course, as specified by any user. When ice forms on the
leading edge of the wings of the aircraft, the autopilot will,
in an attempt to maintain the height and speed, increase
the angle-of-attack of the aircraft and the thrust of the
engine.

2.2 Sensors

Utilisation of the following sensor suite is assumed

• An IMU procures measurements of angular velocities
and specific force

• A pitot-static tube providing measurements of the
relative velocity in the longitudinal axis of the aircraft

• An engine speed sensor

2.3 Aircraft Model - Kinematics

Let vb
g = (u, v, w) denote the decomposition of the ground

velocity vector vg, defined in the Earth-fixed North-East-
Down (NED) frame, into the BODY frame, and let p, q,
and r be the angular rates. This allows for the aircraft
kinematics to be written as

u̇− rv + qw = ax, (1)

v̇ − pw + ru = ay, (2)

ẇ − qu+ pv = az, (3)

with acceleration components ax, ay, and az decomposed
in the BODY frame. Let the wind velocity vector relative
to Earth be denoted vw = (uw, vw, ww). The aircraft
velocity relative to the wind velocity is then vr = vg−vw.
Consequently the relative velocity in the BODY frame,
denoted vb

r = (ur, vr, wr), can be written as(
ur

vr
wr

)
=

(
u
v
w

)
−Rb

n

(
uw

vw
ww

)
, (4)

where Rb
n is the rotation matrix from NED to BODY frame

defined by the Euler angles roll (φ), pitch (θ), and yaw (ψ)

The relative velocity components ur, vr, and wr are related
to the airspeed Va through

ur = Va cos(α) cos(β), (5)

vr = Va sin(β), (6)

wr = Va sin(α) cos(β), (7)

Va =
√
u2
r + v2r + w2

r , (8)

with α and β denotes the angle-of-attack (AOA) and
sideslip angle (SSA). For small scale UAVs the AOA and
SSA are generally not measured, nor is the wind speed,
instead they require estimation. In Long and Song (2009)
a sensor fusion approach is applied for just this purpose,
where the estimation is based on estimates of velocities
and wind speeds, and on the general relations (see Beard
and McLain (2012), Long and Song (2009), and Stevens
and Lewis (2003))

α = tan−1

(
wr

ur

)
, β = sin−1

(
vr
Va

)
.

A similar objective, but different approach, is utilised
in Johansen et al. (2015), where wind velocities, AOA,
and SSA are estimated through kinematic relationships
and a Kalman filter, thereby avoiding the need to know
aerodynamic models or other aircraft parameters. Based
on either of the aforementioned estimation methods α, β,
vw, and consequently Va (denoted V̂a) is assumed known.

2.4 Aircraft Model - Forces and Aerodynamics

Let the specific force vector, decomposed in the BODY
frame, be (fx, fy, fz), defined as

fx = ax + g sin (θ) , (9)

fy = ay − g sin (φ) cos (θ) , (10)

fz = az − g cos (φ) cos (θ) , (11)

where g is the gravitational constant. (fx, fy, fz) is related
to the aerodynamic forces and thrust force of the aircraft
by

fx =
1

m
(Fax + Ft) , (12)

fy =
1

m
Fay

, (13)

fz =
1

m
Faz

, (14)

where m is the aircraft mass and Ft denotes the thrust
force, which is assumed to be aligned with the longitudinal
axis of the aircraft.

(
Fax

, Fay
, Faz

)
are aerodynamic forces

represented as a vector decomposed in the BODY frame.

The thrust developed by the engine, as presented in Beard
and McLain (2012), is described by
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(
Fax

, Fay
, Faz

)
are aerodynamic forces

represented as a vector decomposed in the BODY frame.

The thrust developed by the engine, as presented in Beard
and McLain (2012), is described by
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Ft =
1

2
ρSpCp

(
k2pω

2
p − V 2

a

)
, (15)

where ρ is the air density, Sp and Cp are propeller coef-
ficients. kp is a constant that specify the motor efficiency
and ωp denotes the angular velocity of the propeller.

Focus of the fault diagnosis approach presented in this pa-
per is confined to regard longitudinal and vertical change
detection. For that purpose the relevant aerodynamic
forces can be described by

Fax
=

1

2
ρV 2

a SCX(α), (16)

Faz =
1

2
ρV 2

a SCZ(α), (17)

where S is the wing surface area and 1
2ρV

2
a represents the

dynamic pressure. CX and CZ are composed of lift CL

and drag CD coefficients and depend on α, as described in
Beard and McLain (2012) and Stevens and Lewis (2003),
i.e.

CX = CL(α) sin(α)− CD(α) cos(α), (18)

CZ = −CL(α) cos(α)− CD(α) sin(α). (19)

The aerodynamic coefficients, CX and CZ , are unknown
quantities. In Hansen and Blanke (2013) estimation is
achieved using a standard adaptive observer updating ap-
proach. However, within the scope of this paper nominal
values of these estimates, i.e. no icing, are assumed known.
The estimated parameters are denoted ĈX and ĈZ , respec-
tively.

3. FAULT DIAGNOSIS

The fault diagnosis objective is to detect and isolate the
structural fault that occurs when icing forms on the lead-
ing edge of aircraft wings. The diagnosis is complicated by
model uncertainties, which can be attributed to the non
measurable coefficients CX and CZ found in the expres-
sions for the longitudinal and lateral aerodynamic forces.
The objective is achieved through residual generation and
a NP change detection solution. The former is obtained
as presented in Blanke et al. (2006) and the latter as
presented in Kay (1998).

3.1 Structural Analysis

Given the nonlinear model of the aircraft, described in the
previous section, the following constraints (or subsystems)
for the structural analysis can be formulated

c1 : fx =
1

m

(
Fax

(V̂a, ĈX) + FT (V̂a, ωp)
)
,

c2 : fz =
1

m
Faz

(V̂a, ĈZ),

m1: y1 = fx, m2: y2 = fz, m3: y3 = ωp,

e1: y4 = V̂a, e2: y5 = ĈX , e3: y6 = ĈZ ,

Note that the constraints denoted e1, e2, and e3 are
considered measured parameters.

Residuals are identified using the methods described in
Blanke et al. (2006) and confirmed using the Matlab tool

SATool presented in Blanke and Lorentzen (2006), as
{c1, c2}

r1 =
ρ

2m

(
y24Sy5 + SpCp

(
k2py

2
3 − y24

))
− y1, (20)

r2 =
ρ

2m
y24Sy6 − y2, (21)

3.2 Simulator

To asses the performance of the proposed icing detection
solution, numerical simulations have been conducted util-
ising Matlab and Simulink, with a sample time of 0.01s.
The simulations have been based on the complete, 6-degree
of freedom Zagi model, of the small unmanned aircraft
system presented in Beard and McLain (2012), including
the autopilot module. Measurement noise is modelled as
zero-mean white Gaussian noise, N (0, σm,∗), with stan-
dard deviations aligned with the ones found in Langelaan
et al. (2011), i.e. σm,ur = 0.1 [m/s] and σm,fx , σm,fz = 0.1
[m/s2]. Wind is modelled as a constant wind field with
added turbulence, which is generated as white noise fil-
tered through a Dryden gust model, an approach presented
by Langelaan et al. (2011) and utilised Beard and McLain
(2012). The Dryden transfer functions for the wind turbu-
lence are defined by

Hu(s) = σD,u

√
2Va

Lu
· 1

s+ Va/Lu
, (22)

Hv(s) = σD,v

√
3Va

Lv
· s+ Va/(

√
3Lv)

(s+ Va/Lv)2
, (23)

Hw(s) = σDw

√
3Va

Lw
· s+ Va/(

√
3Lw)

(s+ Va/Lw)2
, (24)

where σD∗ and L∗ are the turbulence intensities and spa-
tial wavelength along the vehicle frames, respectively. For
the simulations the Dryden model has been implemented
with a constant nominal airspeed Va = Va0

. The gust
model used is for low altitude, moderate turbulence, with
numerical values for the turbulence parameters presented
in Table 1

Table 1. Measurement noise levels and Dryden
gust parameters

altitude, 50 [m]

Lu, Lv , 200 [m]

Lw, 50 [m]

σD,u, σD,v , 2.12 [m/s]

σD,w, 1.4 [m/s]

Va0 , 14 [m/s]

The structural fault, icing on the leading edge of the
wing entails, has been imposed upon the aircraft as a
10% increase in the drag coefficient and a 10% decrease
in the lift coefficient, which are well within the penalties
described in Lynch and Khodadoust (2001). For clarifying
purposes Figures 1 and 2 display the responses of the
aircraft system to icing. The former show responses in
altitude, airspeed, and pitch angle. The latter display
autopilot responses, i.e. thrust and elevator displacements.
The fault is imposed at t = 500s with ice forming over a
period lasting 25 seconds.
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Fig. 1. Response to structural fault- 1. altitude, 2. airspeed,
3. pitch angle.

Fig. 2. Autopilot response to structural fault- 1. thrust
displacement, 2. elevator displacement.

3.3 Change Detection

Fault detection is in this paper achieved by detecting
changes in the residual signals (20) and (21). The proposed

detection solution relies on ĈX and ĈZ under nominal
flight conditions. When ĈX and ĈZ display unexpected
changes, a bias is introduced into the residuals and a
structural fault (icing on the leading edge of the airfoil) is
said to have occurred. Note that r1 and r2 can be presented
as

r1 =
ρ

2m
V 2
a S

(
ĈX − CX

)
, (25)

r2 =
ρ

2m
V 2
a S

(
ĈZ − CZ

)
, (26)

where Ĉ∗−C∗ �= 0 whenever icing is forming on the leading
edge of the airfoil.

The response of the two residuals and the distributions for
faultless and faulty evolutions, are displayed in Figure 3.

A Generalised Likelihood Ratio Test (GLRT) is used
to distinguish between two hypotheses stated about the
residual signal. The problem is mathematically expressed

Fig. 3. Residuals r1 and r2, with distributions for the
faultless and faulty operations.

as the following detection problem.

H0 : x[n] = w[n] n = 0, 1, . . . N − 1, (27)

H1 : x[n] = A+ w[n] n = 0, 1, . . . N − 1, (28)

where A is unknown and w[n] is white Gaussian noise
with unknown variance σ2. N is the window size. The
H0 hypothesis describes the case where the signal contain
the expected noise only, whereas the alternative hypoth-
esis H1, other than containing the expected noise, also
contain an offset A from zero. If an offset is identified it
implies a significant difference between the model and the
measurement, hence a fault is concluded to be present. In
Figures 4 and 5 the probability plot and autocorrelation
of the two relevant residuals are displayed. As seen in
the figures the residuals contain uncorrelated samples.

Fig. 4. Residual r1 data distribution fit and autocorrela-
tion.

The probability plots show that the residuals follows a
Gaussian distribution with a general form

p(x;µ, σ) =
1

σ
√
2π

e−
(x−µ)2

2σ2 . (29)
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as the following detection problem.

H0 : x[n] = w[n] n = 0, 1, . . . N − 1, (27)

H1 : x[n] = A+ w[n] n = 0, 1, . . . N − 1, (28)

where A is unknown and w[n] is white Gaussian noise
with unknown variance σ2. N is the window size. The
H0 hypothesis describes the case where the signal contain
the expected noise only, whereas the alternative hypoth-
esis H1, other than containing the expected noise, also
contain an offset A from zero. If an offset is identified it
implies a significant difference between the model and the
measurement, hence a fault is concluded to be present. In
Figures 4 and 5 the probability plot and autocorrelation
of the two relevant residuals are displayed. As seen in
the figures the residuals contain uncorrelated samples.

Fig. 4. Residual r1 data distribution fit and autocorrela-
tion.

The probability plots show that the residuals follows a
Gaussian distribution with a general form

p(x;µ, σ) =
1

σ
√
2π

e−
(x−µ)2

2σ2 . (29)
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Fig. 5. Residual r2 data distribution fit and autocorrela-
tion.

The GLRT is based on the likelihood ratio between the
probability of the two hypotheses given a window of data.
The GLRT decides H1 if

LG(x) =
p(x; Â, σ̂2

1 ,H1)

p(x; σ̂2
0 ,H0)

> γ, (30)

where [Â σ̂2
1 ]

T is the maximum likelihood estimate (MLE)
of the vector [A σ2

1 ] under H1 and σ̂2
0 is the MLE of σ2

0
under H0. The decision function (or threshold) is denoted

γ. Â, σ̂2
1 , and σ̂2

0 are determined by maximising (29) with
µ = A and µ = A = 0, respectively. For the MLEs under
H1 this results in

σ̂2
1 =

1

N

N−1∑
n=0

(x[n]− x̄)
2
, (31)

with x̄ being the sample mean of x[n] and where x̄ = Â. For
the MLE under H0 maximising (29), assuming µ = A = 0,
leads to

σ̂2
0 =

1

N

N−1∑
n=0

x[n]2. (32)

With this the following test statistic can be derived (see
Kay (1998))

T (x) = N ln

(
σ̂2
0

σ̂2
1

)
. (33)

A theoretical threshold γ is determined according to the
Neyman Pearson theorem found in Kay (1998). Given
a signal f(t) that behaves according to the probability
density function p(f(t);H0) under H0, the threshold that
maximises the probability of detection PD is found from

PFA =

∫

{f :LG(f)>γ}
p(f ;H0)df, (34)

where PFA is the desired probaility of false alarm. For
the modified GLRT, here denoted T (x), an asymptotic
result exists for large data records (N → ∞) Kay (1998),
Galeazzi et al. (2013).

The probability of detecting a fault under H1, with prob-
ability PD for a given threshold γ is given by

PD = 1− P (γ;H1, ν, λ), (35)

where P (·) is the cumulative distribution function of a
given test statistics distribution.

4. PERFORMANCE ASSESSMENT

The GLRT performance is dependant on the trade-off
between the desire for a high PD, a low PFA, GLRT
window size N , and the time it takes to detect the
occurrence of a fault.

The test statistics, from r1 denoted Tr1(x), approximately
follow a chi-squared (X 2

ν ) distribution under both hypothe-
ses, with ν serving as the degree-of-freedom parameter. For
window sizes N = 1000, 2000, corresponding to 10 and 20
seconds, a visual representation can be found in Figure 6,
which also includes thresholds for PFA = 10−6. Here it
should be mentioned that parameters of the X 2

ν , used to
fit the data, were estimated utilising MLE.

Fig. 6. Probability plot of T (x), for r1, under H0 and H1

for window length N = 1000 and N = 2000.

For r2, the test statistics, denoted Tr2(x), also approxi-
mately follow a X 2

ν distribution under both hypotheses.
Choosing window sizes N = 500, 1000 the probability
characteristics of Tr2(x) are displayed in Figure 7. The
thresholds seen in the figure are for PFA = 10−6. The
performance of the GLRT, for both residuals, are found in
Table 2.

Table 2. GLRT performance

Tr1(x) Tr2(x)

N 1000 2000 500 1000

PFA 10−6 10−6 10−6 10−6

PD 58.89% 99.99% 56.97% 96.46%

Note that wind turbulence levels significantly influence the
evolution of the residuals, i.e. increased turbulence will
result in a decrease in PD, but this is easily accommo-
dated by increasing the window size N . It is, however,
the accelerometer measurement noise that is the primary
contaminant. Consequently a white noise model could have
limitations, as accelerometer noise might include issues
such as bias, drift, vibrations, etc. that are correlated.
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Fig. 7. Probability plot of T (x), for r2, under H0 and H1

for window length N = 500 and N = 1000.

Correlated noise can be addressed by pre-whitening. The
issue of correlated noise and solutions is a subject deemed
outside the scope of the work presented here.

5. CONCLUSION

The work presented in this paper proposes a Neyman
Pearson based statistical change detection approach, for
the identification of structural changes of fixed wing UAV
airfoils. The solution employs structural analysis to iden-
tify residuals, which are processed by a generalised likeli-
hood ratio test, utilised for hypotheses tests on potential
changes and severity assessments, supplying estimates of
the magnitude of change.

Simulations were conducted that show the expected per-
formance under both nominal and icing influenced con-
ditions. The proposed fault diagnosis solution ensures a
high level of fault detection in spite of turbulent winds,
measurement noise and model uncertainties. Thresholds
were obtained ensuring a low probability of false alarms
and achieving a high probability of detection. The detec-
tion was analysed using simulation generated data where
a fault was imposed on the system.
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