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Abstract  

Emissions of nitrogen (N) from anthropogenic sources enrich marine waters and promote planktonic growth. 

This newly synthesised organic carbon is eventually exported to benthic waters where aerobic respiration by 

heterotrophic bacteria results in the consumption of dissolved oxygen (DO). This pathway is typical of 

marine eutrophication. A model is proposed to mechanistically estimate the response of coastal marine 

ecosystems to N inputs. It addresses the biological processes of nutrient-limited primary production (PP), 

metazoan consumption, and bacterial degradation, in four distinct sinking routes from primary (cell 

aggregates) and secondary producers (faecal pellets, carcasses, and active vertical transport). Carbon export 

production (PE) and ecosystems eXposure Factors (XF), which represents a nitrogen-to-oxygen ‘conversion’ 

potential, were estimated at a spatial resolution of 66 large marine ecosystem (LME), five climate zones, and 

site-generic. The XFs obtained range from 0.45 (Central Arctic Ocean) to 15.9 kgO2·kgN
-1

 (Baltic Sea). 

While LME resolution is recommended, aggregated PE or XF per climate zone can be adopted, but not global 

aggregation due to high variability. The XF is essential to estimate a marine eutrophication impacts indicator 

in Life Cycle Impact Assessment (LCIA) of anthropogenic-N emissions. Every relevant process was 

modelled and the uncertainty of the driving parameters considered low suggesting valid applicability in 

characterisation modelling in LCIA. 

Keywords: Nitrogen; Carbon export; Oxygen depletion; Marine eutrophication; Exposure factor; Life cycle 

impact assessment. 
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1. Introduction 

The ecological equivalent for the photosynthesis rate in marine systems is the primary production (PP) 

rate (Platt et al., 1989). Marine photosynthetic primary producers assimilate nutrients dissolved in seawater: 

nitrogen (N), phosphorus (P), silicon (Si), and micronutrients, along with carbon (C) available from 

dissolution of atmospheric carbon dioxide, to synthesise organic compounds necessary for their metabolism 

and growth. The Redfield ratio (Redfield, 1958) is usually adopted to describe the average uptake of the 

various nutrients, i.e. C:N:P with molar ratios of 106:16:1 – see Ho et al. (2003) on elemental composition of 

phytoplankton. We assume N as the limiting nutrient in marine waters, or more precisely, in most of the 

marine waters and for most of the time to account for possible spatial and temporal exceptions. Studies and 

reviews support this assumption (e.g. Howarth and Marino (2006); Vitousek et al. (2002)), but we 

acknowledge that spatial and seasonal limitation by P or Si (e.g. Elser et al. (2007); Turner et al. (1998)) and 

cases of co-limitation (Arrigo, 2005) may occur. For modelling purposes we consider the ‘limiting nutrient’ 

concept a necessary and justifiable simplification. 

Phytoplankton blooms occur when optimal light and temperature conditions, nutrient availability, and 

limited grazing pressure exist, so that growth rates may exceed losses from respiration, sinking, grazing, and 

other causes for mortality (Behrenfeld and Boss, 2014; Huisman et al., 1999). The timing and duration of 

phytoplankton blooms relative to the life-histories of secondary producers (SP, mainly zooplankton) are 

crucial to the match-mismatch hypothesis (Cushing, 1975) and the application in the present method. Under 

‘match’ events zooplankton typically graze on phytoplankton, whose growth and sink are contained, and the 

export production is based on zooplankton’s faecal pellets and carcasses. In opposition, the ‘mismatch’ 

occurs when the grazing pressure of the zooplankton community is not sufficient to balance the increase in 

phytoplankton growth and a larger fraction of these is left ungrazed. The mismatched fraction sinks off the 

euphotic zone facilitated by advection, aggregation, and coagulation (Kiørboe et al., 1996; Wassmann, 1998). 
At higher latitudes mismatch events are usually more intense, as environmental conditions turn favourable, 

defining the vertical flux. In the tropics a closer match between phyto- and zooplankton growth results in 

higher nutrients regeneration and retention food webs (Wassmann, 1998) with lower contributions to vertical 

export.  

The downward export is composed of ‘marine snow’ (Alldredge and Silver, 1988; Kiørboe, 2001, 1996), 

the term used to describe the particulate organic carbon (POC) flux of sinking aggregates of phytoplankton 

cells, faecal pellets, zooplankton carcasses, and other organic material from dead or dying microorganisms 

(extensively reviewed by Fowler and Knauer (1986)). An additional contribution to this flux is given by 

active vertical transport (AVT) mediated by diel vertical migration of zooplankton (Lampert, 1989): 

zooplankton ingests organic particles at night from surface waters and excretes/egests the metabolites during 

the day below the mixed layer (Longhurst and Harrison, 1988). Sinking POC may be consumed or dissolved 

in the water column and only a fraction gets oxidised or consumed by benthic microbial and metazoan 

communities, respectively (Ducklow et al., 2001). Respiration in bottom strata is responsible for the 

remineralisation of nutrients but also for the consumption of dissolved oxygen (DO). In a principle of 

linearity of cause-effect, and modulated by site-dependent conditions, the higher the load of the limiting 

nutrient the higher the carbon flux and DO consumption. Under low ventilation conditions and excessive N 

input, DO can be depleted down to hypoxic and anoxic levels (Elmgren, 2001; Keeling et al., 2010).  

Globally, anthropogenic N-loadings to the environment have increased more than 10-fold in the last 150 

years, mainly due to the growing need for reactive nitrogen use in agriculture and to emissions from energy 

production (Galloway et al., 2008). Fertilizers applied in agricultural production emits N, mainly in the form 

of NH4
+
 and NO3

-
 to soil and water, or NH3 to air, whereas fossil fuels combustion emits nitrogen oxides 

(NOx) resulting from the oxidation of atmospheric N2 or organic N content of the fuel (mainly coal) 

(Galloway et al., 2002; Socolow, 1999). Run-off, leaching, and atmospheric deposition of these N-forms 

eventually enrich coastal marine ecosystems with biologically available N. Marine eutrophication can be one 

of the consequences after planktonic growth (Nixon, 1995; NRC, 2000; Smith et al., 1999), for which  

important impacts may arise from (i) decrease in water quality, by high turbidity, colour, and smell, 

hindering water uses, fish production, and reducing the aesthetic value, (ii) depletion of DO in bottom waters 
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down to hypoxic or anoxic levels that may affect exposed species, and (iii) change in species composition 

and interaction that may enhance the growth of toxic and harmful algal species (Diaz and Rosenberg, 2008; 

Gray et al., 2002; Kelly, 2008; Levin et al., 2009). High biological oxygen demand (BOD) effluents may 

share similar DO consumption pathways via biologically-mediated degradation, but these are outside the 

scope of the present work. 

The PP rate provides useful information on the ecological condition (Niemi et al., 2004; Smith, 2007), but 

is unable to predict distinct responses thus missing the explanatory power for the impacts. We propose a 

novel indicator, the ecosystem eXposure Factor (XF), to add a mechanistic explanation for ecosystem 

responses, potential impacts, and the reasons for its variability. Aiming at the quantification of such 

responses to anthropogenic-N loadings, we set the following objectives: 

- Identify and parameterise the relevant biological processes of organic carbon production, export, and 

consumption/degradation to cover the entire ecosystem response pathway in a mechanistic manner; 

- Spatially differentiate the parameterisation to ensure the model output is representative of distinct 

receiving ecosystems in support of a comparative assessment of exposure locations; 

- Produce site-dependent exposure factors with a global coverage that express how much oxygen is 

consumed via respiration of sunken organic carbon as a function of N assimilated per specific spatial 

unit. 

This approach seems relevant and useful for predictive advice, ecosystems management, and 

eutrophication modelling. It may therefore contribute to comparative assessments of environmental impact of 

human activities or vulnerability of coastal areas. 

2. Methodology 

Life Cycle Assessment (LCA) is an environmental analysis tool used to systematically evaluate the 

potential environmental impacts that arise from the consumption of resources or emission of substances to 

the environment throughout the entire life cycle of a product or service (Hauschild, 2005). In the Life Cycle 

Impact Assessment (LCIA) phase the inventoried emissions are multiplied by substance-specific 

characterisation factors (CF) that represent the ability of those to impact on representative indicators. In 

brief, CFs convert an emission or consumption into a potential impact to the environment. In the present 

case, the impact category is marine eutrophication and the metric is a potential loss of species diversity in an 

ecosystem exposed to an N emission from anthropogenic sources. 

The estimation of aquatic eutrophication CFs for LCIA applications has been reviewed recently and 

research needs identified (Henderson, 2015). Generically, the characterisation of marine eutrophication 

impacts involves the calculation of (i) fate factors (FF) expressing the availability of N in the euphotic zone 

of coastal waters, (ii) ecosystem exposure factors (XF) for the ‘conversion’ of the available N into organic 

matter (biomass) and oxygen consumed after its aerobic respiration, and (iii) effect factors (EF) to quantify 

the impact of DO depletion on exposed species (modelled as time- and volume-integrated Potentially 

Affected Fraction of species, PAF). Eq. (1) summarises the calculation of CFs as the product of these factors: 

𝐶𝐹[𝑃𝐴𝐹 ∙ 𝑚3 ∙ 𝑦𝑟 ∙ 𝑘𝑔𝑁−1] = 𝐹𝐹[𝑦𝑟] × 𝑋𝐹[𝑘𝑔𝑂2 ∙ 𝑘𝑔𝑁−1] × 𝐸𝐹[𝑃𝐴𝐹 ∙ 𝑚3 ∙ 𝑘𝑔𝑂2
−1]  (1) 

The present work introduces and discusses a method to estimate XFs. It contributes with a central element 

for the impact modelling of marine eutrophication in LCIA. The framework fits a mechanistic approach as it 

uses existing scientific knowledge about the relevant biological processes by means of equations that express 

the systems’ response. Such approach allows some extrapolation of the results beyond the intrinsic 

limitations of the experimental data and evidence available (Duarte et al., 2004). In practice, we build a 

cause-effect pathway of cascading biological processes to deliver an overall conversion of N into DO 

consumption. Environmental relevance is ensured by describing every relevant parameter based on state of 

the art science. 
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2.1. Spatial differentiation 

The model focuses on coastal and shelf waters as these receive the majority of the anthropogenic 

emissions to the marine compartment and it is where the potential effects have the highest impact. Occurring 

biological populations and physical features are distinct from the adjacent pelagic open ocean and deep 

benthic systems (Spalding et al., 2007; UNESCO, 2009). They also comprise most of the marine biodiversity 

and human interest, as well as higher productivity and vulnerability to human interventions, including marine 

eutrophication (UNEP, 2006).  

The modelled processes are nutrient-limited PP, metazoan consumption, and bacterial degradation of 

sunken organic carbon. A short description of these processes will be given in the sections ahead, focusing 

on the relevant limitations and interactions of the proposed approach. Some of the modelled parameters show 

significant spatial variation (e.g. PP rate). Spatial units are needed in an adequate and manageable scale and 

number to capture this variability and its contribution to the model results. Considering the scale at which the 

described processes occur, the large marine ecosystems (LME) biogeographical classification system 

(Sherman and Alexander, 1986) was adopted. It divides the coastal waters of the planet into 66 spatial units, 

from river basins and estuaries to the seaward boundaries of continental shelves (average depth of 200 m as a 

model assumption) and the outer margins of the major ocean current systems (Sherman et al., 2009). For 

parameters varying (mainly) with latitude, LMEs were grouped into five climate zones (polar, subpolar, 

temperate, subtropical, and tropical – Figures S.1 and S.2). The classification criteria were based on the mean 

annual sea surface temperature and latitudinal distribution (details in Section S.2.1). In other cases, site-

generic parameters based on best estimates or global mean values from available empirical data were given 

preference when no relevant spatial differentiation was to consider, or when data on spatial variability were 

missing (e.g. respiration rates of sinking organic material, zooplankton ingestion rates, or carbon transported 

by AVT). 

2.2. Biological model pathway and major fluxes 

As mentioned earlier, nutrients assimilation by primary producers is followed by sinking of organic 

carbon to bottom layers facilitated by phytoplankton cells aggregation, compaction into zooplankton faecal 

pellets and carcasses, and AVT. Aerobic respiration by heterotrophic bacteria near the bottom leads to the 

consumption of DO. Figure 1 shows a simplified illustration of this pathway. 

 

Figure 1 Simplified pathway of the ecosystem response to nitrogen (N) inputs showing the four carbon export routes 

from the upper euphotic zone to the bottom water layer: route 1 (light green arrow) for sinking primary production (PP) 

biomass, route 2 (purple arrow) for sinking particulate organic carbon as faecal pellets from secondary production (SP), 
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route 3 (orange arrow) for sinking zooplankton carcasses, and route 4 (light blue arrow) for active vertical transport 

(AVT) – see text for process description. Dashed brown arrow represents assimilation of N and solid brown arrows 

represent organic carbon flows. Grey horizontal arrow refers to bacterial respiration in bottom waters that leads to 

dissolved oxygen (O2) consumption. 

Total PP consists of new production (Pnew), which uses allochthonous N (externally supplied, mainly 

nitrate), and regenerated production (Pr) fuelled by autochthonous N in the surface mixed layer (from 

heterotrophic recycling of organic matter, e.g. ammonia and urea) (Dugdale and Goering, 1967; Wassmann, 

1990a). At steady-state (or long-term average) Pr is the component of PP that meets the metabolic demands 

of the pelagic community (Platt and Sathyendranath, 1988) and Pnew the component that can be exported 

without compromising the long-term integrity of the community (Vézina and Platt, 1987). The organic 

carbon that sinks off the mixed layer is referred to as export production (PE). Its rate is, on an annual time 

scale and assuming N as the limiting nutrient, equivalent to the allochthonous N input rate as the downward 

flux of sinking PE is equivalent to Pnew (Eppley et al., 1983). For this reason PE is expected to increase (and 

so the impacts that may result from it) if Pnew increases due to additional N-loadings to the coastal marine 

system from anthropogenic sources. Therefore, an increase of N input is expected to correspond to an 

increase in DO consumption in the proportionality defined by some factor. This attests the relevance for the 

management of N-emitting human activities and for the assessment of ecosystems health of a model capable 

of quantifying such a factor. This factor (i.e. XF) is described ahead. 

The modelled biological processes can be related to (i) photosynthesis, determining the assimilation of N 

into biomass (organic carbon), (ii) production and export of organic material from the euphotic layer, (iii) 

consumption and degradation of sinking organic material, and (iv) the quantitative conversion of organic 

carbon into oxygen consumed by means of aerobic respiration by benthic heterotrophic bacteria, in 

agreement with the carbon fluxes as defined by the biological pump concept (Ducklow et al., 2001). The 

specific model parameters are described in the following sections and their inclusion in the response pathway 

is detailed in Figure 2. Processes in categories (i) and (ii) are also used to model PE. 

2.3. Photosynthesis and C:N conversion 

Photosynthesis governs nutrients assimilation by primary producers. From thereon N relates to C by 

means of the Redfield ratio (Redfield, 1958) (molar mass ratio 𝐶: 𝑁 = 106: 16) based on the stoichiometry 

of the photosynthesis equation: 

106 𝐶𝑂2 + 16 𝐻𝑁𝑂3 + 𝐻3𝑃𝑂4 + 122 𝐻2𝑂 ⇒ 𝐶106𝐻263𝑂110𝑁16𝑃 + 138 𝑂2 (2) 

The 𝐶: 𝑁 molar mass ratio estimates the mass of C fixed into biomass per mass of N assimilated, 

calculated by: 

𝐶: 𝑁 = (106 𝑚𝑜𝑙𝐶 ∗ 12.0107 𝑔𝐶/𝑚𝑜𝑙𝐶)/(16 𝑚𝑜𝑙𝑁 ∗ 14.0067 𝑔𝑁/𝑚𝑜𝑙𝑁) = 5.681 𝑔𝐶/𝑔𝑁 (3) 

2.4. Production and export of organic material from the euphotic zone 

(𝑷𝑷𝑷𝒐𝒕) PP rate [gC·m
2
·yr

-1
] (organic carbon synthesis rate) data are available at a LME spatial 

resolution from the Sea Around Us project (http://www.seaaroundus.org) (Lai, 2004; UBC, 1999). For 

comparative purposes, the PP rates of every LME (𝑃𝑃𝐿𝑀𝐸) were normalised by the average PP rate 

(𝑃𝑃𝐴𝑣𝑔_66𝐿𝑀𝐸 [gC·m
2
·yr

-1
]) to deliver the relative potential primary production in each spatial unit 

(𝑃𝑃𝑃𝑜𝑡_𝐿𝑀𝐸 [-]) by: 

𝑃𝑃𝑃𝑜𝑡_𝐿𝑀𝐸 = 𝑃𝑃𝐿𝑀𝐸/𝑃𝑃𝐴𝑣𝑔_66𝐿𝑀𝐸 (4) 

(𝒇𝑷𝑷𝒔𝒊𝒏𝒌 and 𝒇𝑷𝑷𝒈𝒓𝒛) A fraction of the PP is grazed by zooplankton (𝑓𝑃𝑃𝑔𝑟𝑧 [-]) while the remaining 

fraction (𝑓𝑃𝑃𝑠𝑖𝑛𝑘 [-]) avoids it by sinking. The overlapping of occurrence of phyto- and zooplankton 
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populations determines the grazed fraction while its mismatch represents the ungrazed sinking fraction, 

which varies with the production cycles in different regions (Cushing, 1975). Adopting the five climate 

zones (CZ), these regionally-differentiated mismatch events result in a mean annual sinking fraction 

(𝑓𝑃𝑃𝑠𝑖𝑛𝑘_𝐶𝑍) of 0.67 of the phytoplankton biomass in the polar CZ (dominated by large phytoplankton cells, 

e.g. diatoms), 0.30 in the temperate CZ (dominated by diatoms in spring and dinoflagellates in autumn), and 

0.15 in the tropical CZ (dominated by picoplankton, flagellates, and ciliates). These coefficients were 

estimated according to Cushing’s principles for typical growth and grazing response, and the export 

production response modelled by Laws et al. (2000). Intermediate subpolar and subtropical CZs adopted 

mean values of the adjacent zones, i.e. 0.49 and 0.23 respectively (Table S.1). Complementarily, the fraction 

not sinking represents the standing crop of primary producers grazed by zooplankton, obtained by: 

𝑓𝑃𝑃𝑔𝑟𝑧_𝐶𝑍 = 1 − 𝑓𝑃𝑃𝑠𝑖𝑛𝑘_𝐶𝑍 (5) 

Microzooplankton may also graze on phytoplankton, removing ca. 60-70% of PP biomass on a global 

scale (Calbet and Landry, 2004) from the downward export flux of organic carbon due to remineralisation 

within the euphotic zone (Calbet, 2001). However, we assume that microzooplankton typically do not pose 

significant grazing pressure on large-celled phytoplankton blooms that constitute the mismatched fraction of 

the sinking PP biomass aggregates (𝑓𝑃𝑃𝑠𝑖𝑛𝑘). The grazing pressure by microzooplankton is thus assumed to 

be included in the grazed fraction (𝑓𝑃𝑃𝑔𝑟𝑧). The ingestion, assimilation, and egestion (defecation) rates of the 

heterotrophs are then determinant in estimating the carbon export flux from SP (Besiktepe and Dam, 2002) 

(route 2 in Figure 1).  

(𝒇𝑺𝑷𝒊𝒏𝒈𝒆𝒔𝒕) Phytoplankton’s biomass grazed by SP is either ingested (𝑓𝑆𝑃𝑖𝑛𝑔𝑒𝑠𝑡 [-]) or dispersed (1 −

𝑓𝑆𝑃𝑖𝑛𝑔𝑒𝑠𝑡) as dissolved organic carbon (DOC) via sloppy feeding (Lampert, 1978; Møller, 2007). Mean 

ingestion fractions of the grazed biomass of 0.64 (relative standard deviation (rel.SD)≈21%) were obtained 

from different species and estimation methods (Møller and Nielsen, 2001; Møller, 2007; Saba et al., 2011, 

2009) (see also Section S.2.3). Although DOC production may vary with the predator-prey size ratio (Møller, 

2007) we do not expect a consistent biased variation per CZ and thus a generic coefficient was adopted. The 

fate of this ingested fraction is further modelled by predation (𝑓𝑝𝑙𝑓𝑖𝑠ℎ), egestion (𝑓𝑆𝑃𝑒𝑔𝑒𝑠𝑡), non-consumptive 

mortality (𝑓𝑆𝑃𝑐𝑎𝑟𝑐), and active vertical transport (𝑓𝐴𝑉𝑇𝑔𝑟𝑧).  

(𝒇𝒑𝒍𝒇𝒊𝒔𝒉) Zooplankton biomass may be consumed by planktivorous fish (plfish) and therefore abstracted 

from the sinking flux. The concept of Primary Production Required (PPR, [-]) explains how much PP is 

required to sustain the reported fisheries per LME (Pauly and Christensen, 1995; UBC, 1999) and is used 

here as a proxy to estimate the predated fraction of zooplankton. 

(𝒇𝑺𝑷𝒂𝒔𝒔𝒊𝒎𝒊𝒍 and 𝒇𝑺𝑷𝒆𝒈𝒆𝒔𝒕) Assimilation efficiency (AE) is the ratio of assimilation to consumption (Odum, 

1971) or the proportion of the ingested material that is actually absorbed rather than egested (Besiktepe and 

Dam, 2002). AE coefficients for zooplankton (𝑓𝑆𝑃𝑎𝑠𝑠𝑖𝑚𝑖𝑙 [-]) were estimated from Besiktepe and Dam (2002) 

for the polar (0.30, rel.SD≈74%), temperate (0.50, rel.SD≈25%), and tropical (0.80, rel.SD≈9%) CZs based 

on the expected dominance of diatoms (polar), diatoms/flagellates (temperate), and flagellates/ciliates 

(tropical) in their diet. 𝑓𝑆𝑃𝑎𝑠𝑠𝑖𝑚𝑖𝑙 for the subpolar (0.40, rel.SD≈57%) and subtropical (0.65, rel.SD≈19%) 

CZs are mean values of the adjacent zones (see Table S.1). We used diet-specific AE coefficients instead of 

generic values from e.g. Saba et al. (2011) or Møller et al. (2003) after Conover (1966), to add environmental 

relevance and spatial differentiation to the parameter. Egestion refers to the ingested food that is not 

assimilated in the gut of zooplankton and therefore is eliminated as faecal pellets. The egested organic 

carbon fractions from SP were calculated for the five CZs by: 

𝑓𝑆𝑃𝑒𝑔𝑒𝑠𝑡_𝐶𝑍 = 1 − 𝑓𝑆𝑃𝑎𝑠𝑠𝑖𝑚𝑖𝑙_𝐶𝑍 (6) 

(𝒇𝑺𝑷𝒄𝒂𝒓𝒄) Zooplankton carcasses, i.e. dead organisms and body parts (Tang and Elliott, 2013) due to non-

consumptive mortality, are also part of sinking marine snow (as POC) following route 3 in Figure 1, which 
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can further be consumed or respired in the water column or at the bottom. Non-consumptive mortality 

(𝑓𝑆𝑃𝑚𝑜𝑟𝑡, [-]) was estimated to be 29% of the predation mortality by plfish and constant regardless of 

temperature (Hirst and Kiørboe, 2002). A site-generic value was therefore used. PP’s biomass in SP 

carcasses is then obtained per LME by: 

𝑓𝑆𝑃𝑐𝑎𝑟𝑐_𝐿𝑀𝐸 = 𝑓𝑆𝑃𝑚𝑜𝑟𝑡 ∗ 𝑓𝑝𝑙𝑓𝑖𝑠ℎ_𝐿𝑀𝐸 = 0.29 ∗ 𝑓𝑝𝑙𝑓𝑖𝑠ℎ_LME (7) 

(𝒇𝑨𝑽𝑻𝒈𝒓𝒛) Active vertical transport (AVT) due to diel vertical migration of zooplankton (route 4 in Figure 

1) is an additional contribution to the downward carbon flux. The grazing pressure from migrating 

zooplankton (i.e. biomass removed from suspension) is assumed to be 10% of that of the zooplankton 

residing permanently in the surface layer (𝑓𝑃𝑃𝑔𝑟𝑧) and assumed constant for the five CZs. This assumption is 

based on findings of <10% by Morales et al. (1993), roughly the proportion of migrating vs. non-migrating 

species in the North Sea (Koski et al., 2011), the mean value of 12% by Besiktepe et al. (1998), and also 

15% by Roman et al. (1990) but including both pelagic and demersal zooplankton. Only the ingested fraction 

of the grazed biomass is modelled by AVT (𝑓𝐴𝑉𝑇𝑔𝑟𝑧 [-]) as: 

𝑓𝐴𝑉𝑇𝑔𝑟𝑧_𝐶𝑍 = 0.10 ∗ 𝑓𝑃𝑃𝑔𝑟z_CZ ∗ 𝑓𝑆𝑃𝑖𝑛𝑔𝑒𝑠𝑡  (8) 

2.5. Consumption and degradation of sinking organic material 

(𝒇𝑷𝑷𝒔𝒊𝒏𝒌𝑮𝒁 and 𝒇𝑷𝑷𝒔𝒊𝒏𝒌𝑵𝑮) Sinking aggregates may be grazed by zooplankton (sinkGZ) residing below 

the photic depth (Alldredge and King, 1980). We assumed that the zooplankton community in the aphotic 

zone crops ca. 15% of the sinking aggregates from PP (𝑓𝑃𝑃𝑠𝑖𝑛𝑘) supported by Roman et al. (1990), similar to 

mean values (≈13.6%) obtained by Roman et al. (2002), and roughly 1 out of 6 (≈16.7%) dominant species 

of copepods occurring in the North Sea below the thermocline (Koski et al., 2011). The sinking non-grazed 

fraction of PP (𝑓𝑃𝑃𝑠𝑖𝑛𝑘𝑁𝐺 [-]) per CZ is calculated by: 

𝑓𝑃𝑃𝑠𝑖𝑛𝑘𝑁𝐺_𝐶𝑍 = 1 − 𝑓𝑃𝑃𝑠𝑖𝑛𝑘𝐺𝑍_𝐶𝑍 = 1 − 0.15 ∗ 𝑓𝑃𝑃𝑠𝑖𝑛𝑘_𝐶𝑍 (9) 

(𝒇𝑭𝑷𝒍𝒆𝒂𝒄𝒉) Organic carbon leached from faecal pellets (FP) contributes to the production of DOC (Møller 

and Nielsen, 2001), which is assumed to be recycled in the surface mixed layer and thus not contribute to the 

organic carbon flux reaching the bottom (contrary to POC). Here we included the losses by leaching and 

dissolution caused by the disruption of FP’s periotrophic membrane by bacteria and protists (coprochaly) 

and manipulation by zooplankton with fragmentation (coprorhexy) (Wassmann, 1998). The organic carbon 

‘lost’ to leaching (𝑓𝐹𝑃𝑙𝑒𝑎𝑐ℎ [-]) was adopted from Møller et al. (2003) as 28% of the sinking flux of FP and 

assumed constant for the five CZs. 

(𝒇𝑭𝑷𝒔𝒊𝒏𝒌𝑮𝒁 and 𝒇𝑭𝑷𝒔𝒊𝒏𝒌𝑵𝑮) Zooplankton can also graze on sinking FP (coprophagy) (Wassmann, 1998) 

though much less efficiently than on sinking algal aggregates. The maximum feeding rate of particle-

colonising copepods on FP (𝑓𝐹𝑃𝑠𝑖𝑛𝑘𝐺𝑍) is assumed to be ca. 20% of that of algae aggregates (𝑓𝑃𝑃𝑠𝑖𝑛𝑘𝐺𝑍) 

(Koski, unpublished) per climate zone, as: 

𝑓𝐹𝑃𝑠𝑖𝑛𝑘𝐺𝑍_𝐶𝑍 = 0.20 ∗ 𝑓𝑃𝑃𝑠𝑖𝑛𝑘𝐺𝑍_𝐶𝑍 (10) 

The remaining organic material sinking as FP not grazed (𝑓𝐹𝑃𝑠𝑖𝑛𝑘𝑁𝐺 [-]) is therefore obtained from 

deducting the losses of leaching and consumption, per climate zone, by: 

𝑓𝐹𝑃𝑠𝑖𝑛𝑘𝑁𝐺_𝐶𝑍 = (1 − 𝑓𝐹𝑃𝑙𝑒𝑎𝑐ℎ) ∗ (1 − 𝑓𝐹𝑃𝑠𝑖𝑛𝑘𝐺𝑍_𝐶𝑍) (11) 

(𝒇𝑩𝑹𝒔𝒊𝒏𝒌𝑷𝑷 and 𝒇𝑩𝑹𝒔𝒊𝒏𝒌𝑺𝑷) Sinking POC is a component of marine snow (marsnow) and as such is 

respired by heterotrophic bacteria (bacterial respiration, BR) at a rate of 𝑓𝐵𝑅𝑚𝑎𝑟𝑠𝑛𝑜𝑤 = 0.13 𝑑−1 (Iversen 

and Ploug, 2010). Sinking rates (𝑈) of organic material from PP and SP were adopted from Turner (2002) as 

𝑈𝑃𝑃 = 150 𝑚 ∙ 𝑑−1 (phytodetritus and marine snow) and 𝑈𝑆𝑃 = 200 𝑚 ∙ 𝑑−1 (marine snow and faecal 
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pellets). Mean depth (𝑍𝑚𝑒𝑎𝑛 = 100 𝑚) was also used. The fractions of respired sinking PP (𝑓𝐵𝑅𝑠𝑖𝑛𝑘𝑃𝑃 [-]) 

and sinking SP (𝑓𝐵𝑅𝑠𝑖𝑛𝑘𝑆𝑃 [-]) are calculated by: 

𝑓𝐵𝑅𝑠𝑖𝑛𝑘𝑃𝑃 = 𝑓𝐵𝑅𝑚𝑎𝑟𝑠𝑛𝑜𝑤 𝑈𝑃𝑃⁄ ∗ 𝑍𝑚𝑒𝑎𝑛 = 0.13 𝑑−1/150 𝑚 ∙ 𝑑−1 ∗ 100 𝑚 = 0.087 (12) 

𝑓𝐵𝑅𝑠𝑖𝑛𝑘𝑆𝑃 = 𝑓𝐵𝑅𝑚𝑎𝑟𝑠𝑛𝑜𝑤 𝑈𝑆𝑃⁄ ∗ 𝑍𝑚𝑒𝑎𝑛 = 0.13 𝑑−1/200 𝑚 ∙ 𝑑−1 ∗ 100 𝑚 = 0.065 (13) 

SP carcasses are assumed equivalent to detritus entangled in sinking marine snow and respired as such 

(Iversen and Ploug, 2010; Tang and Elliott, 2013). We assumed a consumption rate similar to that of sinking 

faecal pellets (𝑓𝐹𝑃𝑠𝑖𝑛𝑘𝐺𝑍_𝐶𝑍, from Eq. 10) and bacterial respiration as SP marine snow (𝑓𝐵𝑅𝑠𝑖𝑛𝑘𝑆𝑃, from Eq. 

13) (Turner, 2002). 

(𝒇𝑨𝑽𝑻𝒐𝒄) By AVT some zooplankton excretes and egests organic carbon (oc) as DOC and POC, 

respectively, in aphotic layers. Contributions to DOC (𝑓𝐴𝑉𝑇𝑑𝑜𝑐 [-]) from excretion and FP leaching are 

estimated as described for surface resident copepods and assuming that 15% of the ingested carbon is 

excreted (Saba et al., 2011), plus the FP leaching (𝑓𝐺𝑅𝑍𝑑𝑜𝑐 [-], Eq. 15) and ingestion of grazed sinking PP 

(𝑓𝑃𝑃𝑠𝑖𝑛𝑘𝐺𝑍_𝐶𝑍) and FP (𝑓𝐹𝑃𝑠𝑖𝑛𝑘𝐺𝑍_𝐶𝑍) fractions (marked in Figure 2 as “- to fAVTdoc/poc” and denoted grazed 

fraction, 𝑓𝐺𝑅𝑍 [-], Eq. 16). Only a fraction of this DOC pool is respired in the bottom layer as a function of 

the proportion of vertical distance covered by emergent copepods (𝑍𝐴𝑉𝑇, assumed to be 20 m (Atkinson et 

al., 1992; Puelles et al., 1996)) of the water column below the photic depth (𝑍𝑝ℎ𝑜𝑡𝑖𝑐_𝐿𝑀𝐸 from Longhurst 

(1998), Table S.4) to the bottom, with mean depth (𝑍𝑚𝑒𝑎𝑛) of 100 m (see Table 1 and f of 𝑍𝑎𝑝ℎ𝑜𝑡𝑖𝑐 in Table 

S.4). The calculation of 𝑓𝐴𝑉𝑇𝑑𝑜𝑐 per CZ is then: 

𝑓𝐴𝑉𝑇𝑑𝑜𝑐_𝐶𝑍 = (𝑓𝐴𝑉𝑇𝑔𝑟𝑧_𝐶𝑍 ∗ 𝑓𝑆𝑃𝑎𝑠𝑠𝑖𝑚𝑖𝑙_𝐶𝑍 ∗ 0.15 + 𝑓𝐴𝑉𝑇𝑔𝑟𝑧_𝐶𝑍 ∗ 𝑓𝑆𝑃𝑒𝑔𝑒𝑠𝑡_𝐶𝑍 ∗ 𝑓𝐹𝑃𝑙𝑒𝑎𝑐ℎ + 𝑓𝐺𝑅𝑍𝑑𝑜𝑐_𝐶𝑍) ∗ 𝑍𝐴𝑉𝑇 𝑍𝑎𝑝ℎ𝑜𝑡𝑖𝑐_𝐿𝑀𝐸⁄  (14) 

where: 

𝑓𝐺𝑅𝑍𝑑𝑜𝑐_𝐶𝑍 = 𝑓𝐺𝑅𝑍_𝐶𝑍 ∗ (𝑓𝑆𝑃𝑎𝑠𝑠𝑖𝑚𝑖𝑙_𝐶𝑍 ∗ 0.15 + 𝑓𝑆𝑃𝑒𝑔𝑒𝑠𝑡_𝐶𝑍 ∗ 𝑓𝐹𝑃𝑙𝑒𝑎𝑐ℎ) (15) 

𝑓𝐺𝑅𝑍_𝐶𝑍 = 𝑓𝑃𝑃𝑠𝑖𝑛𝑘_𝐶𝑍 ∗ 𝑓𝑃𝑃𝑠𝑖𝑛𝑘𝐺𝑍_𝐶𝑍 + 𝑓𝑃𝑃𝑔𝑟𝑧_𝐶𝑍 ∗ 𝑓𝑆𝑃𝑖𝑛𝑔𝑒𝑠𝑡 ∗ (1 − 𝑓𝐴𝑉𝑇𝑔𝑟𝑧𝐶𝑍
∗ 𝑓𝑖𝑛𝑔𝑒𝑠𝑡) ∗ (1 − 𝑓𝑆𝑃𝑐𝑎𝑟𝑐) ∗ (1 − 𝑓𝑝𝑙𝑓𝑖𝑠ℎ𝐿𝑀𝐸

) ∗

𝑓𝑆𝑃𝑒𝑔𝑒𝑠𝑡_𝐶𝑍 ∗ (1 − 𝑓𝐹𝑃𝑙𝑒𝑎𝑐ℎ) ∗ 𝑓𝐹𝑃𝑠𝑖𝑛𝑘𝐺𝑍_𝐶𝑍 + 𝑓𝑃𝑃𝑔𝑟𝑧_𝐶𝑍 ∗ 𝑓𝑆𝑃𝑖𝑛𝑔𝑒𝑠𝑡 ∗ (1 − 𝑓𝑝𝑙𝑓𝑖𝑠ℎ) ∗ 𝑓𝑆𝑃𝑐𝑎𝑟𝑐 ∗ 𝑓𝐹𝑃𝑠𝑖𝑛𝑘𝑔𝑧_𝐶𝑍 (16) 

Contributions to the POC pool as FP (𝑓𝐴𝑉𝑇𝑝𝑜𝑐 [-]) include egestion from migrating copepods plus 

egestion from ingested grazed sinking PP, sinking FP, and sinking SP carcasses (𝑓𝐺𝑅𝑍 [-], Eq. 16). Such 

egested FPs are also grazed as described for 𝑓𝐹𝑃𝑠𝑖𝑛𝑘𝐺𝑍 and respired by bacteria (see description and 

calculations of 𝑓𝐵𝑅𝑚𝑎𝑟𝑠𝑛𝑜𝑤 and 𝑈𝑆𝑃) as a function of 𝑍𝑎𝑝ℎ𝑜𝑡𝑖𝑐_𝐿𝑀𝐸 (Table S.3). The calculation of 𝑓𝐴𝑉𝑇𝑝𝑜𝑐 

per CZ is then: 

𝑓𝐴𝑉𝑇𝑝𝑜𝑐_𝐶𝑍 = (𝑓𝐴𝑉𝑇𝑔𝑟𝑧_𝐶𝑍 + 𝑓𝐺𝑅𝑍) ∗ 𝑓𝑆𝑃𝑒𝑔𝑒𝑠t_CZ ∗ (1 − 𝑓𝐹𝑃𝑙𝑒𝑎𝑐ℎ) ∗ (1 − 𝑓𝐹𝑃𝑠𝑖𝑛𝑘𝐺Z_CZ) ∗ 𝑓𝐵𝑅𝑠𝑖𝑛𝑘𝑆𝑃𝑎𝑝ℎ𝑜𝑡𝑖𝑐_𝐿𝑀𝐸 (17) 

where: 

𝑓𝐵𝑅𝑠𝑖𝑛𝑘𝑆𝑃𝑎𝑝ℎ𝑜𝑡𝑖𝑐_𝐿𝑀𝐸 = 𝑓𝐵𝑅𝑚𝑎𝑟𝑠𝑛𝑜𝑤 𝑈𝑆𝑃⁄ ∗ 𝑍𝑎𝑝ℎ𝑜𝑡𝑖𝑐 (18) 

The total organic carbon transported by AVT ( 𝑓𝐴𝑉𝑇𝑜𝑐) per CZ is then obtained from: 

𝑓𝐴𝑉𝑇𝑜𝑐_𝐶𝑍 = 𝑓𝐴𝑉𝑇𝑑𝑜𝑐_𝐶𝑍 + 𝑓𝐴𝑉𝑇𝑝𝑜𝑐_𝐶𝑍 (19) 

The remaining sinking fractions reach the bottom layer and are respired there. 

http://dx.doi.org/10.1016/j.ecolmodel.2015.09.005


Cosme et al. / Ecological Modelling 317 (2015) 50–63 

doi:10.1016/j.ecolmodel.2015.09.005 

9 

 

2.6. Benthic respiration and O2:C conversion 

(𝒇𝑩𝑹𝒃𝒐𝒕𝒕) Organic carbon reaching bottom layers is assimilated by heterotrophic bacteria to produce new 

bacterial biomass (secondary bacterial production, BP) and to meet metabolic requirements (bacterial 

respiration, BR). The amount of bacterial biomass produced per unit carbon substrate assimilated is defined 

as Bacterial Growth Efficiency (𝐵𝐺𝐸 [-]), i.e. the fraction not respired or 𝐵𝑃 (𝐵𝑃 + 𝐵𝑅)⁄  (del Giorgio and 

Cole, 1998). Comparative studies of natural aquatic systems show that BP is correlated with PP and 

averaging ca. 30% of PP (Cole et al., 1988; del Giorgio and Cole, 1998; Ducklow and Carlson, 1992). 

Instead of using such a generic coefficient, and to further add spatial differentiation and relevance, we 

estimated spatially differentiated BP values for the 66 LMEs (𝐵𝑃𝐿𝑀𝐸 [μgC·L·h
-1

]) using the empirical 

equation by Cole et al. (1988) for marine systems (R
2
=0.77) with the available PP rates: 

𝐵𝑃𝐿𝑀𝐸 = 0.249 ∗ 𝑃𝑃𝐿𝑀𝐸
0.86 (20) 

Spatially differentiated BGE values (𝐵𝐺𝐸𝐿𝑀𝐸 [-]) were then estimated with the empirical equation by del 

Giorgio and Cole (1998) relating BP and BGE: 

𝐵𝐺𝐸𝐿𝑀𝐸 = (0.037 + 0.65 ∗ 𝐵𝑃𝐿𝑀𝐸)/(1.8 + 𝐵𝑃𝐿𝑀𝐸) (21) 

𝐵𝐺𝐸𝐿𝑀𝐸 values range from 0.03 (oligotrophic LME#64 Central Arctic Ocean) to 0.37 (eutrophic 

LME#23 Baltic Sea) (Table S.4). This range is close to reported direct measurements in ocean (0.10-0.31) 

and coastal waters (0.18-0.42) and follows the systematic variation with productivity shown by del Giorgio 

and Cole (1998). The fraction of organic carbon that is actually respired contributing to DO consumption 

(𝑓𝐵𝑅𝑏𝑜𝑡𝑡) is then defined per LME by: 

𝑓𝐵𝑅𝑏𝑜𝑡𝑡_𝐿𝑀𝐸 = 1 − 𝐵𝐺𝐸𝐿𝑀𝐸 (22) 

As mentioned before, the aerobic respiration by heterotrophic bacteria is responsible for the consumption 

of DO. The 𝑂2: 𝐶 molar mass ratio delivers the conversion of sunken carbon into respired dioxygen, by: 

𝑂2: 𝐶 = (138 𝑚𝑜𝑙𝑂2 ∗ 2 ∗ 15.9994 𝑔𝑂2/𝑚𝑜𝑙𝑂2)/(106 𝑚𝑜𝑙𝐶 ∗ 12.0107 𝑔𝐶/𝑚𝑜𝑙𝐶) = 3.468 𝑔𝑂2/𝑔𝐶  (23) 

obtained from the stoichiometry of the aerobic respiration equation: 

(𝐶𝐻2𝑂)106(𝑁𝐻3)16𝐻3𝑃𝑂4 + 138 𝑂2 ⇒ 106 𝐶𝑂2 + 122 𝐻2𝑂 + 16 𝐻𝑁𝑂3 + 𝐻3𝑃𝑂4 (24) 

The elemental flows can ultimately be simplified by combining 𝐶: 𝑁 and 𝑂2: 𝐶 (Eqs. 3 and 23) as the 

molar mass ratio of 𝑂2: 𝑁 as: 

𝑂2: 𝑁 = (138 𝑚𝑜𝑙𝑂2 ∗ 2 ∗ 15.9994 𝑔𝑂2/𝑚𝑜𝑙𝑂2)/(16 𝑚𝑜𝑙𝑁 ∗ 14.0067 𝑔𝑁/𝑚𝑜𝑙𝑁) = 19.704 𝑔𝑂2/𝑔𝑁 (25) 

In summary, DO consumption is estimated from the respiration of the organic carbon reaching the bottom 

layer. The organic carbon export is modelled in four distinct routes: route 1, POC exported as algal cell 

aggregates (sinking of PP biomass); route 2, POC exported as faecal pellets (egestion from SP); route 3, POC 

from non-predatory mortality of zooplankton (sinking SP carcasses); and route 4, POC and DOC exported by 

active vertical transport (zooplankton-mediated export). The model equations quantifying DO consumption 

as a function of N input per export route are (see also Figure 2 for illustration): 

𝐷𝑂route_1 = 𝑁𝑖𝑛𝑝𝑢𝑡 ∗ (𝐶: 𝑁) ∗ 𝑃𝑃𝑃𝑜𝑡_𝐿𝑀𝐸 ∗ 𝑓𝑃𝑃𝑠𝑖𝑛𝑘_𝐶𝑍 ∗ 𝑓𝑃𝑃𝑠𝑖𝑛𝑘𝑁𝐺_𝐿𝑀𝐸 ∗ (1 − 𝑓𝐵𝑅𝑠𝑖𝑛𝑘𝑃𝑃) ∗ 𝑓𝐵𝑅𝑏𝑜𝑡𝑡_𝐿𝑀𝐸 ∗ (𝑂2: 𝐶) (26) 

𝐷𝑂route_2 = 𝑁𝑖𝑛𝑝𝑢𝑡 ∗ (𝐶: 𝑁) ∗ 𝑃𝑃𝑃𝑜t_LME ∗ 𝑓𝑃𝑃𝑔𝑟z_CZ ∗ 𝑓𝑆𝑃𝑖𝑛𝑔𝑒𝑠𝑡 ∗ (1 − 𝑓𝐴𝑉𝑇𝑔𝑟z_CZ) ∗ (1 − 𝑓𝑝𝑙𝑓𝑖𝑠ℎ_𝐿𝑀𝐸) ∗ (1 − 𝑓𝑆𝑃𝑐𝑎𝑟𝑐) ∗

𝑓𝑆𝑃𝑒𝑔𝑒𝑠𝑡_𝐶𝑍 ∗ 𝑓𝐹𝑃𝑠𝑖𝑛𝑘𝑁𝐺_𝐶𝑍 ∗ (1 − 𝑓𝐵𝑅𝑠𝑖𝑛𝑘𝑆𝑃) ∗ 𝑓𝐵𝑅𝑏𝑜𝑡𝑡_𝐿𝑀𝐸 ∗ (𝑂2: 𝐶) (27) 
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𝐷𝑂route_3 = 𝑁𝑖𝑛𝑝𝑢𝑡 ∗ (𝐶: 𝑁) ∗ 𝑃𝑃𝑃𝑜𝑡_𝐿𝑀𝐸 ∗ 𝑓𝑃𝑃𝑔𝑟𝑧_𝐶𝑍 ∗ 𝑓𝑆𝑃𝑖𝑛𝑔𝑒𝑠𝑡 ∗ (1 − 𝑓𝐴𝑉𝑇𝑔𝑟𝑧_𝐶𝑍) ∗ 𝑓𝑆𝑃𝑐𝑎𝑟𝑐 ∗ (1 − 𝑓𝐹𝑃𝑠𝑖𝑛𝑘𝐺𝑍_𝐶𝑍) ∗ (1 −

𝑓𝐵𝑅𝑠𝑖𝑛𝑘𝑆𝑃) ∗ 𝑓𝐵𝑅𝑏𝑜𝑡𝑡_𝐿𝑀𝐸 ∗ (𝑂2: 𝐶) (28) 

𝐷𝑂route_4 = 𝑁𝑖𝑛𝑝𝑢𝑡 ∗ (𝐶: 𝑁) ∗ 𝑃𝑃𝑃𝑜𝑡_𝐿𝑀𝐸 ∗ 𝑓𝐴𝑉𝑇𝑔𝑟z_CZ ∗ 𝑓𝐴𝑉𝑇𝑜𝑐_CZ ∗ (1 − 𝑓𝐵𝑅𝑠𝑖𝑛𝑘𝑆𝑃𝑎𝑝ℎ𝑜𝑡_𝐿𝑀𝐸) ∗ 𝑓𝐵𝑅𝑏𝑜𝑡𝑡_𝐿𝑀𝐸 ∗ (𝑂2: 𝐶) (29) 

Finally, the combination of these four equations (Eqs. 26-29) deliver the XF per LME, i.e. the mass of 

DO consumed in the bottom layer as a function of the mass of N input to the LME, in [𝑘𝑔𝑂2 · kg𝑁−1]: 

𝑋𝐹𝐿𝑀𝐸 = 𝑃𝑃𝑃𝑜𝑡_𝐿𝑀𝐸 ∗ (𝑓𝑃𝑃𝑠𝑖𝑛𝑘_𝐶𝑍 ∗ 𝑓𝑃𝑃𝑠𝑖𝑛𝑘𝑁𝐺_𝐿𝑀𝐸 ∗ (1 − 𝑓𝐵𝑅𝑠𝑖𝑛𝑘𝑃𝑃) + 𝑓𝑃𝑃𝑔𝑟z_CZ ∗ 𝑓𝑆𝑃𝑖𝑛𝑔𝑒𝑠𝑡 ∗ ((1 − 𝑓𝐵𝑅𝑠𝑖𝑛𝑘𝑆𝑃) ∗ (1 − 𝑓𝐴𝑉𝑇𝑔𝑟z_CZ) ∗ (1 − 𝑓𝑝𝑙𝑓𝑖𝑠ℎ_𝐿𝑀𝐸) ∗

(1 − 𝑓𝑆𝑃𝑐𝑎𝑟𝑐) ∗ 𝑓𝑆𝑃𝑒𝑔𝑒𝑠𝑡_𝐶𝑍 ∗ 𝑓𝐹𝑃𝑠𝑖𝑛𝑘𝑁𝐺_𝐶𝑍 + (1 − 𝑓𝐴𝑉𝑇𝑔𝑟𝑧_𝐶𝑍) ∗ 𝑓𝑆𝑃𝑐𝑎𝑟𝑐 ∗ (1 − 𝑓𝐹𝑃𝑠𝑖𝑛𝑘𝐺𝑍_𝐶𝑍)) + 𝑓𝐴𝑉𝑇𝑔𝑟z_CZ ∗ 𝑓𝐴𝑉𝑇𝑜𝑐_CZ ∗ (1 − 𝑓𝐵𝑅𝑠𝑖𝑛𝑘𝑆𝑃𝑎𝑝ℎ𝑜𝑡_𝐿𝑀𝐸)) ∗

𝑓𝐵𝑅𝑏𝑜𝑡𝑡_𝐿𝑀𝐸 ∗ (𝑂2: 𝑁) (30) 

 

Figure 2 Summary of the ecosystem response model to nitrogen (N) inputs and the resulting consumption of dissolved 

oxygen (O2) in the bottom water layer. Four export routes are modelled: sinking of primary production (PP) biomass 

(route 1, light green arrow), sinking particulate organic carbon (POC) from secondary production (SP) as faecal pellets 

(FP) (route 2, purple arrow), sinking zooplankton carcasses (route 3, orange arrow), and active vertical transport (AVT) 

as dissolved and particulate organic carbon (DOC and POC) (route 4, light blue arrow). Transfer to planktivorous fish 

(plfish) estimated by Primary Production Required (PPR) to sustain fisheries represents predation by upper trophic 

levels. The photic depth (grey horizontal dashed line) divides the surface euphotic zone and the bottom aphotic zone 

(not to scale). The organic carbon moving below this line represents the export production (PE). Dashed brown arrow 

represents N assimilation and solid brown arrows represent organic carbon flows. Grey horizontal arrow refers to 

bacterial respiration (BR) at bottom waters leading to dissolved O2 consumption. Grey small circles represent the molar 

mass conversions of C:N and O2:C. Also consult Table 1 and text for details on model parameters. 

2.7. Estimation of export production 

To quantify the organic carbon exported (PE [gC·m
2
·yr

-1
]) from the euphotic zone (as POC) we used the 

actual PP rates per LME (𝑃𝑃𝐿𝑀𝐸 and not 𝑃𝑃𝑃𝑜𝑡_𝐿𝑀𝐸) and Eqs. 3 and 5-8, i.e. PP, its sinking fraction, and the 

SP-related export fractions, by: 

𝑃𝐸_𝐿𝑀𝐸 = 𝑃𝑃𝐿𝑀𝐸 ∗ (𝑓𝑃𝑃𝑠𝑖𝑛𝑘_CZ + 𝑓𝑃𝑃𝑔𝑟𝑧_CZ ∗ 𝑓𝑆𝑃𝑖𝑛𝑔𝑒𝑠𝑡 ∗ (1 − 𝑓𝑝𝑙𝑓𝑖𝑠ℎ_LME) ∗ (1 − 𝑓𝐴𝑉𝑇𝑔𝑟𝑧_CZ) ∗ (1 − 𝑓𝑆𝑃𝑐𝑎𝑟𝑐_𝐿𝑀𝐸) ∗ 𝑓𝑆𝑃𝑒𝑔𝑒𝑠𝑡_CZ +

𝑓𝑃𝑃𝑔𝑟𝑧_CZ ∗ 𝑓𝑆𝑃𝑖𝑛𝑔𝑒𝑠𝑡 ∗ (1 − 𝑓𝐴𝑉𝑇𝑔𝑟𝑧_CZ) ∗ 𝑓𝑆𝑃𝑐𝑎𝑟𝑐_𝐿𝑀𝐸 + 𝑓𝐴𝑉𝑇𝑔𝑟𝑧_𝐶𝑍) (31) 
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Table 1 Spatial resolution of the modelled parameters, their values, and reference sources/calculation method (see 

Table S.1 for an extended version). (LME, large marine ecosystem, and CZ, climate zone). 

Input parameter Spatial resolution Value Unit Source (reference or calculation) 

C:N Global 5.681 [kgC·kgN-1] Stoichiometry of the photosynthesis equation 

O2:C Global 3.468 [kgO2·kgC-1] Stoichiometry of the respiration equation 

O2:N Global 19.704 [kgO2·kgN-1] Calculation: (O2:N)=(C:N)*(O2:N) 

PPPot LME 0.033 ↔ 2.707 [-] Calculation: PPPot=PPLME/PPAvg_66LME 

fPPsink CZ 0.150 ↔ 0.670 [-] Cushing (1975), Laws et al. (2000) and average CZs 

fPPgrz CZ 0.330 ↔ 0.850 [-] Calculation: fPPgrz_CZ=1-fPPsink_CZ 

fSPingest Global 0.643 [-] Møller and Nielsen (2001); Møller (2007); Saba et al. (2011) 

fSPassimil CZ 0.300 ↔ 0.900 [-] Besiktepe and Dam (2002) and average CZs 

fSPegest CZ 0.100 ↔ 0.700 [-] Calculation: fSPegest_CZ=1-fSPassimil_CZ 

fplfish LME 2E-04 ↔ 1.000 [-] SP consumption by planktivorous fish 

fAVTgrz CZ 0.033 ↔ 0.085 [-] Calculation: fAVTgrz_CZ=0.10*fPPgrz_CZ*fSPingest 

fPPsinkGZ CZ 0.023 ↔ 0.101 [-] Calculation: fPPsinkGZ_CZ=0.15*fPPsink_CZ 

fPPsinkNG CZ 0.900 ↔ 0.978 [-] Calculation: fPPsinkNG_CZ=1-fPPsinkGZ_CZ 

fFPleach Global 0.280 [-] Møller et al. (2003) 

fFPsinkGZ CZ 0.007 ↔ 0.017 [-] Calculation: fFPsinkGZ_CZ=0.20*fPPsinkGZ_CZ 

fFPsinkNG CZ 0.708 ↔ 0.715 [-] Calculation: fFPsinkNG_CZ=(1-fFPleach)*(1-fFPsinkGZ_CZ) 

fSPmort Global 0.290 [-] Hirst and Kiørboe (2002) 

fSPcarc LME 0.000 ↔ 0.290 [-] Calculation: fSPcarc_LME=fSPmort*fplfish_LME 

Zmean Global 100 [m] Mean depth of continental shelf 

ZAVT Global 20 [m] Atkinson et al. (1992); Puelles et al. (1996) 

Zphotic LME 12 ↔ 68 [m] Longhurst (1998) 

Zaphotic LME 32 ↔ 88 [m] Calculation: Zaphotic_LME=Zmean-Zphotic_LME 

UPP Global 150 [m·d-1] Turner (2002) 

USP Global 200 [m·d-1] Turner (2002) 

fBRmarsnow Global 0.130 [d-1] Iversen and Ploug (2010) 

fBRsinkSPaphotic_LME LME 0.021 ↔ 0.051 [-] Calculation: fBRsinkSPaphotic_LME=fBRmarsnow⁄USP *(Zmean-Zphotic_LME) 

fBRsinkPP Global 0.087 [-] Calculation: fBRsinkPP=fBRmarsnow/UPP*ZmeanLME 

fBRsinkSP Global 0.065 [-] Calculation: fBRsinkSP=fBRmarsnow/USP*ZmeanLME 

BGE LME 0.039 ↔ 0.464 [-] Cole et al. (1988); del Giorgio and Cole (1998) 

fBRbott LME 0.536 ↔ 0.961 [-] Calculation: fBRbott_LME=1-BGELME 

3. Results 

The results of the normalisation of primary productivity per spatial unit (potential primary production, 

𝑃𝑃𝑃𝑜𝑡_𝐿𝑀𝐸) are shown in Table 2. 𝑃𝑃𝑃𝑜𝑡_𝐿𝑀𝐸  range from 0.03 (LME#64. Central Arctic Ocean) to 2.71 

(LME#23. Baltic Sea), with a mean rate (𝑃𝑃𝐴𝑣𝑔_66𝐿𝑀𝐸) of 257.7 gC·m
-2

·yr
-1

. 

The estimation of XFs (from Eq. 30) per LME delivers the set of results included in Table 2 and depicted 

in Figure 3. 𝑋𝐹𝐿𝑀𝐸 range from 0.45 (LME #64 Central Arctic Ocean) to 15.9 kgO2·kgN
-1

 (LME #23 Baltic 

Sea). The results of the estimation of export production (PE) per LME (from Eq. 31) are also shown in Table 

2. 𝑃𝐸_𝐿𝑀𝐸 range from 7.026 (LME #64 Central Arctic Ocean) to 484.8 gC·m
-2

·yr
-1

 (LME #23 Baltic Sea). 

The geographic distribution of 𝑋𝐹𝐿𝑀𝐸 is consistent with the annual distribution of PP in coastal areas (e.g. 

Behrenfeld and Falkowski (1997); Chassot et al. (2010)). 𝑋𝐹𝐿𝑀𝐸 hotspots in Figure 3 match highly 

productive coastal areas fuelled by e.g. coastal upwelling or otherwise resulting from the interaction of light 

and nutrients availability, and low grazing pressure. 
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Table 2 Results of the calculated export production (PE, [gC·m
-2

·yr
-1

]) and exposure factors (XF, [kgO2·kgN
-1

]) for the 

66 large marine ecosystems (LME) grouped into climate zones (see extended version in Table S.4).  

Large Marine Ecosystem Climate zone PP PPPot_LME PE XFLME 

[#. name] [name] [gC·m-2·yr-1] [-] [gC·m-2·yr-1] [kgO2·kgN-1] 

18. Canadian Eastern Arctic - West Greenland Polar 151.9 0.59 125.4 6.80 

19. Greenland Sea Polar 174.2 0.68 130.9 7.25 

20. Barents Sea Polar 151.2 0.59 120.0 7.05 

54. Northern Bering - Chukchi Seas Polar 90.95 0.35 76.06 4.57 

55. Beaufort Sea Polar 119.1 0.46 99.60 5.87 

56. East Siberian Sea Polar 54.42 0.21 45.51 2.81 

57. Laptev Sea Polar 156.7 0.61 131.0 7.54 

58. Kara Sea Polar 126.7 0.49 106.0 6.22 

61. Antarctic Polar 99.71 0.39 83.40 4.91 

63. Hudson Bay Complex Polar 152.7 0.59 127.7 6.96 

64. Central Arctic Ocean Polar 8.401 0.03 7.026 0.45 

66. Canadian High Arctic - North Greenland Polar 58.81 0.23 48.98 2.99 

01. East Bering Sea Subpolar 285.6 1.11 196.4 9.86 

02. Gulf of Alaska Subpolar 330.9 1.28 228.1 11.1 

09. Newfoundland-Labrador Shelf Subpolar 295.5 1.15 206.6 10.3 

21. Norwegian Sea Subpolar 179.3 0.70 113.0 6.35 

23. Baltic Sea Subpolar 697.6 2.71 484.8 15.9 

51. Oyashio Current Subpolar 261.5 1.01 178.5 9.25 

52. Sea of Okhotsk Subpolar 297.7 1.16 198.7 10.0 

53. West Bering Sea Subpolar 214.0 0.83 148.7 7.80 

59. Iceland Shelf and Sea Subpolar 201.3 0.78 140.7 7.34 

60. Faroe Plateau Subpolar 154.1 0.60 94.16 5.58 

65. Aleutian Islands Subpolar 285.6 1.11 199.5 10.0 

03. California Current Temperate 223.9 0.87 120.8 6.09 

07. Northeast U.S. Continental Shelf Temperate 561.0 2.18 303.0 12.2 

08. Scotian Shelf Temperate 509.5 1.98 280.6 11.6 

13. Humboldt Current Temperate 320.0 1.24 170.9 8.38 

14. Patagonian Shelf Temperate 509.5 1.98 272.1 11.5 

22. North Sea Temperate 407.3 1.58 209.8 9.11 

24. Celtic-Biscay Shelf Temperate 349.2 1.35 180.9 8.15 

25. Iberian Coastal Temperate 276.9 1.07 145.6 7.38 

42. Southeast Australian Shelf Temperate 187.0 0.73 104.3 5.41 

43. Southwest Australian Shelf Temperate 180.8 0.70 100.9 5.28 

46. New Zealand Shelf Temperate 208.2 0.81 110.4 5.69 

48. Yellow Sea Temperate 589.1 2.29 284.4 12.0 

50. Sea of Japan/East Sea Temperate 220.6 0.86 114.8 5.92 

62. Black Sea Temperate 376.6 1.46 207.1 8.83 

04. Gulf of California Subtropical 437.9 1.70 191.8 7.97 

05. Gulf of Mexico Subtropical 208.2 0.81 90.95 4.49 

06. Southeast U.S. Continental Shelf Subtropical 263.3 1.02 115.6 5.26 

15. South Brazil Shelf Subtropical 283.1 1.10 123.9 5.84 

26. Mediterranean Subtropical 157.8 0.61 67.78 3.45 

27. Canary Current Subtropical 436.8 1.70 188.8 7.73 

29. Benguela Current Subtropical 506.6 1.97 219.9 9.09 

30. Agulhas Current Subtropical 221.0 0.86 96.51 4.76 

41. East-Central Australian Shelf Subtropical 157.4 0.61 69.22 3.51 

44. West-Central Australian Shelf Subtropical 173.9 0.67 76.43 3.85 

47. East China Sea Subtropical 325.4 1.26 133.5 6.45 

49. Kuroshio Current Subtropical 154.1 0.60 66.10 3.37 

10. Insular Pacific-Hawaiian Tropical 84.74 0.33 26.10 1.33 

11. Pacific Central-American Tropical 244.0 0.95 75.33 3.33 

12. Caribbean Sea Tropical 174.6 0.68 53.83 2.51 

16. East Brazil Shelf Tropical 130.4 0.51 40.26 1.94 

17. North Brazil Shelf Tropical 442.3 1.72 136.5 5.26 

28. Guinea Current Tropical 357.9 1.39 110.5 4.31 

31. Somali Coastal Current Tropical 249.5 0.97 76.85 3.36 

32. Arabian Sea Tropical 390.5 1.52 121.7 4.99 

33. Red Sea Tropical 298.4 1.16 92.34 3.89 

34. Bay of Bengal Tropical 265.2 1.03 82.83 3.71 

35. Gulf of Thailand Tropical 284.9 1.11 91.10 4.17 

36. South China Sea Tropical 174.2 0.68 55.55 2.70 

37. Sulu-Celebes Sea Tropical 209.3 0.81 66.56 3.18 

38. Indonesian Sea Tropical 263.7 1.02 82.42 3.69 

39. North Australian Shelf Tropical 328.7 1.28 101.3 4.26 

40. Northeast Australian Shelf Tropical 130.8 0.51 40.29 1.93 

45. Northwest Australian Shelf Tropical 185.9 0.72 57.31 2.66 

 

http://dx.doi.org/10.1016/j.ecolmodel.2015.09.005


Cosme et al. / Ecological Modelling 317 (2015) 50–63 

doi:10.1016/j.ecolmodel.2015.09.005 

13 

 

  

Figure 3 Global distribution of the exposure factors (XF, [kgO2·kgN
-1

]) estimated for the 66 large marine ecosystems 

(spatial units coloured from the original digital map available at http://lme.edc.uri.edu/). 

3.1. Contributions from sinking routes 

The relative contributions of each sinking carbon route to the export production (PE) and DO consumption 

were grouped into climate zones (Table S.3), as most of the spatial differentiation is originated from this 

resolution, based on the results per LME (Table S.4). Route 1 consistently contributes more to both PE (61%) 

and XF (63%) (route 2: 26% and 23%, route 3: 4% and 5%, and route 4, 10% and 9%, respectively) (more 

details in Section S.3.1). These results are significantly correlated with the PP-SP mismatch and biomass 

sinking (𝑓𝑃𝑃𝑠𝑖𝑛𝑘_𝐶𝑍), except for the contributions of routes 3 and 4 to XF as its modelling extends to include 

the loss processes in the aphotic zone that act on PE (consumption, leaching, and respiration). 

3.2. Sensitivity analysis 

The model sensitivity to the 18 primary input parameters was assessed by calculating sensitivity ratios 

(SR) for each combination of input parameter and resulting 𝑋𝐹𝐿𝑀𝐸, as described by Strandesen et al. (2007). 

The SR is the ratio between the relative change in the model output and the relative change in the model 

input. Figure 4 shows the mean SR values and the respective range of variation among LMEs (see also Table 

S.6). 
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Figure 4 Sensitivity ratios (SRs) for the 18 modelled input parameters. The grey bars represent the mean SR values and 

the variation ranges represent the lower and upper values of the 66 large marine ecosystems. Absolute SR values of 1.00 

mean direct proportionality of input and output; negative SR values indicate that input and output are inversely related, 

meaning that an increase in the input value decreases the output. 

4. Discussion 

The model covers the entire response pathway by a spatially differentiated parameterisation that supports 

the interpretation and the application of the resulting exposure indicator. Model sensitivity and parameters 

uncertainty were analysed to assess robustness. We further compare PE estimated by our model with 

predicted curves by others in order to validate the processes occurring in the euphotic zone. This ‘euphotic 

component’ determines the input of organic matter to the biologically-mediated processes of consumption, 

degradation, and respiration that occur in the water column and benthic layers and for which there is no 

comparable spatially differentiated model with global coverage. Finally, we discuss the spatial differentiation 

and resolution of the results, the framework and its application in LCIA. 

4.1. Model sensitivity and parameters uncertainty 

The site-dependent parameter 𝑃𝑃𝑃𝑜𝑡_𝐿𝑀𝐸  (model input) shows the highest individual contribution to the 

resulting XFs (model output) with a mean SR value of 0.92 (range 0.75-1.00, Figure 4 and Table S.6). LME-

dependent PP rates modulate N assimilation and the carbon fluxes thereafter thus justifying such influence 

on the results. Sensitivity to 𝑓𝑆𝑃𝑎𝑠𝑠𝑖𝑚𝑖𝑙_𝐶𝑍 range up to -1.64 but only in the tropical LMEs where the 

assimilation rate acts upon a larger grazed biomass fraction by routes 2 to 4. Other two site-dependent 

parameters may range to relevant SR values: 𝑓𝑃𝑃𝑠𝑖𝑛𝑘_𝐶𝑍 in LMEs with high SP consumption by 

planktivorous fish (PPR, Table S.4); and 𝐵𝐺𝐸𝐿𝑀𝐸 in highly productive LMEs. The analysis further suggests 

that the remaining site-dependent parameters (𝑓𝑃𝑃𝑠𝑖𝑛𝑘𝐺𝑍_𝐿𝑀𝐸, 𝑓𝐴𝑉𝑇𝑔𝑟𝑧_𝐶𝑍, 𝑍𝑝ℎ𝑜𝑡𝑖𝑐_𝐿𝑀𝐸, 𝑓𝐹𝑃𝑠𝑖𝑛𝑘𝐺𝑍_𝐿𝑀𝐸, 

𝑓𝑝𝑙𝑓𝑖𝑠ℎ_𝐿𝑀𝐸) may adopt site-generic coefficients since any uncertainty associated with their estimation 
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renders little impact on the quality of the XFs obtained. Sensitivity to the site-generic parameter 𝑓𝑆𝑃𝑖𝑛𝑔𝑒𝑠𝑡 

may range up to 0.43 in tropical LMEs as it affects a larger relative fraction of the grazed PP biomass. The 

remaining site-generic parameters (𝑓𝐹𝑃𝑙𝑒𝑎𝑐ℎ, 𝑍𝑚𝑒𝑎𝑛, 𝑓𝐵𝑅𝑚𝑎𝑟𝑠𝑛𝑜𝑤, 𝑈𝑃𝑃, 𝑓𝑆𝑃𝑚𝑜𝑟𝑡, 𝑈𝑆𝑃, 𝑍𝐴𝑉𝑇, 𝐷𝑂𝐶𝐸𝑥𝑐𝑟𝐴𝑉𝑇) 

show low contributions to output. The lack of spatial differentiation in site-generic parameters is deemed 

acceptable considering the low SRs, although adding spatial differentiation to 𝑓𝑆𝑃𝑖𝑛𝑔𝑒𝑠𝑡 (possibly per climate 

zone) could be seen as a method improvement.  

The uncertainty of the parameters 𝑃𝑃𝑃𝑜𝑡_𝐿𝑀𝐸, 𝑓𝑆𝑃𝑎𝑠𝑠𝑖𝑚𝑖𝑙_𝐶𝑍, 𝑓𝑃𝑃𝑠𝑖𝑛𝑘_𝐶𝑍, 𝑓𝑆𝑃𝑖𝑛𝑔𝑒𝑠𝑡, and 𝐵𝐺𝐸𝐿𝑀𝐸 was 

assessed because of their high contribution. PP rate data (and 𝑃𝑃𝑃𝑜𝑡_𝐿𝑀𝐸 values) were obtained from 

chlorophyll pigment concentrations derived from satellite data. The uncertainty of the underlying models by 

Bouvet et al. (2002) and Platt and Sathyendranath (1988) or the spatial integration method (Lai, 2004; 

Watson et al., 2014) is not discussed here. The PP dataset integrates monthly records from an approximately 

12-year period. The variability of the dataset per LME was verified by Watson et al. (2014) and the majority 

of the PP data points have a coefficient of interannual variation below 5%. Only the Arctic and near-Arctic 

LMEs show interannual variation of 20-25% possibly due to poorer satellite coverage. As such, it seems to 

us that the used PP dataset provides a reliable average PP value per LME with an acceptable (natural) 

variability. Furthermore, the choice for space and time integrated PP data is deemed appropriate and less 

uncertain than using PP data from any specific location or day (or even over a single year) inherently less 

representative. 

We acknowledge the increase of uncertainty towards higher latitudes in the estimation of mean 

𝑓𝑆𝑃𝑎𝑠𝑠𝑖𝑚𝑖𝑙_𝐶𝑍 for the five CZs (in Section 2.4). However, this fact is tied in with a decrease in PP biomass, as 

the parameter is correlated with the grazed fraction transferred to route 2 (mainly) (Table S.3) in which the 

AE coefficient is embedded as egested fraction (𝑓𝑆𝑃𝑒𝑔𝑒𝑠t_CZ), thus minimizing the impact of the most 

uncertain CZs. This is also supported by SRs above 0.50 in the subtropical and tropical CZs only. As such, 

we consider that the estimated AE and egestion coefficients are valid for a spatially differentiated application 

and preferred over global generic values, which are otherwise available as of 18% for the coastal copepod 

Acartia tonsa (Saba et al., 2011) or 60% but for the epipelagic Calanus spp. in Møller et al. (2003). 

The match-mismatch hypothesis by Cushing (1975) determines the phytoplankton’s sunken and grazed 

fractions. Mismatched growth of phyto- and zooplankton communities results in increased downward export 

of organic carbon. As a conceptual description of a natural phenomenon involving complex processes 

(Cushing, 1990; Durant et al., 2007) it has, not surprisingly, high variability associated. Any uncertainty 

estimation of this hypothesis is of questionable relevance and is therefore not discussed here, but the 

applicability of the concept has wide scientific acceptance. As a best estimate it is useful in the present 

context. Ideally, measured sunken and grazed PP fractions for every LME would be preferred, possibly 

carrying less uncertainty, but such results are not available. Still, Laws et al. (2000) quantifies that 86% of 

the variance of the expected sinking fraction (as used here) is explained by the water temperature effect 

(indirectly used when defining the climate zonation) but no direct quantification of further causes is 

discussed. Considering the above, the use of the match-mismatch concept for the estimation of globally 

applicable sinking PP fractions is deemed preferable over an extrapolation from available disparate empirical 

measurements. 

The estimation of 𝑓𝑆𝑃𝑖𝑛𝑔𝑒𝑠𝑡 as of 64.3% of the grazed phytoplankton biomass involves a rel.SD≈21% due 

to the averaging from different sources and methods. We consider it preferable over the use of a single 

source in order to increase the representativeness of the coefficient adopted. 

BGE is estimated from BP, which in turn is estimated from PP (Table S.5). The overall uncertainty of 

such BGE estimation depends on the variability of the PP dataset (addressed earlier) and the fit of the BP-PP 

correlation (R
2
=0.77). Alternatively, the coupling between BR and BP can be used, but its variance (R

2
=0.46, 

(del Giorgio and Cole, 1998)) is affected by high spatial and temporal variability of bacterial activity (not 

modelled). As BGE systematically increases with PP (Cole et al., 1988; del Giorgio and Cole, 1998) we 
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therefore assumed (i) BGE estimated from BP as the best method available and that (ii) the natural variability 

is equivalent in every LME thus not adding significant bias to the estimation of BGELME. 

The uncertainty of the parameters with higher contributions to the model results was assessed and their 

variability deemed acceptable or acknowledged. We therefore consider them as best available estimates that 

still suit the purpose of the model thus supporting our confidence in the robustness of the proposed method. 

Despite the complexity of the parameterisation and inherent calculations, potential users of the XFs in LCIA 

or ecosystems health assessment/management would only be required to identify the N-receiving LME and 

estimate environmental fate losses of the original N emission to feed the model. 

4.2. Spatial units and differentiation 

We adopted large spatial units of coastal ecosystems instead of a grid cell approach that would inherently 

presume a significant horizontal flow of organic carbon (or N or DO). We do not judge a grid-based 

approach to be feasible at the present stage of development of methods for the estimation of impacts to 

marine eutrophication. The immensity of data required for local parameterisation hinders the implementation 

of a finer spatial resolution beyond large spatial units such as the LMEs. In support of this reasoning also 

stands the temporal variability of the processes and (bio)(geo)chemical properties of the water masses, along 

with local advection and mixing patterns that contribute to some of the modelled parameters. As such, the 

temporal and spatial integration fits well the LCIA application, which adopts best estimates and an average 

approach. This seems most appropriate to represent potential conditions and coherence with the pursued 

objectives. Finally, when applied to the development of CFs in LCIA, XFs need to be combined with 

emission data, which will realistically not be reported with a resolution finer than the level of countries or 

discharging watersheds. However, the adoption of large spatial units has the drawback of masking potential 

peaks of organic carbon supply to bottom waters and of oxygen consumption that may occur either in time or 

space and cause severe hypoxia or anoxia events. As there is no temporal discrimination in the XFs 

estimation we assume for modelling purposes that the DO is consumed over a period of one year. This also 

means that if its depletion is sufficiently slow and system ventilation occurs then replenishment of DO from 

adjacent water masses may prevent the onset of hypoxia. 

The adoption of the LME biogeographical classification system is a discrete choice in the model 

framework. Any other coastal classification system can be adopted provided that spatially integrated PP data 

is available and a coherent aggregation into climate zones is possible. These two aspects also advocate for 

the applicability and flexibility of the proposed method. 

4.3. From primary production to export production 

The model quantifies the ecosystem response to allochthonous-N inputs and does not include ‘natural’ 

external input sources like upwelling or resuspension. This choice is consistent with the desired application 

in LCIA of estimating the impacts of emissions originated from human activities. 

The positive and non-linear correlation between PE and PP has been shown and discussed elsewhere – see 

e.g. Vézina and Platt (1987) and Wassmann (1990a). However, as we deliberately strip the model of the 

regeneration and remineralization processes and respective feedbacks, the output expresses a maximum 

export capacity of the system and so linearity is expected. This is because, by definition, Pnew is equivalent to 

PE on an annual time scale (Eppley et al., 1983) and so are their carbon equivalents. As Pnew is, in our model, 

exclusively fuelled by anthropogenic-N sources, the export production is directly related to the N input in the 

sense that the annual supply of N does not enter the regeneration loops of local pelagic food webs and, as 

such, is exported as PE. As described by Wassmann (1990b), when Pr is set to zero, a linear relationship is 

expected between the total PP and PE (which would then be maximised). We chose a power regression 

model as best fit and significance for the PE-PP correlation (see Table S.7 and Figure S.3) and tested this 

relationship in the five CZs (Figure 5). 
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Figure 5 Export production (PE, [gC·m
-2

·yr
-1

]) as a function of primary production (PP, [gC·m
-2

·yr
-1

]). Aggregation of 

PE from 66 large marine ecosystems (LME) into five climate zones (polar, subpolar, temperate, subtropical, tropical) 

and global default. Power regression equations and coefficient of determination (R
2
) included. 

The balance between PE and PP is determined by the supply of nutrients and heterotrophic 

grazing/predation. The system is described by a ‘top-down’ control as the loss rates are determined by 

grazing pressure and assimilation efficiency, as suggested by Lehman (1991) and Wassmann (1993). The fit 

of the PE-PP curves per CZ is close to 1.00 and the power equations show linearity close to 1.00 (range 0.96-

1.07). The five CZ export algorithms obtained from our model are therefore rather consistent with the 

linearity expected by not modelling Pr and Pnew supported by recycling and remineralization. The global 

default curve reveals higher variability, i.e. the fraction of variance of PE explained by the variation of PP is 

only 0.73 (R
2
). This clearly shows that, in our model, PE can be predicted per CZ with the respective 

algorithms, but the global algorithm shows a level of uncertainty that might hinder its application. The notion 

that there is no universal algorithm was already been noted by Wassmann (1998). Nevertheless, the PE 

algorithms are valid for the CZ resolution and applicable if no information on spatial variability of the 

emission/exposure location is available at the LME scale (which is the preferable resolution). The global PE 

algorithm should only be applied if the purpose of the study accepts the uncertainty reported. The model 

discriminates the effect of zooplankton on the suspended biomass of producers by different parameterisation 

of the grazing pressure and assimilation efficiency per CZ. It is clear that no LME (or intra-CZ) variability is 

originated from the heterotrophic control modelled as such, whereas the inter-CZ variability is an indication 

of the discriminatory power of the PE model. 

Figure 6 shows the correlation of our export algorithm to others found in literature (Betzer et al., 1984; 

Eppley and Peterson, 1979; Pace et al., 1987; Suess, 1980; Wassmann, 1990a) and reviewed by Wassmann 

(1990a) (see also Table S.8). The present PP and photic depth datasets (Table S.4) were applied to plot the 

curves. Our export algorithm seems consistent with others (Eppley and Peterson’s to a lesser extent). The 

variation between export curves may originate from the inadequacy of the original algorithms for our global 

application. Those were derived from empirical data of the eastern Pacific Ocean (Eppley and Peterson, 

1979), global ocean in 25 different locations but not coastal-specific (Suess, 1980), open ocean in equatorial 
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Pacific Ocean (Betzer et al., 1984), deep ocean (not coastal) (Pace et al., 1987), and boreal north Atlantic 

coastal waters (Wassmann, 1990a). As empirical data were used to derive those algorithms, regeneration and 

remineralisation feedbacks may be included, justifying higher variation towards higher PP rates.  

 

Figure 6 Comparison of the export productions (PE) curves obtained from the proposed model and predictions by 

others (see legend box) with the current primary productivity dataset. Linear correlation coefficients (r) included 

(p<0.001). 

4.4. From export production to exposure factor 

A power regression model was fitted to the XFLME results as a function of PPLME for the five CZs and a 

global default (Figure 7). The XF-PP results show a decrease of linearity of the algorithm curves when 

compared to those of PE-PP (Figure 5). This fact reflects the increasing losses by consumption of sinking 

POC (proportional to PP rates) towards highly productive LMEs. Independent of the uncertainty of the PP 

dataset used (discussed earlier) the XF is mostly dependent on the PP rate input to the model, as shown in the 

sensitivity analysis (Figure 4). The spatial aggregation from LME- to CZ-specific XFs clearly does not 

involve a significant increase in uncertainty caused by variability. However, the adoption of a global XF 

algorithm is not recommended as only 56% of the XF variance is explained by the variance of PP (see also 

Figure S.4), which corresponds to ca. 34% of SD explained (SD of errors less than the XF’s SD). Spatially 

aggregated XFs are useful when information about the spatial variability of the emission(s) or the receiving 

ecosystem(s) is not relevant or is unknown. Ideally, the XFLME should be used to take full advantage of the 

discriminatory power of the model. The acceptance of any additional uncertainty introduced by spatial 

aggregation may be determined by the purpose of the study, i.e. scope and application, as it influences the 

confidence on the results. 

As for the PE model results, the aggregated XFCZ curves show good fit (R
2
 close to 1.00) for application 

when spatial information is not available, while XFLME is recommend when it is. Caution is however advised 

when applying XFSubpolar as it may underestimate the ecosystem responses due to the contribution of the 

highly productive LME #23 (Baltic Sea) (the rightmost data point in Figure 7). As discussed, the adoption of 

a global XF algorithm is not recommended. 
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Figure 7 Exposure factor (XF, [kgO2·kgN
-1

]) as a function of primary production (PP, [gC·m
-2

·yr
-1

]). Aggregation of 

XFs from 66 large marine ecosystems (LME) into five climate zones (polar, subpolar, temperate, subtropical, tropical) 

and global default. Power regression equations and coefficients of determination (R
2
) included. 

4.5. Limitations and future research 

The limitations faced in quantifying the various model parameters at the respective resolutions and the 

necessary assumptions done, as discussed earlier, and even after an exhaustive literature research leave room 

for model refinement. The model has limited application to characterise local carbon vertical fluxes at spatial 

resolutions finer than LME and, currently, only considers temporal resolution of one year. The estimated 

carbon export and oxygen depletion in bottom waters does not consider external forcing that might distort 

the results, e.g. coastal hydrodynamics intensifying either mixing or stratification, and factors determining 

nutrient limitation and variable N:P ratios of the anthropogenic loadings. Furthermore, seasonal or daily 

variability of species succession or dominance is not reflected in this time-integrated approach. 

Adding a temporal dimension to the variability of the natural processes involving the mismatch of phyto- 

and zooplankton, the C:N ratio over different moments in a year, and limitation by different nutrients may 

thus contribute to the model refinement and possibly its robustness. However, increasing the spatial 

resolution per se, to e.g. grid cells, without modelling further parameters relevant at such scale (like mixing, 

stratification, ventilation, biogeochemistry of sediments, etc.) does not seem a valuable addition. For that, the 

spatial units should still be distinct from one another based on those additional parameters. The global 

coverage, essential for the comparative purpose, would then need an immensity of data. 

The carbon export component of the model is not including regeneration or remineralisation processes 

and their contributions. The focus is on the quantification of Pnew supported by allochthonous and 

anthropogenic N, as intended, but this limits the use of the model in other applications that also address N 

and C cycles in e.g. ecological studies aimed at characterising pelagic food webs efficiency. 
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5. Conclusions 

We developed a method to quantify the response of coastal marine ecosystems to N inputs from 

anthropogenic sources. The pathway from N assimilation to organic carbon sink and subsequent oxygen 

depletion (exposure pathway) was modelled mechanistically. Exposure Factors (XF) for 66 coastal marine 

spatial units were estimated. These may be further combined with environmental fate and effect modelling to 

compose CFs applicable in LCIA for the marine eutrophication impact category. 

The model results support the notion that distinct coastal marine ecosystems show distinct responses to 

equal N loadings. The sensitivity of the receiving ecosystems depends on the interaction of various 

biological processes occurring there. In the proposed model, the main modulators of this interaction are the 

primary production rate and latitude. These determine the spatial differentiation of the results and the 

resolution of the parameters modelled – some are site-dependent for LMEs or climate zones and others site-

generic. Eighteen primary and 12 derived parameters were combined in a conceptual pathway that includes 

production, carbon export, consumption/degradation, and respiration. The result is a mechanistic model that 

delivers XFs with a spatial variation of a factor 35 among LMEs. 

N-limited systems are characterised by a positive covariation between production and export, implying 

that a higher productivity leads to a higher sinking flux (Harrison et al., 1987; Platt and Sathyendranath, 

1988). Therefore, an input of anthropogenic N makes more limiting nutrient available to PP resulting in 

higher downward carbon export and potential benthic oxygen depletion. An indicator that is capable of 

quantifying the oxygen consumption as a function of N input may be of useful application to assess the 

ecosystem condition or the impacts of N emissions from human activities. The latter constitutes the main 

objective of LCIA methods in support of e.g. sustainability assessment of such activities. The presented 

approach shows ecological relevance by describing every relevant parameter and process in the exposure 

pathway based on state of the art science. It is built on a transparent, documented, and robust model whose 

results are significant and useful contributions to characterisation modelling in LCIA for the marine 

eutrophication impact category. 
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S.1 On the modelling of the indicator of exposure to nitrogen 

 The paper has the aim to estimate exposure factors (XF) for the assessment of marine eutrophication 
impacts caused by discharges of nitrogen (N) from anthropogenic sources to coastal waters based on 
mechanistic modelling of the underlying biological processes. The relevant processes for this assessment are 
nutrient-limited primary production (PP), metazoan consumption, and bacterial degradation of this PP. The 
proposed model framework delivers an indicator of the exposure of marine coastal ecosystems to N-loadings, 
which expresses the amount of dissolved oxygen consumed as a function of N-loadings. Such indicator (XF, 
[kgO2·KgN-1]) may be applicable in Life Cycle Impact Assessment (LCIA) as an essential component for 
characterisation modelling of N-emissions with eutrophying impacts, or be useful in ecosystems 
management. 

In a broad sense, the environmental conditions govern nutrients’ fate and assimilation. These can be 
affected by abiotic factors, e.g. irradiance, temperature, residence time, advection, and by biotic factors, e.g. 
species, their life cycles, and growth rates. Modelling environmental parameters, specific local conditions, 
and how they affect phytoplankton in what regards to energy budget, reproduction, distribution, species 
composition, productivity, etc., is complicated. Modelling all the factors simultaneously to mechanistically 
predict the ecosystem response to N fertilization is even more complicated, as well as time- and resource-
consuming. Indicators, such as the PP rate (Niemi et al., 2004; Smith, 2007) and the method introduced here, 
are useful approaches to quantify these responses and of special interest for application in ecological 
modelling of marine eutrophication and impact assessment. However, PP as an indicator is unable to explain 
how different coastal areas may have distinct responses because it misses the explanatory power for the 
impacts, e.g. different water masses may show distinct impacts while sharing similar PP rates. The indicator 
we propose here, the ecosystem eXposure Factor (XF), adds a mechanistic explanation for the potential 
impacts and addresses the reasons for its variability. This seems more relevant than a simple PP-impacts 
empirical correlation (e.g. PP to levels of hypoxia, or PP to extension of dead zones) and useful for 
predictive advice, ecosystems management, and modelling of eutrophication. 
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S.1.1 Primary production and vertical carbon flux 

 The productivity of marine ecosystems depends on light-harvesting primary producers (phytoplankton). 
The photosynthetic production of organic matter by phytoplankton supports the food webs of the entire 
pelagic and demersal marine ecosystems (Baines et al., 1994; Mills, 1975; Reynolds, 2006). Despite being 
limited to the upper layer of the ocean (euphotic zone) the net primary production of the ocean is comparable 
to the terrestrial primary production at 48.3 and 56.4 GtC·yr-1, respectively (Geider et al., 2001). 

 The main modulators of PP are the availability of light and nutrients, thus determining the efficiency and 
distribution of phytoplankton species in the euphotic zone (Field, 1998). Water mixing is also relevant for it 
determines how phytoplankton is exposed to light and how nutrients are made available. Stratification 
originated by the heating of the upper water layer or by freshwater input from river discharge and ice melting 
is important in the regulation of the timing, duration, and intensity of the productive periods (Lemke et al., 
2007; Peterson et al., 2006; Tremblay et al., 2006). In general, the resulting density-driven stratification 
constitutes a simultaneous barrier for nutrients supply to the upper layer and to the ventilation of the deeper 
layers. A strong stratification poses a potential threat to benthic communities as it influences the availability 
of dissolved oxygen. 

 The concept of ‘limiting nutrient’ is essential for the modelling of productivity and it is based on Liebig’s 
Law of the Minimum (reviewed by van der Ploeg et al. (1999)). It states that growth, abundance or 
distribution of individuals or populations is controlled not by the total amount of resources but by the 
scarcest resource, i.e. one nutrient has a limiting role and all other nutrients are available in excess. In 
practice, any additional amount of the limiting nutrient introduced to the system promotes an increase in 
response (growth), whereas the introduction of any other nutrient has no reflection on growth as they are 
already in excess (Finnveden and Potting, 1999). 

 Specific biotic (mainly limited grazing pressure) and abiotic (environmental) conditions determine when  
phytoplankton blooms initiate (Behrenfeld and Boss, 2014). The hypotheses supporting the phytoplankton 
bloom initiation have been widely discussed (Behrenfeld, 2010; Boss and Behrenfeld, 2010; Chiswell, 2011; 
Evans and Parslow, 1985; Gran and Braarud, 1935; Platt et al., 1991; Smetacek and Passow, 1990; Sverdrup, 
1953; Taylor and Ferrari, 2011)). These have evolved from the critical depth hypothesis (Sverdrup, 1953) 
focused on the shoaling of the mixed-layer depth, to the critical turbulence hypothesis (Huisman et al., 2002, 
1999) focused on the shoaling of a density-defined mixed layer, and more recently to the disturbance-
recovery hypothesis (Behrenfeld et al., 2013) focused on the disruption of the balance between 
phytoplankton growth and consumptive mortality (grazing). 

 The match-mismatch hypothesis described by Cushing (1975) is further used in the present approach to 
define a critical fate process of primary producers’ biomass by determining the grazed and sunken fractions 
per climate zone. The magnitude of the subsequent vertical carbon flux thus depends on the biological 
response of primary producers to the abiotic conditions (e.g. light, temperature, and nutrient availability) and 
on the activity of their consumers (mainly zooplankton) and degraders (microbial loop). In short, if the 
biomass resulting from the assimilation of nutrients exceeds consumption and degradation there is a net flux 
of organic carbon to bottom waters. 

 Considering the processes that regulate (i) the export production, (ii) the oxygen consumption near the 
bottom, and (iii) the potential impacts to marine eutrophication that may come from excessive N fertilization, 
it seems crucial to integrate all the relevant coastal biological processes into a common model framework if 
trying to quantify the ecosystem’s response to N-loadings from anthropogenic sources. 
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S.1.2 Complementary information on modelling anthropogenic sources of nitrogen 

 Several studies and reviews have focused on understanding and discussing the sources, fate, and general 
impacts of nitrogen in ecosystems. Examples of these include global, estuarine, and coastal marine nitrogen 
cycling (Galloway et al., 2008, 2004; Herbert, 1999; Pinckney et al., 2001; Rabalais, 2002; Ryther and 
Dunstan, 1971; Vitousek et al., 1997), fate modelling in soils, groundwater, and surface freshwater systems 
(Bouwman, 2005; Seitzinger et al., 2010, 2005; Van Drecht et al., 2003; Wollheim et al., 2008), atmospheric 
emissions and deposition (Lee et al., 1997; Roy et al., 2012; van Vuuren et al., 2011), emissions from 
agriculture (Beusen et al., 2008; Bouwman et al., 2009, 2002; Butterbach-Bahl and Dannenmann, 2011; 
Carpenter et al., 1998), emissions from wastewater (Van Drecht et al., 2009, 2003), loadings from rivers 
(Green et al., 2004; Kroeze et al., 2012; Seitzinger et al., 2010), or impacts from excess nitrogen inputs and 
eutrophication to marine ecosystems (Cloern, 2001; de Jonge et al., 2002; Kitsiou and Karydis, 2011; Nixon, 
1995; Rabalais et al., 2009; Smith et al., 2006, 1999). 

S.1.3  Empirical vs. mechanistic models 

 Characterisation models in LCIA can be single-level descriptive (or empirical) or hierarchical/multilevel 
explanatory (or mechanistic) (Duarte et al., 2004, 2003; Steen, 2002). Empirical models are based on 
statistically significant correlations between properties and responses, i.e. rely on statistical treatment of 
large amounts of empirical data to describe the ‘natural’ processes. These are ‘black box’ models that mine 
correlation-based knowledge out of the available data with the introduction of as few assumptions about the 
processes as possible (Duarte et al., 2004) to describe the observed behaviour, offering low explanatory 
depth (Mulligan and Wainwright, 2004). In practice, they fit the behaviour/responses to real available data 
by minimising the residuals (differences) between predicted estimates (results) and dependent variable 
observations (data) (Duarte et al., 2004). Although highly predictive, empirical approaches allow limited 
extrapolation beyond the scope of the data, as they do not offer a mechanistic understanding of the processes 
they try to describe. 

 Mechanistic models use existing scientific knowledge about the processes they try to represent by means 
of equations that express the systems’ response or behaviour. Mechanistic approaches allow some 
extrapolation of the results beyond the intrinsic limitations of specificity of the experimental data and 
evidence available as well as estimation of unmeasured state variables (Duarte et al., 2004). A possible 
drawback of a mechanistic approach is the failure to forecast the ‘natural’ processes accurately (low 
predictive power) (Mulligan and Wainwright, 2004) by not including all the knowledge and data available, 
mainly because of the inevitable introduction of model simplifications and assumptions to offset the lack of 
understanding or integration of multiple interactions or simply the inability to handle the complexity of the 
modelling needs (Duarte et al., 2004). 

 The model framework proposed here fits a mechanistic approach. It explores the system hierarchy in an 
effort to predict and explain the integrated response by building on descriptive (empirical) studies and their 
results to ultimately become explanatory at the higher levels. In practice, we build a mechanistic cause-effect 
pathway of cascading biological processes to deliver an overall conversion of nitrogen into oxygen 
consumption. With this approach we aim at ensuring environmental relevance and significance by describing 
all the relevant parameters based on state of the art science. In doing so, we minimise the drawbacks. Finally, 
we deliver a transparent model with manageable complexity and good extrapolation potential by using 
adaptable parameterisation that can reflect e.g. different regional environmental settings or future climatic 
pressures. 
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 The present XF estimation method is equivalent to a modified and expanded export production (PE) 
model in delivering spatially differentiated indicators of the ecosystem response (XF) to nitrogen. The 
method renders an indicator which is equivalent in concept to PE fuelled by N from anthropogenic 
allochthonous sources plus subsequent degradation of the exported organic material. The applicability of 
such indicator seems greater than the PE alone for the purpose of the LCIA method in which it is to be 
incorporated, i.e. a comparative assessment of the potential impacts to marine eutrophication from N 
emissions as it expresses not only the exported fraction but also the subsequent pathway that leads to the 
endpoint oxygen consumption. This final step is important to the impacts assessment framework as oxygen 
depletion is the stressor that leads to the ultimate effect on biota survival and its role in ecosystem structure 
and functioning. 

S.2 Additional information to methods description 

S.2.1. Grouping spatial units into climate zones 

 Spatial units of marine coastal waters (LMEs) were grouped into climate zones (tropical, subtropical, 
temperate, subpolar, and polar) (results in Figure S.1 and geographical distribution in Figure S.2) using with 
the following criteria: 

• Latitudinal distribution: Tropical from Equator to ≈20°N, Subtropical from ≈20°-30°N, Temperate 
from ≈30°-50°N, Subpolar from ≈50°-70°N, and Polar from ≈70°-90°N (and the same for the 
Southern Hemisphere); 

• Mean annual sea surface temperature (maSST): based on Sherman and Hempel (2009), which 
includes regression equations for maSST (from 1975-2005) per LME; 

• To help on the classification of certain LMEs, complementary information was found on the MEOW 
classification system (Spalding et al., 2007) and on the Köppen-Geiger climate classification system 
(Peel et al., 2007). 
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Figure S.1 Classification and grouping of Large Marine Ecosystems (LME) into climate zones (polar, subpolar, 
temperate, subtropical, and tropical) based on mean annual sea surface temperature (maSST), latitude, and consistency 
with the Köppen-Geiger climate classification system (data from Sherman and Hempel (2009)). 
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Figure S.2 Geographical distribution of the 66 Large Marine Ecosystems (LMEs) grouped into the five proposed 
climate zones (polar, subpolar, temperate, subtropical, tropical) (spatial units coloured from the original digital map 
available at http://lme.edc.uri.edu/). 

 

S.2.2. Model input parameters 

 The 18 primary input parameters and others derived from these are included in Table S.1, that 
complement Table 1 included in the main text. Details on the specific calculations and description are 
included as well as the estimated coefficients per relevant resolution used in the model work. 
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Table S.1 Parameters used in the model, their quantification and characteristics.  

Input 
parameter 

Spatial 
resolution Value Unit Source 

(reference or calculation) Description 

C:N GLO 5.681 [kgC·kgN-1] Stoichiometry of the photosynthesis equation Molar mass ratio: 106*M(C)/16*M(N) 
O2:C GLO 3.468 [kgO2·kgC-1] Stoichiometry of the respiration equation Molar mass ratio: 138*M(O2)/106*M(C) 
O2:N GLO 19.704 [kgO2·kgN-1] (O2:N)=(C:N)*(O2:N) Molar mass ratio: 138*M(O2)/16*M(N) 
PPPot LME 0.033 ↔ 2.707 [-] PPPot=PPLME/PPAvg 66LME PPLME normalised by PPAvg 66LME 

fPPsink 

CZ POL 0.670 [-] Cushing (1975); Laws et al. (2000) 

Sinking fraction of mismatched PP biomass 
CZ SPO 0.485 [-] Average (fPPsink_Polar, fPPsink_Temperate) 
CZ TEP 0.300 [-] Cushing (1975); Laws et al. (2000) 
CZ STR 0.225 [-] Average (fPPsink Temperate, fPPsink Tropical) 
CZ TRO 0.150 [-] Cushing (1975); Laws et al. (2000) 

fPPgrz 

 

CZ POL 0.330 [-] fPPgrz_Polar=1-fPPsink_Polar 

Fraction of PP biomass grazed by zooplankton in the 
photic zone 

CZ SPO 0.515 [-] fPPgrz_Subpolar=1-fPPsink_Subpolar 

CZ TEP 0.700 [-] fPPgrz Temperate=1-fPPsink Temperate 

CZ STR 0.775 [-] fPPgrz Subtropical=1-fPPsink Subtropical 

CZ TRO 0.850 [-] fPPgrz_Tropical=1-fPPsink_Tropical 

fSPingest GLO 0.643 [-] Møller and Nielsen (2001); Møller (2007); Saba 
et al. (2011) 

Averaged fraction of grazed biomass ingested and 
not lost by sloppy feeding 

fSPassimil 

CZ POL 0.300 [-] Besiktepe and Dam (2002) Assimilation efficiency: diet mainly diatoms 
CZ SPO 0.500 [-] Average (fSPassimil Polar, fSPassimil Temperate) Assimilation efficiency: average ↕ 
CZ TEP 0.700 [-] Besiktepe and Dam (2002) Assimilation efficiency: diet mainly flagellates 
CZ STR 0.800 [-] Average (fSPassimil_Temperate, fSPassimil_Tropical) Assimilation efficiency: average ↕ 
CZ TRO 0.900 [-] Besiktepe and Dam (2002) Assimilation efficiency: diet mainly cilliates 

fSPegest 

CZ POL 0.700 [-] fSPegest Polar=1-fSPassimil Polar 

Fraction of organic carbon egested by SP 
CZ SPO 0.500 [-] fSPegest Subpolar=1-fSPassimil Subpolar 

CZ TEP 0.300 [-] fSPegest Temperate=1-fSPassimil Temperate 

CZ STR 0.200 [-] fSPegest_Subtropical=1-fSPassimil_Subtropical 

CZ TRO 0.100 [-] fSPegest Tropical=1-fSPassimil Tropical 

fAVTgrz 

CZ POL 0.033 [-] fAVTgrz_Polar=0.10*fPPgrz_Polar 

Fraction of organic carbon transported by AVT 
Assumed 10% of the euphotic zone grazing pressure 
is made by emergent zooplankton 

CZ SPO 0.052 [-] fAVTgrz Subpolar=0.10*fPPgrz_Subpolar 

CZ TEP 0.070 [-] fAVTgrz_Temperate=0.10*fPPgrz_Temperate 

CZ STR 0.078 [-] fAVTgrz Subtropical=0.10*fPPgrz Subtropical 

CZ TRO 0.085 [-] fAVTgrz Tropical=0.10*fPPgrz_Tropical 

fPPsinkGZ 

CZ POL 0.101 [-] fPPsinkGZ Polar=0.15*fPPsink_Polar 

Fraction of the PP biomass that is consumed during 
sink 

CZ SPO 0.073 [-] fPPsinkGZ_Subpolar=0.15*fPPsink_Subpolar 

CZ TEP 0.045 [-] fPPsinkGZ Temperate=0.15*fPPsink Temperate 

CZ STR 0.034 [-] fPPsinkGZ Subtropical=0.15*fPPsink_Subtropical 

CZ TRO 0.023 [-] fPPsinkGZ_Tropical=0.15*fPPsink_Tropical 

fPPsinkNG 

CZ POL 0.900 [-] fPPsinkNG_Polar=1-fPPsinkGZ_Polar 

Fraction of the sinking PP biomass that is not grazed 
CZ SPO 0.927 [-] fPPsinkNG Subpolar=1-fPPsinkGZ Subpolar 

CZ TEP 0.955 [-] fPPsinkNG_Temperate=1-fPPsinkGZ_Temperate 

CZ STR 0.966 [-] fPPsinkNG_Subtropical=1-fPPsinkGZ_Subtropical 

CZ TRO 0.978 [-] fPPsinkNG_Tropical=1-fPPsinkGZ_Tropical 

fFPleach GLO 0.280 [-] Møller et al. (2003) Fraction of organic carbon leached from SP f.p. 

fFPsinkGZ 

CZ POL 0.007 [-] fFPsinkGZ Polar=0.20*fPPsinkGZ_Polar 

Grazing pressure on faecal pellets is 20% of that of 
sinking cell aggregates (Koski unpublished) 

CZ SPO 0.010 [-] fFPsinkGZ_Subpolar=0.20*fPPsinkGZ_Subpolar 

CZ TEP 0.014 [-] fFPsinkGZ_Temperate=0.20*fPPsinkGZ_Temperate 

CZ STR 0.016 [-] fFPsinkGZ Subtropical=0.20*fPPsinkGZ Subtropical 

CZ TRO 0.017 [-] fFPsinkGZ_Tropical=0.20*fPPsinkGZ_Tropical 

fFPsinkNG 

CZ POL 0.715 [-] fFPsinkNG_Polar=(1-fFPleach)*(1-fFPsinkGZ_Polar) 

Fraction of organic carbon sinking as faecal pellets 
CZ SPO 0.713 [-] fFPsinkNG_Subpolar=(1-fFPleach)*(1-fFPsinkGZ_Subpolar) 
CZ TEP 0.710 [-] fFPsinkNG Temperate=(1-fFPleach)*(1-fFPsinkGZ Temperate) 
CZ STR 0.709 [-] fFPsinkNG_Subtropical=(1-fFPleach)*(1-fFPsinkGZ_Subtropical) 
CZ TRO 0.708 [-] fFPsinkNG_Tropical=(1-fFPleach)*(1-fFPsinkGZ_Tropical) 

fSPmort GLO 0.290 [-] Hirst and Kiørboe (2002) Fraction of predation mortality defining SP carcasses 
Zmean GLO 100 [m] Mean depth of continental shelf Continental shelf depth assumed as 200 m 
ZAVT GLO 20 [m] Atkinson et al. (1992); Puelles et al. (1996) Vertical distance covered by diel migrant copepods 
Zphotic LME 12 ↔ 68 [m] Longhurst (1998) LME photic depth adapted from Longhurst provinces 
Zaphotic LME 32 ↔ 88 [m] Zaphotic_LME=Zmean-Zphotic_LME Height of aphotic zone 
UPP GLO 150 [m·d-1] Turner (2002) Sinking velocity of phytodetritus + PP marine snow  
USP GLO 200 [m·d-1] Turner (2002) Sinking velocity of marine snow + SP f.p. 
fBRmarsnow GLO 0.130 [d-1] Iversen and Ploug (2010) Bacterial respiration rate on sinking marine snow 
fBRsinkSPaphotic LME 0.021 ↔ 0.051 [-] fBRsinkSPaphotic_LME=fBRmarsnow⁄USP *(Zmean-Zphotic_LME) BR rate on sinking f.p. egested in the aphotic zone 
fBRsinkPP GLO 0.087 [-] fBRsinkPP=fBRmarsnow/UPP*ZmeanLME Respiration of sinking organic carbon from PP 
fBRsinkSP GLO 0.065 [-] fBRsinkSP=fBRmarsnow/USP*ZmeanLME Respiration of sinking organic carbon from SP 
BGE LME 0.039 ↔ 0.464 [-] Cole et al. (1988); del Giorgio and Cole (1998) Bacterial Growth Efficiency 
fBRbott LME 0.536 ↔ 0.961 [-] fBRbott_LME=1-BGELME Fraction of organic carbon respired at the bottom 

Legend (GLO) Global, (CZ) Climate Zone, (POL (Polar), (SPO) Subpolar, (TEP) Temperate, (STR) Subtropical, (TRO) Tropical, (PP) Primary Producers, (SP) Secondary 
Producers, (M) Molar Mass, (C) Carbon, (O) Oxygen, (N) Nitrogen, (LME) Large Marine Ecosystem, (AVT) Active Vertical Transport, (f.p.) faecal pellets, (BR) Bacterial 
Respiration. 
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S.2.3. Estimation of zooplankton ingestion fractions 

 The parameter 𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 was estimated as to be 64.25% (Table S.2) of the phytoplankton grazed biomass. 
This value is the mean ingestion fraction of different diets and estimation methods compiled for the coastal 
planktonic copepod by Møller and Nielsen (2001), Møller (2007), and Saba et al. (2011, 2009). 

Table S.2 Estimation of mean ingestion rate (dimensionless) from different data sources. 

Specific experimental conditions 
 

Ingestion rate 
[-] 

Average ingestion rate 
[-] 

Source 
 

Acartia tonsa feeding on Heterocapsa rotundata 0.85 
0.77 

0.64 

Møller (2007) 

Acartia tonsa feeding on Ditylum brightwelli 0.69 Møller (2007) 

Acartia tonsa feeding on Ditylum brightwelli (RFS method) 0.46 

0.40 

Møller and Nielsen (2001) 

Acartia tonsa feeding on Ditylum brightwelli (egg production method) 0.31 Møller and Nielsen (2001) 

Acartia tonsa feeding on Ceratium lineatum (RFS method) 0.41 Møller and Nielsen (2001) 

Acartia tonsa feeding on Ceratium lineatum (egg production method) 0.41 Møller and Nielsen (2001) 

Acartia tonsa feeding on Thalassiosira weissflogii 0.97 

0.76 

Saba et al. (2011) 

Acartia tonsa feeding on Thalassiosira weissflogii (ESD-ratios method) 0.69 Saba et al. (2009) 

Acartia tonsa feeding on Oxyrrhis marina (ESD-ratios method) 0.66 Saba et al. (2009) 

Acartia tonsa feeding on Gyrodinium dominans (ESD-ratios method) 0.72 Saba et al. (2009) 

Legend (RFS) Removed From Suspension, (ESD) Equivalent Spherical Diameter. 
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S.3 Extended and additional results 

S.3.1 Contributions from sinking routes 

Table S.3 shows the relative contributions of each sinking route to the export production (PE) and XF 
grouped into climate zones and Table S.4 the full results per LME. 

The relative contributions (in percentage) of organic carbon to the total PE and to XF are consistently higher 
in route 1 and increase towards higher latitudes, as do the PP-SP mismatch and biomass sinking (𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝐶𝐶𝐶𝐶). 
Route 2 increases its contribution to PE and XF towards mid-low-latitudes due to the combination of 
𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝐶𝐶𝐶𝐶 (increasing towards low latitudes) and 𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐶𝐶𝐶𝐶 (increasing towards high latitudes). 
Contributions from route 3 decrease towards high latitudes as less PP biomass is grazed (𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝐶𝐶𝐶𝐶). The 
contribution to PE by route 4 is also correlated to the mismatch fraction but not the contribution to XF as a 
result of the mixed grazing on all types of sinking organic material (aggregates, faecal pellets, and carcasses) 
after export. Other minor discrepancies originate from site-dependent grazing pressures on sinking POC, as 
the XF modelling extends to include the loss processes below the photic depth that act on PE (consumption, 
leaching, and respiration). 

 

Table S.3 Extended contributions (in %) of the four carbon export routes to total export production (PE) and exposure 
factor (XF), per climate zone. The linear correlation coefficient (r) and significance level (p) between the relative 
contribution of each route per climate zone and the PP-SP mismatch fraction (𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝐶𝐶𝐶𝐶) are also included. Route 1: 
sinking from primary production (PP) biomass; route 2: sinking as faecal pellets (f.p.) from secondary producers (SP); 
route 3: sinking carcasses (carc.) of SP; route 4: active vertical transport (AVT) via diel vertical migration of SP. 

Climate zone Source of contribution to PE and to XF (mean %)  PP-SP mismatch 

[name (nr. of LMEs)] Route 1 (PP) Route 2 (SP f.p.) Route 3 (SP carc.) Route 4 (AVT)  fPPsink_CZ 

Polar (12) 81.3 81.9 15.1 11.9 1.0 3.9 2.6 5.2  0.67 

Subpolar (11) 71.7 69.0 19.6 16.4 3.8 5.3 4.9 10.4  0.49 

Temperate (14) 56.4 55.8 30.1 26.7 5.0 6.1 8.5 11.5  0.30 

Subtropical (12) 51.9 56.0 32.3 29.9 4.3 4.6 11.5 8.8  0.23 

Tropical (17) 48.2 56.7 28.3 28.0 5.9 1.9 17.6 7.5  0.15 

Global (66) 60.6 63.0 25.6 23.2 4.2 5.2 9.7 8.6  (wt) 0.35 

Correlation (r) with fPPsink_CZ 1.00 0.96 -0.92 -0.97 -0.93 0.26 -0.93 -0.39   

Significance (p); n = 5 0.0006 0.0002 0.002 0.004 0.02 0.005 0.03 0.002   
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Table S.4 Extended results table of the estimation of export production (PE) and exposure factor (XF), including 
specific datasets used for the model parameterisation: primary production (PP) dataset from  
http://www.seaaroundus.org, photic depth data from Longhurst (1998), and Primary Production Required (PPR) to 
sustain reported fisheries per LME (used to estimate the fraction of biomass of secondary producers consumed by 
planktivorous fish, fplfish_LME) from Pauly and Christensen (1995) and UBC (1999). Contributions to PE and XF per LME 
are also included. 

 

 

 

 

 

 

Large Marine Ecosystem Climate zone PP PPPot_LME Z photic_LME f  of Zaphotic BRsinkaphotic PPRLME (2006) P E XFLME

[#. name] [name] [gC·m-2·yr-1] [-] [m] [-] [-] [-] [gC·m-2·yr-1] R1 [%] R2 [%] R3 [%] R4 [%] [kgO2·kgN-1] R1 [%] R2 [%] R3 [%] R4 [%]

18. Canadian Eastern Arctic - West Greenland Polar 151.9 0.59 16.3 0.239 0.054 0.093 125.4 81.2 15.5 0.7 2.6 6.80 80.7 12.3 0.7 6.3
19. Greenland Sea Polar 174.2 0.68 16.3 0.239 0.054 1.000 130.9 89.2 0.0 8.0 2.8 7.25 84.3 0.0 8.5 7.3
20. Barents Sea Polar 151.2 0.59 33.8 0.302 0.043 0.384 120.0 84.4 10.0 2.9 2.7 7.05 82.5 7.8 3.1 6.6
54. Northern Bering - Chukchi Seas Polar 90.9 0.35 34.8 0.307 0.042 0.001 76.1 80.1 17.3 0.0 2.5 4.57 81.8 13.6 0.0 4.5
55. Beaufort Sea Polar 119.1 0.46 34.8 0.307 0.042 0.000 99.6 80.1 17.4 0.0 2.5 5.87 80.9 13.7 0.0 5.4
56. East Siberian Sea Polar 54.4 0.21 34.8 0.307 0.042 0.002 45.5 80.1 17.3 0.0 2.5 2.81 83.1 13.6 0.0 3.3
57. Laptev Sea Polar 156.7 0.61 34.8 0.307 0.042 0.001 131.0 80.1 17.3 0.0 2.5 7.54 79.7 13.7 0.0 6.6
58. Kara Sea Polar 126.7 0.49 34.8 0.307 0.042 0.000 106.0 80.1 17.4 0.0 2.5 6.22 80.7 13.7 0.0 5.6
61. Antarctic Polar 99.7 0.39 26.5 0.272 0.048 0.000 83.4 80.1 17.4 0.0 2.5 4.91 81.6 13.7 0.0 4.7
63. Hudson Bay Complex Polar 152.7 0.59 18.0 0.244 0.053 0.001 127.7 80.1 17.3 0.0 2.5 6.96 80.0 13.8 0.0 6.2
64. Central Arctic Ocean Polar 8.4 0.03 34.8 0.307 0.042 0.001 7.0 80.1 17.4 0.0 2.5 0.45 84.5 13.6 0.0 1.9
66. Canadian High Arctic - North Greenland Polar 58.8 0.23 34.8 0.307 0.042 0.029 49.0 80.4 16.8 0.2 2.5 2.99 83.1 13.2 0.2 3.5
01. East Bering Sea Subpolar 285.6 1.11 28.1 0.278 0.047 0.153 196.4 70.5 22.6 2.1 4.8 9.86 68.7 18.8 2.4 10.1
02. Gulf of Alaska Subpolar 330.9 1.28 28.8 0.281 0.046 0.142 228.1 70.4 22.9 1.9 4.8 11.15 67.2 19.2 2.2 11.4
09. Newfoundland-Labrador Shelf Subpolar 295.5 1.15 29.1 0.282 0.046 0.072 206.6 69.4 24.9 1.0 4.7 10.28 67.7 20.9 1.1 10.3
21. Norwegian Sea Subpolar 179.3 0.70 28.3 0.279 0.047 0.682 113.0 76.9 7.8 10.0 5.2 6.35 75.3 6.1 11.0 7.6
23. Baltic Sea Subpolar 697.6 2.71 12.0 0.227 0.057 0.102 484.8 69.8 24.1 1.4 4.8 15.94 55.1 21.7 1.7 21.5
51. Oyashio Current Subpolar 261.5 1.01 31.9 0.294 0.044 0.192 178.5 71.1 21.5 2.6 4.8 9.25 69.7 17.7 3.0 9.6
52. Sea of Okhotsk Subpolar 297.7 1.16 28.1 0.278 0.047 0.309 198.7 72.7 18.1 4.3 5.0 10.01 69.6 14.9 4.9 10.6
53. West Bering Sea Subpolar 214.0 0.83 28.1 0.278 0.047 0.103 148.7 69.8 24.1 1.4 4.8 7.80 70.4 19.9 1.6 8.2
59. Iceland Shelf and Sea Subpolar 201.3 0.78 25.0 0.267 0.049 0.074 140.7 69.4 24.9 1.0 4.7 7.34 70.5 20.6 1.1 7.7
60. Faroe Plateau Subpolar 154.1 0.60 33.8 0.302 0.043 1.000 94.2 79.4 0.0 15.2 5.4 5.58 76.7 0.0 16.2 7.1
65. Aleutian Islands Subpolar 285.6 1.11 28.1 0.278 0.047 0.076 199.5 69.4 24.8 1.0 4.7 9.96 68.0 20.8 1.2 10.0
03. California Current Temperate 223.9 0.87 34.3 0.305 0.043 0.141 120.8 55.6 32.8 3.3 8.3 6.09 58.8 28.6 3.9 8.7
07. Northeast U.S. Continental Shelf Temperate 561.0 2.18 29.1 0.282 0.046 0.136 303.0 55.5 33.0 3.1 8.3 12.22 49.9 30.3 4.0 15.7
08. Scotian Shelf Temperate 509.5 1.98 29.1 0.282 0.046 0.060 280.6 54.5 36.0 1.4 8.2 11.57 50.8 33.1 1.7 14.4
13. Humboldt Current Temperate 320.0 1.24 43.6 0.355 0.037 0.180 170.9 56.2 31.2 4.2 8.4 8.38 56.5 27.4 5.1 11.0
14. Patagonian Shelf Temperate 509.5 1.98 31.4 0.292 0.045 0.182 272.1 56.2 31.2 4.2 8.4 11.50 51.7 28.3 5.3 14.7
22. North Sea Temperate 407.3 1.58 22.8 0.259 0.050 0.340 209.8 58.2 24.8 8.2 8.7 9.11 55.7 21.8 10.1 12.4
24. Celtic-Biscay Shelf Temperate 349.2 1.35 22.8 0.259 0.050 0.314 180.9 57.9 25.9 7.5 8.7 8.15 57.1 22.6 9.2 11.2
25. Iberian Coastal Temperate 276.9 1.07 45.0 0.364 0.036 0.248 145.6 57.1 28.5 5.9 8.6 7.38 58.0 24.7 7.1 10.2
42. Southeast Australian Shelf Temperate 187.0 0.73 44.1 0.358 0.036 0.012 104.3 53.8 37.9 0.3 8.1 5.41 58.3 33.3 0.3 8.1
43. Southwest Australian Shelf Temperate 180.8 0.70 47.2 0.379 0.034 0.011 100.9 53.8 38.0 0.2 8.1 5.28 58.4 33.3 0.3 8.0
46. New Zealand Shelf Temperate 208.2 0.81 36.3 0.314 0.041 0.211 110.4 56.6 30.0 5.0 8.5 5.69 59.7 25.9 5.9 8.5
48. Yellow Sea Temperate 589.1 2.29 29.8 0.285 0.046 0.714 284.4 62.2 10.1 18.4 9.3 12.02 51.8 8.8 22.3 17.1
50. Sea of Japan/East Sea Temperate 220.6 0.86 36.3 0.314 0.041 0.293 114.8 57.6 26.7 7.0 8.6 5.92 60.0 22.9 8.3 8.8
62. Black Sea Temperate 376.6 1.46 21.3 0.254 0.051 0.067 207.1 54.6 35.7 1.5 8.2 8.83 54.5 32.2 1.9 11.4
04. Gulf of California Subtropical 437.9 1.70 34.3 0.305 0.043 0.032 191.8 51.4 36.3 1.0 11.4 7.97 52.6 34.9 1.3 11.2
05. Gulf of Mexico Subtropical 208.2 0.81 44.8 0.362 0.036 0.048 90.9 51.5 35.6 1.5 11.4 4.49 57.6 32.6 1.9 7.9
06. Southeast U.S. Continental Shelf Subtropical 263.3 1.02 29.1 0.282 0.046 0.020 115.6 51.3 36.8 0.6 11.3 5.26 56.7 34.3 0.8 8.2
15. South Brazil Shelf Subtropical 283.1 1.10 44.9 0.363 0.036 0.036 123.9 51.4 36.1 1.1 11.4 5.84 56.0 33.5 1.5 9.1
26. Mediterranean Subtropical 157.8 0.61 37.2 0.318 0.041 0.157 67.8 52.4 31.0 5.0 11.6 3.45 59.0 27.8 6.3 6.9
27. Canary Current Subtropical 436.8 1.70 28.7 0.281 0.046 0.116 188.8 52.1 32.8 3.7 11.5 7.73 52.9 31.2 4.9 11.0
29. Benguela Current Subtropical 506.6 1.97 41.9 0.344 0.038 0.088 219.9 51.8 33.9 2.8 11.5 9.09 50.8 32.7 3.7 12.8
30. Agulhas Current Subtropical 221.0 0.86 49.1 0.393 0.033 0.049 96.5 51.5 35.5 1.5 11.4 4.76 57.3 32.6 2.0 8.2
41. East-Central Australian Shelf Subtropical 157.4 0.61 44.8 0.362 0.036 0.009 69.2 51.2 37.2 0.3 11.3 3.51 58.6 34.0 0.4 7.1
44. West-Central Australian Shelf Subtropical 173.9 0.67 47.2 0.379 0.034 0.010 76.4 51.2 37.2 0.3 11.3 3.85 58.2 34.0 0.4 7.4
47. East China Sea Subtropical 325.4 1.26 29.8 0.285 0.046 0.844 133.5 54.9 4.8 28.2 12.1 6.45 53.5 4.1 33.5 9.0
49. Kuroshio Current Subtropical 154.1 0.60 36.3 0.314 0.041 0.169 66.1 52.5 30.5 5.4 11.6 3.37 59.1 27.3 6.7 6.8
10. Insular Pacific-Hawaiian Tropical 84.7 0.33 68.0 0.625 0.021 0.006 26.1 48.7 33.3 0.3 17.7 1.33 60.6 31.7 0.4 7.3
11. Pacific Central-American Tropical 244.0 0.95 39.6 0.331 0.039 0.049 75.3 48.6 31.3 2.4 17.7 3.33 58.0 31.2 3.3 7.4
12. Caribbean Sea Tropical 174.6 0.68 44.8 0.362 0.036 0.026 53.8 48.7 32.4 1.3 17.7 2.51 59.5 31.8 1.7 6.9
16. East Brazil Shelf Tropical 130.4 0.51 44.9 0.363 0.036 0.049 40.3 48.6 31.4 2.4 17.7 1.94 60.0 30.4 3.2 6.4
17. North Brazil Shelf Tropical 442.3 1.72 38.7 0.326 0.040 0.038 136.5 48.6 31.9 1.8 17.7 5.26 54.2 33.4 2.7 9.8
28. Guinea Current Tropical 357.9 1.39 27.0 0.274 0.047 0.051 110.5 48.6 31.3 2.5 17.7 4.31 56.0 32.2 3.5 8.3
31. Somali Coastal Current Tropical 249.5 0.97 39.5 0.330 0.039 0.012 76.9 48.7 33.0 0.6 17.7 3.36 58.5 33.2 0.8 7.5
32. Arabian Sea Tropical 390.5 1.52 39.3 0.329 0.039 0.173 121.7 48.1 26.0 8.3 17.5 4.99 53.3 26.2 11.6 8.8
33. Red Sea Tropical 298.4 1.16 33.7 0.302 0.043 0.082 92.3 48.5 29.9 4.0 17.6 3.89 56.6 30.1 5.6 7.8
34. Bay of Bengal Tropical 265.2 1.03 40.0 0.334 0.039 0.199 82.8 48.0 25.0 9.5 17.5 3.71 55.4 24.3 12.9 7.4
35. Gulf of Thailand Tropical 284.9 1.11 38.6 0.326 0.040 0.412 91.1 46.9 16.7 19.3 17.1 4.17 51.8 15.8 25.3 7.2
36. South China Sea Tropical 174.2 0.68 34.2 0.304 0.043 0.389 55.6 47.0 17.5 18.3 17.1 2.70 54.2 16.3 23.5 6.0
37. Sulu-Celebes Sea Tropical 209.3 0.81 38.6 0.326 0.040 0.368 66.6 47.2 18.3 17.3 17.2 3.18 53.9 17.1 22.5 6.5
38. Indonesian Sea Tropical 263.7 1.02 38.6 0.326 0.040 0.206 82.4 48.0 24.7 9.8 17.5 3.69 55.3 24.0 13.3 7.3
39. North Australian Shelf Tropical 328.7 1.28 44.8 0.362 0.036 0.018 101.3 48.7 32.7 0.9 17.7 4.26 56.7 33.4 1.2 8.7
40. Northeast Australian Shelf Tropical 130.8 0.51 44.8 0.362 0.036 0.016 40.3 48.7 32.8 0.8 17.7 1.93 60.5 32.0 1.0 6.4
45. Northwest Australian Shelf Tropical 185.9 0.72 47.2 0.379 0.034 0.023 57.3 48.7 32.5 1.1 17.7 2.66 59.3 32.0 1.5 7.1

Contribution to XFLMEContribution to P E
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S.3.2 Estimation of Bacterial Growth Efficiency (BGE) 

Table S.5 Calculation of Bacterial Growth Efficiency (BGE) from Bacterial Production (BP) and Primary 
Production (PP) per large marine ecosystem (LME). Equations used to estimate BP from PP and BGE from 
BP:  a 𝐵𝐵𝐵𝐵𝐿𝐿𝐿𝐿𝐿𝐿 = −0.249 ∗ 𝑃𝑃𝑃𝑃𝐿𝐿𝑀𝑀𝐸𝐸0.86 (Cole et al., 1988);    b 𝐵𝐵𝐵𝐵𝐵𝐵𝐿𝐿𝐿𝐿𝐿𝐿 = (0.037 + 0.65 ∗ 𝐵𝐵𝐵𝐵𝐿𝐿𝐿𝐿𝐿𝐿)/(1.8 + 𝐵𝐵𝐵𝐵𝐿𝐿𝐿𝐿𝐿𝐿) (del Giorgio and Cole, 1998). 
 

Large Marine Ecosystem Zphotic_LME PPLME BPLME
a BGELME

b 
[#. name] [m] [gC·m-2·yr-1] [μgC·L·h-1] [μgC·L·h-1] [-] 
01. East Bering Sea 28.1 285.6 2.32 0.51 0.16 
02. Gulf of Alaska 28.8 330.9 2.62 0.57 0.17 
03. California Current 34.3 223.9 1.49 0.35 0.12 
04. Gulf of California 34.3 437.9 2.91 0.63 0.18 
05. Gulf of Mexico 44.8 208.2 1.06 0.26 0.10 
06. Southeast U.S. Continental Shelf 29.1 263.3 2.07 0.47 0.15 
07. Northeast U.S. Continental Shelf 29.1 561.0 4.40 0.89 0.23 
08. Scotian Shelf 29.1 509.5 4.00 0.82 0.22 
09. Newfoundland-Labrador Shelf 29.1 295.5 2.32 0.51 0.16 
10. Insular Pacific-Hawaiian 68.0 84.7 0.28 0.08 0.05 
11. Pacific Central-American 39.6 244.0 1.41 0.33 0.12 
12. Caribbean Sea 44.8 174.6 0.89 0.23 0.09 
13. Humboldt Current 43.6 320.0 1.68 0.39 0.13 
14. Patagonian Shelf 31.4 509.5 3.70 0.77 0.21 
15. South Brazil Shelf 44.9 283.1 1.44 0.34 0.12 
16. East Brazil Shelf 44.9 130.4 0.66 0.18 0.08 
17. North Brazil Shelf 38.7 442.3 2.61 0.57 0.17 
18. Canadian Eastern Arctic - West Greenland 16.3 151.9 2.13 0.48 0.15 
19. Greenland Sea 16.3 174.2 2.45 0.54 0.17 
20. Barents Sea 33.8 151.2 1.02 0.25 0.10 
21. Norwegian Sea 28.3 179.3 1.45 0.34 0.12 
22. North Sea 22.8 407.3 4.09 0.84 0.22 
23. Baltic Sea 12.0 697.6 13.27 2.30 0.37 
24. Celtic-Biscay Shelf 22.8 349.2 3.50 0.73 0.20 
25. Iberian Coastal 45.0 276.9 1.40 0.33 0.12 
26. Mediterranean 37.2 157.8 0.97 0.24 0.10 
27. Canary Current 28.7 436.8 3.47 0.73 0.20 
28. Guinea Current 27.0 357.9 3.03 0.65 0.19 
29. Benguela Current 41.9 506.6 2.76 0.60 0.18 
30. Agulhas Current 49.1 221.0 1.03 0.26 0.10 
31. Somali Coastal Current 39.5 249.5 1.44 0.34 0.12 
32. Arabian Sea 39.3 390.5 2.27 0.50 0.16 
33. Red Sea 33.7 298.4 2.02 0.46 0.15 
34. Bay of Bengal 40.0 265.2 1.51 0.36 0.12 
35. Gulf of Thailand 38.6 284.9 1.69 0.39 0.13 
36. South China Sea 34.2 174.2 1.16 0.28 0.11 
37. Sulu-Celebes Sea 38.6 209.3 1.24 0.30 0.11 
38. Indonesian Sea 38.6 263.7 1.56 0.37 0.13 
39. North Australian Shelf 44.8 328.7 1.68 0.39 0.13 
40. Northeast Australian Shelf 44.8 130.8 0.67 0.18 0.08 
41. East-Central Australian Shelf 44.8 157.4 0.80 0.21 0.09 
42. Southeast Australian Shelf 44.1 187.0 0.97 0.24 0.10 
43. Southwest Australian Shelf 47.2 180.8 0.88 0.22 0.09 
44. West-Central Australian Shelf 47.2 173.9 0.84 0.21 0.09 
45. Northwest Australian Shelf 47.2 185.9 0.90 0.23 0.09 
46. New Zealand Shelf 36.3 208.2 1.31 0.31 0.11 
47. East China Sea 29.8 325.4 2.50 0.55 0.17 
48. Yellow Sea 29.8 589.1 4.52 0.91 0.23 
49. Kuroshio Current 36.3 154.1 0.97 0.24 0.10 
50. Sea of Japan/East Sea 36.3 220.6 1.39 0.33 0.12 
51. Oyashio Current 31.9 261.5 1.87 0.43 0.14 
52. Sea of Okhotsk 28.1 297.7 2.42 0.53 0.16 
53. West Bering Sea 28.1 214.0 1.74 0.40 0.14 
54. Northern Bering - Chukchi Seas 34.8 90.9 0.60 0.16 0.07 
55. Beaufort Sea 34.8 119.1 0.78 0.20 0.08 
56. East Siberian Sea 34.8 54.4 0.36 0.10 0.05 
57. Laptev Sea 34.8 156.7 1.03 0.26 0.10 
58. Kara Sea 34.8 126.7 0.83 0.21 0.09 
59. Iceland Shelf and Sea 25.0 201.3 1.83 0.42 0.14 
60. Faroe Plateau 33.8 154.1 1.04 0.26 0.10 
61. Antarctic 26.5 99.7 0.86 0.22 0.09 
62. Black Sea 21.3 376.6 4.05 0.83 0.22 
63. Hudson Bay Complex 18.0 152.7 1.94 0.44 0.14 
64. Central Arctic Ocean 34.8 8.4 0.06 0.02 0.03 
65. Aleutian Islands 28.1 285.6 2.32 0.51 0.16 
66. Canadian High Arctic - North Greenland 28.1 58.8 0.48 0.13 0.06 
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S.3.3 Sensitivity analysis table 

Table S.6 Results of the sensitivity analysis of the 18 primary input parameters modelled. Sensitivity ratios (SR, 
[dimensionless]) obtained after independent variation of 10% on the input values. 

Input parameter Mean SR [-] SR range [-] 

PPPot_LME 0.92 (0.75, 1.00) 

fSPassimil_CZ -0.59 (-1.64, -0.03) 

fPPsink_CZ 0.51 (0.43, 0.69) 

fSPingest 0.31 (0.10, 0.43) 

BGELME -0.16 (-0.60, -0.03) 

fFPleach -0.11 (-0.16, -0.02) 

Zmean -0.08 (-0.09, -0.08) 

fBRmarsnow -0.08 (-0.09, -0.08) 

fPPsinkGZ_LME -0.08 (-0.23, 0.00) 

UPP 0.05 (0.04, 0.07) 

fSPmort 0.04 (0.00, 0.33) 

fAVTgrz_CZ 0.03 (0.01, 0.04) 

USP 0.02 (0.01, 0.03) 

ZAVT 0.02 (0.00, 0.03) 

Zphotic_LME 0.01 (0.00, 0.09) 

fFPsinkGZ_CZ -0.01 (-0.03, 0.00) 

DOCExcrAVT 0.01 (0.00, 0.02) 

fplfish_LME 0.00 (-0.04, 0.12) 

 

S.3.4 Export production (PE) algorithms 

 
Table S.7 Summary of the regression analysis for PP vs. PE with a power (PE=a*PPb), an exponential 
(PE=exp(a+b*PP)), and a linear (PE=a+b*PP) model. Additional notes: the regression line of the exponential model 
does not intersect the origin; n is the number of spatial units; R2 is the coefficient of determination; p is the significance 
level. 
 
Model n a b R2 p 

Power 66 1.25 0.83 0.73 0.002 

Exponential 66 42.67 0.004 0.61 0.006 

Linear 66 4.34 0.49 0.73 0.101 
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Figure S.3 Export production (PE, [gC·m-2·yr-1]) as a function of primary production (PP, [gC·m-2·yr-1]). Power 
regression fitting of data for 66 Large Marine Ecosystems with resulting export algorithm equation 
(PE_LME=1.25*PPLME

0.83) and coefficient of determination (R2=0.73). 

 

 We used the same PP dataset to the export algorithms from others in order to validate the export 
component of the proposed exposure model. Analysing the correlation results (Table S.7) we obtained linear 
correlation coefficients (r) values close to 0.90, except for Eppley and Peterson’s algorithm (derived for the 
eastern Pacific Ocean). 

Table S.8 Results for the correlation of PE-PP algorithms from this study to others. 

Correlation (r) Algorithm Source 

0.67 𝑃𝑃𝐸𝐸_𝐿𝐿𝐿𝐿𝐿𝐿 = 0.0025 ∗ 𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿2 if 𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 < 200𝑔𝑔𝑔𝑔 ∙ 𝑚𝑚−2 ∙ 𝑦𝑦𝑦𝑦−1 (Eppley and Peterson, 1979) 
𝑃𝑃𝐸𝐸_𝐿𝐿𝐿𝐿𝐿𝐿 = 0.5 ∗ 𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 if 𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿 > 200𝑔𝑔𝑔𝑔 ∙ 𝑚𝑚−2 ∙ 𝑦𝑦𝑦𝑦−1 (Eppley and Peterson, 1979) 

0.92 𝑃𝑃𝐸𝐸_𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿/(𝑍𝑍𝑎𝑎𝑎𝑎ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐𝐿𝐿𝐿𝐿𝐿𝐿 + 0.212) (Suess, 1980) 

0.91 𝑃𝑃𝐸𝐸_𝐿𝐿𝐿𝐿𝐿𝐿 = 0.409 ∗ 𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿1.41/(𝑍𝑍𝑎𝑎𝑎𝑎ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝐿𝐿𝐿𝐿𝐿𝐿
0.628) (Betzer et al., 1984) 

0.91 𝑃𝑃𝐸𝐸_𝐿𝐿𝐿𝐿𝐿𝐿 = 3.523 ∗ 𝑍𝑍𝑎𝑎𝑎𝑎ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝐿𝐿𝐿𝐿𝐿𝐿
−0.734 ∗ 𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿1.000 (Pace et al., 1987) 

0.87 𝑃𝑃𝐸𝐸_𝐿𝐿𝐿𝐿𝐿𝐿 = 0.049 ∗ 𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿1.41 (Wassmann, 1990) 

-- 𝑃𝑃𝐸𝐸_𝐿𝐿𝐿𝐿𝐿𝐿 = 1.15 ∗ 𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿0.86 This study 
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Figure S.4 Exposure factor (XF, [kgO2·kgN-1]) as a function of primary production (PP, [gC·m-2·yr-1]). Power 
regression fitting of data for 66 Large Marine Ecosystems with resulting export algorithm equation (XFLME 
=0.14*PPLME

0.67) and coefficient of determination (R2=0.56). 
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