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Enhanced performance of a biomimetic membrane for Na2CO3 

crystallization in the scenario of CO2 capture 

 

Highlights 

 

- Aquaporin based FO membrane was applied as membrane crystallizer to crystallize 

Na2CO3 

- High water flux and low reverse salt flux can be realized by using this biomimetic 

membrane 

- Na2CO3·10H2O crystals with a purity of 99.94% can be achieved 

- Negligible membrane fouling and membrane blockage were observed 
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Abstract: Membrane assisted crystallization (MACr) offers an innovative platform 

for crystallizing Na2CO3, allowing its reuse after CO2 capture from flue gases by an 

alkaline solution (i.e., NaOH). In this study, the biomimetic Aquaporin Inside™ 

membrane AIM60 was employed to enhance water removal, facilitating Na2CO3 

crystallization. The water channel in the active layer, comprising aquaporin proteins, 

and the strong wettability of membrane substrate assist a better performance. The 

AIM60 membrane water flux in forward osmosis (FO) mode was 6.62 L·m−2·h−1 and 

3.25 L·m−2·h−1 in pressure retarded osmosis (PRO) mode. In comparison, a dense 

reverse osmosis membrane yielded 0.21 L·m−2·h−1 in FO mode and 0.16 L·m−2·h−1 in 

PRO mode, and a porous hydrophobic membrane in a membrane contactor yielded a 

flux of 0.08 L·m−2·h−1.  

Crystallization utilizing the AIM 60 membrane in an osmotic crystallizer was 

achieved without noticeable membrane scaling or degradation. Furthermore, a proper 

control of the supersaturation level induces crystallization of Na2CO3·10H2O crystals 

with a purity of 99.94%. Hence, the Aquaporin Inside™ FO membrane may be a 

promising alternative to existing methods for Na2CO3 crystallization for its 

application in a CO2 capture scenario. 

 

Keywords: Biomimetic aquaporin membranes, CO2 capture scenario, Membrane 

crystallization, Forward osmosis 
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1. Introduction 

Crystallization is a versatile method for separation and purification to produce a 

wide range of products in the chemical industry [1], such as pharmaceuticals, 

additives, pigments, fine chemicals, etc. Most of these products are marketed in 

crystalline form, requiring a high purity and specific polymorphism [2]. However, 

current conventional techniques, such as vapor diffusion by evaporation, seeding, and 

anti-solvent extraction, have some disadvantages that influence the production 

efficiency and the crystalline quality [3]. The main challenge is that the quality of the 

obtained crystals is poorly reproducible, which is ascribed to a poorly controlled 

supersaturation, defective mixing, heterogeneous distribution of solvent removal or 

anti-solvent addition points over the plant [3]. 

Generally, crystallization occurs due to a local concentration gradient and the 

dynamics of creating supersaturation for crystal nucleation and growth in a 

crystallizer. The level of local supersaturation directly governs the crystal morphology, 

structure, and purity [4]. These properties influence the quality of the products. 

Additionally, downstream processes, such as filtration, drying, compaction as well as 

storage, are dependent on the crystal morphology. However, excessive supersaturation 

may yield impure crystals with inclusions, unsteady modifications, needle-like shape 

and small particles [4]. Thus, in order to generate high-quality crystals, precise control 

of the supersaturation is required. 

A new crystallization technique, based on membrane technology - membrane 

assisted crystallization (MACr), is emerging as an innovative technique to meet the 
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requirements in crystallization. With MACr, one can better control and limit the 

maximum level of supersaturation due to its well-defined mass transfer through the 

membrane, resulting in a favorable crystal size, shape and purity [4, 5], 

Simultaneously, the membrane promotes heterogeneous nucleation, which in turn 

reduces the induction time (defined as the time passed between reaching 

supersaturation and the formation of crystals) of the crystallization process [6]. 

Membrane crystallization outperforms conventional techniques (i.e., cooling or 

evaporation), due to the fact that it can be conducted at room temperature, or at mildly 

elevated temperature using waste heat or alternative energy sources (i.e., solar energy 

or geothermal energy) [7, 8]. To date, the use of membranes has been regarded as a 

“process intensification” strategy to satisfy the requirements of sustainable 

development [9, 10]. MACr has broadened its potential applications in recent years, 

such as the production of pharmaceuticals or proteins or their recovery from waste 

streams [11-15], as well as valuable resource recovery from high salinity streams 

[16-22]. For instance, Caridi et al. [23] and Profio et al. [24] employed a hydrophobic 

hollow fiber membrane module in osmotic membrane distillation for separation of 

proteins, allowing the crystallization of pure proteins with a uniform size and specific 

polymorphism at room temperature. Luis et al. [25] demonstrated that osmotic 

membrane distillation has the potential for production of Na2CO3·10H2O crystals 

from CO2-rich solutions for closing the loop of CO2 sequestration. Ye et al. [26] 

further investigated the effect of inorganic impurities on the Na2CO3 crystallization in 

view of a realistic scenario of CO2 capture, demonstrating that crystals with ca. 99.5% 
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purity can be obtained with the exclusion of co-crystals of impurities. However, 

osmotic membrane distillation, with an inherently low driving force (arising from the 

transmembrane vapor pressure gradient), fails to provide high mass transfer: ca. 0.09 

to 0.18 kg·m-2·h-1 at room temperature [25-27]. To promote the mass transfer through 

hydrophobic membranes, thermally assisted membrane distillation is an interesting 

solution at elevated temperatures [19, 28, 29]. However, the requirement of 

superhydrophobicity (contact angles > 150°) [30] to effectively prevent membrane 

wetting still seems to be a challenge in this approach [31, 32]. 

Alternatively, a dense hydrophilic membrane, i.e., reverse osmosis (RO) membrane, 

in an osmotic membrane crystallizer has been proven to possess a better performance 

for dewatering, producing highly ordered crystals at room temperature, compared to 

osmotic membrane distillation [33-35]. In this crystallizer, the hydrophilic membrane 

allows the water transfer by liquid diffusion rather than by vapor diffusion. An 

improvement of mass transfer by nearly one order of magnitude, from 0.65 to 1.70 

kg·m-2·h-1, can be achieved [35]. Inevitably, the dewatering rate for the dense 

hydrophilic membrane is still insufficient compared to thermally assisted membrane 

crystallization, which would involve a larger membrane area and an increase of the 

investment cost [19, 36-39].  

A newly developed biomimetic aquaporin forward osmosis (FO) membrane may 

solve these issues when employed in a membrane crystallizer. This type of FO 

membrane comprises highly selective water channel proteins so-called aquaporins. 

Aquaporins have single channel turnover rates of up to 109 water molecules per 
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second, facilitating gradient driven water diffusion while blocking salt permeation and 

several membrane designs have been suggested in recent reviews [40, 41]. 

In this work, the potential of biomimetic FO membranes was studied to crystallize 

Na2CO3 in a CO2 capture scenario using a membrane crystallizer equipped with an 

Aquaporin FO membrane (AIM 60). The AIM 60 membrane was characterized in 

order to explore its feasibility for Na2CO3 crystallization by investigating membrane 

stability and mass transfer mechanism, and the properties of the obtained crystals 

were subsequently studied.  

 

2. Materials and methods 

2.1 Materials 

Anhydrous Na2CO3 salt (analytical grade) was supplied by VWR (Belgium) to 

simulate the alkaline solution obtained from CO2 capture by NaOH. NaCl with 99.9% 

purity was supplied by VWR (Belgium) and applied as the draw solution throughout 

the experiments. Ultrapure water with a conductivity of 18.2 MΩ·cm-1 (Millipore 

Mili-Q, Billerica, MA) was used throughout the experiments. The AIM 60 FO 

membrane from Aquaporin InsideTM (Denmark) was applied in a lab-made osmosis 

membrane crystallizer. The specifications of the AIM 60 FO membrane as reported by 

the manufacturer are shown in Table 1. 
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Table 1 Specification of the Aquaporin flat sheet FO membrane 

Specifications  

Water flux ＞ 7 L·m-2·h-1 (H2O vs 1M NaCl; FO mode) 

NaCl reverse flux ＜2 g·m-2·h-1 (H2O vs 1M NaCl; FO mode) 

Operating conditions Temperature range: 5-50 oC (Short term exposure: 65 oC)  

pH limit: 2-11 

 

2.2 Experimental setup 

A schematic diagram of the setup for osmotic crystallization is shown in Figure 1. 

The AIM 60 FO membrane separates the mother solution of Na2CO3 from the osmotic 

solution flow (i.e., NaCl) under isothermal conditions. The hydrophilic nature of the 

membrane allows the transfer of water between the Na2CO3 solution and NaCl 

solution by diffusion. Two peristaltic pumps (Watson Marlow 313 and Watson 

Marlow 323E/D, UK) were used to circulate the feed and stripping stream from the 

cylindrical glasses to the membrane crystallizer in the same current direction. The 

feed solutions were circulated at a constant flow rate of 2.5 L·h-1 and the osmotic 

solution was circulated at 3.13 L·h-1. Co-current flow was used to reduce the strain on 

the membrane surface. 
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Fig. 1 Schematic diagram of the bench

 

Utilizing an osmotic crystallizer 

namely, a good morphology, high purity, 

membrane orientations were explored to investigate the penetration of salts (NaCl and 

Na2CO3) through osmotic permeability measurements

at lower reverse salt diffusion. When the draw solution (

on the support layer side of the membrane, and the deionized water flows along the 

active layer side, this is denoted as FO mode. 

contacts the active side of membrane and the pure water faces the back side layer, i

denoted as pressure retarded osmosis (PRO) mode. Osmotic flux data were collected 

for NaCl concentrations ranging from 100 to 250 g·

Fig. 1 Schematic diagram of the bench-scale FO unit for Na2CO3 crystallization 

an osmotic crystallizer to obtain Na2CO3 crystals with high quality, 

, high purity, and a uniform XRD pattern, two different 

ere explored to investigate the penetration of salts (NaCl and 

osmotic permeability measurements. The preferable mode operates 

salt diffusion. When the draw solution (i.e., NaCl or Na2CO3) flows 

on the support layer side of the membrane, and the deionized water flows along the 

active layer side, this is denoted as FO mode. Conversely, when the draw solution 

contacts the active side of membrane and the pure water faces the back side layer, i

denoted as pressure retarded osmosis (PRO) mode. Osmotic flux data were collected 

for NaCl concentrations ranging from 100 to 250 g·L-1. The concentrations of the 

 

crystals with high quality, 

uniform XRD pattern, two different 

ere explored to investigate the penetration of salts (NaCl and 

. The preferable mode operates 

flows 

on the support layer side of the membrane, and the deionized water flows along the 

Conversely, when the draw solution 

contacts the active side of membrane and the pure water faces the back side layer, it is 

denoted as pressure retarded osmosis (PRO) mode. Osmotic flux data were collected 

. The concentrations of the 
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Na2CO3 solution used as the feed solutions ranged from 50 to 200 g·L-1. The 

temperature of both solutions was maintained at room temperature (20 ± 1 °C). 

The feed solution composed of Na2CO3 as the target component with different 

initial concentrations (100 g·L-1 to 200 g·L-1) was drawn by different concentrations of 

stripping solutions to assess the water flux in FO as well as PRO mode. Higher water 

transfer is preferable for more efficiently concentrating Na2CO3. The conductivity of 

the draw solution was measured and a constant concentration throughout the 

experiments was maintained by dosing with NaCl salt. The draw solution was 

continuously stirred with a magnetic mixer (Fisher Scientific, Belgium) at 300 rpm to 

ensure a homogeneous concentration.  

Furthermore, to identify the optimal membrane orientation for Na2CO3 

crystallization, the process for concentrating Na2CO3 solution was studied in different 

operating modes (FO vs PRO). The experiment was continued until crystals were 

observed in the feed solution; the obtained crystals were characterized immediately by 

microscopy, according to the procedure described in section 2.4.2. 

Membrane stability was determined by measuring the water flux for concentrating 

Na2CO3 solution in alternation operated at a preferable mode. The feed solution was 

concentrated to its nucleation point and then replaced by a fresh 200 g·L-1 Na2CO3 

solution for next cycle. Five repetitions of this crystallization process were conducted. 

After that, the pure water flux and salt permeability were determined to investigate the 

possibility of membrane blockage/damage. The characteristics of the used membrane 

were detected by scanning electron microscopy (SEM), as described in Section 2.4.1. 
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In addition, several pieces of the AIM 60 membrane were immersed into a salt 

solution for 7 days to assess their stability. 50 g·L-1 and 300 g·L-1 NaCl as well as 50 

g·L-1 Na2CO3 solutions were applied as the soaking solutions to simulate the working 

environment for the biomimetic membranes. 

 

2.3 Water flux and reverse solute flux determination 

The experimental water flux was calculated by measuring the weight difference of 

the feed solution, and recorded by a digital scale with an accuracy of +/-0.01 g. Since 

the experiments were conducted in batch, the water flux gradually decreases with the 

increased concentration of the feed solution or with the dilution of the draw solution. 

The flux is calculated by the weight difference versus time, using the following 

equation: 

                                                   (1) 

where ∆mwater is the total mass decrease of permeate water from the feed solution to 

the draw solution over a predetermined time ∆t, ρs is the density of solutions at room 

temperature, and A is the membrane area (4.91×10-4 m2). When the system remained 

stable, data were collected at the interval of 5 minutes during 30 minutes for one batch 

to test the pure water flux and reverse salt flux. Mean value of these 6 data collections 

was calculated to evaluate the membrane performance. Due to the short testing period, 

the salt permeability is negligible. Thus, ρs is equal to the water density. 

The reverse solute flux (Js) of Na2CO3 or NaCl was determined by the transfer of 

salt from the salt solution to the pure water as follows:  
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                                                 (2) 

where Ct and Vt is the concentration and volume of Na2CO3 or NaCl in the pure water 

as a feed solution measured at time t, respectively. C0 and V0 is the initial 

concentration and volume of the solute in feed solution, respectively. 

Due to the fact that a certain amount of salts transferred through the membrane to 

the opposite side, the mass difference of reversed NaCl and Na2CO3 salts should be 

considered for the calculation of ∆mwater in Eq. 1 for the calculation of water flux 

when concentrating Na2CO3 by using NaCl as draw solution. 

                       (3)   

where t i
m  

and 
1t i

m
+  

is the total mass of feed solution at time ti and ti+ 1, respectively. 

∆mNaCl, P is the mass of reversed NaCl salt to the Na2CO3 side and ∆mNa2CO3, P is the 

mass of reversed Na2CO3 salt to the NaCl side. 

The mass of reversed salts, ∆ms, P, (i.e., NaCl or Na2CO3) can be calculated by Eq. 

4: 

                                                 (4) 

where Js is the reverse solute flux, A is the membrane area, and t is the operating time. 

 

2.4 Analytical methods 

2.4.1 Characterization of membranes 

Contact angle measurements were performed with a Drop Shape Analysis System 

DSA 10 Mk2 (Krüss, Germany) to determine the hydrophobicity of the AIM 60 

membrane. The surface and inner topology of the original and used Aquaporin 
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membranes were explored by scanning electron microscopy (SEM), using an 

accelerating voltage of 10.0 kV at different magnifications. The membrane samples 

were dried in a vacuum chamber, then fractured in liquid nitrogen and sputtered with 

gold nanoparticles for the cross-section SEM measurement. 

 

2.4.2 Characterization of crystals 

The properties of crystal samples were characterized by ion chromatography, 

microscopy, X-ray diffraction (XRD), and total water fraction (TWF), as described 

elsewhere [26, 35]. 

 

3. Results and discussion 

3.1 Membrane morphology 

In the biomimetic AIM 60 membrane, aquaporin proteins incorporated in the 

membrane structure can potentially facilitate gradient driven water diffusion in FO 

process [42]. In order to investigate how the membrane morphology is potentially 

affected by the crystallization process, the basic membrane morphology is 

characterized (see Figs. 2, 3, and 4). 

As shown in Fig. 2, the AIM FO membrane has substrate with a thickness of ~109 

µm. Specifically, the substrate has an open-cell sponge-like structure with 

inter-connecting pores, resulting in high porosity as indicated in Fig. 3. In addition, 

some macrovoids with a pore diameter on the order of several hundred nanometers 

are well developed at the bottom of the substrate. This structure is well suited for 
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enhancing the wettability of the membrane substrate, mitigating the concentration 

polarization phenomenon and thus promoting water transfer [43-48]. 

As observed in Fig. 4, the AIM 60 FO membrane has a selective polyamide layer 

with a thickness of ~200 nm in which Aquaporin containing vesicles are embedded. 

The vesicles appear well dispersed in the top layer of the membrane. However, some 

defects were observed on the membrane surface, triggering the risk of salt leakage 

during FO. Fig. 5 shows the anticipated pathways for mass transfer in the AIM 

membrane on the basis of the membrane design [40, 49]. 

 

 

Fig. 2 Overall cross-section SEM image of the AIM 60 FO membrane 
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Fig. 3 SEM images of the AIM 60 membrane substrate. (A, B

support layer side at 2500× and 5000×

and 20000×, respectively 
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AIM 60 membrane substrate. (A, B) Cross section for the 

× and 5000×, respectively; (C, D) Support surface at 5000× 
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Fig. 4 SEM images of active surface of the AIM 60 membrane. (A, B) Cross section 

of active layer at 2500× and 10000

5000× and 20000×, respectively 

 

Fig. 5 Schematic of mass transfer
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Fig. 4 SEM images of active surface of the AIM 60 membrane. (A, B) Cross section 

10000×, respectively; (C, D) Active layer surface at 
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Fig. 4 SEM images of active surface of the AIM 60 membrane. (A, B) Cross section 

Active layer surface at 
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3.2 Hydrophilicity assessment 

Fig. 6 shows the hydrophilicity of the AIM 60 membrane as a function of contact 

time. The selective layer of this FO membrane is strongly hydrophilic, with a static 

contact angle of 41.5° (see Fig. 6). The contact angle on the AIM 60 membrane 

surface reduces gradually from 41.5° to 37.2° within the measurement time. This 

indicates that the water transfer is enhanced through the membrane due to the 

presence of aquaporin protein vessels in active layer. As for the support layer of the 

AIM 60 membrane, the large pore size allows a fast water penetration through the 

membrane to contact with the selective layer for water transfer. The contact angle 

measurement of the back layer of the membrane is shown in Supplementary video. 
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Fig. 6 Contact angles of the active layer of AIM 60 membrane as a function of time 

 

3.3 Membrane performance 

3.3.1 Pure water flux and salt rejection of the biomimetic membrane 
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The role of the membrane in osmotic crystallization is to provide sufficient mass 

transfer as well as to avoid impurities (i.e., NaCl) in the crystalline Na2CO3. Therefore, 

the mass transfer performance in terms of pure water flux and reverse solute flux of 

two different membrane orientations (FO or PRO mode) was systematically studied to 

investigate the suitability of the AIM 60 membrane for crystallization (see Fig. 7). 
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Fig.7 Pure water flux and salt reverse flux at different concentration of stripping 

solution in different operating modes (FO mode: pure water facing active layer with 

salt solution at support layer side; PRO mode: salt facing active layer with pure water 

at the backing membrane side. A: NaCl; B: Na2CO3) 

 

As illustrated in Fig. 7, the permeate flux is enhanced by a higher solute 

concentration in both operating modes due to the higher driving force resulting from 

the higher osmotic pressure difference between salt solution and pure water. The 

water flux displays a nonlinear increase with the transmembrane osmotic pressure. 

This is attributed to internal concentration polarization, which has been demonstrated 

in previous studies [46, 50, 51]. 
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In addition, the presence of an electrostatic barrier in aquaporin proteins can 

hamper ion transport [52, 53]. Consequently, the biomimetic FO membrane should 

have a low reverse salt flux. As indicated in Fig. 7, the salt permeation flux, recorded 

as 1.12 ± 0.12 g·m−2·h−1 in FO mode driven by 50 g·L−1 NaCl, is consistent with the 

value provided by the manufacturer in Table 1. This is comparable to the HTI CTA 

membrane (ca. 1.23 g·m−2·h−1 in FO mode with 58.5 g·L−1 NaCl as draw solution) and 

lower than that for the HTI thin film composite (TFC) membranes (ca. 4.45 g ·m−2·h−1 

in FO mode with 58.5 g·L−1 NaCl as draw solution) [54]. However, the AIM 60 

membrane performed better in PRO mode in terms of salt permeation, 2.48 ± 0.51 

g·m−2·h−1 salt permeability at 50 g·L−1 NaCl, compared to HTI CTA membrane with 

ca. 7.67 g·m−2·h−1 salt diffusion flux and HTI TFC membrane with ca. 9.54 g·m−2·h−1 

at 58.5 g·L−1 NaCl [54]. It is noteworthy that rather low reverse salt flux in PRO 

membrane performance is obtained with existing defects on the membrane surface 

(see Fig. 4). Presumably, the performance may be better if the number of defects is 

minimized. 

As indicated in Fig. 7, the water flux of AIM 60 membrane is dependent on the 

osmotic pressure differences between pure water and draw solutions, regardless of the 

solute type (Na2CO3 or NaCl) and the membrane orientation. However, the reverse 

CO3
2- flux for the Aquaporin membrane is slightly lower than the reverse Cl- flux. 

This is mainly due to the charge repulsion effect of the Aquaporin membrane, which 

is demonstrated in other studies [55, 56]. Furthermore, due to the specific morphology 

of the AIM 60 membrane, regardless of the salt species, a higher salt permeation is 
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obtained when the salt contacts the active layer of the membrane. Conversely, when 

the salt is in contact with the support layer, less salt can penetrate to the opposite side.  

 

3.3.2 Dehydration of Na2CO3 solution by osmotic crystallizer 

The AIM 60 FO membrane was used both in FO and PRO mode for dehydration of 

a Na2CO3 solution with different concentrations to further ensure the optimal 

membrane orientation for efficiently crystallizing Na2CO3. The water flux as a 

function of time interval under different osmotic pressure differences in different 

operating modes is shown in Supplementary Fig. S1. It can be seen that the 

transmembrane flux has a slightly decreasing trend as a function of operation time. 

This is attributed to the moderate depletion of the driving force across the membrane 

because of the concentration of the Na2CO3 solutions. 

Fig. 8 shows the average flux as a function of the osmotic pressure difference for 

different processing modes. Unexpectedly, the water permeated more slowly in PRO 

mode than in FO mode. This is presumably due to the fact that more NaCl diffused to 

the feed side in PRO mode and then the effective osmotic pressure in the stripping 

solution was depreciated so that the osmotic pressure in the feed solution was 

enhanced. In this case, the water transfer from the feed side to the stripping part can 

be limited by a lower driving force. However, in FO mode, a certain amount of 

Na2CO3 migrated to the NaCl side. This induced an increase of the osmotic pressure 

in the draw solute but a decline of the osmotic pressure in the feed liquor, enhancing 

the driving force for water transport across the membrane. 
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Generally, a nonlinear increase of the transmembrane flux with the increase of the 

osmotic pressure difference is observed as shown in Fig. 8. This can be explained in 

terms of the enhancement of internal concentration polarization at a higher salt 

concentration. However, a substantial water flux can still be achieved. The mean 

water flux was 6.62 L·m−2·h−1 for concentrating Na2CO3 with 200 g·L−1 stripped by 

300 g·L−1 NaCl solution in FO mode, which is one to two orders of magnitude higher 

than that in previous studies [26, 35]. This impressive performance of the AIM 60 FO 

membrane in terms of water transport is promising for application in membrane 

crystallization. 

 

0 50 100 150 200

0

2

4

6

8
A: 100 g/L Na2CO3

A
ve

ra
g

e 
w

at
er

 f
lu

x,
 L

⋅m
-2

⋅h
-1  FO mode

 PRO mode

Osmotic pressure difference, bar  
-100 -50 0 50 100 150 200 250

-6

-4

-2

0

2

4

6

8

 FO mode
 PRO mode

A
ve

ra
g

e 
w

at
er

 f
lu

x,
 L

⋅m
-2

⋅h
-1

Osmotic pressure difference, bar

B: 200 g/L Na2CO3

 

 

Fig. 8 Average water flux as a function of osmotic pressure difference across the 

membrane when operated in FO and PRO modes 

 

3.3.3 Crystallization performance 

Fig. 9 illustrates the dewatering performance of the AIM 60 FO membrane for 

Na2CO3 crystallization. As observed in Fig. 9, a slight decline of the water flux 
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occurred in the initial period at both operating modes. This was caused by a reduced 

driving force across the membrane, which was triggered by the dewatering of Na2CO3 

mother liquor. Subsequently, the water flux leveled off when the feed side reached its 

supersaturation status since a steady osmotic pressure difference between feed and 

draw solutes was achieved after reaching the targeted supersaturation. Compared to 

asymmetric reverse osmosis membranes (i.e., BW30, Dow Film Tec) [35], the AIM 

60 FO membrane presented a better performance because of its superior water flux. 

Thus, the AIM 60 membrane crystallizer can produce crystals in a more efficient way, 

which in turn saves membrane areas for this production process. Furthermore, the FO 

mode provides a more efficient mass transfer than PRO mode, which is consistent 

with the results in Section 3.3.2. Thus, FO mode is the optimal choice for Na2CO3 

crystallization by using an AIM membrane in a crystallizer. 
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Fig. 9 Performance of Aquaporin FO membranein Na2CO3crystallization 
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3.4 Crystal characterization 

3.4.1 Crystalline microstructure 

Fig. 10 shows the micrographs of the formed crystals from both FO and PRO 

modes at 20× and 10× magnifications. As observed from Fig. 10A and C, orderly 

polyhedral monocrystals of Na2CO3 were generated in both operation modes. As 

shown in Fig. 10B and D, small crystals (marked with dash dot circles) aggregated on 

the surface of grown crystals. Simultaneously, growing crystals (indicated by solid 

circles) bundled to adjacent counterparts due to the limited space for crystal growth in 

the crystallizer. As illustrated in Fig. 10B and D, the majority of the crystals have a 

highly organized form, except for a minority of aggregated crystals. This indicates 

that the AIM 60 membrane can act as an effective physical barrier for a 

well-controlled supersaturation environment, which allows Na2CO3 crystals to grow 

regularly and controllably [2, 57]. 
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Fig. 10 Microscopy images of obtained crystals. (A, B) Crystals from FO mode at 20× 

and 10×, respectively; (C, D) Crystals from PRO mode at 20× and 10×, respectively 

 

3.4.2 Crystalline pattern determination 

Generally, three crystalline forms, i.e., Na2CO3·10H2O, Na2CO3·7H2O, and 

Na2CO3·H2O, can be generated from aqueous Na2CO3 solution under different 

thermodynamic conditions. Therefore, further investigation of the crystalline pattern 

of obtained crystals by XRD and TWF measurements is of interest, and this is shown 

in Fig. 11 and Table 2. 

As shown in Fig. 11, Na2CO3·10H2O is the main form of the generated crystals in 

both FO and PRO mode. This can be further demonstrated by TWF measurement 

(Table 2). The crystals originated from FO mode have a water fraction of 62.87 ± 

A B 

C D 
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0.11%, and 62.86 ± 0.12% in PRO mode. These data are consistent with the 

theoretical water fraction of 62.94% for Na2CO3·10H2O crystals. 

 

10 20 30 40 50 60 70 80

0

750

1500

2250

0

400

800

1200
0

7500

15000

22500

♦

♦
♦

♦♦

♦

♦ ♦

♦ ♦

♦

2-Theta-Scale (°)

 

 Reference
In

te
n

si
ty

 (
a.

u
.)

 

 PRO mode

 

 

 FO mode
♦ Na2CO3⋅10H2O

 

Fig. 11 XRD patterns of the obtained crystals from different operating modes 

 

Additionally, crystals obtained with the AIM FO membrane crystallizer have the 

same polymorphism as the crystals generated in previous work [26, 35], reflecting the 

fact that the obtained crystals were formed under similar thermodynamic conditions, 

namely, <30% Na2CO3 mother liquor at room temperature [26]. Theoretically, the 

crystalline structure of Na2CO3 crystal in aqueous solution is mainly influenced by the 

temperature and the concentration of Na2CO3 in the mother liquid, as the evident from 

the phase diagram for the thermodynamic formation of Na2CO3 [58]. The 
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concentration of Na2CO3 ranging from 32.0 to 45.7% within a range of temperatures 

between 32.5 and 35.4 °C leads to the production of Na2CO3·7H2O. Higher 

concentrations in the mother liquid of Na2CO3 result in the formation of binary 

mixture of Na2CO3·10H2O/Na2CO3·7H2O or Na2CO3·7H2O/Na2CO3·H2O. This 

implies that by a proper control of the supersaturation level of the mother solutions, 

specific target crystalline forms of the polymorphic crystals can be achieved. 

 

3.4.3 Purity of the produced crystals 

As indicated in Table 2, 0.59 g·kg-1 Cl- is contained in the crystals from AIM 

membrane crystallizer in FO mode, while crystals generated from PRO mode have a 

slightly higher Cl- content, i.e., 0.60 g·kg-1. Compared to the crystals from other 

processes, the Cl- content in crystals obtained in this work is higher than that 

generated by a membrane contactor with 0.24 g·kg-1 Cl- [26] and an RO membrane 

crystallizer (0.09 g·kg-1 in FO mode and 0.14 g·kg-1 in PRO mode) [35]. Due to the 

defects in the surface of the AIM membrane, more Cl- passes through the Aquaporin 

membrane than through the hydrophobic hollow fibers or the dense RO membrane. 

Hence, a higher amount of Cl- in the target mother liquor tends to lower the purity of 

Na2CO3 crystals. However, the concentration of Cl- contained in crystals (0.06%) in 

this study is still much lower than that in Na2CO3 generated by the Solvay method 

(i.e., 0.15% of Cl-) [59]. The purity of the generated crystals with the AIM 

membranes reaches 99.94%, which is pure enough for industrial application, such as 

in the glass industry [59]. 
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Table 2 Properties of the Na2CO3 obtained by different approaches 

Sample 
Total water 
fraction (%) 

Cl- content (g·kg-1)/ 

Na2CO3 purity (%) 
Ref. 

Theoretical 

value 

Na2CO3·10H2O 62.94 - - 

Na2CO3·7H2O 54.31 - - 

Na2CO3·H2O 14.52 - - 

Membrane 
contactor 

Direct contact 
mode 

62.96 ± 0.22 0.24/99.98 [26] 

BW 30 

membrane 

FO mode 62.84 ± 0.18 0.09/99.99 [35] 

PRO mode 62.84 ± 0.23 0.14/99.99 [35] 

Aquaporin 

membrane 

FO mode 62.87 ± 0.11 0.59/99.94 This work 

PRO mode 62.86 ± 0.12 0.60/99.94 This work 

Solvey 
method 

Na2CO3 - 1.50/99.85 [59] 

 

3.5 Membrane stability 

In the crystallization process, the AIM membranes were applied in a rather harsh 

environment (i.e., high salinity and high pH). Specifically, the AIM membrane was 

used with a high salinity of draw solution with 300 g·L-1 NaCl and a target solution of 

Na2CO3 at a concentration near or above supersaturation (215 g·L-1 Na2CO3 at 20 oC). 

In order to be applicable in long-term industrial process with the AIM membranes, the 

investigation of the membrane stability is essential for its potential long-term 

performance, as presented in Figs. 12-15.  

SEM images of the membranes after immersion into different kinds of salts with 

different concentrations for 7 days are shown in Fig. 12. The surfaces of the 

membranes in different salts with different concentrations are almost identical to the 
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pristine surface in Fig. 2. Even in 300 g·L

membrane remains the same. This demonstrates the feasibility of 

membranes in osmotic crystallization driven by a high salinity draw solution.

The stability of the AIM membrane was assessed by repeating crystallization 

processes in terms of water flux through the membrane (see Fig. 13). Fig. 13 shows 

that the membrane performance is steady over five cycles. The mass transfer 

considerably consistent with the increase of cycle time. This indicates that the fouling 

propensity for the AIM membrane in this application is negligible. The absence of a 

sharp decline of the water flux within each cycle proves that no significant membrane 

fouling or damage occurs during the crystallization process with a proper control of 

the supersaturation for the target solutions. 
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A 

surface in Fig. 2. Even in 300 g·L-1 NaCl solution, the surface of the 

membrane remains the same. This demonstrates the feasibility of using AIM 

membranes in osmotic crystallization driven by a high salinity draw solution. 

The stability of the AIM membrane was assessed by repeating crystallization 

processes in terms of water flux through the membrane (see Fig. 13). Fig. 13 shows 

membrane performance is steady over five cycles. The mass transfer remains

considerably consistent with the increase of cycle time. This indicates that the fouling 

propensity for the AIM membrane in this application is negligible. The absence of a 

cline of the water flux within each cycle proves that no significant membrane 

fouling or damage occurs during the crystallization process with a proper control of 

the supersaturation for the target solutions.  
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NaCl solution, the surface of the 

using AIM 

The stability of the AIM membrane was assessed by repeating crystallization 

processes in terms of water flux through the membrane (see Fig. 13). Fig. 13 shows 

remains 

considerably consistent with the increase of cycle time. This indicates that the fouling 

propensity for the AIM membrane in this application is negligible. The absence of a 

cline of the water flux within each cycle proves that no significant membrane 

fouling or damage occurs during the crystallization process with a proper control of 
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Fig. 12 SEM images of the membranes immersed in salt solutes for 7 days at 5000×

(A, B) Active and support surface of membranes in 50 g·L

Active and support surface of membranes in 300 g·L

Active and support surface of membranes in 50 g·L
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Fig. 13 Cycling performance of Aquaporin membrane for Na
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To further investigate membrane scaling, the used AIM membranes for Na

crystallization were investigated by SEM measurement, which is indicated in Fig. 14. 

Compared to the pristine membrane in Figs. 3 and 4, no apparent differences between 

the original membrane and the applied membrane can be seen. Furthermore, no 

fouling or scaling was observed on the membrane surface after five crystallization 

cycles as shown in Fig. 14A and B. The cross section images of the applied 

membranes in Fig. 14C, D, and E also indicate that no crystals grew inside the pores. 
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and E also indicate that no crystals grew inside the pores. 
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cycles as shown in Fig. 14A and B. The cross section images of the applied 

and E also indicate that no crystals grew inside the pores.  
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Fig. 14 SEM images of the membranes after crystallization. (A) Active surface at 

5000×; (B) Support layer at 5000×. (C) Cross section of the membrane at 350×; (D) 

Cross section for the active layer side at 2500×; (E) Cross section for the support layer 

side at 2500×. 
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Fig. 15 Comparison of the performance of applied Aquaporin membranes after 

crystallization to original Aquaporin membranes in term of water flux and salt reverse 

flux. (A) NaCl; (B): Na2CO3. 

 

Finally, the applied membranes were investigated in terms of their mass transfer. 

Fig. 15 indicates that the ratios of water flux and salt reverse flux for the applied 

membrane to the original membrane values are around 1.0 within the range of 

statistical uncertainty, regardless of the species of salts and membrane orientation. 

This confirms that no membrane damage or fouling occurs during crystallization. 

Therefore, the AIM membrane can be indeed applied under the harsh combined 

conditions of high salinity and high pH in supersaturated Na2CO3 solutions. 
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4. Conclusion 

In this work, a biomimetic Aquaporin FO membrane was successfully employed 

for crystallization of Na2CO3, in view of CO2 capture. The typical water channel with 

enbedded Aquaporin proteins can enhance the transmembrane water flux. Regardless 

of the membrane orientation for crystallization, boththe water flux and salt diffusion 

were promoted by the increase of the draw solution concentration. However, FO 

mode was a better alternative than PRO mode to crystallize Na2CO3 due to its higher 

water permeation flux and lower unexpected salt diffusion. 

Through the crystallization process, it is demonstrated that by applying this 

biomimetic FO membrane in a membrane crystallizer, good performance can be 

obtained with no apparent membrane scaling or blockage. The crystallizer equipped 

with AIM 60membrane can control the supersaturation rate of the target solution, 

resulting in the production of Na2CO3·10H2O with a purity of 99.94%. The mean 

water flux was >6 L·m−2·h−1 for concentrating Na2CO3 with 200 g·L−1 stripped by 300 

g·L−1 NaCl solution in FO mode, which is one to two orders of magnitude higher than 

other Na2CO3 crystallization approaches (i.e., membrane contactor and dense reverse 

osmosis membrane crystallizer). In conclusion, the biomimetic FO membrane 

constitutes a potential alternative to the existing methods for membrane 

crystallization. 
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