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Summary (English)

To improve the reliability of offshore wind turbines, accurate prediction of their response
is required. Therefore, validation of models with site measurements is imperative. In the
present thesis a 3.6MW pitch regulated-variable speed offshore wind turbine on a monopile
foundation is built in the aero-servo-hydro-elastic code HAWC2. The results are validated
with full scale measurements from a 3.6MW Siemens offshore wind turbine installed in the
Walney Offshore Wind Farm 1 at the west coast of England. Damping estimation, wind-wave
misalignment cases and storm loads are analyzed. The findings are used for the modification
of the sub-structure/foundation design for possible material savings.

First, the background of offshore wind engineering, including wind-wave conditions, sup-
port structure, blade loading and wind turbine dynamics are presented. Second, a detailed
description of the site is given and the metocean conditions are analyzed. The joint wind-wave
distribution and the probability of the misalignment angles are estimated. Third, the cali-
bration process of the different components is thoroughly depicted. The turbulence intensity
implemented in the simulations is extracted from a nacelle mounted cup-anemometer.

The model setup is based on the downscaled 5MW NREL reference wind turbine. Mod-
ifications on the downscaled model to match the actual full-scale wind turbine (mass and
natural frequency) are applied. Extreme and mean measured loads from the free wind and
the wake sectors, as well as 1Hz equivalent loads are used for the validation of the model. The
uncertainties both in the model and the full-scale wind turbine are quantified.

The main contribution of the current thesis is presented in the final three chapters. The
support structure net damping is estimated from the impulse response of a boat impact. The
first and second modal damping of the system during normal operation both from measure-
ments and simulations are identified with the implementation of the Enhanced Frequency
Domain Decomposition technique. The effect of damping on the side-side fatigue of the sup-
port structure due to wind-wave misalignment cases is examined. The higher measured net
damping is then used in the design process of the sub-structure/foundation for material sav-
ings. A detailed ultimate strength, stability strength and fatigue analysis are performed in
the baseline and the modified designs to ensure structural integrity of the system.
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Summary (Danish)

For at forbedre palideligheden af havvindmeller, kraeves en preecis forudsigelse af deres respons.
Det er derfor vigtigt at validere modeller med méledata. I denne afhandling er en 3,6 MW pitch-
reguleret havvindmelle med variabel rotorhastighed pa et monopel fundament modelleret i
HAWCQC2 — en aero-servo-hydro-elastisk kode. Resultaterne er valideret med fuldskala malinger
fra en 3,6 MW Siemens offshore vindmglle installeret i Walney Havmollepark 1 ved vestkysten
af England. Estimering af deempning, tilfzlde hvor vind og bglger kommer fra forskellige
retninger samt storm belastninger er analyseret. Resultaterne bruges til at sendre designet af
sub-struktur / fundament for at opné potentielle besparelser af materiale.

Forst beskrives baggrunden for offshore vind, herunder vind- og bglgeforhold, understgt-
tede struktur, fordeling af belastning over vingerne og vindmgllekomponenternes dynamik.
Dernaest er der en detaljeret beskrivelse af testmollens lokalitet og hydrografi og meteorologi
for stedet. Den kombinerede vind og bglge fordeling samt sandsynligheden for forskel mellem
vind og belge retninger er anslaet. Endelig er kalibreringsprocessen for de forskellige kompo-
nenter grundigt beskrevet. Turbulensintensiteten implementeret i simuleringerne er baseret pa
anamometer malinger fra nacellen.

Modellen er baseret pa en nedskalering af NREL 5 MW reference vindmgllen. Andringer
af den nedskalerede model er foretaget for at matche fuldskala vindmgllen (masse og egen
frekvensen). Ekstreme og gennemsnitlige malte belastninger fra fri vind og wake retninger samt
1Hz tilsvarende belastninger anvendes til validering af modellen og usikkerheden kvantificeres.

De vigtigste bidrag i denne afhandling er praesenteret i de sidste tre kapitler. Vindmolle-
strukturens netto deempning estimeres ud fra impuls-gensvaret fra en bad kollision med vind-
mgllen. Den fgrste og anden modal deempning af systemet under normal drift er identificeret
fra bade malinger og simuleringer ved hjeelp af en forbedret frekvensdomaene dekomposition
teknik. Virkningen af deempning pa side-til-side udmattelse af strukturen i tilfselde hvor vind
og bglger kommer fra forskellige retninger undersgges. Den malte netto deempning er hgjere
end tidligere brugt og anvendes herefter i designprocessen af sub-struktur / fundament for
at opna besparelser af materiale. En detaljeret analyse af ultimativ brudstyrke, bulingsstyrke
og udmattelse udfgres for basis designet samt de modificerede designs for at sikre strukturel
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integritet af hele systemet.
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CHAPTER 1

Introduction

The increased energy demand and the reduced solutions for the electrification of the planet
have stimulated the development and research of renewable energy sources the last years.
The commercialization of the wind energy is rising on a very large scale in Europe giving an
impetus to the wind energy industry. The higher wind speeds over the sea and the lower visual
and acoustic impact turns the interest towards offshore sites. At the same time the challenges
due to more severe weather conditions (wind, wave and current loading) are increasing. The
European Energy Policy declares 230GW installed cumulative power by 2020, 40GW of which
should be installed offshore. The goal for 2030 is 400GW rated power, 150GW of which
offshore [I]. The expectation that the offshore wind farms will increase with a mean annual
rate of 21.5% per year until 2020, renders important the advanced research and demands for
development of more advanced tools in this field. Wind turbines with a rated power of up to
8MW are currently under development. To enhance the reliability of such offshore structures
and reduce electricity production cost and maintenance cost, it is essential to update the
aero-elastic codes used for the design, the analysis and the optimization of wind turbines.

The reliable prediction of an offshore wind turbine dynamic response depends on the
accurate representation of the model (rotor-nacelle assembly, support structure), the real-
istic environmental conditions and the number of simulations. The modeling of the sub-
structure/foundation is of significant importance due to its influence upon the response of
the offshore wind turbine and the variety of excitation frequencies on the support structure
(blade passing, waves). The development of simple models for the simulation of the entire
system respecting the required accuracy is crucial. The damping has a significant impact on
the lifetime and the fatigue of the offshore structure. The wind turbine is often subjected to
large deformations, due to wave excitation not only during extreme conditions but also during
power production. In the side-side direction where little aerodynamic damping is present,
damping that counteracts the strong amplifications of the structure near the resonance region
is required, especially when wind-wave misalignment occurs. Detailed guidelines for damp-
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ing measurements and estimation techniques is important to be developed. Due to the short
duration of measurement campaigns the environmental conditions experienced by the wind
turbine are limited, compared to all possible combinations that are likely to occur throughout
its whole lifetime. At the same time the amount of simulations required to cover all conditions
demands high computational time. For these reasons statistical techniques are implemented
to extrapolate long term design loads from limited data.

side-side
topsides structure
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________________ e ¢ —_—————— 1.
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Figure 1.1: Offshore wind turbine. Figure adapted from reference [2].

1.1 Purpose

The development of large offshore structures will require the highest quality of design mod-
els that represent accurately the real turbines. The understanding of the environment and
the wake effect (effect of the surrounding turbines to the dynamic response and the power
production) would be equally important factors. This effort demands accurate design loads
prediction of current turbines and validation of model simulations against site measurements
in order to improve the structure’s design, enhance reliability and reduce maintenance cost.

Validations of offshore wind turbine models with site measurements and damping estima-
tion during normal operation are not very often reported in the literature. For this reason
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this project will deal with the validation of loads derived from the in-house developed aero-
elastic code HAWC?2 [3] with measurements, taken from a fully instrumented 3.6MW Siemens
offshore wind turbine in operation, installed in the Walney farm, at the West coast of Eng-
land (Irish Sea). The damping of the system during normal operation is estimated using the
Enhanced Frequency Domain Decomposition (EFDD) technique [4], 5]. Cases of wind-wave
misalignment and storms are identified from the environmental measurements for the calcu-
lation of fatigue and extreme loads. This information is further used for the prediction of the
remaining lifetime and the design of the sub-structure/foundation.

The main aspects covered in this thesis are:

Model validation with full scale measurements and uncertainty quantification

Damping of the system during normal operation

Fatigue loads in wind-wave misalignment

Extreme loads during storms

Lifetime prediction and sub-structure/foundation design

More specifically sub-structure/foundation, tower and blade dynamics are thoroughly ex-
amined. The target is to understand the loading on the structure under different operational
conditions (free wind sector, wake sector, wind-wave misalignment, storm, grid loss, yaw er-
ror). Different load cases and wind sectors are investigated to identify the driving factors
of the design loads. Fatigue and extreme loads on the structure are calculated considering
the joint wind-wave distribution based on site measurements. The Weibull distribution [6]
and the JONSWAP spectrum [7] are fitted to the wind and wave data respectively. For the
calculation of the hydrodynamic forces the irregular Airy wave theory [8] combined with the
wheeler stretching method [9, [10] to account for loads above the mean sea level is applied.
The flexibility of the soil is accounted for by implementing the distributed p-y spring model
[11].

Great attention is given to the estimation of the system’s damping, including aero-, tower-
soil- and hydrodynamic- damping. Due to the low aerodynamic damping in the side-side
vibration, the fatigue loads on the structure because of wind-wave misalignment are usually
driving design factors [I1], 12]. Therefore, the effect of damping on the fatigue of the side-side
direction due to wave impact is examined. Extreme loads during storms are investigated and
extreme environmental conditions are compared with the 1-year and 50-year wind and wave
loads proposed in the IEC 61400-3 standards [I3]. The results are used for the estimation of
the remaining lifetime of the structure and the verification of the lifetime predicted during
the design process. The effect of damping on the fatigue of the system is examined. Based on
these findings a preliminary sub-structure/foundation design analysis for material savings is
performed.

The reliability of the results depends on the uncertainty level of different variables. The
wind, wave and soil measurements, the parameters used in the fitted distributions as well as
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the derived wind turbine model induce variability in the predicted loads. The range of the
loads is connected to the uncertainty introduced by the above mentioned parameters. The
simulations’ uncertainties are quantified and compared with the measurements’ uncertainties
to examine the accuracy of the predicted loads.

To conclude, the objective of this work is the reliable prediction of the response of a fixed
bottom offshore wind turbine, leading to the improvement of component reliability through
accurate lifetime prediction. The findings will be used as a reference for validation of the
state of the art models, so that future simulations will reflect reality more accurately, without
over- or under estimation of the design loads, avoiding either excessive material or increased
maintenance costs.

1.2 Thesis Outline

The organization of this thesis is the following. The first three chapters are dedicated to the
literature review of the topics discussed in this work. Chapter [2] describes the wind character-
istics, the wave kinematics and the distributions fitted to the wind and wave measurements.
In the last section the soil model implemented in the aero-elastic simulations is presented.
Chapter [3] is focusing on the components of an offshore wind turbine, namely the support
structure, the blades and the controller. In Chapter [4] the dynamics of a vibrating structure
with an emphasis on the damping estimation are investigated.

In Chapters[b] [6] and [7] the site and the calibration process are illustrated. More specifically,
Chapter [5] deals with the sea climate and the joint wind and wave distribution. Chapter [6]
describes in detail the steps followed for the calibration of the different instrumentation used
and the problems encountered in measurement campaigns. Chapter [7]is analyzing how the
turbulence intensity applied in the simulations is extracted from the wind measurements of a
nacelle mounted cup-anemometer.

The procedure for the wind turbine model setup is explained in Chapter 8] The validation
of the model with full scale measurements is presented in Chapter[9] Quantification of different
types of uncertainties is demonstrated in Chapter

The main contribution of this thesis is presented in the last three chapters. Chapter
demonstrates the overall damping of an offshore wind turbine in normal operation, estimated
from full scale measurements and compared with the model damping. In Chapter the
fatigue of the structure in the case of wind-wave misalignment is examined and extreme loads
due to storms and yaw error are presented. The design of the sub-structure/foundation based
on the findings of the previous chapters and the effect of the environmental conditions and
of the damping on the structure’s lifetime are studied in Chapter A conclusion of the
findings of the present thesis and recommendations for future work are discussed in the final

Chapter



CHAPTER 2

Environmental Conditions

In this chapter the turbulent wind field and the distribution fitted to the wind data are
explained. The wave kinematics, the stretching technique and possible distributions fitted

to the wave data are presented. The soil model used in the aero-elastic simulations is also
described.

2.1 Wind Field

The wind field around a horizontal axis wind turbine is turbulent, namely non-uniform in
space and unsteady in time, mainly due to frictional forces and obstacles (Figure . Wind
shear due to surface friction is always present in atmospheric conditions. Wind speed u, due
to shear is extrapolated at hub height z from measurements at lower heights either using the
logarithmic (Equation2.1h), or the power law (Equation[2.1p), where u, is the friction velocity
, k is the von Karman constant, zg is the roughness length, « is the power exponent, u,, is the
reference velocity and z, is the reference height. The presence of the tower affects the airflow,
a phenomenon called tower shadow, while the 3P component (3rd harmonic of the rotational
speed) has an increased energy in the tower load spectrum, due to the blade passing in front

of the tower.
U z z\°
Uy = fln <Zo> , Uy = Uy <2’r> (2.1)

For the analysis of the dynamic response of a wind turbine, stochastic wind fields with
a Gaussian turbulence of 10min length are generated, to cover the different environmental
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non-uniform and unsteady wind
Val(x. 50

Figure 2.1: Spatial distribution of the wind field upstream of the wind turbine. Figure from
reference [14].

conditions that a turbine will operate with during its lifetime. The 10min simulation pe-
riod is associated with the wind spectrum, where the high frequency side corresponds to the
turbulence, as depicted in Figure 2.2] [15].

I I 1T [ T
45 |- Synoptic peak

4.0 -

Turbulent peak

Spectrum, £.S( /)

Diurnal peak

10 days 4days 24h 10h 2h Thr30min 10 min 3min 1 min30s 10s 35s

Frequency, log (f)

Figure 2.2: Wind spectrum. Figure from reference [15].

The longitudinal turbulence intensity is calculated by the standard deviation of the hori-
zontal wind speed o1 at the hub height zp,;, divided by the mean wind speed Upyyp. In offshore
sites an increase in the turbulence intensity can be observed for higher wind speeds, because
of increased surface roughness due to wind induced waves [16].

In reference [6] various wind distributions are presented. The two most commonly used
and easiest to apply are the Rayleigh and the Weibull distribution, also proposed by the Inter-
national Electrotechnical Commission (IEC) standards [I7]. Their fitting to the probability
density function of the wind is examined through sea wind observations in reference [18]. The
equations for the wind distributions are given in Appendix [A]
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Wind measurements are crucial for the estimation of the wind turbine power performance.
With constantly increasing hub height, the traditional mast-mounted cup-anemometer be-
comes an expensive technique. An alternative to that is the ground-based remote sensing
systems. In reference [19] a comparison of the two different available remote sensing instru-
ments, Sodars and LIDARs is presented. Tests performed at the Hgvsgre facilities showed
good agreement between the wind speed estimation from the mast-mounted cup-anemometer
and the remote sensing systems. A fairly new technique for wind measurement is the na-
celle mounted LIDAR, facing upstream of the turbine combining in that way the advantages
of a nacelle based instrument and those of remote wind speed measurement [20]. A nacelle
mounted LIDAR is presented in Figure [2.3

lidar

.

Figure 2.3: Nacelle mounted LIDAR. Figure from [20].

The LIDAR emits a pulsed system that through the Doppler effect measures the wind speed
at a distance from 50m up to 300m upstream of the wind turbine. The main assumption of
the LIDAR the is a horizontally homogeneous wind speed (no horizontal shear) [21]. The
laser sends pulses (approximately 10,000 for each beam) in two lines separated by a horizontal
angle ajiqqr of 30°. The mean wind speed Vj is computed by the average longitudinal and

transverse components Vg and Viyqns respectively, from Equation , where Vjypg = 2(‘2?(5;)
‘/l_vr

and Vipans = Ssin(an) " Vi and V,. are the left-hand and the right-hand laser pulse respectively.
Comparison between a nacelle mounted LIDAR and a mast-mounted cup-anemometer showed
less scatter and better correlation with the wind in the power curve resulting from the LIDAR
[20 21].

Vi =/ V32

long + Vvtg'ans (22)

2.2 Wave Distribution

Hydrodynamic forces on offshore structures are a major consideration during their design.
Measurements performed by the Maritime Research Institute Netherlands (MARIN) and the
Energy Research Center of the Netherlands (ECN) proved that breaking waves can induce
excessive oscillations and accelerations on the monopile sub-structure of an offshore wind
turbine [22]. There are various mechanisms that generate wave motion, but the dominant
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and the one applied in aero-elastic codes to account for hydrodynamic forces are the wind
generated waves.

Different regular wave theories are reported in the literature to describe the water particle
kinematics. The Airy wave theory and Stokes theory are analyzed in reference [23]. Due to
the simple implementation of the regular Airy theory, it is widely used in ocean engineering to
describe the wave kinematics and dynamics with quite high accuracy. The main representation
along with the main characteristics of the regular wave is shown in Appendix [A] The waves
experienced at any point in the sea are not regular. The irregular waves can be considered
as the superposition of an infinite number of regular waves, which are often described by a
spectrum that indicates the amount of wave energy at different wave frequencies.

In deep water the wave height follows the Rayleigh distribution [24]. For shallow waters
(below 30m) though a more representative combined Rayleigh-Weibull distribution was pro-
posed by Battjes and Groenendijk in reference [25] and tested with wave measurements at

three different sites in the German North Sea [26].

Known wave spectra reported in literature are [27]:

Pierson-Moskowitz

JONSWAP

Bretschneider

DNV Spectrum

Ochi Spectrum

For North Sea applications the most representative spectra are the Pierson-Moskowitz
(Equation and the JONSWAP (Equation . The JONSWAP Spectrum is an
extension of the Pierson-Moskowitz that gives room for sharper peaks. A comparison between
the two spectra is presented in Figure 2.4

The hydrodynamic forces due to surface elevation are accounted for by applying a stretch-
ing method. Stretching techniques reported in the literature are the vertical, the extrapolation
and the Wheeler stretching, with the latter being the most commonly used. The Wheeler
stretching stretches the water column linearly above the mean sea level. According to the
Airy wave theory the horizontal particle velocity is given by the derivative of Equation
multiplied with the scaling factor E(z) calculated by Equation [2.3h, where k,, is the wave
number, d the water depth, n the wave surface elevation and z the vertical position. When
Wheeler stretching is applied z is substituted by 2z’ (Equation [2.3p) [9, [10].

_coshlky(d+2)] ,  z+d
EG) = —Ghtma) o 7 o) (2.3)

d
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Figure 2.4: JONSWAP vs. Pierson-Moskowitz spectrum. Figure from reference [28].

To predict the response of an offshore wind turbine the joint probability of the wind and
waves needs to be estimated. In reference [29] a joint probabilistic model of the mean wind
speed, the significant wave height and the spectral peak period is presented. The wind is
the governing parameter and the joint model is used to create a contour surface, where the
exceedance probability corresponds to 100 year return period. The joint probability density
function (PDF) fym,r, of the wind, significant wave height and peak period is given by
Equation where fy(u) is the wind PDF, f |7 the significant wave height PDF conditional
to the wind and f7,, 5, the peak period PDF conditional to a given wind and significant wave
height.

fun,t,(u,h,t) = fu(w) - fa v (hlw) - frpau(th, ) (2.4)

For a mean wind speed with a Weibull or a Rayleigh distribution, the conditional distribu-
tion of the significant wave height H, is a 2-parameter Weibull distribution, while for a given
combination of mean wind speed and significant wave height the most appropriate distribution
for the peak period Tp is a log-normal distribution [29]. In reference [30] the influence of the
joint distribution of wind and wave conditions on the support structure loads is examined. A
probabilistic method is applied to estimate the long term loads from short-term distributions.

2.3 Soil Model

The importance of an accurate model that accounts for the dynamic soil-pile interaction is
often reported in the literature. The pile foundations are designed to sustain both static and
cyclic loads. Soil properties, like soil stiffness, cohesion strength and soil plastic resistance have
a significant influence on the response of the wind turbine support structure. An investigation
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of the effects that the different clay properties have on the support structure is performed in
reference [31]. The presented results make clear that the accurate calculation of the support
structure’s response requires reliable values of the soil properties. In reference [32] the influence
of the soil on the wind turbine dynamic response is examined. Two different types of layered
soil, drained /un-drained sand and the effect of stratification are tested and their impact on the
wind turbine response is quantified. Three different soil-pile interaction models, a) distributed
springs model, b) apparent fixity model and c) uncoupled springs model that are usually
applied in the aero-elastic codes are presented and validated in reference [33]. For the lateral
loading of the monopile the commonly used p-y curve (lateral resistance-deflection), where the
soil stiffness is modeled by distributed springs is shown in Figure 2.5h. The elastic soil that
supports the wind turbine monopile is discretized with the use of springs distributed along the
pile length. The soil spring forces are depth dependent. Based on the DNV guidelines [11]| for
every deflection y there is a lateral resistance p per unit length of pile according to the type
of the soil (sand or clay). For small deflections y, the relation is linear (the deflection of the
soil is proportional to the resistance in the soil-pile interaction). The equations used for the
generation of the p-y curve can be found in Appendix [A]

Pile wall
AR

VAR

W wt ot we

VAR A, Y
AR
a. b. C.
Distributed springs Fixity length Uncoupled springs

Figure 2.5: Soil-foundation models for pile structures. a) distributed springs, b) effective
fixity length c) uncoupled springs. Figure from reference [34].

For the effective fixity length model (Figure[2.5b) the effect of the soil and the true monopile
foundation are substituted by a pile with an effective penetration and effective properties below
the seabed. The range of the effective length is between 3.3 and 3.7 times the pile diameter
[34]. The apparent fixity length L represents the equivalent pile that will result to the same
rotation and the same lateral deflection at its free end, under the same moment and shear
applied at the mudline on the real pile. The mode shapes and the natural frequencies for the
whole system should be the same when applying the apparent fixity model and the higher
fidelity p-y model. The main advantage of this method is its simplicity.

In reference [35] a comparison between a fixed base model (rigid connection of the turbine’s
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support structure to the seabed) and the two flexible models mentioned above is performed, to
investigate the influence of the various foundation models on the extreme loads. The results
for the flexible models are comparable with the fixed base, but they suggest an increase of
15% on the 20-year accumulated fatigue contrary to the latter, due to their lower stiffness.
The power spectra of the loads demonstrated tower resonance peaks at lower frequencies for
the flexible foundation. This indicates a great effect on the long-term loads due to foundation
modeling.

A study by Zaaijer in [36] showed that the results implementing the effective fixity length
model present large variations for different soil conditions, thus increasing the inaccuracies of
the natural frequencies. A sensitivity analysis is performed on the models, using the energy
distribution, to identify the reasons (measurement uncertainty, aging effects, location) that
lead to variations on the dynamic behavior of an offshore wind turbine. The different types of
support structures presented in Figure[3.1]display sensitivity in different parameters, like scour,
soil and foundation properties [36]. The simulation results were validated with experimental
data from two wind farms 'Irene Vorrink’ and 'Lely’. Through this study the importance of
an accurate and reliable soil profile is pointed out, especially when the depth of the first stiff
soil layer affects the dynamic response of the system.

Combined loads from waves and currents are responsible for the development of scour
around wind turbine monopiles. The development of scour can modify the natural frequency
of the structure, making scour prediction necessary in order to reduce the uncertainties during
the dimensioning process. In reference [37] numerical and experimental modeling of scour gave
deeper knowledge about its development around the wind turbine structure.
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CHAPTER 3

Wind Turbine Design

In this chapter the different parts of an offshore wind turbine are presented. In the first
section the various foundation types and the hydrodynamic loads are described. The fatigue
on the blades and the loading due to wake are also explained. The controller characteristics
are analyzed in the last section of the chapter.

3.1 Support Structure Loading

The design of the support structure plays an important role in the dynamic response of
the offshore wind turbines. Although the offshore oil and gas industry gives an insight into
the dynamic behavior of offshore structures, the assessment of offshore wind turbines differs
significantly in some aspects. Apart from the wave excitation, the loading on the rotating
blades due to the wind introduces at least two more excitation frequencies, the rotational
frequency (1P) and the frequency caused by the blades passing in front of the tower (3P).
The first natural frequency of oil and gas platforms is higher than the wave excitation. In the
case of an offshore wind turbine, the first natural frequency is between the wave and the third
harmonic of the rotational frequency. Consequently the challenge for offshore wind turbines is
increased due to the requirement that their natural frequency should avoid a) wave excitation
and b) blade passing excitation.

Time domain simulations with an increased number of seeds to capture the stochastic be-
havior of the wind and wave conditions are required both for fatigue and ultimate load analysis.
The loading conditions considered for these analysis should cover a wide range of load cases
from normal turbulence wind to extreme wind and wave conditions at stand still/idling and
during power production. Therefore, the high computational time necessitates the simplest
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possible modeling of the sub-structure/foundation that results in accurate prediction of the
dynamic behavior of the system.

For shallow water depths the most commonly used sub-structures and foundations reported
in literature are (Figure [3.1)):

e Monopile
e Tripod
e Suction bucket
e Gravity base
Tower — top segment
Transfer of loads from nacelle to marine segment
Blade tip clearance from tower and water
----------------------- Sub-structure
Transfer of loads through the marine environment
_____ 1 - - _ _ _ _Provide facilities for boat access
Foundation
Transfer of loads to the seabed
Geotechnical design
Monopile Gravity base Tripod Suction buckets (‘Nicknames”)

Figure 3.1: Sub-structure and foundation models. Figure adapted from reference [38].

Moving into deeper water, where steadier and stronger wind is provided, different solutions
are required. For medium water depths (around 50m) Jacket foundations are installed, while
for deep waters the floating concept is the only feasible solution.

In reference [39] a preliminary design of an offshore wind turbine monopile sub-structure
is presented. The identification of the structural response to extreme loads and a frequency
analysis to ensure that the natural frequencies of the tower do not coincide with the blade
passing or the wave excitation are the first steps of the process. The wave height, the wave
period and the water depth are used in the Airy linear wave theory to calculate the wave
particle velocities and accelerations. These velocities and accelerations are then used as inputs
to the Morison’s equation (Equation to estimate the moments and forces on the monopile.
A simple but accurate sub-structure /foundation model is a driving factor in the investigation of
the dynamic behavior of offshore wind turbines. As proposed by Zaaijer in [36] the inaccuracies
in the prediction of the dynamic response introduced by the support structure modeling can be
reduced by implementing simple models and verifying the model accuracy with experimental
data.
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An extensive comparison between the different foundation concepts for shallow water
depths is presented in reference [38]. A 6MW wind turbine with the same tower is con-
sidered for the analysis, mounted on the four different support structures presented in Figure
A study conducted in reference [40)] proved that the stress at the upper part of the tower
due to hydrodynamic loading may be in the same order of magnitude as below the mean sea
level, because of the dynamic behavior of the support structure. Therefore, the calculation
of hydrodynamic loading is essential for the design of the support structure of an offshore
wind turbine, contrary to the limited impact that it has on the design of the Rotor Nacelle
Assembly (RNA). The forces that a pile in water is subjected to are shown in Figure
where the drag and inertia wave forces are given by Morison’s Equation and the wind
drag force Fy, by Equation [3.2] u,, and wu;, are the wave velocity and acceleration respectively,
U is the wind speed, p, and p are the air and water density respectively, Cp,, is the air drag
coefficient and A the cross section area. The first term in the Morison’s equation is the drag
force (Cp is the drag coefficient) and the second the inertia force (Cpy = C, 4+ 1 is the inertia
coefficient), which consists of the hydrodynamic mass force and the Froude-Krylov force. The
Morison’s Equation is valid for a ratio of pile diameter over wave length less than (D/\) < 0.2.
In the case that this ratio takes higher values, the presence of the pile influences the waves
and the diffraction effect should be taken into account. An experimental investigation of the
hydrodynamic loads was performed in reference [41].

1
F, = §pC’DDuw|uw| + pCr Ay, + pAtly, =
(3.1)
1
F,, = ipCDDuw|uw] + (Cp + 1) pAuy,

1
Fy = §paCDwAU2 (32)

In the case of an offshore wind turbine mounted on a monopile with diameter 3-5m,
installed in shallow water depth the inertia component is dominant [39]. Therefore the valid
choice of the inertia coefficient C'ys is important for the accurate estimation of the loading on
the pile. Common values used for the coefficients in the Morison’s Equation are Chy = 2 and
Cp = 0.65 [42].

Although small waves can usually be simulated using the linear airy theory, shallow waters
can result in highly non-linear waves. The real wave record depicted in Figure [3.3] shows
characteristics that cannot be captured by linear theory, such as sharper crests, flatter troughs
and larger amplitudes. In reference [43] recommendations for a different approach of the wave
model (distribution and hydrodynamic properties) depending on the type of the foundation
are discussed. The different wave models usually applied are:

e Airy linear wave theory (regular and irregular) [8]: simple implementation, with the
disadvantage that it cuts off wave peaks and troughs.
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Figure 3.2: Loading on a pile due to wind and waves. Figure adapted from reference [23].

o Wheeler Stretching [44]: the wave kinematics calculated at the mean-water level are
stretched up to the true surface, due to water elevation.

e Deans Stream Function [45]: it has replaced most of the cases where regular Airy theory
is insufficient.

e Non linear wave theory [46]: More accurate description of the hydrodynamic loads a
wind turbine installed in shallow waters is subjected to.

Using the Airy linear theory in shallow waters can result in an underestimation of the
lifetime fatigue of the monopiles from 60% to 70%, in contrast to 5% for deeper water. The
inappropriate application of the linear Airy theory should also be noted in the case of gravity
base structures that suffer from the combination of heave and surge motions [43].

When the wave frequency and its harmonics coincide with the natural frequencies of the
structure, the dynamic response of the wind turbine is amplified (resonance). If the ratio
between the multiples of the structure’s natural frequencies and the wave harmonics is an
integer, the wind turbine is moving in phase with the wave when the rising crest reaches the
sub-structure and high loads due to dynamic amplifications will occur. Observations proving
that theory are presented in reference [43] from an instrumented offshore wind turbine at
Blyth. All linear theories underestimate the maximum measured overturning moment, while
the non-linear stream function gives a better estimation. Measurements of the fatigue damage
for one idling wind turbine and one in operation showed good correlation between the loads and
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Figure 3.3: Recorded Sea Surface. Figure from reference [7].

the wave height (turbine off) and the loads and the mean wind speed (turbine on), indicating
the importance of both wind and wave loads on the design of the support structure.

The narrow band of the support structure natural frequency to avoid resonance with wave
excitation and blade passing renders the dynamic behavior of the support structure sensitive
to changes in the geometry. As the wind turbines become larger, the natural frequency of
the support structure is decreased, moving closer to the part of the wave spectrum with the
highest energy content. Its design is driven by the ratio between the diameter and the wall
thickness D/t;,. Higher values of this ratio result in lighter constructions, increasing though
the risk of buckling due to local impacts of waves and ships. Adjustments to the natural
frequency of the support structure can be done through variations of this ratio.

3.2 Blade Loading

The aerodynamic loads on the blades are mainly a combination of the turbulent inflow, the yaw
misalignment angle, the vertical wind shear and the tower existence. In the case of extreme
loads their determination depends upon either extensive simulations or field measurements.
In reference [47] a probabilistic approach is used to estimate the long-term loads based on
measurements from the Blyth offshore wind farm in the UK. The limited amount of data
poses a limitation in the prediction of loading, while simulations can guarantee a wide range
of environmental conditions. On the other hand, the field data provide a real representation
of the conditions and the dynamic response of the system, contrary to the simulations that
depend on how closely the model corresponds to reality. It’s always a compensation between
accurate representation and available data, that makes the combination of simulations and field
measurements crucial for accurate results. What is important in the reliability-based design
of wind turbines is the estimation of a long-term load, associated with a given exceedance
probability. The loads acting on the offshore wind turbine are very site dependent. For the
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Blyth wind farm examined in reference [47|, it was observed that the very shallow water
and the changes in the mean water level (tidal variations) cause considerable changes in the
hydrodynamic loading of the structure, while breaking waves also affect the loading of the
support structure.

The response speed of the controller can reduce considerably the extreme loads on the
system. Spatial gusts with an extreme time rise are assumed to cause excessive loading on the
blades. In reference [48] a gust with extreme time rise is examined. The blade flap moments
caused by the gust are not higher than those due to 1P excitation or normal turbulence.
Therefore, the blade design of pitch regulated wind turbines based on extreme loading is not
governed by spatial gusts with extreme time rise. In the same work a study of the gust shape
that might lead to ultimate loads is recommended.

The robustness of the extrapolated loads is analyzed in reference [49], by examining the
sample of the extreme loads, identifying only one extreme per 10min simulation to avoid
correlations. For the design of the wind turbine apart from the extreme load, the identification
of the loads that are happening at the same instant as the primary load is also necessary.
Contemporaneous loads obtained from scaling the DLC 1.3 load case time series is suggested
in reference [50]. In reference [5I] a more advanced technique to obtain the contemporaneous
loads corresponding to the extrapolated extreme load is presented, based on the mode of the
contemporaneous load distribution.

Loads that might be smaller than the static yield limit of the material can cause failure
through cyclic loading (fatigue failure). In reference [52] the reasons that originate the failure
in the blades, like abrupt change of thickness, local geometry of stress concentrator and cracks
propagation, are examined. The cracks are very often located in the transition area between
the root of the blade and the zone of airfoil profile.

The fatigue strength is investigated by performing a fatigue analysis using S-N curves
(example of S-N curve shown in Figure and applying the Miner’s rule to calculate the
damage equivalent loads. The S-N curve provides the number of load cycles that the structure
can stand without failure, as a function of a constant amplitude cyclic load. The damage
caused by a specific load is given by Equation and the cumulative damage by Equation
3.3b, where n; is the applied number of cycles and N; is the number of cycles that result to
failure for a certain load. The number of cycles for a given stress range is calculated with
the technique of Rainflow counting. The material is expected to fail for Dy > 1. The 1Hz
equivalent load, associated to a number of equivalent cycles (n¢q) equal to the total simulation
or measurement time, that leads to the same damage as the summation of all independent
loads, is given in Appendix [B] In reference [53] the failure probability of different wind turbine
components for various m values is estimated.

D; = Dy = (3.3)

Mz
2|3

[z
N;’

Although the fatigue damage in wind turbine blades is due to turbulence, the unsteady
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Figure 3.4: Example of an S-N curve.

effects associated with the tower shadow are also examined in reference [14]. One of the main
parameters influencing the blade fatigue due to tower shadow is the rotor plane distance from
the tower. The stress variation on the blades because of passage from the stagnation zone,
created by the tower and depending on its diameter, seems to contribute significantly to blade
fatigue loads. The tower shadow does not appear to have an impact on the power production
due to limited tower passage time. In reference [54] it was demonstrated that dynamic stall
could be caused by tower passage, reducing in that way the aerodynamic damping and in-
creasing the dynamic response. Two methods for calculating the aerodynamic loads connected
to the tower shadow, are presented in reference [55]. The substitution of the mono-tower with
a tripod is suggested in reference [56] to reduce the cumulative fatigue on the blades. Even
though the disturbance of the wind turbine blade is greater because of the three legs, the
fatigue damage is lower.

The different wind profiles also have an effect on the fatigue life of wind turbines as reported
in reference [57]. Accounting for the atmospheric stability classes, the fatigue damage can
change significantly. The logarithmic law used to model the wind shear seems to underestimate
the fatigue loads leading to a non-conservative approach.

3.2.1 Wake Effect

Wind turbines placed inside wind farms experience different operating conditions than those
on the outside rows. The average mean wind speed is decreased, while the turbulence intensity
is increased resulting in greater loads on the structure and lower power production. This in-
creased turbulence intensity can cause a significant reduction in the lifetime of a wind turbine.
In order to account for this extra fatigue, simulations with different turbulence models should
be performed. A number of wake models are described and compared in reference [58]. Prior
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investigations [59] [60] concluded that the effect of the wake on the fatigue loading of a wind
turbine is more pronounced for low-turbulence sites, e.g. offshore sites. Therefore the wake
effect is required for the design of offshore wind farms.

An effective turbulence intensity I.rs (Equation , defined as the constant turbulence
intensity resulting in the same material fatigue as variable turbulence from all directions is
proposed by the IEC 61400-1 [17] to account for the wake effect of the surrounding turbines.
The most well-known model for fatigue analysis under the wake effect was developed by Frand-
sen [61]. The Frandsen’s model, also proposed by the IEC 61400-1 standard [17] to account
for the wake effect inside a wind farm, suggests that the wake turbulence is a combination
of the ambient turbulence and an added turbulence [62] (Equation [A.F). The effective tur-
bulence intensity Iy accounting for ambient turbulence and turbulence generated from the
wake effect is used as a primary design parameter.

An investigation based on the Vindeby experiment was performed in reference [63] to ex-
amine the wake effects on the fatigue loading of offshore wind turbines. In the wind field anal-
ysis the wind speed deficit, the turbulence intensity, the horizontal shear and the turbulence
spectrum length were taken into consideration. A good agreement between measurements and
simulations with the aero-elastic code HawC was shown. In reference [64] the fatigue was found
to be proportional to the wind standard deviation. The decrease in the power production due
to the wake effect is estimated through the deficit in the mean wind speed, while the wake
loads are predicted using increased turbulence models. In reference [65] a different simulation
method is suggested that accounts for a simultaneous analysis of the two mentioned wake
effects. The different mechanisms that cause the wake loads, compared to the loads due to in-
creased turbulence intensity are the main reasons for the necessity of such a method. Essential
for the prediction of the fatigue due to wake is the accurate representation of the wake region
downstream of the wind turbine. In reference [66] an investigation of the wake characteristics
is performed through the implementation of a 3D unsteady vortex-panel method, which has
been validated with experimental data from the National Renewable Energy Laboratory.

3.3 Controller

The modern wind turbines contain a controller that regulates their performance depending on
the wind speed. The aim of the controller is to maximize power production while minimizing
the fatigue of the structure, ensuring that no extreme load results from the controller response.
The latter can be achieved by avoiding excessive pitch activity and peaks in gearbox torque.
The controller guarantees minimum component fatigue loads and optimal power output for
wind speeds below rated by optimizing aerodynamic efficiency and rotational speed and con-
stant power production for wind speeds above rated by applying aerodynamic torque within
the design limits [67]. The operation is separated in three regions. Region 2 corresponds to
the variable rotational speed operation for optimal power production. In region 2 1/2 the
rotational speed is kept constant to its rated value and the controller is performing a linear
adjustment to the generator torque values. Region 8 corresponds to maintaining the power
to rated by pitching the blades [68]. Figure presents the three controller regions with re-
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spect to the wind speed. For wind speeds above rated the error between the measured and the
rated rotor speed is used as a feedback to the controller to regulate the pitch angle and prevent
blade stall, maintaining rated power. A simple representation of a Proportional-Integral (PI)
controller is shown in Figure [3.5D

The proportional and integral gains Kp and K of the PI controller are given by Equation
and the gain-correction factor GK that corrects their values for higher wind speeds, due to
non-linear characteristics by Equation [69], where Ipyivetrain i the inertia of the drivetrain
given by Iprivetrain = IRotor + N&o,IGen, (Nen is the gear ratio Irotor is the rotor inertia
and Igep is the generator inertia) €2y is the rated rotor speed, wg, is the natural frequency
of the system, (4 the damping ratio, 6 the pitch angle and %—g the sensitivity of aerodynamic
power to blade pitch in region 3. The parameter 6, is the blade pitch angle at which the
pitch sensitivity has doubled from its value at the rated operating point for § = 0. For a more
detailed explanation of the controller operation refer to [69] and [70].

Active control is usually implemented to reduce the loads on the wind turbine. Prior
investigations regarding the mitigation of extreme and fatigue loads through active control
have also been performed, such as in reference [7I]. Methods usually suggested for achieving
this are the use of filters to mitigate modal response, sensors at the blade root or the tower top
that sense loads, accelerations that are fed to the controller for facilitating individual pitch
control and generator torque control in the region when the wind speed is just above rated
speed. In reference [72] the twist of the blade to modify the aerodynamic performance that
counteracts for the bending due to aerodynamic loading to mitigate the loads, keeping the
power production constant, is proposed as a control strategy. In a Sandia report [73], fifteen
different devices, like microtabs and active stall strips for active load control are discussed
and their potential when implemented on a wind turbine is analyzed. When collective blade
pitch control is used and no sensors for load measurement are present, the aim of keeping
the power constant at mean wind speeds above rated and mitigating the extreme blade loads
simultaneously is achieved through effective control algorithms.
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Figure 3.5: Controller regions and PI controller



CHAPTER 4

Damping

Damping is the dissipation of energy from a structure that is vibrating. Damping is often
described as viscous (proportional to velocity), hysteretic (structural damping), and coulomb
(due to friction) [74]. The mechanisms and types of damping depend on the characteristics
of the structure and the physical processes present at a given situation. Usually they are
complicated and any mathematical representation of damping in the equations of motion is
only an approximation of the real system. The nature of energy dissipation is most of the times
unknown and viscous damping is often used to approximate a non-linear behavior (equivalent
viscous damping). In the current chapter various techniques for damping identification are
presented.

4.1 Rayleigh Damping

The damping mechanisms in a structure can be highly non-linear. Therefore, classical damping
is a mathematically convenient way to represent damping in systems. The damping matrix
can be diagonalized by the mode shapes in a similar way as the mass and stiffness matrices,
based on the orthogonality of the modes [75]. A classical damping matrix can be constructed
if Rayleigh damping is considered, where the damping is mass and stiffness proportional
(Equation . Figure presents the mass and stiffness proportional damping along with
the Rayleigh damping as a function of the system’s frequency. The mass term (,, is inversely
proportional to the frequency and the stiffness term (; proportional to it.

C=a1M+ asK (4.1)
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The modal damping ratio (, of a system with Rayleigh damping is given by Equation
where a1 and g are the Rayleigh coefficients, and w,, the natural frequency of the examined
mode.

1
A2, (4.2)

Cn = 2w, 2

If the damping ratios of two modes with natural frequencies w, and w, are assumed equal,
they can be used for the calculation of the coefficients a; and as.

2 . 2
Znlr = (2 (4.3)

)
Wy, + Wy Wy, + Wy

ap = ¢

Figure 4.1: Damping ratio with respect to frequency in structures with Rayleigh damping.
Figure from reference [76].

A more general expression for classical damping is known as Caughey damping (Equation
[.4), where v is the number of degrees of freedom in the system.

c= > qM'K]! (4.4)

Equation with only the first two terms reduces to the Rayleigh damping. The modal
damping ratio is given by:

1 v—1
Cn== alw,%l_l (4.5)
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It is often unrealistic to assume that all modes have the same constant damping in order to
calculate the Rayleigh coefficients for the whole system. In reference [77] a procedure for the
estimation of the coefficients a; and as for systems with large degrees of freedom is presented.

The accurate estimation of the damping has a pronounced effect on the load and lifetime
prediction as well as on the dynamic response of the system. The total damping of the
first bending mode is a combination of aerodynamic, structural, hydrodynamic, soil damping
and damping due to damping devices [78], [79]. The additional offshore damping is given by
Equation where D,.qdiation 1S the damping from wave creation due to structure vibration,
Dyis hydro 18 the viscous damping due to hydrodynamic drag, Dgee is the material damping,
Do is the soil damping due to inner soil friction and Dggmper the damping from dampers.
One of the first attempts to estimate the damping of an offshore structure was made by Cook
in reference [80], where the damping of the first fundamental mode of an oil rig is identified.
In reference [81] measurements of all sources of damping in an offshore wind turbine at Horns
Rev 1 and the Burbo offshore wind farms resulted in a logarithmic decrement § of about 10%
(excluding aerodynamic damping). It was concluded that the available damping is more than
what it is used in the simulations. In the same study the case of the side-side aero-elastic
damping is examined, and its importance to decrease cross-wind loads due to wind-wave
misalignment is pointed out. In reference [82] the estimated logarithmic decrement considering
only the additional offshore damping (no aerodynamics included) is 14-15% (2.25% damping
ratio).

Dadd,offsh = Dr‘adiation + Dvis,hydro + Dsteel + Dsoil + Ddamper (46)

In reference [82] typical values of the individual damping ratios for an offshore wind turbine
mounted on a monopile are proposed: steel damping (see; = 0.19%, damping from the passive
damping devices on the tower top Ciower = 1.36%, hydrodynamic damping Cuater = 0.12%
and soil damping (s = 0.58% . The total damping of the system is given by Equation

C = Csteel + Ctower + Caero + gwater + Csoil (47)

4.2 Aerodynamic Damping

The aerodynamic damping, which consists the greatest part of the total damping during
normal operation can reduce significantly the fatigue on the support structure. The basics of
aerodynamic damping are presented in Figure £.2] When the tower is moving forward, the
blades see a higher wind speed, reacting with an aerodynamic force that opposes the tower
top motion. When the tower is moving backward this aerodynamic force is reduced. In both
cases the tower motion is decreased.

The total damping of the blades which is equal to the aerodynamic plus the structural
damping can be calculated from the logarithmic decrement § with the use of Equation In
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Uying

aerodynamic response
of blades that
counteract the tower
motion

Figure 4.2: Principle of aerodynamic damping

reference [83] different ways of estimating the aerodynamic damping for constant speed and
variable speed wind turbines are presented.

€10t = Eucro -+ Extruct = 1ot = ——o—cs
tot aero struct tot \/m

4.3 Damping Identification

There are various ways of estimating the total damping of a system. Figure 4.3 presents
schematically the different methods for identifying damping in a vibrating structure. The
damping can be extracted either as a modal parameter or as a full damping matrix C. The
modal damping identification can be divided into two groups: a) non-parametric methods
applied in frequency domain and b) parametric methods implemented in time domain [84].
In reference [85] a comparison of four different system identification methods (Peak-picking,
Polyreference LSCE, Stochastic Subspace method and prediction error) emphasizing on the
advantages of each technique is presented. In reference [86] a survey of viscous damping
identification techniques for the estimation of the full damping matrix is demonstrated. These
methods can be separated into two categories: a) damping identification from modal testing
or b) from response measurements. Most of the techniques are extensively applied to large
civil engineering structures.

For large structures like wind turbines forced excitation can be difficult and expensive.
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Therefore, the available ambient excitation is used to measure the response and derive the
system characteristics, a technique called Operational Modal Analysis (OMA). Due to no
requirement of excitation equipment the OMA is a cheaper technique. The results correspond
to realistic levels of vibration and not artificial ones generated by shakers. Based on recorded
time series (output) of the system response and assuming that the ambient excitation is
random in time and space (stochastic) like wind and waves, the modal parameters and dynamic
characteristics of the whole system can be extracted. This process is also called Stochastic
System Identification. The great potential of operational modal analysis in wind turbines
was firstly presented in references [87, 88| [89]. Different applications of Experimental and
Operational Modal Analysis are discussed in references [90, 91, 92]. For a more detailed
explanation of modal analysis the reader is addressed to references [93] [76, 94, 90].

4.3.1 Full Damping Matrix

The full damping matrix of a structure provides information about the spatial distribution of
the damping. Due to the unknown nature of damping it is usually convenient to assume viscous
damping in the system that allows the implementation of modal analysis. Viscous damping
though is not the only linear damping model that can be implemented in a vibrating structure.
In reference [95] a more general damping model within the linear range is introduced.

In general the modal damping matrix is not diagonal, since there is no physical reason why
a system should be viscously damped. However, for lightly damped structures the damping
matrix is assumed to uncouple with the mode-shapes.

In reference [95] the nature of proportional damping is analyzed and the condition that the
system matrices should satisfy so that classical modes (modes that diagonalize the mass, stiff-
ness and damping matrices) appear in viscously damped systems is presented. An approach
for the appropriate selection of the Rayleigh coefficients is suggested in reference [96]. The
reagons for unrealistically high damping forces that appear under certain conditions, when
Rayleigh damping is used, are discussed in reference [97].

The nature of the damping in a structure affects the mode shapes. Non-viscouly damped
systems have both elastic modes, that appear in complex conjugate pairs and non-viscous
modes that are not oscillatory in nature. Viscously damped systems have only elastic modes.
If the viscous damping is proportional, the modes are real. The nature of modes are presented
schematically in Figure [4.4

For the identification of the full viscous damping matrix of multiple-degrees of freedom
systems various techniques have been developed. The first group of methods, as mentioned in
the beginning of Section [4.3]includes the estimation of modal parameters (natural frequencies,
damping ratios and mode shapes) from transfer functions determined by modal testing, where
a damping matrix is fitted to the measured data. In reference [98] an iterative method of the
inverse eigenvalue problem for all damping matrices, where the mass matrix is known and
the eigenvalues are experimentally obtained, is presented. Incomplete experimental data and
an a priori knowledge of the mass and stiffness matrices are used in reference [99)] to identify
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the damping matrix. An inverse vibrational problem is discussed in reference [100] where the
form of the damping matrix is defined by the user beforehand. The identification of a non-
proportional viscous damping matrix of light damped structure with the use of an incomplete
set of eigenmodes and natural frequencies and no a priori knowledge of the mass and stiffness
matrix is studied in reference [I0I]. The second group consists of methods that are fitting
equations of motions to the data. A time-domain approach was investigated in reference
[102] to identify mass, stiffness and damping matrices from measurements with high levels of
noise. Frequency response data of a structure decomposed into linear combinations are used
in reference [I03] to estimate the damping matrix when the mass and stiffness matrices are
known. A frequency domain method is discussed in reference [104] for identification of all
system matrices, where the damping matrix is estimated separately.

The assumption of viscous damping in a non-viscously damped system does not always
result in an accurate representation of the damping behavior. Therefore, different methods
for the identification of non-viscous damping have been developed. Considering a hysteretic
material damping model the loss factor of the n-th mode was calculated in reference [105]. In
reference [L06] a material damping parameter estimation method, based on frequency response
functions and elastic modes determined by a finite element model is proposed. Experimentally
identified complex modes and natural frequencies are used along with the mass matrix to
identify the damping by an exponential relaxation function in reference [107].

Elastic modes Modes of

(complex) | vibration
Non-viscously
damped systems
¢ Non-viscous Non oscillatory
modes (real) nature
Nature of
modes
Complex
| (general case)
d Niscously Elastic modes
amped systems -
L Real (if
damping is

L proportional)

Figure 4.4: Nature of modes depending on the type of damping

4.3.2 Modal Damping Identification in Time and Frequency Domain

In the frequency domain the most common method known as Peak-Picking (PP) was thor-
oughly analyzed and implemented by Felber in reference [108]. This approach is based on
the construction of averaged normalized power spectral density functions (ANPSD) by per-
forming a Discrete Fourier Transformation to the data. The resonance peaks of the spectrum
corresponding to the vibration modes are the identified natural frequencies of the system. At
these frequencies the coherence function of two signals measured at the same time has a value
close to 1. Peaks present in the spectrum due to harmonics should be excluded from the
identification process, since they don’t correspond to vibration modes. The method itself does
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not provide an estimation for the damping and therefore it is combined with the half-power
bandwidth method to identify the damping ratio as proposed in reference [109]. Equation
gives the damping ratio from the half-power bandwidth method, where @ is called the quality

factor and is defined as Q = <. f, is the natural frequency of each specific mode and Af is
A

the half power bandwidth, namely the bandwidth where the vibration has power greater than
half of the power at the natural frequency. The relation for the half-power bandwidth is deter-
mined from the frequency response transfer function as indicated in references [I110]. However,
the assumptions of independently excited modes and the error in the damping estimation of
higher modes should be kept in mind when analyzing the results. In references [I11] 112]
the accuracy of the half-power bandwidth method is examined and the differences, when it
is applied to the acceleration and the displacement frequency response curves are pointed
out. In the same studies a third order correction is proposed in order to reduce the damping
estimation error. A different approach in the frequency domain is proposed by Bricker et. al
in [I13], 114] where the Frequency Domain Decomposition (FDD) method is introduced. A
Singular Value Decomposition (SVD) is applied to the power spectral density function matrix
and the spectral response is decomposed into a set of single degree of freedom (SDOF') systems,
each of them corresponding to the contribution of the different modes at every frequency. In
that way closely spaced modes can be identified quite accurately. In a specific frequency the
dominant mode appears at the first singular value spectrum. An improvement of this method
called Enhanced Frequency Domain Decomposition (EFDD) is presented in references [4], 5].
The auto spectral densities of the SDOF systems are based on the modal assurance crite-
rion (MAC) value between the singular vectors at the resonance peak and the frequency lines
around the peak. The auto spectral density functions are transformed back to time domain
using the inverse Fast Fourier transformation resulting in auto correlation functions for each
mode. The damping ratios are estimated from the exponent of a curve fitted to the relative
maxima of these functions. The potential of the EFDD method is shown in reference [115],
where the technique is applied to a wind turbine blade for modal parameter identification.
The advantage of the last two techniques is the identification of close modes even in the case
of high noise in the signal. Although, closely spaced modes can be more accurately identified
compared to the Peak-Picking method, their identification can be still difficult in cases with
a high number of modes present in the response. Harmonics due to rotating parts in wind
turbines can be easily identified with the frequency domain decomposition techniques, due to
a peak being present at all SVDs at a specific frequency, indicating that this is not a vibration
mode.

|Qlmaz = 21< = 2( = f2;nf1

(4.9)

In the time domain the different methods can either be directly applied to the response
time series, or to correlation functions. Impulse response is widely used in wind turbines to
accurately identify the damping ratios. An exponential curve is fitted to the relative maxima
of the decay response and an estimation of the damping is obtained by the exponent of the
fitted function. The main limitation of this method is the assumption of the contribution of
a single mode to the decay. This assumption can be close to reality for well separated modes,
but in the case of offshore wind turbines, where the first two modes of the system (fore-aft and
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side-side of the tower) are usually closely spaced, it can give erroneous results for the damping.
Correlation functions are a different representation of the time series. Three techniques for
estimating the correlation function are presented in reference [116], the direct method, the
Fast Fourier Transform (FFT) technique and the Random Decrement (RD) technique.

The direct method is the simplest but slowest technique. The Fast Fourier Transform
(FFT) is faster but provides biased estimates. The correlation function is estimated by ap-
plying an inverse FFT to the spectrum. A technique to obtain unbiased results is presented
in reference [I16]. The Random Decrement (RD) method is based on averaging N segments
of the time series with one of them satisfying a triggering condition. A detailed analysis of
the Random Decrement method and a theoretical explanation that the RD is a correlation
function is presented in reference [I17]. By fitting an exponential curve to the maxima of
the auto-correlation function, the damping ratio can be estimated from the parameters of
the fitted expression. An application of the method in the frequency domain is presented in
reference [109], where the advantages due to noise reduction and the avoiding of leakage are
also pointed out. When the estimation of the correlation function from the Random Decre-
ment technique is combined with the three frequency domain methods mentioned before, the
resulting identification methods are the RD-PP, RD-FDD and RD-EFDD. Direct application
to the time series response is allowed by using stochastic subspace identification techniques
like Covariance-Driven Stochastic Identification (SSI-COV) or Data-Driven Stochastic Identi-
fication (SSI-DATA) methods.

In references |22 [79, 118] the method of obtaining the damping ratios directly from vi-
brations of the tower under ambient excitation is analyzed and compared with the commonly
used overspeed stop. The two different processes showed good agreement. The data for the
tests are obtained from an offshore wind turbine in the Belgian North Sea. In the case of
overspeed stop an exponential function is fitted to the maxima of the decaying time series,
in order to calculate the damping ratio. In the beginning of the decay the thrust excites the
tower mainly in the wind direction, but towards the end both modes, fore-aft and side-to-side,
contribute to the motion. Analysis in the frequency domain is also investigated by applying a
Fast Fourier Transformation (FFT) to the decaying oscillation. Similar results were obtained
with the ambient excitation, making this method more appealing due to its less harmful nature
towards the system. In the time domain an exponential curve was fitted to the relative max-
ima of the auto-correlation function of the tower acceleration. In reference [74] three different
non-parametric damping estimation techniques were applied to structures under ambient ex-
citation, the time domain approach using Data Correlation, the time-frequency analysis via
Wavelet Transform and the Frequency Domain Decomposition. The definition of proportional
damping and the extraction of the modal frequency and modal damping from the complex
eigenvalues is discussed.

In reference [82] the measured acceleration of the tower in the fore-aft and the side-side
direction is used to estimate the total system damping of the first bending mode. A ten-
dency of decreased damping with increased wind speed was observed, mainly due to higher
acceleration levels for higher wind speeds. Experimental results agree quite well with the
numerical simulations when using a simple linear viscous damping model. In the same study
an attempt to estimate the soil stiffness using the p — y method (Winkler type approach) is
presented. "Rotor stops” and fitting of theoretical energy spectra to measured response were
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used in reference [119] for estimation of the first modal damping of offshore wind turbines on
a monopile foundation. Accelerometers for the measurement of the vibration decay of twelve
'rotor-stop’ tests were also used in reference [120], where the damping is both identified in
the frequency and the time domain. A difference observed in the displacements of the first
two modes, allowed the investigation of the influence that the soil-pile interaction has on the
vibrations of the wind turbine. In reference [I2I] the natural frequency and the damping
ratio are estimated with two different methods, an Experimental Modal Analysis and an Op-
erational Modal Analysis. In the latter technique the modal parameters are extracted from
output-only measurements. The potential of output-only techniques was also demonstrated
in [122], even in the case of closely spaced modes. Two identification methods, the Enhanced
Frequency Domain Decomposition (EFDD) and the Covariance driven Stochastic Subspace
Identification (SSI-COV) were compared with a free decay test.

Direct application to the response time series for estimation of the modal parameters is
done through various System Identification techniques. Subspace System Identification (SSI)
methods are extensively used to provide a good estimation of the system’s parameters from
operational modal analysis. The reason for the designation ’subspace’ is that the system
matrices are retreived as subspaces of projected data matrices [123]. Often reported in the
literature [124] 125 126l 127], a System Identification Method (SI) is applied to estimate
damping from structures excited by deterministic or stochastic loads. The (SI) method has
been extensively tested and applied to various vibration problems, like offshore structures and
bridges. In reference [127] the System Identification method based on the covariance block
Hankel matrix (CBHM) is thoroughly analyzed, by examining both simulated and measured
response data of a deep-water offshore platform. This work was further investigated in [12§]
and extended to recover full structural system matrices of structures under ambient excitation.
In references [129] 130] a data-driven stochastic subspace method (SSI) was introduced. An
overview of subspace system identification techniques, categorized as realization based and
direct methods is given in reference [I31]. SSI methods provide reliable state-space models
from measured data. The states are estimated either directly from the input-output with
the use of principal angles and directions between the past and future output data or by the
formation of covariance matrices. The advantage of the former approach is the avoidance of the
covariance matrix and thus the elimination of the squared propagation of error and noise from
the covariance estimation. The state sequences can be considered as the output of an extended
Kalman filter. Then the system matrices are derived by solving a least squares problem. Three
different subspace algorithms, the ’Canonical Variate Analysis’ (CVA), the 'Multi-variable
Output-Error State space’ (MOESP) and the 'Numerical algorithm for Subspace State Space
System Identification’ (N4SID) are mentioned in reference [132] and their similarities under a
unified theorem are pointed out. In all three algorithms the system order and the extended
observability matrix are determined from the observed input-output data. The only variation
between them is introduced by the choice of different weighting matrices.

In the classical approach the system matrices are derived before the states, but in reference
[129] it was illustrated that an algorithm based on principal angles and directions to estimate
the states before the system matrices provides more accurate results. Figure presents
the difference between the two techniques. In reference [I30)] the effectiveness of two N4SID
algorithms for combined deterministic-stochastic systems is analyzed. In reference [133] only
past reference outputs are used in the identification procedure, reducing the computation time.
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The eigenfrequencies, damping ratios and modes are estimated quite accurately compared
to the classical SSI approach. Measured input-output data without strong excitation and
increased noise may lead to failure of the system identification algorithm. In references [134]
135] prior information about the system is included into the subspace method to improve the
quality of the model.

Output data y;
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and directions identification

[ ]

System
matrices

Kalman states

Kalman filter

Least squares

System
matrices

Kalman sates

Figure 4.5: Classical identification technique vs. approach based on principal angles and
directions (adapted from reference [129]).

A comparison between the two different identification methods, Covariance Block Hankel
Matrix (CBHM) and data-driven Subspace System Identification (SSI), was conducted in
reference [I36]. The damping estimates given by the latter appear to be more consistent
and reliable and the method is better suited for the determination of dynamic properties
of structures under stochastic loading. The two different techniques are also compared in
reference [I37]. The modal parameters and system matrices were more accurately determined
and less scattered when applying the data-driven subspace method. In reference [124] an SSI
method for estimation of the wind turbine damping is compared with excitation of the system
by a harmonic force at its natural frequency. The excitation of a pure mode was not possible
with the second method, thus resulting in a damping not equal to the real one. The advantage
of the SSI method of no required knowledge of the structural characteristics of the turbine
and the estimation of modal parameters for modes with almost identical natural frequencies
was demonstrated. However, it should be taken into consideration during the post-processing
of the results, that the P-harmonics are determined as modes due to their significance in the
aerodynamic forces. A large amount of data (long time series) is required for an accurate
identification algorithm. The effect of the time length in the quality of the results is pointed
out in reference [122]. For a detailed analysis of the System Identification Theory the reader
is addressed to reference [138].

In table the different methods for damping estimation with their advantages and disad-
vantages are presented. Very often the selection of a method is a trade-off between simplicity
and accuracy. The most appropriate technique depends on each application and usually meth-
ods are combined. The main assumption present in all techniques is that the considered modes
to be identified are sufficiently excited, otherwise they cannot be observed.

The identification methods of output-only data provide accurate results under certain
assumptions both for the system itself and the nature of the input excitation. The system
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Table 4.1: Pros and Cons of damping estimation methods

Advantages Disadvantages

PP + easy implementation ¢ harmonics identified as modes
+  fast method * 1o obvious peaks from very damped modes
¢ no identification of closely spaced modes

FDD/EFDD « identification of closely spaced modes | ¢ Biased estimates of spectral density functions

even when noise is present in the signal
+ identification of weakly excited modes
* indication of harmonics

Exponential Decay * casy implementation * assumption of seperate mode excitation
¢ o identification of closely spaced modes
¢ system handled as SDOF

Correlation function |+ smaller amount of data e assumption of seperate mode excitation
« faster identification process ¢ dependency on time length
* information will be lost due to data
compression

¢ system handled as SDOF

SSI-COV * operate directly on time series ¢ harmonics identified as modes
* no a-priori knowledge of the structure e error propagation due to covariance
+ identification of closely spaced modes estimation
+  with one identification run receive all * long time series required
considered modes of the system ¢ complicated method

* requires longer computational time

SSI-DATA * operate directly on time series ¢ harmonics identified as modes
* no a-priori knowledge of the structure ¢ long time series required
* identification of closely spaced modes e complicated method
+  with one identification run receive all ¢ requires longer computational time

considered modes of the system

is supposed to be linear time invariant and the excitation white noise. The input forces are
uncorrelated and distributed over the entire structure. However, the harmonics of the rotating
parts, can coincide or be close with one of the natural frequencies of the system resulting in
a high energy in the spectrum and causing the identification to fail. The time invariance
assumption is also violated by the rotation of the rotor around its axis (azimuth position),
the blade pitch angle depending on the operational conditions and the rotation of the nacelle
around the tower axis (yaw angle). To deal with the last two problems, periods where these
angles don’t change significantly should be chosen for the identification procedure. For the
azimuth position a Coleman transformation is proposed in reference [139] to avoid the time
dependencies. The limits of OMA in wind turbines are presented in reference [140]. In order to
deal with these problems the OMA methods need to be improved. Some solutions are presented
in references [141], 142 [143] [144], where different techniques of identifying and removing the
effect of the harmonics are discussed. A more recent method to deal with these problems
is presented in reference [I45]. For the separation of the harmonics from the real structural
modes various methods are proposed in reference [144]. A technique based on Kurtosis to
eliminate the harmonics using the EFDD method is suggested in reference [5].



CHAPTER 5

Site Description

A 3.6MW Siemens pitch regulated-variable speed offshore wind turbine installed in the Walney
Offshore Wind farm 1 (Figure 5.1)), located at the west coast of England, 15km from the shore
(Irish Sea) has been fully instrumented for load measurements. The turbine is mounted on a
monopile structure at a water depth of 27m. The mean wind speed at 80m above the mean
sea level (hub height) is 9.6m/s. Wind and waves in the site appear to have a misalignment
of 10°. Turbine yaw angles, blade pitch angles, rotational speed and power production are
also obtained as a ten minutes average from the SCADA data. The instrumentation of the
sub-structure/foundation consists of 44 strain gauges located at 11 heights along the pilesand,
the monopile and the transition piece. 4 gauges are mounted at each height, placed one across
each other at 90° connecting half bridges for the measurement of the bending moments. Strain
gauges and accelerometers are installed at 3 different heights throughout the whole length of
the tower (4 gauges per height) and 2 inclinometers at the tower bottom. 4 strain gauges are
placed on the shaft for the measurement of the bending and yaw moments. 4 strain gauges are
mounted 1m from the blade root along each blade (12 gauges in total), for the measurement
of the out-of-plane and in-plane moments on the blade. The time series of the low speed
and high speed shafts rotational speed, the azimuth, the pitch and the yaw angles are also
measured. The measurement rate of the sub-structure/foundation is 20Hz and of the tower,
the shaft and the blades 35Hz. The SCADA data from the instrumented and the surrounding
wind turbines are obtained by DONG Energy.

The site measurements for the wind are nacelle anemometer readings from a cup-anemometer
installed behind the rotor and from a nacelle mounted LIDAR. The metocean data (surface
elevation, directional spectrum, significant wave height and peak period) are provided by a
buoy installed close to the instrumented wind turbine. On site measurements about the soil
characteristics are also available.
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Figure 5.1: Outline of Walney Offshore Wind farm 1 (DONG Energy).

5.1 Metocean Conditions

A buoy installed close to the wind turbine on the site is measuring the surface elevation and
the wave direction in a time interval of 30 minutes. The time series of the surface elevation are
used to estimate the wave properties, like the wave spectrum, the significant wave height H,
and the peak period T),. Figurepresents H, and T}, measured by the buoy as a function of
the mean wind speed and Figure [5.2b] depicts the metocean conditions used during the design
process (provided by DONG Energy). A Fast Fourier Transformation (FFT) to the measured
data results in the wave spectrum, from where the peak frequency fy can be identified as the
frequency that corresponds to the maximum wave energy.

Metocean Conditions

4 T T T

Hs (m)

mean wind speed (m/s)
Peak period
T T

Metocean conditions
| yaw angle

0 5 10 15 20 25 5 10 15 20 25
mean wind speed (m/s) mean wind speed (m/s)

(a) (b)

Figure 5.2: a) Significant wave height and peak period from site measurements as a function
of the mean wind speed. b) Metocean conditions used in the design process.
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The spectral moment of the wave m,, and the width parameter of the wave spectrum € are
given by Equation [5.I] When € > 0.6 the spectrum is considered broad band. The significant
wave height Hg, defined as the average of the highest one-third of all waves, can be expressed
by Equation where my, o is the zeroth moment. For narrow banded wave spectra, the
probability density function of the wave heights is approximated by a Rayleigh distribution
(Equation , where H,,s = H2. Based on site measurements the mean width parameter is
equal to € = 0.52. Therefore, the wave spectra are narrow banded and can be represented by
a Rayleigh distribution.

i me, o
My = [ [PSpdf, €=1—-—""— (5.1)
0 M, 0w, 4
Hy =4, /My (5.2)
2H H?
p(H) = HTWP TH2 (5.3)

The wave period is defined as the time interval between the successive zero-upcrossings
of the surface elevation. The different wave periods are given by Equation where T},
denotes the peak period, Tineqn the mean period and T the significant wave period. Due
to an integration error, performed by the buoy system to the measured accelerations, the
obtained peak period has erroneous values. Therefore, the calculated T}, from equation
has been used for further analysis of the wave data.

1 m
T, = %7 Tinean = miwil], Ts = 0.927, (5.4)
w,

After the calculation of the peak period 7, and the significant wave height H,, the ~
parameter of the JONSWAP spectrum can be estimated from Equation The buoy also
measures the velocity and the direction of the current every 0.8m from the surface to the
seabed, giving a very high velocity when the measurement reaches the seabed. The position
that gives this erroneous value is the water depth and it is used as an indication of the tidal
change. Figure presents the variations in the water depth over a period of 2 months.

Due to very low current velocities, the influence of the current can be neglected in fatigue
analysis [53]. For the ultimate strength analysis the currents should be considered in the
simulations. Therefore, the relation between the current velocity and the water depth is
estimated through site measurements. The current profile can be approximated by a power
law (Equation , where Uy is the current velocity at mean water level, d is the water depth
and z is the depth below the mean water level. From Figure it can be observed that the
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Figure 5.3: Tidal changes on the side. Mean water depth is 26m.
current profile can be better approximated by a power law with o = 4.
Z\ &
Uear() = Uo (1+ 3) (5.5)
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Figure 5.4: Current profile as a function of water depth.

A 2-parameter Weibull distribution is suggested as the conditional distribution of the
significant wave height for a given wind speed [29]. The measured wind speed is separated
in bins of 1m/s and the Weibull scale and shape parameters a,, and 3, for the wave heights
within each group are estimated. Figure [5.5 depicts the Weibull Probability Density Function
(PDF) distribution of the significant wave height for different wind bins.
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Figure 5.5: Weibull probability density function of the significant wave heights for the dif-
ferent wind speed bins, based on measurements (conditional wave probability).

5.1.1 Wind-Wave Joint Distribution

For the calculation of the joint wind-wave distribution, the 10min mean wind speed U is
separated in bins of 2m/s in such a way that the bin for U = 6 — 8m/s covers all the wind
speeds in the interval 6 < U < 8. The significant wave height H; is separated in bins of 0.5m.
For the generation of the contour surface of the local joint wind-wave probability density
function, shown in Figure [5.6] 6 months of measurements have been used. Due to limited
data availability, in Figure the average wind speed on the site appears to be 8m/s. This
is lower than the expected mean wind speed for the Walney site. The wind turbine D01 is
80% of the time in the wake, so the apparent average wind speed was expected to be lower.
Another reason for the discrepancy between the expected site conditions and the estimated
wind from the joint wind-wave distribution, is due to the short measurement period of six
months, which might not be representative of the site (wind index). The uncertainty of the
measurement period should be considered in a more detailed analysis. The probability of each
combination of wind speed and significant wave height for the joint distribution (Figure ,
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was then based on the number of observations in each bin (Equation [5.6)), where the index i
represents the wind bins, the index j the wave bins and N the number of observations.

i i Ni,; (56)

3 0.09
0.08

= 2.5f

3 0.07

5 0.06

o ol .

e

0 0.05

@

= 150 10.04

5

8 10.03

€ 1

2 10.02
05 10.01

6 8 10 12 14 16 18 20
wind speed (m/s)

Figure 5.6: Contour surface of the local joint distribution based on 6 months of measure-
ments. Significant wave height versus wind speed.

As an alternative method of estimating the joint wind-wave distribution, the fitted con-
ditional wave height distribution is combined with the fitted wind speed distribution. The
wind distribution is based on measurements from the wake sector, since the wind turbine is
mostly on the wake. Figure presents the contour surface of the fitted joint wind-wave
distribution. Using this methodology, the average wind speed is 9m/s. The time weighting
used for the estimation of the lifetime accumulated fatigue are calculated from this fitted
joint wind-wave probability multiplied with the hours obtained from the free wind Weibull
distribution (hours free_wind, Equation . The reduced mean wind speed, seen by the wind
turbine due to the wake, should not be considered in the analysis, as the Sten Frandsen model
was used for the estimation of the effective turbulence intensity [I7]. 90% availability of the
wind turbine due to maintenance is considered in the calculation of the operating hours.

life_hours = Py i - Py - hoursfree wind (5.7)

5.1.2 Wind-Wave Direction Probability

The uncertainty on the wave direction measured by the buoy is identified by comparing the
mean wave direction with the peak wave direction (i.e. the direction that results in the



5.1 Metocean Conditions 41

Joint distribution (short term)

3
0.09

= 25 0.08

% 0.07

o2 Ll

2 0.06

(]

3 0.05

2 15}

I 0.04

o]

(&)

£ 0.03

o

‘B 0.02

05 0.01

0

6 8 10 12 14 16 18 20
wind speed (m/s)

Figure 5.7: Fitted wind-wave distribution. Significant wave height versus wind speed.

highest energy from the directional spectrum). Figure compares the peak and the mean
wave direction measurements from the buoy; on the y axis is the mean wave direction, while
the peak direction is presented on the x axis. It seems that there are no multi directional sea
states from the swell contributions, which could cause differences between the mean and peak
wave directions. Therefore the mean wave direction is a good estimate of the wave direction,
with an uncertainty of £30° (93% confidence interval). For the construction of the wind and
wave roses shown in Figure [5.9] the directions are separated in 12 bins of 30° each.

400 T

Buoy Mean Wave Direction ()

_50 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400

Buoy Peak Wave Direction )
Figure 5.8: Confidence interval of 93% of the mean wave direction measured by the buoy.
The mean yaw angle provided by the SCADA data indicating the wind direction and the

mean wave direction from the buoy are compared to identify cases of wind-wave misalignment.
Figure [5.10] depicts the misalignment of the wind and the waves on the site.
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Figure 5.9: Wind and wave roses with bins of 30°.
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Figure 5.10: Wind-wave misalignment in the site.

Based on the wind and wave direction roses, it was found that a kernel distribution de-
scribed by Equationbest fits the data, where n is the sample size, K () the kernel function,
h the bandwidth and x the wind or wave direction (angle). From the mode of the two dis-
tributions (Figures , it can be observed that the main wind and wave directions
have a difference of 10°. The same can be seen from the mean value of the normal distribution
fitted to the wind-wave misalignment data (Figure . The fitting of distributions to the
measured data was examined through the histogram, since no specific distribution is suggested
for fitting in the direction data.

= = éK (%) (5.8)
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The misalignment angles are separated in bins of 10° from the minimum to the maximum
observed angle for a specific mean wind speed and significant wave height combination. The
cumulative distribution function (CDF) is then used to calculate the probability of occurrence
of each misalignment angle. Table presents the probability of occurrence of nine wind
speeds and sea states along with the misalignment probability between the wind and wave di-
rections based on six months of measurements. The probability of occurrence of misalignment
angles larger than | &+ 50| is very small and therefore not presented in the table. For all the
wind speeds the misalignment of —10° has the highest probability of occurrence. It can also
be observed that as the wind speed increases the misalignment probability decreases. This
is because the waves are mainly generated by the wind, especially in sheltered areas like the
Irish sea. So the wind-wave correlation at high wind speeds is higher and the probability that
the waves are aligned with the wind larger, due to fully developed sea states.

x 10 °PDF wind direction, mode = 238 PDF wave direction, mode = 248
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(a) Kernel distribution fitted to the wind direction. (b) Kernel distribution fitted to the wave direction.
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Figure 5.11: Wind and wave direction distributions.
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U H,

(m/s) (m) pi; —B0° —40° —30° —20° —10° 0°  10°  20°  30°  40°  50°

6 0.75 0.183 0.031 0.070 0.125 0175 0.195 0.167 0.112 0.062 0.026 0.008 0.002
8 0.75 0.135 0.029 0072 0.133 0190 0.206 0.170 0.107 0.051 0.019 0.005 0.001
8 1.25 0074 0.014 0048 0.105 0.171 0209 0.194 0.134 0.070 0.025 0.008 0.000
10 1.25 0.078 0.023 0.057 0.109 0.165 0.194 0.180 0.130 0.069 0.032 0.008 0.002
12 1.25 0.075 0.006 0.025 0074 0.153 0223 0.220 0.161 0.083 0.031 0.006 0.000
12 1.75 0.054 0.009 0033 008 0.161 0216 0210 0.148 0.073 0.025 0.008 0.000
14 1.75 0051 0.043 0077 0.111 0.143 0155 0.144 0116 0.077 0.044 0.017 0.008
16 225 0.021 0.046 0.099 0.141 0.162 0.166 0.128 0.081 0.037 0.013 0.000 0.002
18 2.75 0.009 0.033 0.065 0.116 0.148 0.173 0.153 0.113 0.065 0.000 0.000 0.000

44

Table 5.1: Probability of occurrence of nine wind-significant wave height combinations along with the observed misalignment between
their directions. The mean wind speed, significant wave height and misalignment angles represent the center of each bin.



CHAPTER 6

Measurements Calibration and Data
Processing

Before the post-processing of the measurements a calibration of the raw data from the strain
gauges is required. Each time series corresponds to 10min measurement. The sub-structure/
foundation measurements are converted from voltage to strains and provided by DONG En-
ergy, while the rest of the wind turbine load signal is received in voltage. The calibration
of the different components is gravity based, where either the nacelle is slowly rotated 360°
around the yaw axis, or the rotor is rotated 360°, providing in both cases a sinusoidal curve
seen by the strain gauges.

6.1 Measurement Calibration

6.1.1 Support Structure Calibration

Figure presents the coordinate system of the support structure used for the measurements’
calibration, along with the nacelle center of gravity (CoG). The moment induced by the nacelle
weight is defined as negative. The subscript T' denotes tower.

Sub-structure/Foundation

Four strain gauges are installed per height placed one across each other at 150° — 330°
for the measurement of the North-South and 60° — 240° for the East-West bending (Figure
[6.2a). In the same figure the sign of the moments from the coordinate system definition is
also depicted. Due to imbalances in the bridge circuit, the output data from the acquisition
device €,y always includes an offset €,7 5t The offset is calculated by performing a yaw test,
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Figure 6.1: Support structure coordinate system.

where the Rotor-Nacelle Assembly (RNA) is rotated 360 degrees around its vertical axis. The
weight of the rotor and the nacelle creates a moment (expected moment), captured by the
strain gauges during the yaw test as a sinusoidal curve. Figure [6.2D] presents an example of
the strain signal versus the yaw angle. The difference of the mean value of the sinusoidal curve
from zero is the offset of each strain gauge. The bending strain ep is given by Equation [6.1
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(a) Strain gauges for bending strain measure- (b) Normalized strain signal versus yaw angle during
ments (support structure). yaw test.

Figure 6.2: Strain gauges on the support structure.

€B = €out — €offset (61)

The bending strain is transformed to bending moment Mp through Equation [6.2] where
ET is the bending modulus of the support structure (E = 210(GPa)) and R is the outer
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radius of the monopile where the strain gauges are mounted.

El
Mp = R B (6.2)

The calculated bending moment is transformed to the rotating system that follows the
wind turbine (Equation , providing the pure fore-aft and side side moments, where a is
the angle between the strain gauge position and the bridge north 30° and yaw is the yaw angle
at each time step.

My ror = My cos(a — yaw) — My sin(a — yaw)
(6.3)
My ror = My sin(a — yaw) + M, cos(a — yaw)

Tower

For the tower strain gauges the calibration is similar, but the data is obtained already
in full bridges (in voltage) instead of independent strains. The range of the sinusoidal curve
captured during the yaw test is equal to twice the expected moment due to the nacelle weight.
This allows the gain of the bridge to be estimated as shown in Equation [6.4h. The bridge
offset is the mean value of the sinusoidal curve, calculated by Equation . min(V') denotes
the minimum strain value in voltage observed during the test, MasS,qceiie is the mass of the
nacelle, g is the acceleration due to gravity, d is the distance of the nacelle center of gravity
(CoG) from the tower axis and range(V') is the range of the sinusoidal curve in voltage. The
transformation to the rotating system is performed through Equation [6.3]

2- Mnacelle g d
range(V)

gain = , of fset = —Mqcelie - g - d — gain - min (6.4)

The transfer function from the electrical signal to the moment is given by Equation [6.9]

Mp(kNm) = gain - M(V) + of fset (6.5)

The signal during the yaw test, obtained from two sets of strain gauges mounted at the
transition piece, one by DONG Energy and one by DTU with 1cm height difference between
them has been used for the verification of the instrumentation’s calibration on the tower and
the sub-structure. During the first tower calibration using Equations and a difference
with a factor of 2 has been observed between the two signals. Due to the uncertainty introduced
in the tower calibration by the nacelle center of gravity d, it was decided to trust the results
from the theoretical calibration of the sub-structure (Equation . Therefore, the gain and
offset for the tower strain gauges were re-calculated based on the moment range captured by
the strain gauges on the transition piece. Even though the signal at that position is more
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noisy than the tower top, the geometry of the structure only at the transition piece was
known to us. Figure[6.3] presents the two signals in bending moments as a function of the yaw
angle, normalized with the maximum observed by the DTU instrumentation. The range that
corresponds to twice the expected moment due to the rotor weight seems to agree satisfactorily
between the two systems.
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(a) Bending moment in the North-South direction (b) Bending moment in the East-West direction
observed during the yaw test from the two sets observed during the yaw test from the two sets
of strain gauges on the transition piece. Nor- of strain gauges on the transition piece. Nor-
malized with the maximum from strain gauge malized with the maximum from train gauge
2. 2.

Figure 6.3: Comparison of signal captured during the yaw test by the two sets of strain
gauges on the transition piece.

6.1.2 Blade Calibration

Along each blade 4 strain gauges are mounted 1m from the root, for the measurement of the
flapwise and edgewise moments on the blade root (Figure . The calibration of the blade
strain gauges is gravity based (Low Speed Idle LSI). Two tests were performed where the
rotor was slowly rotated 360°. The first test with pitch angle 0° is used for the calibration of
the edgewise moment and the second with pitch angle 90° for the calibration of the flapwise
moment. The resulting signal (in voltage) is a sinusoidal curve presented in Figure where
the weight load is taken equal to unity.

The gain is the ratio between the load range, which is twice the expected moment at the
strain gauge position because of the blade weight and the range in voltage (Equation .
The offset is the distance of the mean value of the sinusoidal curve from 0.

Myade - g - d
max(V) —min(V)

gain = 2 (6.6)

To obtain the pure out-of-plane and in-plane moments a transformation to the fixed co-
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(b) Strain gauge signal mounted close to the blade root during rotor
slow rotation test for calibration.

Figure 6.4: Strain gauges on the blade root.

ordinate system of the hub is required (Equation , where oy is the offset between the tip
chord and the strain gauge bridges and 6 is the blade pitch angle at each time step. The
accurate calculation of the offset a; is not always possible on the site. During the calibration
of the blade moments, several values of a; should be tested, until the profile of the in-plane
root bending moment as a function of the mean wind speed follows the shape of the power
curve.

Mout—af—plane = Mflap COS(Olt - 9) - Medge Sin(at - 0)
(6.7)
Min—piane = Myiapsin(ay — 0) + Megge cos(ay — 0)

During the blade strain gauge calibration some limitations need to be taken into consid-
eration and the results should be examined with caution. Even though the blade is pitched
either at 0° or 90° the crosstalk causes a deformation in the perpendicular plane and the strain
gauges on that plane are no longer on the neutral axis, rendering difficult the excitation of the
modes independently during the calibration test. Furthermore, the calibration of the blade
strain gauges is performed in an ideal condition of low wind speed, where the real loading
due to aerodynamic forces during operation is not taken into account. An uncertainty is also
introduced due to misalignment between the tip chord and the strain gauge bridges.
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6.1.3 Drivetrain Calibration

The drivetrain strain-gauge calibration is also gravity based, where the rotor was slowly rotated
360° as happened in the case of the blades. Two strain gauges are mounted at 0°-180° to
measure the tilt moment and two at 90°-270° for the yaw moment. The torsion signal is not
reliable due to the curved geometry of the shaft where the strain gauges are installed. Figure
illustrates the nacelle and the rotor coordinate systems as seen from above, where the
subscripts N and R denote nacelle and rotor respectively. Figure [6.5b| presents how the signs
of the moments are changing during the drivetrain rotation, based on the definition of the
coordinate system.

® 0-180 90-270

Xg (+)
R 2z (+) X =) - M, z - - M,
i z l Position 2 (90° rot) l
Val+) Position 1 w w
z 90-270
Xy (+) 0-180
X z
p——y - 0V,
Position 3 (180° rot) l X l
w Position 4 (270° rot)
yn (+)
(a) Nacelle coordinate system. (b) Drivetrain orientation.

Figure 6.5: Nacelle coordinate system and drivetrain orientation.

The strain gauges capture a sinusoidal signal due to the moment induced by the weight of
the rotor. The transfer function to the moments is given as before from Equation and the
gain from Equation [6.4h, where the mass of the rotor M, instead of the nacelle is used.
The offset is the distance of the mean value of the sinusoidal curve from 0. To obtain the pure
tilt and yaw moments on the drivetrain a transformation of the coordinate system is required
(Equation [6.8), where «g is the offset from the definition of the 0 azimuth angle and az is the
azimuth angle at each time step.

Mtilt = M0_180 COS(Oéd — az) — M90_270 sin(ad — az)
(6.8)
Myaw = Mo—150sin(ag — az) + Mgo—270 cos(ag — az)

To examine the correctness of the calibrated data, some signals from different components
are plotted together. Figures and present the tilt moment of the shaft along with
the fore-aft moment on the tower top and the yaw moment of the shaft along with the tower
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top torsion respectively. The values are normalized with the maximum shaft moment of each
signal. The signals agree satisfactorily, where the differences are attributed to the position of
the tower strain gauges a few meters below the yaw bearing.
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(a) Shaft tilt and tower top fore-aft moments. (b) Shaft yaw and tower top torsion.

Figure 6.6: Shaft and tower top signal comparison, normalized with the maximum shaft
moment.

For the calibration of the sub-structure/foundation instrumentation MATLAB scripts were
written to read the .asc files obtained from the wind farm, calibrate the strains to moments,
resample to 35Hz to obtain equal sampling rate as the rest of the structure instrumentation
and transform the fixed to the rotating coordinate system. The results were saved in MATLAB
structures for every 10min measurements. The calibration of the strain gauges mounted in
the rest of the structure was performed using the in-house developed software EASY. The
calibrated results are stored in files, for every 10min measurement. In the names of both file
formats the date of the measurement is included for a more convenient selection of the same
time series from all the measuring systems.

6.2 Yaw Angle Correction

A difference in the measured yaw position between D01 and the surrounding wind turbines
is depicted in Figure This difference seems to be constant throughout the whole period
and it is likely due to an error in the calibration of the yaw positions with the North orien-
tation. Taking D01 as the reference wind turbine the error in the yaw measurement from the
surrounding wind turbines can be calculated as yawg; rr = yaw — yawpoer. The distribution of
error between the other wind turbines and D01 indicates that there is a constant offset between
the turbines and therefore the median of the distribution is chosen as a representation of the
error (internal communication with DONG Energy). The yaw angle of D01 is also corrected
for the North orientation based on the position of the strain gauges. The final formula for the
correct yaw signal is given by Equation [6.9] Figure[6.7b] shows the measured yaw angles after
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the applied correction.

YaWeorrected = YAWmeasured — A0D01,media7’b - A9D01,North (69)
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(a) Yaw angle of the instrumented wind turbine (b) Corrected yaw angle of D01 and the surround-
D01 and the surrounding ones as provided by ing wind turbines.
the SCADA system.

Figure 6.7: Yaw angles of the wind turbines before and after correction.

6.3 Data Synchronization

A problem usually encountered in measurement campaigns is the synchronization of the dif-
ferent measurement systems. In the fully instrumented wind turbine D01 there are four
measurement systems, a) the sub-structure/foundation instrumentation by DONG Energy, b)
the wind turbine instrumentation by DTU, ¢) the data acquisition (SCADA) system and d)
the nacelle mounted LIDAR. A time lag is observed between all of them. In order to specify
the difference in the time stamps, the yaw test performed for the strain gauge calibration
on the 10" of January 2013 has been used. The signal is clear rendering it easy to observe
the difference in the overlap of the time series. The two sets of strain gauges mounted at
the transition piece have been used for the synchronization of the DONG and DTU systems.
The estimated time difference was found to be 50min (DTU measurement is preceding). The
sub-structure/foundation system is set to the UTC and the time stamp specifies the end of the
10min measurement, while the DTU system is set to the CET and the time stamp specifies the
beginning of the measurement. None of the systems has daylight saving. Figure depicts
the time lag in the two signals.

The same yaw test was used for the synchronization of the SCADA with the DTU system.
The SCADA data are stored with time stamps in CET and CEST for summer time. Figure
shows the two measured yaw signals. During winter time there is no time lag, but since the
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SCADA system has daylight saving, during summer time there is an hour difference between
the two systems.

Figure 6.9:
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For the synchronization of the nacelle mounted LIDAR the mean values of the 10min
mean wind speed over a period of time measured by the DTU nacelle cup-anemometer and
the LIDAR are plotted against each other. A time lag of 1-hour, where the LIDAR is following,
has been observed (Figure [6.10).
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Figure 6.10: Synchronization of the 10min mean wind speed measured by the LIDAR and
the nacelle cup-anemometer.

6.4 Data Processing

For the post-processing of the calibrated measurements MATLAB scripts were developed to
read the data, based on the measurement date included in each file name. An example of the
support structure load profiles when the wind turbine is in operation and is facing free wind, is
presented in Figure[6.11] where the fore-aft and the side-side bending moments along the tower
and the sub-structure/foundation are depicted. The values are normalized with the maximum
load appeared at the tower bottom and they correspond to six months of measurements.

6.4.1 Data Availability

During the measurement campaign, the operation of the different instrumentation has not
been constant. The main systems used are the data acquisition system (SCADA), the in-
strumentation of D01, the sub-structure/foundation instrumentation, the nacelle mounted
LIDAR and the wave buoy. Due to a gearbox failure the wind turbine was down for 9 months
(January-September 2013). However the data obtained during this period can be used for the
analysis of the response in stand-still conditions. Figure [6.12] presents the data time-line for
the whole period. The main problem experienced is the lack of data overlap.
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6.5 Recommendations for Future Measurement Campaigns

During this measurement campaign several lessons have been learned from the different prob-
lems encountered. Therefore, a few recommendations about future campaigns are presented.

e Before the beginning of the measuring period the synchronization of the different instru-
mentation systems should be ensured. Erroneous data interpretation might be due to
comparison of different time periods.

e Yaw and low speed idle (LSI) tests should be performed more often, for the accurate
calibration of the strain gauges due to drifts in the mean values mainly because of
changes in the temperature.

e The overlap of the different measuring systems should be ensured at least once during
winter and summer, in order to examine different environmental conditions.

e The theoretical calibration based on the dimensions of the structure should be trusted
more than the calibration based on the expected moment from the rotor weight, due to
the uncertainties introduced by the estimation of the nacelle center of gravity.

e The battery of a wave buoy should be replaced immediately, when it reaches the mini-
mum voltage threshold, not only due to a pause on the measurements but also because
of the risk of equipment loss.

e (Cases of boat impacts on the sub-structure should be recorded for further analysis, for
the estimation of the net damping.
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Figure 6.11: Profiles of support structure bending moments.
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Figure 6.12: Data time-line for the whole measurement period. The hatched entries show
data availability.
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CHAPTER 7

Wind Measurements Calibration

Wind speed on the site is measured by three different systems, a) the SCADA system of the
wind turbine, b) two nacelle mounted cup-anemometers and c¢) a nacelle LIDAR all measuring
wind speed time series. In this chapter the wind data from all the different systems are
analyzed and compared for a better overview of the wind conditions. Both sectors of free
wind and wake are examined. The turbulence intensity provided as an input to the aero-
elastic software and the Weibull probability density function used in the fatigue analysis of
the structure are estimated. 1 year of measurements are used for the analysis.

7.1 Nacelle Mounted Cup-anemometer/SCADA

The nacelle mounted cup-anemometer was calibrated externally and installed on the wind
turbine nacelle by DTU. A second cup-anemometer was calibrated and installed by Siemens
wind power. Figure presents the mean wind speed measured by the SCADA system of
the fully instrumented wind turbine D01 during 2012. Throughout the whole year the wind
turbine was in operation. The average wind speed on the site is 9.6m/s and the main wind
direction is 260°. D01 is in the free wind sector when the yaw angle is between 130° and 170°.

7.1.1 Turbulence Intensity
7.1.1.1 Free Wind

The longitudinal turbulence intensity (TI) is equal to the standard deviation of the horizontal
wind speed at the hub height divided by the mean wind speed. Scatter data both from the
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Figure 7.1: Mean wind speed measurements from the SCADA system of D01, for 2012.

SCADA system and the nacelle mounted cup-anemometer have been used for the calculation
of TI. The wind was separated in bins of 1m/s and the 90" percentile of the TI in each bin
is calculated (free wind sector). An exponential curve of the form y = a - € + ¢ - e is fitted
to this data to obtain the turbulence intensity as a function of the mean wind speed. Figure
[7:2] presents the scatter TI data in the free wind sector from the SCADA system along with
the two fitted curves (SCADA and cup-anemometer) and the TT proposed by the TEC 61400-1
standard [17], for wind turbine class B (I = 0.14). The standard deviation for offshore
conditions according to the standards is given by Equation

As it can be noticed in the operational region there is a difference of 30-40 % between the
TT estimated from the measurements of the SCADA data and from the DTU cup-anemometer.
This discrepancy is attributed to the conservative cup-anemometer readings, due to the wake
effect of the rotor. Figure displays the wind power spectrum obtained from a Fast Fourier
Transformation to the DT'U nacelle cup-anemometer time series. The influence of the rotor on
the wake flow is portrayed by the spikes at 3P and 6P. The wind measurements provided by the
SCADA system are derived by the Siemens nacelle cup-anemometer. The calibration of the
nacelle mounted cup-anemometer by Siemens was performed in Hgvsgre, based on 3 months
of measurements. A transfer function between the nacelle and the mast cup-anemometer
readings was derived.

To investigate the effect of the conservative cup-anemometer readings on the wind turbine
response, the blade and tower load spectra from the simulations are compared with the mea-
surements for each mean wind speed. Figure (y axis in logarithmic scale, x axis omitted)
depicts the difference in the load spectra energy for U = 15m/s. Assuming that the difference
is only a result of the higher turbulence present in the simulations, various correction factors
for the TI have been tested for each mean wind speed, until the load spectra match. The
green dotted line presents the simulations with the measured turbulence intensity from the
cup-anemometer, the light blue dashed line the simulations including the correction factors



7.1 Nacelle Mounted Cup-anemometer/SCADA 61

Free wind
0.6 T T ; T
, scatter data
E ——— 90th percentile SCADA
1 .
0.5 H ==+ 90th percentile cup—anemometer|
P -==|ECB

©
~
:

Turbulence intensity
o (=}
N w

0.1 e e e e - o

0 5 1‘0 1‘5 2‘0 25
U mean (m/s)

Figure 7.2: Turbulence intensity for the free wind sector, based on 1 year measurements.
Scatter data from SCADA system (green points), IEC class B (dashed black
line), exponential fitting to the 90" percentile of the scatter data provided by
the SCADA system (solid red line) and by the DTU nacelle cup anemometer
(dash-dot blue line).

for the TI and the pink solid line the measurements. The vertical lines correspond to the har-
monics of the rotational speed. The agreement in the load spectra between measurements and
simulations is better when a correction has applied to the cup-anemometer readings. Figure
[7.5]illustrates the fitted curve to the scatter turbulence intensity data from the SCADA system
along with the corrected TT from the nacelle cup-anemometer. There are small differences (less
than 10%) in the values provided by the two curves. Even though the limitations of the wind
measurements from both systems are known, the turbulence intensity provided by either of
them is used in the following simulations, being the only available wind data. Comparison of
measurements and simulations should still be analyzed with caution, as possible discrepancies
can be due to different wind conditions between them.

7.1.1.2 Wake

To account for the wake effect from different directions an effective turbulence intensity I.ys
(Equation is proposed in the IEC 61400-1 standards [17]. Instead of the recommended
uniform distribution, the wind rose was used for the estimation of the probability of the wind
direction. The yaw angles are separated in bins of 1° and the probability of each bin is
calculated from the Cumulative Density Function (CDF) of the distribution fitted to the wind
direction data (Section[5.1.2)). D01 is installed on the outside row of the wind farm and sees free
wind in the South-East direction. These yaw angles are excluded from the calculation of the
effective turbulence intensity. The effective TI estimated from the wind speed measurements
is shown in Figure and compared with the free wind TI and the effective T using uniform
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Figure 7.3: Wind spectrum obtained from the DTU nacelle cup anemometer. The y axis

is on a logarithmic scale and the frequencies are normalized with the rated

rotational speed. The vertical lines correspond to the harmonics of the rotational
speed.

PDF for the wind direction. As proposed in reference [62] the Wohler exponent m of the
most sensitive material should be used. Here m = 12. The difference between the I.f; using
uniform PDF and the I.¢; based on measurements at different wake sectors is up to 10%.
The I.;f accounting for the wind direction probability is more representative of the site and
therefore it will be used in the simulations for the analysis of the wind turbine response on
the wake.

7.1.2 Weibull Distribution

The 10min mean wind speed measurements from the free wind sector provided by the SCADA
system of the instrumented wind turbine D01 and the surrounding turbines C01, D02, E01,
E02, were used in Equation to calculate the Weibull probability density function of the
wind speed. Based on that and assuming 25 years of lifetime, the hours of each mean wind
speed can be estimated for the fatigue analysis of the system (hoursfree wing = 25 - 365 - 24 -
PDFeipur)- Figure presents the PDF of the wind speed for all the turbines.
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Figure 7.5: Comparison of turbulence intensity provided by the SCADA system and the
corrected cup-anemometer measurements.
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Figure 7.7: Wind probability distribution function, Weibull, based on 1 year SCADA mea-
surements for the instrumented and the surrounding wind turbines.
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7.2 LIDAR

A nacelle mounted LIDAR is installed on the wind turbine, to measure the upstream wind
flow. The operation of a LIDAR is described in Section 2.1} The wind speed measured by the
two beams is combined by Equation to construct the wind seen by the turbine.

The nacelle mounted LIDAR senses the wind speed over a volume defined by the two
beams. This characteristic does not allow enough resolution for small turbulence structures,
which results in an underestimation of the wind speed standard deviation and thus an un-
derestimation of the turbulence intensity [146]. Around the area of small yaw error (£15°)
the ratio of the wind speed standard deviation from the LIDAR over the standard deviation
from the cup-anemometer is close to 0.8, but as the wind direction deviates more from the
LIDAR axis the ratio increases drastically. Therefore, the turbulence intensity estimation
from the nacelle LIDAR should be examined carefully keeping in mind the sensitivity of the
measurements to the wind direction relative to the LIDAR axis.

Figure presents the correlation between the mean wind speed measured by the nacelle
cup-anemometer and the LIDAR when the wind turbine is in operation. Figure shows
the mean wind speed from the 10min time series constructed by the instantaneous beam
measurement and Figure |[7.8b illustrates the wind speed calculated from the combination of
the mean of each beam. Higher spread is observed when the wind speed is obtained from the
instantaneous beam measurements. In the case that the 10min mean wind speed is calculated
from the time series, where the horizontal wind speed is computed at each time step from the
instantaneous measurement of the radial wind speeds, overestimation of the mean wind speed
is expected. The horizontal shear or a local gust visible from one of the beams results in an
erroneously high transverse component, which is translated to a yaw error. For this reason
it is recommended that the mean wind speed is obtained by first calculating the mean radial
speeds of each beam VI and Vr and then applying Equation [21].

The correlation of the wind speed from the two instrumentation for different wind sectors
is depicted in Figure In the free wind sector the agreement is satisfactory, while the spread
is higher in the wake. Cases where the wind speed is partially in the wake, result in a larger
deviation of the radial wind speed measured by the two beams. This introduces an error in
the wind speed estimation as the main LIDAR assumption of homogeneous horizontal wind
is violated.

An empirical method to estimate the turbulence intensity from the LIDAR readings is
proposed in reference [21I]. The turbulence intensity estimated from the radial wind speed of
each beam is combined through Equation [7.I} where T'I; and TI, are the turbulence intensity
of each beam, defined as the standard deviation of the radial wind speed of the laser beam
over the beam’s mean wind speed. The TI estimated from the two beams is expected to be
the same, due to the assumption of homogeneous horizontal wind speed. The violation of this
assumption in the wake sector, renders the estimation of the turbulence intensity from the
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Figure 7.8: a) Correlation between the 10min mean wind speed by the nacelle LIDAR com-
pared with the nacelle cup-anemometer. b) Correlation between the 10min mean
wind speed by averaging the radial wind speed of the beams compared with the
nacelle cup-anemometer.

LIDAR in the wake not reliable.

Tlhiger = ——(—— (71)

Figure presents the correlation between the turbulence intensity estimated by the na-
celle cup-anemometer and the LIDAR in the free wind sector. An overestimation of the T1 by
the cup-anemometer can be observed, due to the rotor wake effect. However, TI measurements
from nacelle mounted instruments should always be considered with caution. In order to build
up confidence in the turbulence intensity estimation from a LIDAR, the measurements should
be validated against a mast cup-anemometer.
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CHAPTER 8

Model Setup

In this section a detailed description of the process followed to build the wind turbine model
is presented. The wind-wave distributions and the soil model given as inputs to the software
are also described. The aero-elastic software HAWC2 [3] developed at DTU is used for the
simulations. The code is based on a multi-body formulation, where each body is a Timoshenko
beam with six degrees of freedom for each node. The different bodies are connected with
constraints equations. The response of a horizontal axis wind turbine under aerodynamic,
hydrodynamic and soil loads is calculated in the time domain. The Newmark-beta method is
used for the solution of the equations. The 3 bladed 3.6MW pitch regulated-variable speed
offshore wind turbine model is developed as a multi-body finite element beam model. For the
modeling of the support structure (tower, sub-structure and foundation) the drawings from
DONG Energy have been employed. The blade is built based on information provided by
Siemens wind power and on the downscaled blade geometry and aerodynamics of the NREL
5MW wind turbine [147]. Table presents the gross properties for the 3.6MW wind turbine
model.

8.1 Support Structure Characteristics

The distributed tower properties are based on the information from Siemens wind power. The
tower has a height of 62m. For the calculation of the bending stiffness the Young’s and the
shear modulus are taken equal to 210 GPa and 80.8 GPa respectively.

The transition piece has a constant diameter of 5m and a length of 24m. The monopile
has a linearly tapered diameter from the end of the transition piece to the seabed. The sub-
merged pile has a constant diameter of 6m and a penetration length of 23m. The geometrical
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Description Value

Rated Power 3.6MW

Rotor type, position 3-bladed, upwind
Power Regulation variable speed, collective pitch
Rotor diameter 107m

Blade length 52m

Cut-in, rated, cut out wind speed 4m/s, 13.5m/s, 25m/s
Cut-in, rated rotor speed orpm, 13rpm
Hub height (above LAT) 83.5m

Water depth 27m

Tower top mass 234.5tons

Shaft tilt, coning 59, 2.5°

Table 8.1: Gross properties for the 3.6MW Siemens wind turbine

characteristics of the substructure were provided by DONG Energy. The depth on the site is
27m. The Young’s and shear modulus are taken equal to the tower values.

8.2 Downscaling Process

The initial blade model has been built up in reference [148] based on the similarity rules
for wind turbine up-scaling developed by Chaviaropoulos in [I47]. Geometric similarity rules
were applied to the geometric, structural and aerodynamic properties of the NREL 5MW
reference wind turbine [68] to obtain the 3.6MW blade. The initial blade model characteristics
were tuned to match the blade mass, natural frequencies and center of gravity based on the
information provided by Siemens wind power. Respecting the shape of the downscaled mass
distribution, mass has been moved along the blade model to make the center of gravity coincide
with the one from the real blade. The bending stiffness has been accordingly modified to match
the blade natural frequencies with the ones provided by the manufacturer.

The scaling factor SF' (Equation , defined as the square root of the ratio of the rated
power of the considered wind turbines, was used in the downscaling process.

SF — Prated,3.6]WW

= 0.849 8.1
Prated,SMW ( )

Each characteristic of the downscaled blade is calculated from Equation 8.2 where the
exponent n depends on the considered property. The values for n can be found in reference
[147]. The thickness of the blade is given by the relation ¢t = dc¢, where § is the relative
thickness and c the chord of the blade. The spar cap was chosen to be 0.3c at the blade root
and 0.5¢ at the tip, with linearly changing intermediate values. The Young’s modulus was
taken equal to 22 GPa for the first 3.5m from the root, and equal to 16.7 GPa for the rest of
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Blade Natural Frequencies Percentage difference

1%t flapwise bending 0.13%
1%t edgewise bending 0.9%

274 flapwise bending 3.38%
2nd edgewise bending 15.14%

Table 8.2: Difference in the natural frequencies between modeled and real blade

the blade. Table presents the difference in the natural frequencies between the downscaled
model and the actual blade.

Downscaled = Re ference - SF™ (8.2)

In Figure the thrust curve provided by the manufacturer is compared with the thrust
obtained by a HAWC2 simulation, normalized with the maximum given thrust. The two curves
seem to agree well. Discrepancies in the maximum thrust are attributed to the different control
strategies around rated wind speed.

Thrust curve
1.2 :
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Figure 8.1: Thrust curve provided by the manufacturer compared with the HAWC2 blade
model, normalized with the maximum given thrust.

The blade tip-tower clearance of the undeformed blade is 11m taking into account the 5°
tilt of the nacelle and the 2.5° coning angle of the blade. The maximum blade tip deflection
for the design case DLC 1.3 should not exceed 67% of the clearance of the undeformed blade,
which corresponds to a maximum acceptable tip deflection of 7.4m. 10min simulations with
12 turbulence seeds per mean wind speed were performed in HAWC2 and the maximum tip
deflection was calculated for an azimuth angle range of £15 in front of the tower. Figure [8.2
presents the blade tip deflection for all three blades for each mean wind speed. The maximum
deflection is observed around rated wind speed and it does not exceed the maximum acceptable
value.
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Figure 8.2: Maximum tip deflection for all three blades for each mean wind speed.

8.3 Model Damping

The damping of the structure is tuned to match the measured damping in stand still from the
boat impact, analyzed in Section In the HAWC2 model the damping is applied as a
Rayleigh stiffness proportional damping. For the estimation of the additional offshore damping
in the 3.6MW model wind turbine an impulse is applied in the side-side direction for various
Rayleigh coefficients, until the model damping matches the measured one (trial and error). A
tower damper is not included in the simulations. A Rayleigh damping factor multiplying the
linear stiffness coefficients is used to obtain the soil damping coefficients. Simulations were
performed with 2m/s mean wind speed, blade pitch angle 82°, flexible soil and waves with
significant wave height 0.41m. The damping was estimated by fitting an exponential function
to the relative maxima of the tower top acceleration time series.

Figure [8.3a) shows the tower top acceleration in the fore-aft and side-side direction in
four separate time instants after the impulse was applied. The assumption of separate mode
excitation is satisfied. Figure presents the envelope of the decaying time series in the side-
side direction and the fitted exponential function. The estimated damping ratio is ¢ = 0.019
which corresponds to a logarithmic decrement of § = 12.4%.

To verify the result for the additional offshore damping estimated from the impulse re-
sponse, another simulation with ambient excitation was performed in HAWC2. The mean
wind speed was 4m/s, the blades were pitched at 82°) and the significant wave height was
0.41m. Figure depicts the motion seen from above in the two directions (fore-aft and
side-side), where the main excitation seems to be in the fore-aft direction. When using the
vibrations resulting from ambient excitation, the damping ratios can be estimated in a similar
way as from the decaying time series, through the parameters of a fitted exponential curve to
the relative maxima of the auto-correlation function of the tower top acceleration [149]. The
separate mode excitation assumption is satisfied due to the presence of vibration only in the
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Figure 8.3: Tower top accelerations and exponential decay after the application of an impulse
to the structure in the side-side direction (normalized).

fore-aft direction, so the system can be handled as a Single Degree of Freedom (SDOF). Taking
the inverse Fast Fourier Transform of the power spectral density of the tower top acceleration
signal in the direction of the wind flow gives the auto-correlation function shown in Figure
8.4b| (normalized auto-correlation). In the same figure the fitted exponential curve to the
relative maxima is also presented. The obtained damping ratio is ¢ = 0.015. The lower value
compared to the impulse response applied in the side-side direction is due to the pitch angle
of the blades (82°) that introduces some aerodynamic damping in the side-side direction, an
observation also made from the measurements (Section [L1.1.1]).

8.4 HAWC2 Model

The different sections provided as inputs to HAWC2 are the Structure, the Orientation, the
Constraints, the Soil, the Wind, the Hydrodynamic, the Control and the Output Section.
In the first three sections the wind turbine model is built up. The soil, the wind and the
hydrodynamic sections include the parameters defining the different operational conditions.
In the control section the controller actions are declared. In the output section the sensors
over the wind turbine are specified, in order to obtain the simulation results.

A schematic picture of the complete HAWC2 model is presented in Figure The tower
top mass is equal to the mass of the nacelle plus the hub and the blades: tt;ass = Muaceile +
3 Myjade + Mpyp. The nacelle mass is modeled as a concentrated mass on the tower top with
a corresponding inertia (Equation . The inertia of the nacelle about the yaw axis Iy
and the location of the center of gravity r are based on the downscaled values of the 5MW
reference wind turbine. The nacelle center of mass is located 1.61m downwind of the yaw axis
and 1.48m above the yaw bearing.
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Figure 8.4: Tower top accelerations and auto-correlation function of tower top acceleration.
Simulation with 4m/s mean wind speed.

Mode nr. Mode Name Percentage difference
1 1%t tower fore-aft 0.19%
2 1%t tower side-side 0.9%
3 1%¢ yawing flap (asymmetric) 4.53%
4 15 tilting flap 2.69%
5 1%¢ symmetric flap 0.86%
6 1% edge symmetric + tilt 3.33%
7 1%t edge asymmetric + yaw 4.42%

Table 8.3: Difference in the natural frequencies between model and real wind turbine

Inecelle = Iyaw - T2Mnacelle (83)

The dynamics of the drivetrain are not modeled in HAWC2, instead an equivalent inertia
of the generator about the slow speed shaft is implemented to account for it. The inertia of
the generator is given by N2 Igen,mss. The electrical efficiency of the generator was taken to
be 90% and the gear box ratio N =1 : 119.

Tables and depict the differences observed between the model characteristics and
the real turbine. The frequencies of the coupled structure match well the requirements. The
properties of the blade and the support structure match the natural frequencies, the total mass
and center of gravity given by the manufacturer. The maximum acceptable tip deflection in
front of the tower during operation is below the required threshold. The model characteristics
seem to be within acceptable limits and the wind turbine model reasonably represents the
actual wind turbine on site. Therefore, the simulation results can be considered comparable.
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Figure 8.5: HAWC2 model.

The variable speed and collective blade pitch control of the wind turbine is modeled through
a proportional integral-controller (PI) developed in DTU [70], performed through different
DLLs (Dynamic Link Library) defined in the controller section. For the verification of the
controller behavior, the mean pitch angle, the mean rotational speed as a function of the
mean wind speed and the power curve resulting from the simulations is matched against the
measurements and the power curve provided by the manufacturer (Figure .

8.5 Modeling of Ambient Loads

In the following sections the modeling of the ambient loads in HAWC?2 is explained. The wind
inflow data, irregular wave characteristics and soil properties have been measured in the site
and have been imported in the simulations.
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Mass characteristics Percentage difference
Blade mass 0.16%
Blade center of gravity 0.08%
Tower top mass 0.24%

Table 8.4: Difference in the mass properties between model and real wind turbine
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Figure 8.6: Verification of controller behavior.
8.5.1 Wind Model

The Blade Element Momentum theory (BEM) is implemented in HAWC2 for the calculation
of the aerodynamic loads, extended to include dynamic inflow, dynamic stall, skew inflow and
shear effects on the induction. The airfoil lift and drag coefficients (C; , Cy respectively), the
chord and the relative thickness distribution are given as inputs to the software. The wind
section is specified by the deterministic part of the wind that consists of the mean wind speed,
linear trends and ramp ups if desired. The stochastic part of the wind is based on the Mann
turbulence model. The shear can either be constant, linear, follow the logarithmic or the
power law. In the current simulations the power law is used with a shear exponent o = 0.2
(Equation [2.1p). The tower shadow effect that influences the wind in the region close to the
tower, is taken into account in the simulations.

Mean wind speed measurements of 1 year from the site obtained from the SCADA sys-
tem (Section [7.1.2) are used to fit a Weibull distribution to the data. The scale and shape



8.5 Modeling of Ambient Loads 77

parameters are oy, = 10.69m/s and B, = 1.98 respectively. The shape parameter 3, is ob-
tained by solving iteratively Equation [6]. After estimating the shape parameter (3, the
scale parameter vy, is given by Equation [A.11] The resulting Weibull probability distribution
function is shown in Figure [8.7a] and is given by Equation

Figure [8.7b| presents the scattered wind turbulence intensity obtained from wind speed
measurements, along with the fitted exponential curve, which is applied in the aero-elastic
simulations. The simulation of the wind turbulence is then made based on the Mann wind
turbulence model as described in [I7]. The air density used in the simulations is equal to
pa = 1.225kg/m? .
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(a) Wind  probability  distribution function, (b) Scattered turbulence conditions for free wind
Weibull, based on 1 year measurements. sector, fitted curve based on the 90" percentile
of the TI (solid line) and IEC A (dashed line).

Figure 8.7: Wind turbulence scatter data from the nacelle mounted cup-anemometer and
Weibul distribution.

8.5.2 Wave Kinematics

For the calculation of hydrodynamic forces the irregular linear wave theory combined with the
wheeler stretching method to account for loads above the mean sea level is implemented in
the aero-elastic code. The hydrodynamic loads are based on the Morison’s equation (Equation
. The Morison’s equation is valid for piles with diameter D much smaller that the wave
length A\. When this assumption is not satisfied, the presence of the pile influences the waves
and the hydrodynamic loads, calling for a diffraction correction.

1 nD? .
F, = §prD(uw — Us)| Uy — us| + prMT(uw — Usg) (8.4)

Uy, 18 the fluid velocity, 4, the fluid acceleration, us the structure’s vibration velocity,
usthe structure’s vibration acceleration, p,, the water density equal to 1027kg/m? and D the
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pile diameter. The first part of the equation constitutes the drag force Fp with the drag
coefficient Cp and the second the inertia force F); with the inertia coefficient Cj;. In the
inertia coefficient the contribution from both the hydrodynamic mass force and the Froude-
Krylov force is included. For piles with diameter 3-5m installed at water depths of 5-25m the
inertia, component is dominant based on the calculation of the Keulegan-Carpenter number
KC [39, 150].

According to the design rules, typical values for the coefficients of a vertical cylinder are
Cy = 2 and Cp = 0.65. The Christchurch Bay experiment [42], relevant in this case, as
it deals with random waves, resulted in a value of 2 for the Cj; and in a range of 0.65-1.05
for the Cp accounting for marine growth. In this study the inertia and drag coefficients are
selected equal to 2 and 1 respectively. Different wave direction with respect to the wind and
currents can also be used in the simulations.

Two different wave spectra can be implemented in HAWC2. In the present work the
JONSWAP spectrum (Equation is fitted to the wave elevation, measured by a buoy
installed near to the offshore wind turbine (Figure [8.8)). Time series of surface elevation and
directional spectrum are measured by the buoy, providing a view of the sea state every 30min.
The ~ parameter of the spectrum is given by Equation [11]. The parameters of the fitted
spectrum are given as inputs to the HAWC2 simulations (hydrodynamics section), for the
generation of the wave field. The significant wave height and the peak period follow the trend
shown in Figure The wave kinematics are provided through a DLL interface.

Wave spectrum
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Figure 8.8: JONSWAP spectrum fitted to the wave data measured by the buoy.

8.5.3 Soil Model

In the following simulations, for the lateral loading of the monopile, the commonly used
p-y curve (lateral resistance-deflection) is employed, where the soil stiffness is modeled by
distributed nonlinear springs along the subsoil portion of the support structure, as shown
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in Figure [A.2] The soil characteristics used in the simulations are based on geotechnical
measurements (Figure . The p-y curve can be generated from Equation for sand
and Equations [A.23| and |A.24] for clay, using the measured submerged unit weight 7' and
friction angle ¢. Figure presents the p-y curve for three different soil depths in the site.

The pile penetrates the first two soil layers of clay and sand based on the site measurements.
The soil properties in terms of friction angle and effective unit weight within the same layer are
varying. A p-y matrix at Im spacing along the pile calculated from the above characteristics
is given as input to HAWC2 in the soil section.
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(a) Soil profile on the site. (b) Soil model, p-y curve for different depth values.

Figure 8.9: Soil profile and p-y curve.
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CHAPTER 9

Model Validation

Accurate design loads prediction of offshore wind turbines from model simulations is required
for component reliability. Therefore, validation of design tools with measurements from oper-
ational wind farms is essential. Validation of a general model has been reported in reference
[151], where a variable speed wind turbine model was developed and a qualitative comparison
with available measurements was performed to prove the accuracy of the derived results. In
references [65], [66] simulation methods for wind turbines in wake were validated with measure-
ments from the Tjaereborg wind farm and with experimental data from the National Renewable
Energy Laboratory. Prior validation of aero-elastic codes for offshore applications has been
made to a limited extent, such as a comparison of the modeled loads with measurements for
the offshore wind farm at Blyth, as performed by van der Tempel in reference [152]. The fre-
quency domain method applied to estimate the fatigue loads is compared with measurements.
A comparison and verification of the aero-elastic codes for offshore wind turbines developed
by universities and companies world wide is presented in references [153, [I54]. The aero-
elastic code HAWC?2 and the dynamic wake meander model for loads and power production
were validated in reference [155] by comparing simulation results from HAWC2 and full-scale
measurements from the Dutch Egmond aan Zee wind farm. The comparison was performed
in terms of statistics and 1Hz equivalent loads, both for free and wake sector. The loads
on the wind turbine and the power production with respect to the wind direction were also
examined, where power drops were observed for directions with 7D and 11D separation from
the neighboring turbines. Validation of support structure models was performed in reference
[36], where the simulation results were compared with experimental data from the two wind
farms 'Irene Vorrink’ and "Lely’.

In this chapter the validation of the wind turbine model is performed with full scale
measurements. The extreme and mean loads as well as the 1Hz equivalent load of the sub-
structure/foundation, the tower and the blades are presented separately for the validation of
the different components.
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9.1 Sub-structure/Foundation
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Figure 9.1: Maximum values of the bending moments from measurements and HAWC2 sim-
ulations at the sub-structure/foundation normalized with the simulation maxi-
mum value at the rated wind speed (free wind sector). The scatter data (blue
crosses) present the measured extreme bending moments. The solid lines de-
note the average of the extreme values both from measurements (cyan line) and
simulations (average of 12 extremes from 12x10 min per mean wind speed).

A comparison of the extreme values of the bending moments at two different positions along the
substructure between measurements and simulations is presented in Figure[9.1] The displayed
data are normalized with the simulations’ maximum value at the rated wind speed. 10min
simulations were performed in HAWC2 with 12 different turbulent seeds per mean wind speed
for load case DLC 1.1. Two different damping values (structural, hydrodynamic, soil damping)
were used in the simulations 6 = 6% and § = 12%, as estimated from the boat impact (Section
, to examine the importance of the accurate damping value for reliable load prediction.
The damping in the model is tuned by applying an impulse as described in section [8.3] The
average value of the extreme loads both from measurements (light blue line) and simulations
(pink line, average value of the 12 extremes from the 12x10min simulations per mean wind
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speed) are presented. The measurements’ average curve is obtained by separating the wind in
bins of 1m/s and calculating the average of the extreme values in each bin.

The profile of the simulations seems to follow satisfactorily the measurements. The sim-
ulated loads in the fore-aft direction follow the envelope of the measured bending moments.
The increased side-side loads in the measurements in the area around the rated wind speed
could be due to switching between the controller regions. Discrepancies are mainly attributed
to differences in the blade profiles and aerodynamics, limitations of the wind speed readings
and uncertainties in the soil modeling. Lower simulated side-side bending moment M, at wind
speeds below rated are due to differences in the edgewise stiffness of the blades in the model
from the actual turbine. The reasonably good agreement between measurements and simu-
lations in the average of the extreme loads in the side-side direction verifies the importance
of sufficient damping in the model for accurate load prediction. The higher damping in this
direction makes the loads more stable for wind speeds above rated, while for lower damping
values the extreme simulated load are significantly higher compared to measurements. In
the fore-aft direction the aerodynamic damping is dominant and the influence of the addi-
tional offshore damping not so apparent. Differences in the aerodynamic characteristics of
the blades between model and turbine are more influential factors and are responsible for the
discrepancies in the loads estimation in the fore-aft vibration mode.

A comparison of the mean values of the bending moments at the transition piece are
presented in Figure [9.2] The data are normalized with the simulations’ maximum value at
the rated wind speed.
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Figure 9.2: Mean values of the bending moments from measurements and HAWC2 simula-
tions at the sub-structure normalized with the simulation maximum value at the
rated wind speed (free wind sector).

Figure[0.3]| presents the moment distribution in the fore-aft direction along the pilesand and
the displacement in the longitudinal and lateral direction for U = 15m/s from the simulations.
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The data are normalized with the maximum of the curve that represents the maximum values.
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Figure 9.3: Moment in the fore-aft direction and displacement distribution along the pilesand
at 15m/s from simulations, normalized with the maximum value of the max
curve.

The 1Hz damage equivalent loads are computed for the fore-aft and side-side moments
(m = 4 for steel structures). Figure presents the 1Hz damage equivalent load from the
HAWC?2 simulations as compared with the measurements, at the bottom of the transition
piece and at the pile sand near the clay surface, normalized with the simulated fatigue load
at rated wind speed. The peak that appears at that wind speed in the fore-aft moment at
the transition piece could be attributed to the switching in the controller regions as discussed
earlier. For all wind speeds the damage equivalent loads both of the fore-aft bending moment
M, and the side-side moment M, resulting from the HAWC2 simulations show reasonable
agreement with the site measurements. Higher simulated fatigue in the fore-aft direction is
also due to conservative turbulence intensity values. The higher discrepancies in the fatigue of
the pilesand are due to the uncertainties in the soil model. Differences in the spring stiffness
distribution and the actual soil properties are responsible for the discrepancies in the pilesand
momnient distribution and thus the extreme and fatigue loads. For the calculation of the
measurement’s fatigue all wind-wave misalignment sectors are considered, while for all the
simulations the waves are aligned with the wind. The wind-wave misalignment affects mainly
the loading in the side-side direction. For this reason the simulations’ fatigue in that direction
appears to be lower. This topic will be discussed in Chapter [12]
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Figure 9.4: 1Hz equivalent load from HAWC?2 simulations compared with the site measure-
ments, against the wind speed (free wind speed). Values are normalized with
the simulations fatigue load at rated wind speed.

9.2 Tower

A comparison of the extreme values of the fore-aft and the side-side bending moments at
the tower top and tower bottom is shown in Figure The data are normalized with the
simulations’ maximum at rated wind speed. Figure presents the comparison of the mean
values of the bending moments at the tower bottom. The profile of the simulations follow
satisfactorily the measurements. The negative values of the fore-aft bending moment at the
tower top for low wind speeds is due to the negative defined bending moment from the rotor

weight.

The 1Hz damage equivalent loads are computed for the fore-aft and side-side moments
(m = 4 for steel structures) at the tower top and tower bottom. Figure shows the damage
equivalent load from the HAWC2 simulations as compared with the measurements, at the
bottom of the tower. The presented data are normalized with the simulation maximum value
at the rated wind speed. The agreement in the fore-aft direction is satisfactory. Discrepancies
in the side-side direction are always attributed to the differences in the edgewise stiffness of the
blades and the uncertainties in the soil model. In the fatigue estimated from the measurements
the cases of wind-wave misalignment are also included, but not taken into consideration in

the simulations presented here.
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Figure 9.5: Maximum values of the bending moments from measurements and HAWC2 sim-
ulations at the tower bottom normalized with the simulation maximum value at
the rated wind speed (free wind sector). The blue crosses correspond to each
10min measurement, the cyan line to the average of the measurements’ max
values and the pink line to the average of the simulations’ max values.

9.3 Blades

A comparison of the in-plane and out-of-plane blade root bending moments between measure-
ments and simulations is presented in Figures and 9.9 Keeping in mind the fact that
the only available information about the actual blade are the first four natural frequencies,
the mass and the center of gravity and that the model setup is based on the downscale of
a conceptual blade, the simulation profiles follow satisfactorily the measurements. The pre-
sented data are normalized with the simulations’ maximum bending moment at the rated
wind speed. The discrepancies observed in the in-plane moment are due to differences in the
edgewise stiffness of the blades. Quite accurate tuning of the flapwise frequencies (Table
and the high contribution of the aerodynamic damping results in a better agreement of the
extreme out-of-plane root bending moment between measurements and simulations. However,
differences in the aerodynamic characteristics of the blades between the model and the actual
turbine are responsible for the discrepancies in that direction, which is also visible in the
higher simulated fore-aft bending moment of the support structure.

The comparison of the 1Hz equivalent load of the in-plane and the out-of-plane blade root
bending moments between measurements and simulations is presented in Figure [9.10 The
Wohler exponent m is equal to 12. The relatively good agreement in the fatigue of the in-plane
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Figure 9.6: Mean values of the bending moments from measurements and HAWC2 simula-
tions at the tower normalized with the simulation maximum value at the rated
wind speed (free wind sector). The blue crosses correspond to each 10min mea-
surement, the cyan line to the average of the measurements’ mean values and
the pink line to the average of the simulations’ mean values.

moment proves that the model blade mass and the rotational speed are similar to the actual
values. Variations in the aerodynamics of the airfoils, conservative turbulence intensity and
different controller tuning are mainly responsible for the discrepancies in the fatigue of the
out-of-plane root bending moment.

9.4 Validation of Model on the Wake

Figures to present the comparison of measurements and simulations in the wake
sector for the different components. The calculated effective turbulence I.f; applied in
the simulations to account for the wake effect is described in Section The simu-
lated extreme bending moments and 1Hz equivalent loads from the wake sector on the sub-
structure/foundation, the tower and the blades are compared with site measurements. The
profiles seem to follow satisfactorily the measurements. Discrepancies are due to differences
in the blade aerodynamics, blade stiffness distribution and soil modeling uncertainties as dis-
cussed earlier.
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Figure 9.8: Maximum values of the in plane and out of plane blade root bending moments
of all three blades from measurements and HAWC2 simulations normalized with
the simulation maximum value at the rated wind speed (free wind sector).
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Figure 9.11: Maximum values of the bending moments from measurements and HAWC2
simulations at the foundation normalized with the simulation maximum value
at the rated wind speed (wake sector).
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ulations at the foundation normalized with the simulation maximum value at
the rated wind speed (wake sector).



9.4 Validation of Model on the Wake 91

Max Fore—Aft moment Mx at tower bottom Max Side—Side Moment My at tower bottom
2 : : 3 : ‘
+ measurements max value + measurements max value
measurements average of max measurements average of max
—— HAWC2 average of max 2.5[ ——HAWC2 average of max 1
T

15¢ 1

Mx (dimensionless)
My (dimensionless)

10 20 30 0 10 20 30
Wind Speed (m/s) Wind Speed (m/s)

Figure 9.13: Maximum values of the bending moments from measurements and HAWC?2
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the rated wind speed (wake sector).
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Figure 9.14: 1Hz equivalent of the bending moments from measurements and HAWC2 sim-
ulations at the tower normalized with the simulation maximum value at the
rated wind speed (wake sector).
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three blades from measurements and HAWC2 simulations normalized with the
simulation maximum value at the rated wind speed (wake sector).
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all three blades from measurements and HAWC2 simulations normalized with
the simulation maximum value at the rated wind speed (wake sector).



CHAPTER 10

Uncertainties

Measurements or simulations no matter how carefully they are designed and completed, they
are always subject to errors. It is crucial for the reliability of the predicted wind turbine
response to quantify the uncertainties of the system. Model loads validation is a challenging
task, since it involves uncertainties in the soil properties (soil stiffness and damping), in the
wind and wave model, as well as in the modelling of the coupled wind turbine dynamics.
The uncertainties examined in model validation can be of three types: wind turbine model
(software modeling), physical (soil stiffness, wind and wave model), measurement (equipment
limitations) and statistical uncertainties. Model uncertainties refer to the approximations
made during the design of the simulation models as well as to the distribution of the stochastic
variables. Physical uncertainties contain the uncertainties of the physical parameters, like the
mean wind speed or the significant wave height. Measurements uncertainties are related to
the quality of the equipment. Statistical uncertainties refer to the amount of data available.
Reference is made to [156] and [I57], where the uncertainty quantification for modal test data is
analyzed, based on the sources of uncertainties that are random and with bias. Random errors
are categorized as Type A uncertainties that can be evaluated directly from measurements,
while systematic and bias errors as Type B that are estimated by other means [I58]. Bias
errors are constant over a measurement campaign assuming that the same equipment is used.
They are usually the result of an error during the calibration process and their uncertainty is
based on experience.

In references [30] and [47] the bootstrap method is applied to specify the uncertainty
on the predicted loads due to limited amount of field measurements. By estimating the
standard uncertainty (defined as the standard deviation over the square root of the number of
observations) of the various parameters contributing to the wind turbine loading, it is possible
to quantify their variability and hence their effect on the range of the predicted design loads.

The uncertainty in wind measurements and wind energy production estimation is thor-
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oughly analyzed in reference [I59]. If the Weibull distribution is used for the wind resource,
the wind uncertainty is equal to the uncertainty of the estimated parameters a,, and 8,,. The
wind resource uncertainty is divided into four categories: wind speed uncertainty which is con-
nected to errors in the anemometers, long-term resource uncertainty due to specific duration
of measurements that might not represent the environmental conditions experienced through
the lifetime of the wind turbine, wind resource variability uncertainties and site assessment
uncertainties like shear extrapolation techniques applied to a specific location. An overall
uncertainty of the wind speed measured by a mast cup-anemometer in the range of 3%-13%
(of the measured U) is estimated by Brower in [160]. In reference [159] the use of wind mea-
surement devices like LIDAR or SODAR is suggested for the reduction of the uncertainty in
the wind speed estimation, mainly due to elimination of errors introduced by shear models
extrapolation or tower and wake effects.

The standard deterministic wind turbine assessment described in the IEC standards [17]
is compared with a probabilistic approach in reference [161]. In the probabilistic method
the uncertainties, expressed as coefficients of variation (COV), related to the wind data are
accounted for and used for the evaluation of the reliability of the wind turbine. The uncer-
tainties are considered as stochastic variables with probability distributions and they include
uncertainties connected to the wind (quality and quantity of wind measurements), the model,
the physical uncertainties and other sources like turbine malfunctions.

10.1 Calculating Uncertainties

The uncertainty referred in the current work is defined as the dispersion of the values around
an estimated mean [I58]. The procedure of uncertainty quantification is thoroughly described
in reference [162] and is summarized in this section. Firstly, all sources of uncertainties have
to be identified and their standard uncertainty should be estimated. Assuming that several
independent observations have been made for each variable z;, the standard uncertainty wu,,
is given as the ratio between the estimate of the standard deviation s,, and the square root of
the number of observations N (Equation . In case that no data are available, the value
of the standard uncertainty is based on scientific experience. A list of uncertainty parameters
that should be taken into account in the uncertainty quantification of measurements is given
in IEC 61400-12 [163].

Uy; = (10.1)

The accuracy of the estimation of the mean and the standard deviation of the random
variable x; depends on the amount of samples. The difference between the actual standard
deviation o,, and its estimate s, is given through the Student’s parameter ¢. Assuming that
the variable x; is normally distributed the corrected standard uncertainty is given by Equation
[10.2 Considering a confidence level of 95% and a system with infinite number of degrees of
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freedom the value of t = 2 [164] [165].

Uy; = (10.2)

The contribution of each variable to the standard uncertainty of the output/measurement
is given through the sensitivity factor c,,, which is associated with the partial derivative of the
mathematical expression of the output/measurement f as a function of the different variables
(Equation . In the case of correlated input variables, their covariance should be also
included in the calculation of the uncertainty. If it is omitted, an erroneous evaluation of the
standard uncertainty of the measurement is possible.

of

“i = B
7

(10.3)

The overall uncertainty is a combination of the uncertainties of the variables, accounting
for their sensitivity factors ¢;, and their correlation coefficients r(x;, ;). Equation m gives
the combined standard uncertainty, where n is the number of variables contributing to the
overall uncertainty of the measurement/output. [162] [165].

n n—1 n
Ue = \/ CRUZ A2 D CpiCojUp U, (T, ) (10.4)
i=1 i=1 j=i+1

Even though w, is used to quantify the uncertainty of a measurement, it is often recom-
mended that this uncertainty is expanded to cover a large variation of the possible values
observed [164], 165]. The expanded uncertainty U, is obtained by multiplying the combined
standard uncertainty with a coverage factor k (Equation . For an infinite number of
degrees of freedom and a confidence level of 95% k is equal to 2 [162].

Uo=k-u, (10.5)

10.2 Uncertainty Analysis

A detailed uncertainty analysis should list all sources of uncertainties, the standard uncertainty
of each variable and their method of evaluation [162]. An uncertainty analysis is performed
both in the measured and the simulated response following the steps described in the previous
section. The analysis is carried out assuming a confidence level of 95%.
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10.2.1 Measurements Uncertainties

The main parameters contributing to the loading of the structure and whose uncertainties
are propagated to the measurement are the wind speed, the wave velocity and the soil prop-
erties. The wave and the soil uncertainties are not considered, as no information is known
about the uncertainty of the wave buoy and the soil properties measurements. Since the
tolerance of the different instrumentation systems (category B uncertainty) are not provided
by the manufacturer, typical values suggested in IEC 61400-12[163] are implemented. The
standard uncertainty of the measurement (category A) is obtained directly from Equation
multiplied with the coverage factor to gain the expanded uncertainty U.. The combined
measurement uncertainty, accounting for the uncertainty in the wind measurement, is given
by Equation with correlation coefficient equal to r(z;,z;) = 0.

The sensitivity factor ¢;,; corresponding to the contribution of the wind uncertainty to the
overall measured fore-aft bending moment uncertainty is calculated from the derivative of the
thrust force (T = 1/2p,CrAU?). For the quantification of the uncertainty of the side-side
bending moment the torque uncertainty (combined standard uncertainty of the uncertainty in
the power and the rotational speed measurements M; = P/w) instead of the wind uncertainty
is estimated.

Figures to depict the measured average of the bending moments per mean wind
speed on the blade root, the tower and the sub-structure/foundation. In the same figures the
error bars indicating the expanded uncertainty U, of each measurement are also presented. The
wind is separated in bins of 1m/s and the mean of each 10min time series is calculated. The
standard deviation of the means and the number of observations in every bin are used for the
calculation of the standard uncertainty. The measurement standard uncertainty is combined
with the wind and the torque uncertainty for the estimation of the overall uncertainty of the
measured bending moments. The expanded uncertainty of the sub-structure/foundation is
between 100-500kNm while for the tower and the blades between 20-150kNm and 5-30kNm
respectively. The reason for this difference is the shorter measurement period of the sub-
structure/foundation moments. For higher wind speeds the uncertainty is larger due to higher
data dispersion and less observations. The presented data are normalized with the maximum
value of each curve.

10.2.2 Simulation Uncertainties

The overall uncertainty in the load prediction can be from different sources, like the simulation
model or the representation of the environmental conditions. The model uncertainties are not
quantified in the present study, as the model parameters remain constant. The uncertainty of
the simulated load values, is herein estimated as the standard uncertainty, given by Equation
10.TJmultiplied with the coverage factor for the estimation of the expanded uncertainty. A more
detailed analysis of the uncertainties accounting for all variables will require the application
of more advanced probabilistic methods like the Monte Carlo technique.
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Figure 10.1: Average measured fore-aft and side-side bending moment at the bottom of the
transition piece and at the pilesand with the corresponding error bars per mean
wind speed. Data normalized with the maximum value of each curve.

Figures to present the average values of the simulated bending moments (solid
blue line) as a function of the mean wind speed and their upper and lower boundaries given
from the uncertainty analysis (dashed light blue lines). In the same graph the average of
the measured bending moments along with their error bars are also depicted. The highest
discrepancies are observed in the sub-structure/foundation loads. For wind speeds below rated
the average fore-aft measured moment at the tower bottom is accurately simulated, being
always within the simulation uncertainties. Differences in the side-side bending moment of
the support structure are due to different control strategies and uncertainties in the soil model.
The commonly used p-y curve is not representative of the actual soil-pile interaction and more
advanced models (ex. 3D FEM models) should be implemented in the simulations. In the
case that the soil modeling uncertainties are included in the analysis, the overall uncertainty
is expected to increase, due to the significant influence of the soil properties upon the response
of the structure. The measured out of plane root bending moment is within the uncertainties
of the simulated loads for all wind speeds, while the discrepancies in the in plane root bending
moment are due to model uncertainties (unknown blade stiffness distribution).
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the corresponding error bars per mean wind speed. Data normalized with the
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Figure 10.3: Average measured out of plane and in plane blade root bending moment with
the corresponding error bars per mean wind speed. Data normalized with the
maximum value of each curve.
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Figure 10.4: Comparison of the average fore-aft and side-side bending moment at the bottom
of the transition piece between measurements and simulations along with the
simulations’ uncertainty limits. Data normalized with the maximum measured
value of each curve. The dashed lines correspond to the simulations’ standard
uncertainties.
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Damping Estimation

In this section the net damping of the structure is estimated from a boat impact. The damping
under normal operation is identified both from measurements and simulations. The reliable
load prediction is influenced by the accurate damping value in the model. In cases of wind-wave
misalignment, where the side-side vibration is highly excited and low aerodynamic damping
is present, the magnitude of the vibrations is mostly dominated by the additional offshore
damping. It has often been reported in the literature that the real available damping is higher
than what is used in the models. In the following sections a comparison between damping
estimation from measurements and simulations is presented and its influence in the loading of
the structure is analyzed.

11.1 Impulse Response

The additional damping of the structure is identified with the following three methods. a) An
exponential curve is fitted to the relative maxima of the decaying response of the tower top
acceleration after the application of an impulse and the logarithmic decrement is estimated
from the exponent of the function. b) The half-power bandwidth method is also applied to
the data in the frequency domain to obtain another estimate of the damping. ¢) The damping
ratio is identified from the slope of a linear curve fitted to the envelope of the auto-correlation
function of the tower top acceleration under ambient excitation.
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11.1.1 Boat Incident-Measurements

During a yaw test, where the nacelle is swept slowly 360° around the tower axis for the
calibration of the support structure strain gauges, a boat accidentally hit the tower once,
acting as an impulse to the turbine. The mean wind speed during the incident was 2.5m/s
and the blades were pitched out to 82°. The rotation of the nacelle was sufficiently slow
(0.42rad/min) to assume a quasi stationary response with no interaction with the yawing
dynamics. The logarithmic decrement in tower top accelerations can be estimated from the
measured time series either by fitting an exponential curve to the relative maxima (time-
domain approach, exponential curve of the form z = Ae™¢“!) or with the use of the half-power
bandwidth method (frequency-domain approach).

The fitting of an exponential function to the relative maxima of the decaying time series for
the extraction of the damping ratios from the function parameters, assumes the contribution
of a single mode. This may be accurate when the damping is small and the modes are well
separated, but when this assumption is not satisfied the damping estimates can be wrong
[122]. Figures|11.1a and [L1.1b| present the tower top acceleration in the fore-aft and side-side
direction at the beginning and at the end of the incident. It can be observed that the boat
impact excites only the side-side vibration mode, as the boat landing is aligned with the lateral
strain gauges, while the fore-aft vibration is due to wind and waves as the level of acceleration
is not decreasing with time.

Figure presents the decay in the side-side direction and the fitted exponential func-
tion to the relative maxima, derived from the nonlinear least squares method. The exponential
curve has the form Ae™2"/¢* and since the natural frequency can be easily estimated from the
period of the decaying time series, the damping ratio can be extracted from the exponent of
the fitted function. The identified critical damping ratio is ( = 0.019, which corresponds to a
logarithmic decrement § = 12.2% and it’s in agreement with the values proposed in references
[81 82]. The result is also in agreement with the overall damping of the first mode found in
reference [118] from a measurement campaign at the Belwind wind farm. The higher damping
value estimated in the present work is due to the tower damper that is not active in reference
[118].

A decaying response is not observed in the time series of the fore-aft acceleration, due to
the aligned boat with the side-side strain gauges, when it impacts the tower. The turbine
is under ambient excitation in the fore-aft vibration mode, as the only forces acting in the
longitudinal direction are the wind and the waves. Therefore, the auto-correlation function of
the measured tower top acceleration, which gives the same decay with the time, is computed
[149]. An estimation of the auto-correlation function Rx x(7) of a stochastic, ergodic process
x(t) with limited data is given by Equation where T is the finite time that the time series
is known. As the time series are known over a limited amount of time, to ensure positive time
lags the upper limit of the integral is equal to T — 7.

1 T—1

T [zt +7)z(t)dt, 7€ [0;T] (11.1)
—r
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Taking the inverse Fourier transform of the power spectral density of the tower top accel-
eration signal in the fore-aft direction yields the auto-correlation function. A linear curve is
fitted to the envelope of the function (Figure[11.1c) and a logarithmic decrement of § = 11.5%
is then extracted from its slope. The slightly higher damping value in the side-side vibration is
due to the pitch angle of the blades (82°) that introduces a small aerodynamic damping in that
direction [140)]. The identified damping of the first mode obtained from the auto-correlation
function is then compared with the estimated value from the exponential curve fitted to the
relative maxima of the decaying response. In Section the auto-correlation function will
be used for damping estimation in normal operation.

The time series of the tower top acceleration are transformed to the frequency domain
through a Fast Fourier Transformation. Figureﬂpresents the power spectral density (PSD)
of the support structure acceleration based on strain gauge measurements at different heights.
The tower top acceleration in the side-side direction is used for the estimation of the damping
from the half-power bandwidth method. Observing the frequency f, with maximum power
Ppae and the two frequencies fi and fo where the power is Pp4./2, the damping can be
estimated by Equation [75]. The identified damping ratio is ¢ = 0.018, which is slightly
lower compared to the exponential function fit. The accuracy of this method depends on the
window length, the resolution and the overlap of the FFT, giving a biased estimation for the
damping.
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Figure 11.2: Power spectra of fore-aft and side-side acceleration time series at four heights
along the support structure. Qualitative representation. The vertical lines
denote the frequencies where the power is equal t0 Ppqp and Praq /2.
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11.2 Ambient Excitation

The measured response of a wind turbine under normal operation is further analyzed to
verify the support structure damping. The main advantage of ambient excitation is that
the identified modal parameters correspond to real levels of vibration. Cases with aligned
wind and wave directions are examined. In the following sections the damping is estimated
from the logarithmic decrement of the auto-correlation of the tower top accelerations, based
on the Frequency Domain Decomposition (FDD) technique. The method was chosen for its
simplicity and fast application. It can deal with closely spaced modes and it does not require
the assumption of separate excitation.

11.2.1 Enhanced Frequency Domain Decomposition

The Enhanced Frequency Domain Decomposition (EFDD) is an output only identification
technique for the estimation of the modal parameters of a vibrating structure. Based on the
measured response of the wind turbine and assuming that the loading is unknown the modal
characteristics are estimated.

The Power Spectral Density (PSD) matrix Gy(f) of the measured signal (tower top accel-
eration in this case), is given by:

Gy(f) = [Hy (NI IG(DIH )T (11.3)

G.(f) is the input PSD matrix and H(f) is the Frequency Response Function (FRF)
matrix. The superscripts o and e* denote transpose and complex conjugate respectively.
By writing the FRF in a typical partial fraction form, using the Heaviside partial fraction
theorem and assuming that the input is stochastic with a zero mean white noise distribution
(Gx(f) = C), Equation is obtained for the output PSD, where k € Sub(f) is the set of
modes that contribute to this frequency, ¥y, is the mode shape, di, is the scaling factor, Ay the
pole and w the damped natural frequency of the k' mode. For a more detailed explanation
of the process refer to references [113 [115].

T PNENEYA
Gy(f) . dlﬂ/)kwk + dkwkwk

= : , - (11.4)
keSub(f) J¥ — Ak Jw = A

At each discrete frequency, the final spectral density matrix is decomposed into singular
values and vectors (Singular Value Decomposition SVD Equation. Under the assumption
of small damping it was shown in reference [I13] that the singular values of the spectral density
matrix are auto spectral density functions of SDOF systems that have the same frequency and
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damping as the modes of the examined structure.

Gy(f) = UsUT (11.5)

The matrix U; is an orthogonal matrix (UU* = U*U = I, U* is the conjugate transpose
of U) containing the singular vectors u;; (Equation and 3J; is a diagonal matrix with
non-negative entries holding the singular values s;; (Equation . Thus, at a specific fre-
quency, the contribution of each mode to the total response becomes evident and the system
is decomposed to Single Degree of Freedom auto-spectral density functions. The dominant
mode in each frequency appears at the first singular value. An estimate of the mode shape
is the first singular vector ¥s = u;; that corresponds to a peak in the spectrum given by the
maximum singular value. The auto power spectral density function for each mode is then
identified around this peak by estimating the MAC (modal assurance criterion) of the mode
shape estimate ¢s with the singular values for the frequencies around the peak.

U=[{u} {fus} {fus} - {uy}] (11.6)

—811 0 0 0 i
0 S99 0 . 0
=10 0 s33 -~ 0 (11.7)
L0 0 0 853 ]

The Modal Assurance Criterion (MAC) is a statistical factor used to indicate consistency
between mode shapes [166]. It takes values from 0 to 1, with 1 showing that the mode shapes
represent the same shape and 0 when the mode shapes are linearly independent (orthogonal)
[167]. For complex modes MAC is given by Equation [11.§|

{os} {0a}?

MAC = (0 31607 (67167

(11.8)

¢s is the mode shape estimate corresponding to the peak of the auto power spectral density
function at a specific frequency (max singular value) and ¢, are the mode shape estimates
for the frequency lines around the peak. As long as the MAC of ¢s with a singular vector is
close to 1, the corresponding singular value belongs to the auto-spectral density function of
this mode. If the MAC drops below a certain limit (rejection level), as defined by the user,
the spectral density function is terminated at the last identified singular value. The lower the
chosen MAC limit is, the more singular values will be included in the SDOF Bell function
(Figure . The rejection level should be selected in such a way that will give a good
representation of the Bell function around the chosen peak without including any noise.
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singular values for mode 1

Figure 11.3: Bell Function of singular value spectrum. The thick line denotes the part of the
spectrum that takes part in the identification process of the first mode. The
second peak corresponds to a harmonic.

The Single Degree of Freedom auto-spectral density functions are transferred back to the
time domain through an inverse FFT (using the complex conjugate of each entry), resulting in
auto-correlation functions for each mode. The logarithmic decrement ¢ is given by Equation
through observation of all the extremes ry of the correlation function [4].

2 To >
0= -In|— 11.9
k <7“k| (1L9)

ro is the initial value of the auto-correlation function and rj the k™ value. The first
positive peak occurs at the time instant t = 0 and every interval ¢ = 27w /wy, where wy is the
damped natural frequency.

Considering the ratio of the height of the first peak of the auto-correlation function with
an arbitrary peak later in time, the solution to the equation of motion for an under-damped
single degree of freedom system, is derived. Taking the natural logarithm on both sides of the
equation, the expression for the k** logarithmic decrement is given by Equation .

(7“0)2 _ (7“0%‘(0))2 — (eSwn2rk/way? (11.10)

T Toe—gwn%r/c/wd

2wk smalldampin,
5 = 2n (7“0) g 2MRC_ smalldamping 5 o e (11.11)
Tk V1—1¢?

By fitting a linear curve to the data, the regression coefficient gives the slope of the line,
which corresponds to the damping ratio (. The natural frequencies are identified from the
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peaks of the singular values of the decomposed spectral density matrix.

The accelerations of the support structure at 4 different heights were used as inputs to
the frequency domain decomposition technique to estimate the natural frequency and the
damping ratio of the first fore-aft and side-side vibration modes of the system. Figure
shows the singular values of the decomposed spectral density matrix. Peaks present at more
than one singular values indicate harmonics. Figure presents the auto-correlation function
corresponding to the time domain free decay, obtained through the inverse FFT to the auto-
power spectral density function (first singular value).
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Figure 11.4: a) Singular values of the decomposed spectral density matrix. The x axis is
scaled with the rated rotational speed to show the 3P, 6P and 9P inputs. b)
Envelope of auto-correlation function in logarithmic scale and linear fit for
damping ratio estimation.

Figure shows the linear regression to the logarithmic envelope of the auto-correlation
function, the slope of which gives the damping ratio of this mode.

11.2.1.1 Measurements

The Enhanced Frequency Domain Decomposition technique was applied in the measured ac-
celerations of the tower. The MAC rejection limit used for the identification of the auto-power
spectral density matrix is 0.9. The data used for the modal parameters’ identification are from
the measurement period of July 2012, where the maximum observed mean wind speed was
19m/s. The results for the fore-aft and side-side modal damping identified from the measured
response of the wind turbine are presented in Figure The case of aligned wind and waves
is examined. The mean damping of the fore-aft tower mode is approximately § = 65% with
a standard deviation of 8.1% (Figure [L1.5a). During operation this mode is dominated by
the aerodynamic damping. The mean damping in the side-side direction derived from the
tower top accelerations is § = 30% with a standard deviation of 6.7% (Figure [I1.5b). An
increase of the damping ratio in the side-side direction for higher wind speeds is due to control
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actions and the aerodynamic damping introduced from the blade pitching. In this direction
the parameters influencing the modal damping are the soil-pile interaction, the tower damper,
the tidal variation and the wind speed. [I19].

The uncertainty levels of the estimated damping per mean wind speed are presented as
error bars in Figure[I1.5] The standard uncertainty w,, is the ratio between the estimate of the
standard deviation s;, and the square root of the number of observations N. For higher wind
speeds due to the lower number of observations the uncertainty of the damping estimation is
increased.

Damping ratio FA wrt mean wind speed Damping ratio SS wrt mean wind speed
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Figure 11.5: a) Logarithmic decrement of the fore-aft vibration mode with respect to the
mean wind speed obtained from the measured tower top accelerations along
with the error bars. b) Logarithmic decrement of the side-side vibration mode
with respect to the mean wind speed obtained from the measured tower top
accelerations along with the error bars.

Due to the close natural frequencies of the fore-aft and side-side modes, which results in
energy being transferred from the highest to the lowest damped mode [124] 122], the absence
of aerodynamics in the latter and the presence of the harmonics, the side-side vibration is more
excited introducing a beating phenomenon and a longer decay in the auto-correlation (Figure
. The fore-aft vibration is dominated by the aerodynamic damping during operation,
rendering the auto-correlation function smoother and the damping estimation more accurate

(Figure [11.6a)).

11.2.1.2 HAWC2 Simulations

The Enhanced Frequency Decomposition method was applied to the simulation results for all
mean wind speeds and the natural frequencies and logarithmic decrements as a function of the
wind speed are presented in Figure Results both from measurements and simulations
are presented and discrepancies are discussed. The environmental conditions used in the
simulations are the same with the measured ones. Each simulation is half an hour of time
series and was performed with the aero-elastic code HAWC2 using turbulent wind field and
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Figure 11.6: a) Normalized auto-correlation function Fore-Aft direction. b) Normalized
auto-correlation function Side-Side direction.

irregular waves. The MAC rejection limit used for the identification of the auto-power spectral
density matrix is 0.95.

The results for the fore-aft and side-side natural frequency and modal damping obtained
from measurements are presented in Figure along with the modal parameters from the
simulations. Figures[11.7a] and [11.7¢| present a qualitative comparison of the natural frequen-
cies of the first two modes for all mean wind speeds showing their percentage change from
standstill. The estimated frequencies show small variation with the wind speed. Larger varia-
tions in the frequency estimation of the first mode (tower fore-aft) are attributed to the more
noisy acceleration signal in this direction due to wave impact. Figures [I1.7b] and [11.7d] show
the damping obtained from measurements and simulations. As depicted from Figure in
the fore-aft vibration mode there is a good agreement between the estimated damping from
the measurements and the simulations, after the model was tuned to the standstill frequen-
cies and damping of the real turbine. On the side-side direction though the discrepancies are
higher for wind speeds above rated. A tower damper is not implemented in the model and
therefore its influence cannot be accurately investigated in the current simulations. Further
inadequate modeling of the soil damping and the tidal variation may be responsible for this
difference [I19]. The discrepancies in the damping estimation of the second mode (side-side
vibration) need to be further investigated.
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Figure 11.7: a) Change in the natural frequency of the fore-aft vibration mode from the
standstill, measurements vs. simulations. b) Logarithmic decrement of the
fore-aft vibration mode with respect to the mean wind speed, measurements
vs. simulations. c) Change in the natural frequency of the side-side vibra-
tion mode from the standstill, measurements vs. simulations. d) Logarithmic
decrement of the side-side vibration mode with respect to the mean wind speed,
measurements vs. simulations.
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Figure presents the overall damping of the first two modes in normal operation,
estimated with the Enhanced Frequency Domain Decomposition method. Three different
values of the additional offshore damping have been used in the simulations, by changing the
Rayleigh coefficients in the model and applying an impulse to estimate the additional offshore
damping from the decaying response. The stars in the figure correspond to the tuned damping
from the boat incident (6 = 12%), the circles to the additional offshore damping of 6 = 6%
(value usually implemented in the simulations) and the crosses to 15% higher damping than
the tuned (0 = 13.8%). It can be observed that the lower additional offshore damping, often
used in the simulations (§ = 6%), results in much lower overall damping in both directions.
However, as was shown in Section [168], the damping in the real structure was found to
be higher.
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Figure 11.8: Overall damping in normal operation from simulations using the enhanced
frequency domain decomposition method. Three different additional offshore
damping values are examined (stars correspond to 6 = 12%, circles to § = 6%
and crosses to 6 = 13.8%).



CHAPTER 12

Loading under Different Conditions

The dynamic response of an offshore wind turbine in the case of wind-wave misalignment is
examined in the first section of this chapter. The accumulated fatigue accounting for the
joint wind-wave probability is estimated and the effect of damping on the side-side fatigue is
investigated. The loading on the system during a storm with the presence of a yaw error is
analyzed in the second section.

12.1 Wind-Wave Misalignment

Side-side fatigue at the support structure due to wave loading misaligned with the wind can
become a significant design factor, because of the low aerodynamic damping experienced in
this direction. According to reference [II] the misalignment between the wind and wave
directions should be included in the design if misalignment conditions are present in the site
of installation. The over-dimensionalization of the substructure due to high estimated fatigue
loading might result in a non-economically feasible design. In reference [81] the case of the
side aero-elastic damping is examined, and its importance to decrease side-side loads due to
wind-wave misalignment is stressed.

The effect of misalignment angles on the fatigue of the structure is examined in reference
[12]. A study conducted by Fisher et al. in [I69] considering all load cases described in
reference [I3] and misalignment angles from 0° — 360° demonstrated the importance of wave
directionality during the design process. The bending moment in the fore-aft direction is
30% higher in the case of waves perpendicular to the wind, while the side-side loading is 5
times larger compared to the case of aligned wind and waves. In reference [46] the equivalent
loads and fatigue damage at the tower and monopile bottom were examined for different
cases of wind-wave misalignment considering both linear and non-linear waves. The effect of
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misalignment on the fatigue, including the probability density function of misalignment angles
has been investigated in reference [I70]. For a misalignment distribution with a peak close to
0° the fatigue damage in the tower bottom was increased by 3.6% between the misaligned and
the collinear cases. For the case where the highest probability of occurrence is for an angle
of 60° the increase in the fatigue damage is up to 15%. An increase in the fatigue damage
accumulation due to waves perpendicular to the wind direction is also reported in reference
[I71], where a non-linear irregular wave model is implemented in the analysis.

In this section the target is to investigate the sensitivity of the side-side fatigue loading to
the different misalignment angles, for various values of the damping available on the system.
In the analysis the misalignment distribution is considered.

12.1.1 Fatigue Analysis/Measurements

The equivalent fatigue load corresponds to the cyclic load that if applied ne, times in the
structure, it will result in the same damage as the variable load fluctuations experienced over
the lifetime of the wind turbine [53]. The measured time series binned as described in Section
were combined to calculate the 1Hz equivalent load (Equation for each mean wind
speed-significant wave height combination. V; are the number of cycles for a given stress range
Si, in all measured time series. m is the Wohler exponent equal to 4 in the present study for
the steel components, h; ; is the total measurement time of each bin in seconds and n is the
number of stress range bins.

n (1/m)
> NS

_ = 12.1
Si» e (12.1)

Figure presents the 1Hz equivalent load for the cross-wind fatigue at the tower
bottom as a function of the mean wind speed. The different lines correspond to the different
significant wave heights and the values are normalized with the maximum load for U = 14m/s.
The equivalent load has the tendency of increasing with the wind speed and the wave height.
Taking into account the joint wind-wave distribution, the fatigue damage contribution Dy of
each bin, to the lifetime fatigue of the wind turbine support structure is estimated. Under
the assumption of linear cumulative damage, the fatigue damage accumulation is given by
Equation where Nyt ; are the number of cycles to failure for a given stress S; and « is
the intercept of the S-N curve with the log N axis [I72]. The result with respect to the mean
wind speed is presented in Figure[I2.1b] The different curves illustrate the different significant
wave heights. It can be observed that the greatest contribution to the lifetime fatigue is not
due to the most severe cases but due to bins with higher probability of occurrence, even though
the wind and wave conditions are milder. This observation demonstrates the importance of
the joint wind-wave distribution in the calculation of the fatigue of the structure and indicates
that it is not only the severeness of the operating conditions that contribute to the fatigue
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but their probability of occurrence as well.
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maximum equivalent load for U = 14m/s. side-side fatigue at the tower bottom.

Figure 12.1: 1Hz equivalent load and relative damage at the tower bottom in the side-side
direction.

12.1.1.1 Fatigue Analysis for Various Misalignment Sectors (Measurements)

In order to examine the effect of the misalignment angles on the fatigue of the structure, the
equivalent load for different misalignment sectors within each wind-wave bin is calculated. The
misalignment angles are separated in bins of 10° is such a way that the bin for mis_ang =
(—15°) — (—=5°) covers all the misalignment angles in the interval —15 < mis_ang < —5.
The 1Hz equivalent load for each misalignment sector is calculated by Equation [12.3] where
Pmisaimes are the measured hours of a specific misalignment sector. The relative damage
is estimated accounting for the probability density function of each misalignment angle as
was shown in Section [5.1.2] The loads as a function of the misalignment angle are presented
in Figure [12.2] The 1Hz equivalent loads are normalized with 0° misalignment. The 1Hz
equivalent load has a small tendency to increase with the increased absolute value of the
misalignment angle. However, the trend is not clear and the side-side 1Hz equivalent load does
not appear to have a high sensitivity to the wind-wave misalignment for the combinations of
wind speed and wave heights presented in [12.2]

Counsidering the probability density function of the misalignment angles and using it as
a weight to calculate the relative damage of every misalignment angle to the lifetime fatigue
of the wind turbine support structure (Equation [12.2)), it can be observed that the highest
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damage contribution is given for the misalignment angle with the highest probability, namely

—10°.

Sle,misal =

>, NiSP
=1

(1/m)

hmisal,mes

(12.3)

In the same figure the uncertainty level of the 1Hz load are also presented as error bars.
The standard uncertainty wu,, is the ratio between the estimate of the standard deviation s,
and the square root of the number of observations N (Equation . For large misalignment
angles due to the lower number of observations the uncertainty of the equivalent load is

increased.
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Figure 12.2: 1Hz equivalent load and relative damage contribution to the side-side fatigue
at the tower bottom based on the probability of occurrence of different mis-

alignment sectors for various wind-wave combinations (measurements).

The

values are normalized with the equivalent load at 0° misalignment. The error
bars on the 1Hz equivalent load represent the uncertainty of the estimation.

12.1.2 Fatigue Analysis/Simulations

The lifetime equivalent load is based on the joint wind-wave distribution calculated from the
measurements (Equation , scaled to a lifetime of 25 years. Figure m presents the 1Hz
equivalent load and the relative damage of each bin to the fatigue of the structure with respect
to the mean wind speed both for simulations and measurements (dashed lines correspond to
simulations and solid to measurements).

For each of the 46 mean wind speed-significant
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wave height combinations 12 turbulence seeds of 600s and 11 misalignment angles were used
in HAWC2, which resulted in a total of 6072 simulations. The illustrated 1Hz equivalent
load data are normalized with the simulation maximum equivalent load for U = 14m/s.
The simulated equivalent loads seem to follow satisfactorily the measurements. Discrepancies
are mainly attributed to differences in the blade aerodynamics and uncertainties in the soil
modeling.

Tower bottom side-side 1Hz equivalent load Fatigue damage tower bottom SS | _e—H_=0.25m
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(a) Comparison of 1Hz equivalent load for the (b) Relative damage based on the probability

side-side fatigue at the tower bottom. (mea- of occurrence of each wind-wave bin for the
surements vs. simulations). The values are side-side fatigue at the tower bottom (mea-
normalized with the simulations maximum surements vs. simulations).

equivalent load for U = 14m/s.

Figure 12.3: 1Hz equivalent load and relative damage at the tower bottom in the side-
side direction, based on the joint wind-wave distribution (measurements vs.
simulations)

The accumulated fatigue load for the whole lifetime of the structure (25 years) is calcu-
lated both for measurements and simulations. Figure presents the accumulated fatigue
damage at the tower bottom in the fore-aft and side-side directions. The illustrated data are
normalized with the simulated load. The agreement between measurements and simulations
is satisfactory. The higher simulated accumulated fatigue is due to the lower damping present
in the simulations as was shown in reference [168].

12.1.3 Effect of Damping on Fatigue

Figure [12.5] presents the accumulated fatigue load for four different damping values and dif-
ferent wind-wave conditions. The illustrated data are normalized with the fatigue from the
model tuned to the measured damping of 6 = 12% (reference model). In the fore-aft direction
the different damping values have small impact on the fatigue. When the additional offshore
damping is half of the measured (§ = 6%) the accumulated fatigue is up to 6% higher than
the reference model. However, in the side-side direction, due to the little aerodynamic damp-
ing, the effect of the additional offshore damping is more pronounced. For differences in the
damping of +£15%, the change in the fatigue is up to 17%. But for the lowest damping value,
the fatigue in the side-side direction is up to 86% higher than the reference model.
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Figure 12.4: The total accumulated fatigue damage for measurements and simulations nor-
malized with the simulations’ fatigue.

The damping in the side-side direction during normal operation for different misalignment
angles, estimated with the Enhanced Frequency Domain Decomposition method is presented
in Figure [12.6] Due to the low contribution of hydrodynamic damping, the overall damping
seems to be invariant to the different misalignment angles. It is on a small extent though
affected by the higher wind speed, due to the aerodynamic damping introduced to the side-
side vibration from the blade pitching.

Figure [I2.7] presents the fatigue damage contribution in the side-side direction at the
tower bottom for different damping values as a function of the misalignment angle. The
sensitivity of the estimated equivalent load to the misalignment angles decreases with increased
additional offshore damping. Due to little aerodynamic damping in the side-side direction,
the loading is more influenced by the structural damping and the damping due to soil, waves
and tower dampers. The equivalent load from the measured time series is less sensitive to the
misalignment angle, due to higher damping in the side-side direction of the full scale wind

turbine (Figure [12.2)).
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Figure 12.5: The total accumulated fatigue damage from simulations with different values
for the additional offshore damping. Normalized with the fatigue from the
model tuned to the measured damping.
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Unean (I’Il/S) Unax (m/s) TI1

28.4 48.2 0.30
29.5 46.4 0.30
27.0 45.8 0.29
28.6 45.5 0.28
26.2 44.8 0.30
294 44.4 0.30
28.0 44.2 0.30
27.0 42.7 0.30
24.9 42.5 0.28
26.0 42.4 0.30

Table 12.1: Highest wind speeds observed and respective turbulence intensity.

12.2 Storm

The load response of the structure during a storm and in the case of yaw error is examined
in this section. Wind and wave measurements during storms are identified and the highest
observed values are compared with the mean wind speed and significant wave height with the
1-year and 50-year return period suggested in the IEC 61400-3 standards [13].

12.2.1 Wind and Wave Measurements

Throughout the two years of the measurement campaign the highest observed wind speeds
have been identified. Table presents the 10min mean and the maximum values of the 10
highest wind speed measured time series with the respective turbulence intensity. Figure[12.8
portrays the time series of the instantaneous maximum observed wind. The recommended
turbulence intensity in the design load cases DLC 6.1-6.3 [I7] that correspond to the different
storm cases, is T/ = 0.11. Based on the measurements, the turbulence intensity during
storms is almost three times higher than the proposed one. The effect of the rotor can be
neglected due to the very slow rotation (idling). However, the nacelle cup-anemometer is
usually calibrated for normal operation and not for extreme wind cases. Therefore, further
investigation is required to explain this difference. The mean wind speed with 1-year and
50-years return period, implemented in DLC 6.3a and 6.la (Sections [13.1.1.9) [13.1.1.7) is
U = 38m/s and U = 47.5m/s respectively, while the highest observed mean wind speed is
almost 30m/s.

A filtering of the wind speed measurements was necessary for the identification of erro-
neously high values. Figure [12.9] presents a wind speed time series with a spike due to an
electrical error in the instrumentation. Three consecutive time steps running through all the
time series are used for the identification of outliers. Cases where the middle point is higher
than the average of the other two plus three times the standard deviation of the time series
are considered as invalid and excluded from the analysis.
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Figure 12.9: Erroneous wind speed measurement time series.

The highest measured surface elevation, during a storm on the site in October 2013, was
Hppar = 6.4m with a significant wave height of H; = 3m. Due to equipment loss, the time
series of this measurement are not available. The highest sea surface elevation from the
first measurement period (April 2012-October 2012) is H,q, = 4.1m and it is presented in
Figure The significant wave height of this time series is Hy = 2.8m. A wave crest
as depicted in Figure is highly non linear and cannot be reproduced by the irregular
linear Airy theory implemented in the simulations. Therefore, for a more detailed analysis
of the hydrodynamic loads, a non linear wave model is imperative. Based on the statistical
extrapolation of the metocean parameters described in Annex G of the IEC 61400-3 [13], the
extreme significant wave height with 1-year and 50-years return period, used in the simulations
of the storm cases, is H; = 5.74m and H; = 9.07m respectively.



12.2 Storm 123

Highest observed surface elevationH__ =4.1m Wave crestH _ =41m
max max
5 ‘ ‘ ‘ ‘ : 5

4 1 4t

Surface elevation (m)
Surface elevation (m)

0 200 400 600 800 1000 1200 400 450 500 550 600

Time (s) Time (s)

(a) Maximum measured sea surface elevation (b) Non linear wave surface elevation.
H,op = 4.1m. The significant wave height is
H, =28m.

Figure 12.10: Time series of maximum measured wave surface elevation.

12.2.2 Storm Loads

A yaw error known as a misalignment between the wind direction and the rotor axis introduces
a wind component perpendicular to the rotor disk axis. As described in reference [I73] this
perpendicular component results in an increase of the tangential wind speed at the advancing
blade and a decrease of it at the following blade. This difference in the aerodynamic forces on
the blades induce excessive vibrations. The effect of the yaw error in the power production
has been examined in reference [174].

During the period of the gear box failure, the wind turbine was locked in a specific yaw
position. Examining the SCADA data from the surrounding wind turbines, cases of yaw
error can be identified. Figures [[2.11] and [12.12] present the normalized in-plane blade root
and side-side tower bottom bending moments respectively, for various yaw angle errors. In
all three cases the wind turbine is idling (pitch angle # = 82°) and the mean wind speed is
U = 27m/s. It can be observed that the amplitude of the in-plane blade root vibrations is
increasing with the yaw error. The mean and the extreme of the side-side bending moment
at the tower bottom are also increasing with higher yaw error.
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Figure 12.11: In-plane blade root bending moment when the wind turbine is idling (6 = 82°,

U =2Tm/s).

No yaw error (solid pink line), 10° yaw error (dashed-dotted
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CHAPTER 13

Sub-structure/Foundation Design

For the design of an offshore wind turbine’s sub-structure/foundation able to withstand various
loads, different load cases have to be examined during the design process. In this chapter
a preliminary design of the sub-structure/foundation is examined, by implementing in the
model the higher additional offshore damping value estimated by the boat incident. Cost
savings on the sub-structure due to material reduction are discussed. Since no sensitivity
function between the structure’s dimensions and the loading is known, the trial and error
approach is used, by applying small variations to the initial design. In the way the concept of
material saving due to increased damping is proven. For a more detailed design a structural
optimization technique should be implemented, but it is outside of the scope of the current
thesis.

13.1 Limit State design

"Limit State is a condition beyond which a structure no longer satisfies the design require-
ments" [11]. For the current design of the sub-structure/foundation the partial safety factors
methodology is implemented, where the safety level is obtained by inflating the simulated
loads with safety factors, to account for the uncertainties in the loads, the materials and the
wind-wave representation. The load safety factors are varying for the different safety classes
(a safety class is defined by the consequence of a failure in a component or in the whole struc-
ture), while the material factors remain the same. In reference [I75] a method using partial
safety factors for a more accurate estimation of the fatigue during the design process of a wind
turbine is presented.

A component will not fail as long as the design load effect Sy does not exceed the design
resistance Ry. The design criterion or design inequality is given by Equation [13.1] The design
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load effect is the result of the design load Fj; obtained by Equation where F} is the
characteristic load derived from the simulations and -y is the partial safety factor.

Sq < Ry (13.1)

Fy=~F; (13.2)

According to the IEC 61400-1 standards [17] four analysis should be performed to examine
the structural integrity of a wind turbine.

Analysis of ultimate strength.

Analysis of fatigue failure.

Stability analysis.

Critical deflection analysis.

In the current work the first three types are investigated for the design of the sub-
structure/foundation (monopile/pilesand). Due to limited information, for this preliminary
study the varying pile thickness is assumed to affect only the fatigue and the load capacity
of the structure at the welds, while the bolts remain unchanged. For a more detailed design
the fatigue of the bolts and other details on the pile should be investigated. The response
of an offshore wind turbine model mounted on a monopile foundation is obtained from sim-
ulations, based on design load cases prescribed in IEC 61400-3 [13]. The different load cases
simulated for the design of the sub-structure/foundation and their conditions are analyzed in

the following Section [13.1.1]

13.1.1 Design Load Cases

For a reliable design of the sub-structure/foundation the response from both normal power
production and parked conditions should be examined. Different load cases are used for
fatigue failure and ultimate strength analysis. For the current design analysis a total of 25000
simulations were performed for all the different sub-structure/foundation configurations. In
the case of turbulent wind, 12 turbulence seeds of 600s per mean wind speed are generated.
Irregular Airy waves combined with the Wheeler stretching are used for the generation of the
wave field. Due to the position of the examined wind turbine in the Walney farm, 80% of
the time it stands in the wake. Therefore, for the design of the sub-structure/foundation an
effective turbulence intensity I.¢s is implemented in the simulations, as described in section

112
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13.1.1.1 DLC 1.2

DLC 1.2 is the only case considered for fatigue analysis. The loads acting on the system from a
normal turbulence model (NTM, turbulence intensity given by Equation [A.3h) and a normal
sea state (NSS) during power production are analyzed. The joint wind-wave probability
distribution as described in Section and wind-wave misalignment cases are included in
the analysis. Wind speeds from 4m/s (Ui,) to 25m/s (Upy:) are considered and simulations
with 12 turbulence seeds of 600s per mean wind speed and misalignment angle are performed.
A yaw error of +8° is accounted for in the analysis. Due to very low current velocities, the
influence of the current was neglected in the fatigue analysis [53].

13.1.1.2 DLC 1.3

The wltimate loading from the extreme turbulence model (ETM, turbulence intensity given
by Equation ) combined with the normal sea state is examined in DLC 1.3. Wind speeds
from Uj, to Uy are considered with I,y = 0.14 (wind turbine class B). A single value of
significant wave height, defined from the metocean data (Figure, is assigned to each mean
wind speed. A normal current model (NCM) as described in Section is included in the
analysis, with current velocity at the mean water level Uy = 0.5m/s.

13.1.1.3 DLC 1.4

Steady wind speeds with an extreme coherent gust (ECD) and direction change, combined
with normal sea state and a normal current model can be critical events for wltimate loading
on the structure. The wind speeds examined are U,.qeq and Ujqeq £ 2 and the corresponding
significant wave heights are the same as DLC 1.3. The gust has a magnitude of U,y = 15m/s,
with a rise time of T'= 10s. The expressions for the wind speed at hub height during 7" and
the direction change 6, are given in IEC 61400-1 [17].

13.1.1.4 DLC 1.5

Design load case 1.5 is also considered for ultimate load analysis, where extreme shear is present
in the wind, combined with normal sea state (NSS) and current model (NCM), similar to the
previous case. In IEC 61400-1 [17] the transient shear, occurring in a time interval of 7' = 12s
is separated in two components, vertical and horizontal. The expression for the transient shear
is given in TEC 61400-1 [17].
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13.1.1.5 DLC 1.6a-b

The ultimate loading resulting from normal turbulence model and severe sea state conditions
(SSS) or severe wave height (SWH) with 50-years return period, is studied in DLC 1.6. All
the wind speeds from 4m/s (U;y,) to 25m/s (Usyt) are considered and a normal current model
is added in the simulations. Wind and waves are co-directional.

DLC 1.6a. The significant wave height of the SSS is estimated from the distribution of
the H; conditional to the mean wind speed by extrapolation of site measurements using the
Inverse First Order Reliability Method (IFORM) [13]. The wind speed is separated in bins
of 1m/s and a normal distribution is fitted to the corresponding significant wave heights [13].
The joint wind-wave distribution is represented through two uncorrelated standard normally
distributed variables with the use of the Rosenblatt transformation (Equation , where
Ui, Us are the two uncorrelated variables, ® is the standard normal cumulative distribution
function, Fy is the marginal CDF of the wind speed and Fp, is the CDF of the significant
wave height conditional to the mean wind speed.

U=Fy' @)
(13.3)
Hy = Fy ! [®(Uz)|V]

The significant wave height for the severe sea state is estimated by specifying a target
probability (50-years return period in the current case) from the equation U2 + U2 = B2. 3 is
the target probability and is given by ®(5) = 1—1/N, where N is the number of independent
sea states in 50 years, which for a 3-hour sea state results in § = 4.35. H g5g is then given
by Equation [13.4] where p and o are the mean and standard deviation of Hy conditional to
U. For higher wind speeds, where the amount of measurements are fewer and the fitting of a
distribution cannot be examined, the unconditional extreme significant wave height Hj 50 is
used as a conservative value for the Hy gss [13].

Hssss = pn,(U) + Bon,(U) (13.4)

DLC 1.6b. The severe wave height is an extreme wave height in the SSS, represented
as a deterministic design wave with the use of the stream function. Assuming a Rayleigh
distribution of the Hy g5 (an assumption that holds for narrow banded sea elevation, as was
shown in Section that is the case in this site), the Hgy g conditional to the wind speed is

given by Equation [13.5]

Hswu(U) ~ 1.86H; 555 (U) (13.5)

The wave peak period T}, is calculated by the expression T}, = 3.96y/H; and is within the
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range given by Equation [13.6] where g is the acceleration due to gravity.

H H
111,/ — < T, <14.3,/ — (13.6)
g g

13.1.1.6 DLC 2.3

The event of an extreme operating gust (EOG) along with a fault in the electrical system is
examined in DLC 2.3 as an abnormal case for ultimate strength analysis. The wind speeds
examined are Uygted, Urated = 2m/s and Upyye. The wind conditions are combined with normal
sea states (NSS), with an expected significant wave height per mean wind speed as described
in Section and a normal current model. The wind speed is steady and the magnitude
of the gust is given in IEC 61400-1 [I7]. The fault at the electrical system is occurring at the
time that the gust reaches the maximum magnitude.

13.1.1.7 DLC 6.1a-b-c

In the following three design cases the loading on the structure in parked conditions (idling)
is examined for an ultimate strength analysis. DLC 6.1 is analyzing the response during idling
with extreme wind and wave models. The wind-wave misalignment is investigated in all cases.

DLC 6.1a. An extreme wind model (EWM) with turbulent field is combined with an
extreme sea state (ESS) with a recurrence period of 50 years. The wind speed at hub height
is given by Upuy = k1Urey = 0.95 - 50 = 47.5m/s for a class I wind turbine (average wind
speed on the site is almost 10m/s, so Upef = 5 - Ugye). The turbulence intensity is equal to
0.11 and a yaw error of +8° is considered. The extreme significant wave height Hgso with
a 50-year return period is estimated through extrapolation of site specific measurements. A
Gumbel distribution is fitted to the measured data as presented in Figure[13.I] The fitting of
the Gumbel distribution to the data is examined both graphically from the histogram and by
comparison of the mean and standard deviation of the sample with the estimated values from
the distribution.

The target probability for the 50-year return period Py is given by Equation where ¢ is
the time duration of each measurement (30min in the case of the wave buoy) and R the return
period (50 years). When the cumulative probability f(x) is transformed to —In(—In(F(x))),
the distribution appears to be linear. The Hgsg is then calculated from the intersection of the
distribution with the target probability through Equation where P, is the probability of
the maximum observed significant wave height and o, and . the scale and location parameters
of the Gumbel distribution respectively. The significant wave height of the extreme sea state
is then given by Hy = koHgso = 1.09 - 8.32 = 9.07m, with a peak period 7, = 11.92s. An
extreme current model (ECM) is also included in the simulations. The current velocity at
the mean water level with 50-years return period is estimated through extrapolation of the
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Figure 13.1: a) Histogram of significant wave height along with the fitted Gumbel distribu-
tion. b) Probability Density Function of Hs. ¢) Cumulative Density Function
of Hy.

measured data, in the same manner as for the significant wave height. The calculated velocity
is Up = 1.3m/s.

Py =1—exp (;) (13.7)
Hgso = —oeln(—=In(1 — Py/Py)) + pe (13.8)

DLC 6.1b. A steady wind speed with a magnitude of Uesg = 1.4U,cy = 70m/s at
hub height, combined with a deterministic wave with reduced wave height (RWH) H,eq50 =
1.3Hs50 = 10.82m and 50-years return period is examined in DLC 6.1b. The peak period is

equal to T, = 3.96v/Hyeq50 = 13.02s, respecting the range given by Equation A vaw
error of +15° is considered in the analysis.

DLC 6.1c. The steady reduced wind model (RWM) with a wind speed of V,eg50 =
1.1V,cy = 55m/s at hub height is taken together with the deterministic wave with extreme
wave height (EWH) Hsy = 1.86H50 = 15.47m and recurrence period of 50 years. A yaw
error of £15° is accounted for in the simulations. Due to the site’s actual depth of 26m, the
calculated significant wave height leads to breaking waves, the examination of which is outside
of the scope of the current work.
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13.1.1.8 DLC 6.2a-b

In the following two load cases a loss of electrical power is occurring simultaneously with the
storm (stand-still). The extreme wind and wave conditions are the same as the ones described
in DLC 6.1a and 6.1b. The effect of a yaw error from 0 — 1807 is investigated. The loss of the
grid is applied through the implementation of a brake to the low speed shaft. Based on the
downscaled values from the 5SMW reference wind turbine [68] the time to full braking is 0.51s
and the maximum deployed torque to the low speed shaft is 2044kNm.

13.1.1.9 DLC 6.3a-b

The extreme weather conditions with 1-year return period are examined in DLC 6.3 for wulti-
mate strength analysis.

DLC 6.3a. The extreme wind model (EWM) with mean wind speed at hub height equal
to Upup = k1U1 = k10.8U,cf = 38m/s is combined with the extreme sea state with significant
wave height Hs; = koHg1 = 1.09 - 5.27 = 5.74m. The significant wave height H is calculated
though extrapolation of the measured data, following the same procedure as described in
DLC 6.1a with 1 year return period. The peak period is equal to T}, = 9.5s. The turbulence
intensity is equal to 0.11 and an extreme yaw misalignment of +20° is assumed.

DLC 6.3b. A steady wind model with wind speed Upyp = Uer = 0.8 - 1.4U,¢p = 56m/s
and deterministic sea state with reduced wave height H,.q1 = 1.3Hs1 = 6.86m and period
T = 10.37s is examined in DLC 6.3b. An extreme yaw misalignment of +30° is considered in
the simulations.

13.1.2 Ultimate Limit State (ULS)

"The Ultimate Limit State (ULS) is associated with the maximum load-carrying resistance"
[L1]. Equationmshould be satisfied for structural reliability during extreme operating loads.
fr is a characteristic value of the material property associated with the material resistance.
For a normal design situation the load partial safety factor is vy = 1.35 and for an abnormal
«vf = 1.1. The general partial safety factor for materials ~y,, takes values higher or equal to 1.1
and the safety factor for consequences of failure +,, depends on the safety class of the examined
component varying from 0.9 to 1.3.

VrFE <

Jr (13.9)

m /n

The stress on each section can be calculated from the characteristic load F} obtained from
the simulations of the design load cases. The axial, circumferential and shear stresses (o , 09
and 7 respectively, Equation |13.10]) are combined to obtain the maximum stress on each cross
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section. The circumferential stress g yqter 0N the monopile is approximated as the pressure
introduced from the difference in the water loads. The uniform circumferential stress on the
pile because of the soil 0g s is given by the active soil pressure, where K, = tan2(45° +¢/2),
¢ is the friction angle, s, is the undrained shear strength of the soil and 7/ is the submerged
unit weight. The pile deflection induces a non uniform stress distribution around the section
as described in Section [13.1.3.3] which is not represented by the active soil pressure. A
more detailed design of the structure would require an accurate 3D modeling of the soil, but
such a model is outside of the scope of the present work. F, F,, F., M;, M, and M, are
the forces and moments on each section as defined in Figure [I3.2] A is the cross section
area (A = w/4 (D2, — D?))), I the moment of inertia of the monopile section, ¢y, the wall
thickness, A, = ﬂR%nd, @ the static moment of area obtained from Equation and x,y
the distance of each point from the pile axis where the stress is evaluated. The sections in
consideration are thin walled circular tubes and the stress is assumed to be constant through
the thickness and thus only evaluated at the middle of the cross section. Therefore the third
Cauchy stress component is equal to zero. Applying the von Mises yield criterion (Equation
the maximum stress o, , also called von Mises stress is compared with the yield limit of
the material f,. The stresses are evaluated every ¢s = 5° at each time step and the maximum
of each section is obtained. The von Mises stress for each design load case has to be less than
fy to ensure deformation in the elastic regime and the validity of the superposition of the
cycles for the fatigue analysis.

F M M,
Ox = XZ + Tmezd - cosps + TyRmzd : Sin¢5
g2 R K.~ 2—2/K s )R
00, water = %}Lmzd 09,s0il = ( A ton £ SU) mid (13.10)
t t
__ M. FRQ  FQ
tn2Ao Ity 1ty
Q = [ydA =2R,;iq - sings (13.11)
oy = \/O'>2<+O'g+(O'X —09)2+312< fy (13.12)

The shear stress caused by the tapering of the pile Tyqper can be neglected due to the low
coning angle. Tigper is given by Equation [13.13] where Sigper = 5° is the coning angle [176].
The tapering shear stress is 8.8% of the normal stress.

ﬁtaper =57

Ttaper = —Ox * tan(ﬁmper) Ttaper = —0.088 - Oy (1313)
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Figure 13.2: Definition of forces and moments on a cross section used for the calculation
of the normal and shear stress. Fj is the force in the side-side direction, F,
the force in the fore-aft direction, F, the axial force along the pile caused by
the turbine weight, M, the bending moment in the fore-aft direction, M, the
bending moment in the side-side direction and M, the torsion.

13.1.3 Stability Analysis

"Requirements for the elements of the cross section not fulfilling requirements to cross section
type 3 need to be checked for local buckling" [11]. The diameter to thickness ratio D/t
of the pile is calculated and the limits from table 5.2 of the Eurocode 3, part 1-1 [I77] are
used for the classification of the structure. Buckling of circular cylindrical shells under pure
bending is reported in references [178] [I79]. In reference [I80] buckling design rules for thin
walled structures in soil are proposed. Buckling should not occur in any component under the
characteristic load [I7]. The partial safety factors are the same as specified for the ultimate
limit state analysis (7 = 1.35 for normal situation and v¢ = 1.1 for abnormal, 7, > 1.1 and
0.9 <+, <1.3).

13.1.3.1 Local Buckling

The ratio in all sections of the examined sub-structure/foundation is above the limit D /ty, >
90€? (table 5.2 of the Eurocode 3 part 1-1), where € = /235/f,. Therefore, the structure
belongs to class 4 and has to be verified against buckling according to Eurocode 3, part 1-6
[181].

The Eurocode 3 proposes that for the assessment of shell buckling (limit state buckling
design) the meridional (axial) oy, the shear 7 and the circumferential og buckling stresses
should be considered. The calculation of the stresses on the cross section is given by Equation
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13.10L The boundary conditions of the different sections can be described as BC 1 (clamped)
at both edges, as specified in the Eurocode 3 and therefore all the following expressions are
valid for the examined cases.

The buckling resistance necessary for the limit state buckling design is given by Equation
where o, pq is the meridional buckling resistance, oy grq the circumferential buckling
resistance, Tgrq the shear buckling resistance, xx, xo and x; the buckling reduction factors and
fy the yield limit.

Xk'fy o XG'fy . _Xt'fy

Oy, Rd = 0,Rd — Rd —
X ’ y )
Tm Tm \/§7m

(13.14)

The examined pile is characterized as a truncated conical shell (Figure [13.3). An equiva-
lent cylinder can substitute the conical shell for the assessment of the buckling resistance as
described in Annex D of the Eurocode 3, Part 1-6 [I81].

Figure 13.3: Conical shell geometry and stresses. Figure from reference [181].

The equivalent cylinder length for the meridional and the circumferential stress is equal
to le = L. For the shear stress the equivalent length is equal to the height of the cone, but
due to the small conical angle I, = L. The equivalent cylinder radius used in the calculation
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of the three stresses is given by Equation [13.15]

" Tt
X cosp’ © 2cos3’

1+ 172 27“1
T — 1 :
Te, [ \/ 2r1 \/1 + TQJ r - cosp

For the calculation of the parameters necessary for the estimation of the buckling stresses,
the length of the shell segment needs to be specified from the dimensionless parameter w;
(Equation [13.16). The expression for the buckling reduction factor x as a function of the
relative slenderness of the shell \ is given in Annex D of the Eurocode 3, part 1-6 [I81].

(13.15)

le
VTetin

w = (13.16)

The relative slenderness of the shell for different stress loading is given by Equation [13.17]

S = Toloeme o= vToom A =1/ (aev?) (1317)

The critical buckling stresses o re, 09, re, and Tg. are given in Annex D of the Eurocode
3 as a function of the dimensionless parameter w.

The interaction of the maximum of each stress should satisfy Equation [I3.18] to ensure
buckling strength, where ky, k;, kg and k; are the buckling interaction parameters specified
also in Annex D of the Eurocode 3.

o \™ Ox 6 oo \" T\
—— | —ki{— |+t +—) <1 (13.18)
Ox,Rd Ox,Rd 00,Rd 00,Rd TRd

13.1.3.2 Global Buckling

With the assumption of ideally straight members (no imperfections), the critical axial load
for global buckling is calculated. An analytical solution given in reference [I82] is used. An
equivalent cylinder with the same length as the sub-structure and bending stiffness equal to
the average of the stiffness at the monopile top and bottom is considered. The verification
of this assumption is performed by estimating the critical axial load of a cylinder and a cone
with the same boundary conditions (clamped-free). The difference of the calculated critical
load between the two cases is 7%. Therefore, the equivalent cylinder will be used for the
calculation of the critical buckling load.
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In the examined case the boundary condition at the monopile bottom is not clamped, due
to the soil flexibility. A hinge with a rotational stiffness calculated from the solution of the
Winkler beam is considered. By applying a moment M,,icq at the pilesand top and calcu-
lating the rotation 6, of the section, the rotational stiffness is given by ¢, = Mappiicd/Orot-
The critical buckling N, load is then calculated by the root of Equation where ET is
the monopile bending stiffness [182].

Ncr _ Ncr
N, - tan <l > — Cq - =0 (13.19)

13.1.3.3 Soil Pile Interaction

The currently implemented p-y curve in most aero-elastic codes accounts only for local re-
action, where the soil is simulated as uncoupled springs. Global effects due to the pile de-
formation are not taken into consideration. The stiffness of the soil springs is based on the
soil properties and it is independent of the pile diameter. Such an assumption might hold for
slender piles, but it might be ambiguous for large diameter piles. In reference [I83] the effect
of the small-strain soil stiffness on the first natural frequency of the structure is discussed.
Higher measured natural frequencies than the design values are attributed to the soil-pile in-
teraction model. In the same study a 3D finite element model is applied to estimate the initial
soil stiffness at small strains.

Due to the pile deformation, pressure imbalance is created around the structure as shown in
Figure (difference between passive-active earth pressure). Larger pile deflections might
create an opening in the soil-pile interaction, reducing the pressure to 0 on one side (Figure
13.4). Therefore, radial pressure distribution is no longer uniform, leading to ovalization
of the plane (Figure ) The 3D arching of the soil also changes the in-plane pressure
distribution on the pile. The soil-pile interface that is responsible for the shear stress is not
taken into account in the p-y model. Its modeling is complex and it depends on the soil type,
the roughness of the pile, the depth and the installation method.

The doubtful p-y curve for large diameter piles, the incomplete soil data, the unknown
interface properties of the soil-pile connection, the unknown in-plane deformation and the
non-linearity of the soil render its modeling complex. Accurate estimation of the soil-pile
interaction will require a detailed 3D finite element model of the soil, which is outside of the
scope of the present study. Therefore, for the sake of simplicity the p-y curve will be used in
the analysis. Any assumptions for the soil properties necessary for the design of the foundation
is a rough estimation and they are used only for this preliminary design of the structure.
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Figure 13.4: a) In-plane pressure imbalance around the pilesand section because of pile de-
flection. b) Ovalization of the plane due to non-uniform radial pressure distri-
bution. ¢) Opening in the soil-pile interaction because of large pile deflections.

13.1.4 Fatigue Limit State (FLS)

"The Fatigue Limit State is related to failure due to cumulative damage effect of cyclic loading"
[11]. A component is expected to fail when the accumulated damage exceeds 1. The expected
damage is given by Equation n;i is the expected number of lifetime cycles for the gt
wind speed and k™ load range (Equation and N (v, Sk) is the number of cycles that
lead to failure for a specific load range. ~ is the product of all three partial safety factors
(v = Yf¥Ym¥n)- The partial safety factor v, can be equal to 1 for both normal and abnormal
situations. For materials like steel -y, can be taken as 1.1, when the survival probability is
97.7%. The safety factor for consequences of failure ~,, varies from 1 to 1.3. The load spectrum
Fgr is obtained from the histogram of load range-cycles (S-N) by Rainflow counting the time
series. Pj is the fraction of time the wind speed is in bin j.

njk

E(D) =5 gy <1 (13.20)
njp = <Lifejfzme> P; (N;Fsr(Sk|V;,T)) (13.21)

A bi-linear S-N curve for piles in seawater given in the DNV guidelines [I72] is chosen, to
perform a fatigue analysis to the sub-structure/foundation with 25 years target lifetime for
the estimation of the equivalent load S, as described in Appendix [B] The reference number
of cycles is N,y = 105, which corresponds to the number of cycles for 25 years. The welding
of the different sections is considered as the most critical detail for the fatigue analysis. From
the DNV guidelines [I72] the S-N curve D (table A-9 Hollow Sections) in seawater is chosen
as the one describing better the structure under consideration (Figure . In every cross
section the stress is calculated from Equation every 5° and the exact position of the
maximum stress is identified.

The number of cycles from the S-N curve that corresponds to the equivalent accumulated
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O

OB,

Figure 13.5: Detail describing the welding on the monopile. S-N curve D: "Circumferential
butt welds between tubular and conical sections, weld made from both sides"
[172].

load for the different examined cases is compared with N,.r to assess the lifetime of the
structure.

13.2 Structural Analysis of the Sub-structure/ Foundation De-
sign

In the following sections the results of the fatigue, ultimate and stability analysis of the sub-
structure/foundation are presented. The partial safety factors described previously are applied
to the obtained loads from the simulations. Firstly, the baseline design is tested against fatigue
and extreme loads and then the effect of the measured environmental conditions on the lifetime
of the structure is examined. The higher estimated additional offshore damping from the boat
incident is implemented in the model and the wall thickness of the structure is decreased.
The welds connecting the different sections are assumed to be the critical points. For a more
detailed analysis other details on the structure like the bolts, as well as load cases accounting
for transportation and installation should be examined.

13.2.1 Baseline Design

The baseline design is defined as the sub-structure/foundation design using the external con-
ditions as specified in the IEC 61400-3 [I3] and the commonly used damping of § = 6%.
The design, the wind and the metocean conditions were provided by DONG Energy from
measurements on the site during the planning phase.

Figures[13.6|and [I3.7] present the maximum von Mises stress for each design load case at the
different sections along the sub-structure and the foundation. The solid blue line corresponds
to the yield limit of the material. The stresses and the yield limit are normalized with the
maximum at each section. During normal operation the design case resulting in the highest
stress for all the sections is DLC 1.3, as it was anticipated due to the extreme turbulence
model implemented in this case. The highest extreme load is for DLC 6.1b, where a steady
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wind with magnitude 70m/s is applied. For all the load cases the von Mises stress is well
below the yield limit. The design of the sub-structure/foundation is therefore not driven by
the ultimate loads.

Figure depicts the stresses along the monopile and the pilesand for DLC 1.3, normal-
ized with the maximum stress of each component. Even though the highest moment on the
sub-structure is observed at the bottom, due to the over-dimensionalization of this section the
largest von Mises stress is detected a few meters below the monopile top. On the pilesand the
stresses follow the moment distribution, with the maximum stress at 5m below the seabed.

Figure presents the extreme axial simulated loads F ;4. for every design load case at
the monopile bottom, normalized with the maximum simulated load. The solid line represents
the critical axial load from the analytical solution of Equation[13.19that causes global buckling
on the system. The extreme axial loads are below the critical value for all the cases.

The stresses contributing to the local buckling are combined through Equation to
verify the buckling strength of the monopile and the pilesand. Figures|13.10]and [13.11|present
the interaction of the meridional, the circumferential and the shear stress at the different
sections of the sub-structure/foundation. For every design load case the combination of the
stresses is below 1, therefore the buckling strength verification is fulfilled.

The monopile/pilesand was designed for 25 years lifetime. The chosen S-N curve from
the DNV guidelines for piles in seawater [I72] based on the welding detail is D and the
Nyep = 106 (Figure , which corresponds to the total number of cycles during the wind
turbine lifetime. The highest accumulated fatigue of the baseline structure is Sy = 83M Pa
and appears 5m below the seabed.

The design of the sub-structure/foundation seems to be driven by the fatigue of the struc-
ture rather than the ultimate loading or the stability. Therefore in the following two sections
that the dimensions of the structure remain unchanged, only the fatigue will be examined.
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Figure 13.6: Ultimate stress loads (von Mises stress) on the monopile sections for each design
load case. The solid blue line represents the yield limit. All the stresses are
normalized with the observed maximum stress on each section.
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(c) Ultimate stress at 7.5m below the seabed. (d) Ultimate stress at 11.5m below the seabed.

Figure 13.7: Ultimate stress loads (von Mises stress) on the pilesand sections for each design
load case. The solid blue line represents the yield limit. All the stresses are
normalized with the observed maximum stress on each section.
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Worst section monopile DLC 1.3 Worst section pilesand DLC 1.3

(a) Ultimate stress at different sections along the (b) Ultimate stress at different sections along the
monopile. pilesand.

Figure 13.8: Worst sub-structure/foundation section for DLC 1.3. The stresses are normal-
ized with the maximum stress of each component.

Maximum axial load monopile bottom

1.5¢ T

Figure 13.9: Maximum axial load at the monopile bottom for all design load cases, normal-
ized with the maximum simulated load. The solid blue line corresponds to the
critical load obtained from Equation that leads to global buckling of the
sub-structure.
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Figure 13.10: Combined meridional, circumferential and shear stress for local buckling
strength verification of the sub-structure. In the y axis the result from Equa-

tion [I3.18]is presented.
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Figure 13.11: Combined meridional, circumferential and shear stress for local buckling
strength verification of the foundation. In the y axis the result from Equation

[[3.18]is presented.
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Figure 13.12: S-N curves for structures in seawater. Curve D is chosen for the fatigue
analysis of the monopile/pilesand. Figure adapted from reference [172].
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13.2.2 Baseline Design-Measured Environmental Conditions

In this section the effect of the measured wind and wave conditions, on the structure’s lifetime
is examined. A yaw error of £8° is included in the simulations, to account for changes in the
wind direction not captured by the yaw system. Figure[I3.13]presents the accumulated fatigue
at the most critical section of the monopile and the pilesand, namely 8m below the monopile
top and 5m below the seabed respectively. The design of the sub-structure/foundation in both
cases (first two bars in the figure) is the same, with only difference the external conditions
applied in the simulations. The fatigue of the "baseline design" is obtained from DLC 1.2,
where the wind and wave conditions are based on site measurements from the planning phase.
The implemented turbulence intensity is the effective turbulence as described in the TEC
61400-1 [17] and presented in Section [7.1.1.2] The accumulated equivalent load of the bar
with the caption "measured wind-wave" is also obtained from DLC 1.2 but the long term
joint wind-wave probability (Section and the effective turbulence intensity applied in
the simulations are based on the measurements after the installation of the wind farm.

The number of cycles for the accumulated fatigue of the baseline design with the measured
environmental conditions, obtained from Figureis N = 2.8-10%, which corresponds to 2.8
times higher lifetime than the original design. The lower turbulence intensity experienced in
the wind farm than the one applied in the design phase (conservative TT from the standards to
cover various sites worldwide) and the uncertainty in the long term joint wind-wave probability
based on limited measurements might be the reasons for this discrepancy.

13.2.3 Design with Higher Damping

In the simulations of the previous two sections the additional offshore damping implemented
in the system is § = 6%. In the following two sections the damping of the model is tuned
to the measured additional offshore damping from the boat incident § = 12% (Section
to examine its effect on the accumulated fatigue and the total lifetime of the structure. The
baseline design is then modified and the new structure is tested for fatigue, ultimate and
stability strength.

13.2.3.1 Baseline Design with Higher Damping

The additional offshore damping of the model is tuned to the estimated damping from the
boat incident ({ ~ 2%, § = 12%). The wind and wave conditions applied in the simulations
are the measured ones. Yaw error of £8° is included in the analysis. The number of cycles for
the equivalent load of this configuration is N = 3-10° (Figure . The damping seems to
play a significant role in the fatigue of the structure. Twice higher additional offshore damping
results in 1.1 higher lifetime (comparing the two cases with the same measured environmental
conditions "measured wind-wave" and "higher damping").
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Accumulated fatigue monopile 8m Accumulated fatigue pilesand 5m

N =3 [m0°

(a) Accumulated fatigue 8m below the monopile (b) Accumulated fatigue 5m below the seabed for
top for the different sub-structure/foundation the different sub-structure/foundation models.
models.

Figure 13.13: Accumulated fatigue on the most critical section on the monopile and the
pilesand for the different configurations. The presented data are normalized
with the equivalent load of the baseline design.

13.2.3.2 Modified Design with Higher Damping

Based on the findings of the previous sections, that the extreme loads are well beyond the
limits and that the fatigue (driving case) is decreased when higher damping is available on the
system, modifications on the structure are applied. The aim of the modified design is material
savings, leading to cost reduction. For the sake of simplicity, the effect of one parameter
variation will be examined on the structure. The wall thickness of the monopile/pilesand is
reduced uniformly along all sections by 10% and 20%), reducing the total weight of the sub-
structure/foundation by 60 tons and 120 tons respectively. The differences in the first and
second natural frequencies because of the changes in the mass are less than 5% compared to
the baseline design. The natural frequencies are within the boundaries of wave frequency and
blade passing. Since the design has been modified, all limit state analysis should be performed
to ensure the structural integrity of the system.

Figures [13.14] and [13.15] present the von Mises stresses on the welds of the monopile and
the pilesand sections for the baseline and the modified designs (10%, 20% thinner walls). The
presented data are normalized with the maximum simulated stress of the baseline design. For
the modified designs with the higher damping a small increase on the ultimate loads can be
observed. For all cases the extreme loads are still below the yield limit. For the most critical
monopile section (8m below the monopile top) DLC 6.1b results in an extreme load almost
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equal to the yield limit for the 20% reduced thickness design. Even though the loads on the
pilesand seem to be below the limits, the results should be interpreted with caution due to
the simplifications of the soil model. A 3D finite element soil model, required for a detailed
analysis of the foundation, might result in different stresses due to soil-pile interaction.

The comparison of the combined stresses for the verification of the buckling strength is
presented in Figure for the monopile and Figure for the pilesand. An increase of
the combined stress can be observed for the modified models, but the value is always below
1, ensuring the local buckling resistance of the structure.

Figure depicts the maximum axial load from all the design load cases for the baseline
and the modified designs. The horizontal solid lines represent the critical axial loads that lead
to global buckling for every configuration. All the values are normalized with the maximum
simulated load for the baseline design. A small decrease of the axial load for the reduced wall
thickness designs is observed, due to the reduced weight of the structure.

The maximum stresses are increased because of the modified geometry of the structure,
but they always remain below the limits. The fatigue is the driving design factor as was
shown in Section and is mainly affected by the net damping of the system. Reduced
thickness of 10% and 20% and increased damping result in 2.3 and 1.5 times higher lifetime
respectively compared to the baseline design (Figure comparison between bars with
caption "baseline design", "10% thinner wall" and "20% thinner wall"). Consequently, the
higher measured damping can lead to material savings, if it is implemented during the design
phase. In the examined case up to 1% of the whole structure’s weight can be saved.

The common price of the steel (hot rolled steel plates with high thickness) used in the
manufacturing of the monopiles for offshore wind turbines, ranges between 680-750 €/MT.
20% reduced wall thickness (120 tons) leads to cost savings from 81600-90000€ per wind
turbine. For a wind farm like Walney 1 with 51 wind turbines, the cost saving is 4161600-
4590000€. The steel prices were provided by ThyssenKrupp [184], Dansteel [185] and Oakley
Steel [186]. Therefore, appropriate damping values, based on site measurements, implemented
during the design of the sub-structure/foundation of an offshore wind turbine, can lead to
significant cost savings.
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Figure 13.14: Ultimate stress loads comparison between the baseline design and the sub-
structure with the reduced thickness. Von Mises stress calculated on the
monopile sections for each design load case normalized with the maximum
stress. The solid blue line represents the yield limit normalized with the
observed maximum stress of the baseline design.
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Figure 13.15: Ultimate stress loads comparison between the baseline design and the founda-

tion with the reduced thickness. Von Mises stress calculated on the pilesand
sections for each design load case normalized with the maximum stress. The
solid blue line represents the yield limit normalized with the observed maxi-
mum stress of the baseline design.
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Figure 13.16: Combined meridional, circumferential and shear stress for local buckling
strength verification of the sub-structure. Comparison between the baseline
design and the sub-structure with the reduced thickness. In the y axis the
result from Equation @ is presented.
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Figure 13.17: Combined meridional, circumferential and shear stress for local buckling
strength verification of the foundation. Comparison between the baseline
design and the pilesand with the reduced thickness. In the y axis the result
from Equation @ is presented.
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Figure 13.18: Comparison of maximum axial load at the monopile bottom between the base-
line design and the sub-structure with the reduced thickness for all design load
cases, normalized with the maximum simulated load. The solid lines corre-
spond to the critical load obtained from Equation @ for all the designs.
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CHAPTER 14

Conclusions

Offshore wind energy has become the main target of the wind industry over the last years.
Offshore wind turbines are continuously growing in size, increasing at the same time the
challenges due to more severe operational conditions and rendering the accurate prediction
of their response even more important. The design of the support structure requires a great
effort, due to site dependency and its considerable influence upon the wind turbine loading.

For enhanced component reliability and thus cost reduction it is imperative to reduce the
uncertainties in the design of offshore wind turbines, by gaining a better understanding of the
driving design cases. The aim of this thesis has been the accurate prediction of the response
of a fixed bottom offshore wind turbine and the investigation of the effect of damping on
the fatigue of the structure and the sub-structure/foundation design for increased component
reliability.

A 3 bladed 3.6MW pitch regulated-variable speed Siemens offshore wind turbine installed
at the Walney Offshore Wind farm 1 in the Irish sea, has been fully instrumented for load
measurements. Wind and wave measurements were provided by a nacelle mounted cup-
anemometer and a wave buoy respectively. The additional offshore damping of the structure
has been estimated from the impulse response caused by a boat impact. The measurements
have been used for the validation of an offshore wind turbine model on a monopile foun-
dation built in the aero-servo-hydro-elastic code HAWC2. Variations in the design of the
sub-structure/foundation have been examined for possible material savings.

Measurements calibration

The calibration of the measured data is a crucial step before the post-processing of the
results. The turbulence intensity has been estimated from a nacelle mounted cup-anemometer.
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Due to conservative readings because of the rotor wake effect, a correction factor has been
applied, based on the differences between the simulated and the measured load spectra. The
effective turbulence intensity has been calculated applying the Frandsen’s wake model and
the wind direction probability. The wave properties (significant wave height, peak period
and wave direction) were provided by a wave buoy installed close to the instrumented wind
turbine.

A gravity based calibration procedure for the different components is described. Various
issues like data synchronization and data availability are discussed. The problems encountered
during this measurement campaign are important lessons for future studies. Large amount of
money is spent on instrumentation and setting up of measurement campaigns, without always
ensuring the final quality of the data. Therefore, it is recommended that calibration tests are
performed regularly (yaw and low speed idle tests) to avoid drifts due to temperature changes.
The synchronization and the overlap of the different systems should be examined before the
beginning of the measurement period. Cases of boat impacts on the support structure should
be recorded for the estimation of the support structure net damping.

Model set-up and validation

The 3 bladed 3.6MW pitch regulated-variable speed offshore wind turbine on a monopile
foundation modeled in the aero-servo-hydro-elastic tool HAWC2 [3] was validated against
bending strain measurements from the support structure and the blades of a full scale wind
turbine. The model was built by down-scaling the NREL 5MW reference offshore wind tur-
bine and modifying the mass and stiffness distributions to match the characteristics provided
by the manufacturer. The model was tuned to match the additional offshore damping and
the standstill natural frequencies of the actual turbine. The ultimate and the fatigue loads
obtained from the measurements and the simulations and their uncertainties are compared.
The accurate representation of damping in the model seemed to have a pronounced effect on
the prediction of the loads on the structure. The predicted loads show similar behavior with
the measured bending moments. Discrepancies between measurements and simulations are
due to differences in the aerodynamic blade profiles, erroneous cup-anemometer readings and
uncertainties in the soil modeling.

The wind turbulence intensity, the wave parameters and the soil model are based on site
measurements. The simulation of the wind turbulence is based on the Mann wind turbu-
lence model (IEC 61400-1 [17]). A JONSWAP spectral model is derived from the wave buoy
measurements and the irregular wave theory combined with the wheeler stretching is imple-
mented in HAWC?2 to account for hydrodynamic loads. For the lateral loading of the pile the
p-y method is employed [L1].

Damping Estimation

The modal damping of a full scale offshore wind turbine on a monopile foundation was
estimated both in standstill and in normal operation. An exponential curve was fitted to the
relative maxima of the decaying response after the application of an impulse, for the estimation
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of the additional offshore damping. The result was used to verify the corresponding estimation
given by the auto-correlation function, which is further developed to predict damping under
normal operation. A mean value of the total standstill damping ( = 1.9% (logarithmic
decrement 6 = 12.2%) is identified. The finding is in agreement with previous studies, where
higher additional offshore damping than the currently used is reported. Exact values of net
support structure damping are site dependent due to the influence of the soil damping on the
structure’s response. The damping of the first two modes of the structure was estimated under
ambient excitation. The output-only Enhanced Frequency Domain Decomposition (EFDD)
method was applied to the response time series. The damping in the fore aft (FA) vibration
mode has a scatter of 8.1% around a mean logarithmic decrement of § = 65% and in the side-
side (SS) 6.7% around 6 = 30%. The beating phenomenon on the auto-correlation function
and the harmonics render the identification of the side-side modal damping less reliable. Their
effect is less pronounced in the fore-aft direction due to the aerodynamic damping dominating
this mode. However, the accuracy of the damping estimation should always be examined with
caution, due to bias errors introduced by the application of the FFT to the time series.

The damping in normal operation was compared with the identified damping from the
model turbine. Results of the damping in the fore-aft direction showed good agreement be-
tween measurements and simulations for all mean wind speeds. The presence of a tower
damper in the real wind turbine, which is not taken into account in the model and the uncer-
tainties in the soil model are responsible for the discrepancies in the damping estimation of
the side-side vibration mode.

Response under various operational conditions

The side-side tower-bottom fatigue of a 3.6MW offshore wind turbine is estimated from
measurements on the Walney 1 offshore wind farm. The joint wind-wave distribution and
the wind and wave direction distribution based on 6 months of measurements are included
in the analysis. The implementation of the joint wind-wave probability scaled to 25 years
lifetime, showed that the largest contributors to the accumulated fatigue damage on the sub-
structure is from the most probable combinations of wind speed, significant wave height,
and misalignment angle; rather than those combination which resulted in the highest 1Hz
equivalent loads. Simulations with HAWC2 show good agreement with the measurements in
the estimation of the equivalent load for each wind-wave combination and the accumulated
fatigue throughout the whole lifetime of the structure.

The side-side fatigue loads at the tower bottom were shown to be extremely sensitive to
the damping applied in the HAWC2 model; especially in the case of wind-wave misalignment.
Increasing values of the additional offshore damping (to § = 12%) result in a reduction in the
side-side accumulated fatigue of up to 46%, compared to simulations with a damping value
of 6 = 6% (a typical value used for design of the sub-structure). Additionally, at a typical
design damping of 6%, the simulated side-side fatigue loads are very sensitive to the wind-
wave misalignment angle; however, this sensitivity decreased when higher damping values
were applied. Therefore, an accurate choice of this damping value is necessary in order to
accurately predict the side-side fatigue loads on the sub-structure.
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On the other hand, the measured side-side fatigue loads were shown to be relatively insen-
sitive to the misalignment angle. The damping in the side-side direction estimated from the
measurements during normal operation also seems to be insensitive to the misalignment angle.
Additionally, the damping value estimated from the measurements of 12% was significantly
higher than the typical design damping of 6%. These findings indicate that there may be
significantly more additional offshore damping than is typically considered in the design of
wind turbine sub-structures.

Since the side-side fatigue loads are highly sensitive to the choice of damping, the use
of a conservative damping value in the wind farm design phase may result in significant
overprediction of the lifetime side-side fatigue loads. These overpredicted loads may result
in a significantly overdesigned sub-structure. Choice of an appropriate damping value can
therefore result in significant material and cost savings during the design of offshore wind
turbine sub-structures.

In the case of a yaw error during a storm, the amplitudes of the measured in plane blade
root and tower bottom side-side measured bending moments are increasing.

Sub-structure/Foundation design

The design of the sub-structure/foundation has been modified to examine the possibility
of material savings, based on the findings of the higher damping available in the system. For
the sake of simplicity for this preliminary design the thickness of the structure is decreased
uniformly. Limitations due to uknown design details and simplifications in the soil model are
discussed.

For the calculation of the loads during the design process, various design load cases (normal
operation and extreme events), prescribed in the IEC 61400-3 standards [I3], are tested to
examine all possible wind-wave combinations that the offshore wind turbine will be subject
during its lifetime. For the study of the monopile/pilesand design a total of 25000 simulations
were performed in HAWC2. The stresses at the sections along the sub-structure/foundation
are computed and a fatigue, an ultimate and a stability analysis are performed to investigate
the structural integrity of the system. The von Mises criterion and the buckling strength
verification specified in the Eurocode 3 [I81] are applied for the examination of the ultimate
limit state and the stability respectively. The Rainflow counting technique combined with the
Miner’s rule are used for the calculation of the accumulated fatigue load. The joint wind-wave
distribution of the probability is accounted for in the analysis.

The design of the sub-structure/foundation is driven by the fatigue. Reduction in the
wall thickness up to 20% and implementation of the higher measured damping (( = 1.9%)
resulted in 1.5 higher lifetime than the baseline design (37 years). The thickness reduction
results in saving 120 tons of steel and approximately 81600-90000€ per wind turbine, based
on the current steel plate prices, as provided by the specialized steel mills (ThyssenKrupp,
Dansteel) and steel trading companies (Oakley Steel). However, the uncertainty introduced to
the fatigue by the estimation of the joint wind-wave probability based on limited measurements
and the uncertainty of the soil model should be taken into account in a more detailed analysis.
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The extreme loads are below the yield limit and the buckling stability is verified. Therefore,
material savings due to higher implemented damping are possible.

14.1 Future Work

Specific details in the modeling of the environment (wind, waves, soil) and the wind turbine,
necessary for the implementation in real projects, were outside of the scope of the current
thesis. For the presentation of the results several assumptions have been made. For a more
specific and thorough analysis, more structural details and further developments of the cur-
rently applied tools are necessary. Non linear waves should be applied in the simulations for
accurate calculation of hydrodynamic loads on the support structure.

Considering the damping estimation during normal operation, the elimination of the har-
monics before the identification process is required. The implementation of a tower damper
in the simulations will provide a better estimation of the damping in the side-side direction.
Various methods of damping estimation (ex. SSI) should be applied for the verification of the
accuracy of the results.

A detailed sub-structure/foundation design calls for a more thorough analysis of the fatigue
of the structure, knowing the exact manufacturing details (ex. welds, bolts). A 3D finite
element soil model is imperative for the representation of the soil-pile interaction and the
reliable estimation of the loads on the pilesand. Investigation of the soil damping on the
fatigue of the system could lead to reduction of the uncertainties in the design of the structure.
Taking into account the higher available damping in the system, an optimization algorithm
and a cost function are required for the calculation of the optimum wall thickness.
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APPENDIX A

Appendix A

A.1 Wind

For the calculation of the offshore turbulence intensity the 90"

deviation from the scatter data is used (Equation [A.1]).

percentile of the standard

Uhub

1.28-144 -1 .
I (o 20) + 15 (A1)

090 =

I5 is the expected turbulence intensity at 15m/s wind speed depending on the wind
turbine class, Upyp the mean wind speed at hub height and zg is the surface roughness length,
calculated iteratively by Equation as proposed in IEC 61400-3 [13] for site specific offshore
wind turbine design. Ac = 0.011 is the Charnock parameter for open sea, x = 0.4 is the von
Karman parameter and g is the acceleration due to gravity.

2
20 = Ac [“U’“‘b} (A.2)
g LIn(zhu/20)

Equation shows the turbulence intensity for the load cases DLCL.1 and DLC 1.3 as
given by the IEC 61400-1 standard [I7], where Uy, is average wind speed on the site at hub
height, I,.s is the expected value of the turbulence intensity at 15m/s (here equal to 0.14
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turbine class B), b = 5.6m/s and ¢ = 2m/s

Lo (0.75Upup + b)

TI | = , A3
b Unup (A.3)
Uave U U
ey (0.072 ( + 3) < hub 4) + 10>
C C
Thia= U

An effective turbulence intensity I.;s to account for the wake effect inside a wind farm is
given by Equation [A.4]

o 1/m
Ieff = fp(gthub)IZunake(mUhub)dg (A4)
0

Where p is the probability density function of wind direction 6, I,k the combined tur-
bulence intensity of the ambient and the wake flow, Upyp the mean wind speed at hub height
and m the Wohler exponent for the considered material. The exponent of the most sensitive
material should be used for the verification of the safety of the entire wind turbine [62]. In
the case of limited information about the wind direction (wind rose) a uniform distribution
can be considered. Based on Frandsen’s wake model the wake turbulence is given by Equation

(A5l

Iwake = \/Igdded + Igmbient (A5)

The added turbulence intensity I,g4eq is given by Equation [A.6]

1

154084,/ /Tr(T))

2 _
Iadded - ( (A6)

d; is the distance from a neighboring turbine normalized by the rotor diameter and Crp is
the mean thrust coefficient depending on the wind velocity U. By applying these formulas no
reduction in the wind speed inside the farm needs to be assumed.

When uniform wind direction is assumed, Equation can be used for the calculation
of the effective turbulence intensity. o is the ambient turbulence standard deviation, op is
the maximum center-wake hub height turbulence standard deviation, d; is the distance to the
neighboring wind turbine, N is the number of the neighboring turbines and p,, = 0.06.

1 A N . 1/m
Ipp = O (1 = Npy)d™ + py gaTm(dt) (A7)
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Weibull Distribution

The Weibull distribution is often used to describe the wind speed distribution. The prob-
ability density function (PDF) f(U; Bw, w) and the cumulative distribution function (CDF)

F(U; Bw, ) are given by Equations and respectively.

wU,Bw—l U B8
fU; Bu, ) = A G eTp | — <a> (A.8)
B
F(U; By, ) =1 —exp |— (Oi]) (A.9)

The shape parameter 3, is calculated using the maximume-likelihood estimation and solv-
ing Equation iteratively. Where U is the mean wind speed and n is the number of
observations.

<Uf;’ani> 1 | n
Uﬁw w =1

After estimating the shape parameter 3, the scale parameter oy, is given by Equation

1
- (1 3 Uiﬁ;,ani) . (A.11)

n =1

Rayleigh Distribution

The Rayleigh distribution is a specific case of the Weibull distribution with one parameter
(8 =2). The PDF and the CDF are given by Equations and respectively.

2
f(U;b) = b%exp (—;Z) (A.12)

2
FU;b)=1—exp <_;[I;> (A.13)
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The scale parameter b is calculated using the maximume-likelihood estimation (Equation
A.14).

b=/ 2 U? (A.14)

A.2 Waves

The wave surface elevation 7 , the particle velocity v and acceleration u, of an Airy wave of
amplitude H/2 at any time ¢ and horizontal position z , are given by Equation where
ky, is the wave number k,, = 27/L, w is the frequency of the wave and d is the water depth.
The main characteristics of the regular waves are presented in Figure [A]]

n = cos(wt — ky),

wcosh(n +d) (A.15)

sinh kd

ycosh(n + d)
sinh kd

Uy = cos(kyr —wt), uy = Hw sin(kyx — wt)

Surface ele\'atioV—) Wave length

z c=L/T

w=0atz=-d g y
7

Figure A.1: Regular linear waves. Figure from reference [7]

The Pierson-Moskowitz (Equation [A.16]) and the JONSWAP (Equation |A.17)) are the wave
spectra used to describe the wave distribution of the Norht Sea. The JONSWAP Spectrum is
an extension of the Pierson-Moskowitz.

8.14% _ 1/3,-2)2
S+(CU) = 170356 0'032(9/1—[ ) (A16)
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(2m)* 4\ fo

S = a2 f5€xp<_5 <f>4>;xp<o'5<fwffo>2> (A.17)

fo is the peak frequency, g the gravity acceleration, «; is given by Equation and o by
Equation [A.T9] A well described sea state is one that has most of its energy around the peak
frequency fy. The above mentioned spectra does not take into account higher order peaks.

2 r4
o = 5H82fo (1 —0.287log(7)) ©* (A.18)
| 0.07 for f < fo
_{ 0.09  for f> fo (4.19)

The v parameter of the spectrum is given by Equation as proposed in reference [11],
where T}, is the peak period in seconds and H, is the significant wave height in meters. For
v =1 the JONSWAP spectrum is equal to the Pierson-Moskowitz spectrum.

5 for Ty <3.6
vH; —
Ip Ip
Y= erp (5.75 — 1.15\/E> for 3.6 < NGE <5 (A.20)
1 for 5 < Ty

VH,

A.3 Soil

The p-y curve used to describe the soil-pile interaction can be generated from Equation
for sand and Equations and for clay:

seabed

+
LA
A

Figure A.2: Distributed springs model.
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p = Ap, tanh (%jy) (A.21)

X is the depth of penetration, ks is the initial modulus of subgrade reaction, A takes the
value of 0.9 for cyclic loading and p, is the static ultimate resistance (Equation [A.22]).

(ClX + CQD) ’y/X for 0 < X < Xp
C3D~' X for X > Xp

The coefficients C, Cy and C53 depend on the friction angle ¢, X is a transition depth,
D is the pile diameter and +/ is the submerged unit weight of soil.

For cyclic loading and X < Xp

SO for y < 3y.
(&
X\y-3
p=1{ 0.72p, (1 - (1 - XR> 3’1ny0> for 3ye < y < 15y, (A.23)
C
X
0.72puX—R for y > 15y,

For cyclic loading and X > Xp

D3 fory <3y,
p= Ye (A.24)

0.73py, for y > 3y,

Here y. = 2.5¢.D, where €. is the strain which occurs at one half of the maximum stress.
The static ultimate resistance p, in the case of clay is given by Equation

(3sy + 7' X) D + Jsu, X for 0 < X < Xp
DPu = (A25)
95, D for X > Xp

Sy 18 the undrained shear strength of the soil and J is a dimensionless empirical constant
with a range between 0.25 and 0.5. For a more detailed analysis of the p-y model with
distributed springs reference is made to the DNV guidelines [11].
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Appendix B

B.1 Fatigue

The 1Hz equivalent load, associated to a number of equivalent cycles is given by Equation
B.1h, where NV is the number of cycles related to stress range S, m is the Wohler exponent
depending on the material and ng the number of stress ranges that the stress ranges are
separated.

The lifetime equivalent load St can be extrapolated by summing up the fatigue loads for
all the load cases and using the joint wind-wave probability distribution as weighting function,
as in Equation where fy p, is the joint wind-wave probability distribution and N, is the
equivalent number of cycles over the lifetime of the wind turbine, (usually equal to 25 years).

m 1/m
SLeq _ <fseq(u) foJ{sNequ) (B2)
eq
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