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feature
Applying genetics in inflammatory
disease drug discovery

Lasse Folkersen 1,2, lassefolkersen@gmail.com, Shameek Biswas3, Klaus Stensgaard Frederiksen1,

Pernille Keller1, Brian Fox3 and Jan Fleckner1

Recent groundbreaking work in genetics has identified thousands of small-effect genetic variants

throughout the genome that are associated with almost all major diseases. These genome-wide

association studies (GWAS) are often proposed as a source of future medical breakthroughs. However,

with several notable exceptions, the journey from a small-effect genetic variant to a functional drug has

proven arduous, and few examples of actual contributions to drug discovery exist. Here, we discuss novel

approaches of overcoming this hurdle by using instead public genetics resources as a pragmatic guide

alongside existing drug discovery methods. Our aim is to evaluate human genetic confidence as a

rationale for drug target selection.

Introduction

The validation of preclinical drug candidates for

diseases relies on data from several methods.

Knockdown animal models, ex vivo studies, in

vitro cell studies, and in vivo tissue samples from

patients all contribute to preclinical evaluation of

the potential of a drug in the treatment of

disease (Table 1). However, a clinical trial is

required to generate the necessary evidence in

humans. As a result of cost and ethical consid-

erations, only drug candidates with the highest

likelihood of effecting disease improvement are

tested in clinical trials. Although there is no

consensus of what this highest likelihood is,

human genetics has been suggested as a fourth

type of evidence of preclinical drug targets that

can be used to examine causality in humans [1].

Notable examples of the value of human

genetics in drug discovery include rare and

common proprotein convertase subtilisin/kexin

type 9 (PCSK9) variants, for which several drug

candidates are already undergoing phase III

clinical trials to lower low-density lipoprotein

(LDL) levels [2–4]. However, for most genetic-

effect variants, there is little understanding of the

protein or molecule that mediates the effect. For

many GWAS-based discoveries, this deficiency is

attributed to most disease-associated single

nucleotide polymorphisms (SNPs) being non-

coding and intergenic but having regulatory

potential [5,6].

The primary approach in overcoming this

problem is to combine genetic data with mea-

surements of the molecule in vivo in humans; for

example, studying the variation in the levels of a

drug target candidate, such as high-density li-

poprotein (HDL), interleukin (IL)-6, and secretory

phospholipase A2-IIa (sPLA2-IIa) [7–9]. One hy-

pothesis opines that the existence of an SNP that

causes increased levels of a molecule and also

increases the risk of disease is strong evidence of

the causality of the molecule in disease. Based on

such evidence, IL6 inhibitors are being investi-

gated in clinical trials for the treatment of car-

diovascular disease. Similar studies have

provided new evidence for the causal and

noncausal involvement of LDL and HDL in car-

diovascular disease. SNPs associated with LDL

levels present a higher risk of cardiovascular

disease, whereas SNPs associated with HDL have

no effect on disease. This corresponds well with

the findings that drugs attempting to target HDL

have had little success, whereas LDL modulators

(statins) are among the most efficacious drugs in

the treatment of cardiovascular disease [7].

The combination of genetic data and drug

target levels is termed ‘Mendelian randomiza-

tion’ and aids in determining the causality of

target molecules in a disease [10]. It is essentially

analogous to the clinical trial. Rather than
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varying the dose in a clinical trial, this approach

uses random genetic variations to alter the

presence of a target molecule. Thus, human

genetics can be considered Nature’s own ran-

domization experiment, albeit with millions of

independent tests.

So, why is this approach not being adopted

widely in drug discovery? One likely answer is

cost. Given the number of samples that is nec-

essary to reach definitive conclusions, such

measurements can be as expensive as a phase II

clinical trial, rendering it unfeasible for use in

applied pretrial drug target research. Another

possible issue is that many genetic targets in-

herently are undruggable per accepted criteria

[11].

Here, we discuss a pragmatic approach to this

problem: reversing the issue and instead ana-

lyzing a candidate pipeline using current genetic

and genomic resources, based on mRNA ex-

pression instead of protein levels. This method

was applied to 14 established drug targets in

inflammatory autoimmune disease and 12 un-

disclosed drug targets developed at Novo Nor-

disk A/S (http://www.novonordisk.com/). Instead

of de facto drug discovery, the ultimate purpose

of this analysis was to prioritize drug targets,

using the choice of indication as a significant

parameter. Given the current high attrition rates

of drug candidates being evaluated in phase II

clinical trials, this method could strengthen the

choice of indication for a given drug target and,

thus, elevate the number of drug targets passing

clinical phase II trials.

Practical implementation scheme

The principal resources in our implementation

were data on the link between an SNP and a

disease and the correlation between an SNP and

target molecule expression. The former were

obtained from publically available GWAS and, for

the latter, we examined the association with

gene expression using expression quantitative

trait loci (eQTL) databases, in which genotypes

and gene expression in relevant tissues are

profiled. These choices enabled us to establish a

complete in silico analysis pipeline, which is

crucial for practical use in a drug company.

In total, seven GWAS and six eQTL databases

were used. The P values from the GWAS were

obtained from dbgap [12]. The studies examined

included rheumatoid arthritis (RA) [13], Crohn’s

disease (CD) and ulcerative colitis (UC) [14],

systemic lupus erythematous (SLE) [15,16],

psoriasis (PSO) [17], and type 1 diabetes mellitus

(T1DM) [18], broadly corresponding to the dis-

ease areas that are being focused on for the drug

candidates. The eQTL data were derived from

studies on individual-level expression and ge-

notype data from relevant tissue and cell types,

including intestinal biopsies [19], monocytes and

B cells [20,21] Collectively, the data covered

177 795 patients.

The study setup is illustrated in Fig. 1. First,

SNPs that affect the expression level of the gene

that encodes a drug target or its ligand were

identified. Then, the disease-related risk of the

identified SNPs was evaluated. The detection of

such risk supports the causal involvement of the

gene in that disease. Here, ‘causality’ is presented

as cases in which the genetic modulation of the

mRNA expression level correlates with the risk of

disease, similar to how drug treatments modu-

late the level or signaling of a target to influence

disease severity.

For each drug target ligand, all SNPs within

200 kb of the transcribed regions of the gene

were queried for their association with gene

expression levels in all available eQTL data sets.

This limit was arbitrary but based on earlier

publications, because most effects were ob-

served in this range [22,23]. Drug target

receptors could also be relevant to investigate;

however, in the candidates investigated here,

most had no eQTL effects; therefore, ligands

were chosen as the primary informant. The

association between gene expression and

genotype was calculated using a linear addi-

tive model. If any SNP was associated with

gene expression (eQTL), its disease

association in GWAS was also examined (in-

cluding that of neighboring SNPs in linkage

disequilibrium).

GWA P values were used directly as down-

loaded from each GWAS. P values for eQTL

effects were calculated according to an additive

linear model. The false discovery rates (FDR)

were calculated by rerunning the algorithm on a

random set of genes. This was done 1000 times

on sets of genes of equal size to the test set. As

shown in Fig. 3d,e a variation of the P value

threshold changed the percentage of genes that

have eQTL-SNPs (step 1, left side of figure) and

the percentage of these eQTL-SNPs that have

GWAS effects (step 2, right side of figure). Based

on this, the cutoff was calculated as P = 6e�4,
because this resulted in 5% of random genes

with eQTL effects qualifying as potential drug

targets. This calculation served as the basis for all

algorithm conclusions and is summarized in the

scale in Fig. 2c.

Application and discussion

Figure 2 shows the results of applying the human

genetics method to 14 autoimmune drugs that

are currently approved and used in the treat-

ment of disease, as well as 12 drug target can-

didates that are under development. Our

genetics method supported many established

drug candidates for their primary indications; for

example, tumor necrosis factor (TNF) blockers,

tocilizumab (IL6 receptor; IL6R), and abatacept

(cytotoxic T-lymphocyte-associated protein 4;

CTLA4) are recommended for testing in RA, with

strong genetic significance. The strength of the

evidence was estimated using FDRs that were

based on studies of randomly selected genes in

the same analysis pipeline, as described in above

and in Fig. 3.

Tofacitinib (Janus kinase 3; JAK3) and imi-

quimod (Toll-like receptor 7; TLR7) did not

show genetic evidence according to this

method, which is explained by the lack of

transcriptional regulation and sex chromo-

somal location of the target genes, respec-

tively. This is shown in the left column in Fig. 2,

labeled ‘eQTL’, which corresponds to the upper

decision fork in Fig. 1.

Conversely, established drugs, such as beli-

mumab, had an eQTL effect but only a weak

disease association with its main indication, SLE.

Therefore, the results for the 11 drug target

candidates were interpreted as merely guidance

for the indication. If there was any genetically

Drug Discovery Today � Volume 20, Number 10 �October 2015 PERSPECTIVE

TABLE 1

Human genetics compared with other preclinical assessment methods

Method Strength Weakness

Animal models Show causal relations Nonhuman model

Cellular and ex vivo models Show causal relations in human cells Does not capture whole-organism complexity

In vivo expression Observed in humans; whole organism Does not show causality

Human genetics Shows causal relations in humans; whole organism Observational

www.drugdiscoverytoday.com 1177
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regulated transcription (eQTL), the correspond-

ing association in GWA data was prioritized. If no

eQTL could be identified, the drug target was

considered to be intractable with this method.

When applying the method to 12 internal

drug discovery targets to evaluate the choice of

indication, the recommendations were as fol-

lows: Drugs 02 and 06 had a signal for RA (also

illustrated in Fig. 2d), whereas Drugs 01, 03, 07,

and, to some extent, 05 and 02 had a UC or CD

signal. Drug 04 showed a strong signal intensity

for SLE as an indication.
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FIGURE 1

Illustration of the human genetics drug assessment scheme. Numbers in parenthesis indicate the percentage of targets sorted at each step.
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FIGURE 2

Genetic assessment of (a) marketed drugs and (b) current Novo Nordisk drug targets. The left column shows the best expression quantitative trait loci (eQTL)
value for each gene, illustrating cases in which lack of expression or genetic control renders this analysis impossible. The remaining columns show disease

association. The principal metric is false discovery rate (FDR), which is shown as the height of the barplot and as a color scale, indicated in (c) from 5% to 95%. An

FDR of 5% indicates that there is at least one proximal single nucleotide polymorphism (SNP) that affects both disease risk and gene expression of the ligand at a P

value lower than 5e�4. This value corresponds to the level at which approximately 5% of randomly selected genes show a similar degree of genetic evidence, as
further described in Fig. 3.
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FIGURE 3

Analysis of signal strength from established drug targets and random samplings of genes. In the plots on the left-hand side of each section, each vertical line

shows the range of expression quantitative trait loci (eQTL) P values for a single gene. These P values are calculated from all single nucleotide polymorphisms

(SNPs) within 200 kb of the gene in all available eQTL cell and tissue types. The horizontal dotted line indicates the significance threshold of P < 6e�4. The

percentage indicates the fraction of genes that have at least one SNP with a significant eQTL association. In the plots on the right-hand side of each section, each
vertical line shows the range of genome-wide association studies (GWAS) P values for SNPs surrounding a single gene. However, only SNPs that pass the

significance threshold in the left-side eQTL analysis are included. Therefore, a gene is shown only if it had at least one significant eQTL SNP at P < 6e�4. P values

from all available autoimmune GWASs are considered. The percentage indicates the fraction of the eQTL-significant genes that also have a GWAS-significant eQTL-

SNP. (a) Ligands for 14 established autoimmune disease drugs, of which eight have eQTL-significant SNPs. Of these, five have GWAS-significant eQTL-SNPs (as
indicated in Fig. 2). (b) Ligands for internal targets, with results as described in Fig. 2. (c) Results from 1000 random 14-gene grabs from all genes. Of these, 65%

have significant eQTL effects, and of these 5.0% have GWAS-associated eQTL SNPs, corresponding to a false discovery rate (FDR) of 5.0%. (d) The effect of reducing

the P value cutoff to 1e�4. This not only reduces the number of targets identified, but also corresponds to an FDR of 3.1%, as seen from a random gene grab. (e)
Increasing the P value cutoff to 1e�3 corresponds to an FDR of 6.2%.
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FIGURE 4

Plot of expression levels by single nucleotide polymorphism (SNP) genotype for all marketed drug ligands that pass the P < 6e�4 threshold both for expression

quantitative trait loci (eQTL) and genome-wide association studies (GWAS). Each figure presents one eQTL–GWAS pair. Given that the investigation encompasses

multiple SNPs and tissues per drug target, there are two cases where multiple non-linkage disequilibrium (LD) eQTL–GWAS pairs pass the criteria, as indicated for

(b) and (e). The Y-axis indicates mRNA expression level in arbitrary units on a log2 scale. The X-axis indicates genotype, with homozygote risk-allele always shown
to the right. Specific P values for the eQTL association and the GWAS association are noted below each figure, for the SNP in question or a proxy in high LD, as

described in the main text.
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Figure 4 highlights the magnitude and di-

rection of effects. It is important to note that,

because of compensation mechanisms, it is not

inconceivable for eQTL effects to be reversed

relative to their effect on protein [24]. Therefore,

a complete study of directionality should de-

pend on protein-level measurements. For IL6, we

find that a SNP increasing IL6 mRNA expression

also increases risk of disease, thereby supporting

inhibition of IL6R, consistent with the function of

tocilizumab. Similar observations are made for

ustekinumab and efalizumab. For abatacept, one

would expect that increased levels of CTLA4

would cause increased activation of CD80 and

CD86, thereby increasing inflammatory signal

and, consequently, disease risk. However, the

opposite effect is observed at the mRNA level.

Similar remarks can be made for TNF, although

being an A/T variant, a strand flip is perhaps a

simpler explanation. Therefore, without access to

large-scale protein-based Mendelian randomi-

zation studies, we recommend to base decisions

regarding agonism or antagonism on other

study types, preferably including protein-level

measurements.

This points to one chief limitation of this

method, which is that it only uses mRNA levels,

rather than protein levels. Although mRNA and

protein levels are often consistent, and this is

an assumption that is necessary for performing

the presented analysis, there is no guarantee

that the protein levels reflect the mRNA levels

and, therefore, this is a limitation of the anal-

ysis approach. Additionally, the eQTL and

GWAS steps are not performed in the same

individuals, which is a formal requirement for a

study to be termed ‘Mendelian randomization’.

However, this is the compromise for the re-

quirement of a fully in silico process at rea-

sonable expense. Another limitation is that an

eQTL SNP sometimes affects the expression of

multiple genes; therefore, careful consideration

of the SNP and its neighboring SNPs and genes

is important. The method is also limited by the

current availability of eQTL studies, which

might lead to eQTLs that are cell type or

condition specific, being missed. The eQTL data

are central because few GWAS SNPs are coding,

and it is essential to establish a link between

gene and SNP, beyond just proximal location.

However, as new data become available, the

pipeline is updated. We consider all these

limitations to be acceptable trade-offs toward

using the wealth of large-scale genetic data for

drug development.

Likewise, the availability of GWAS data is

crucial. However, rather than a limitation, this

is a future opportunity: currently the largest

GWAS focus on predisposition to disease. As

detailed well-powered studies of disease-pro-

gression become available, this might shift

focus to the use of genetics in drug discovery.

However, genetic variants are life long and,

therefore, their use might be most relevant for

investigations into primary prevention of dis-

ease, rather than secondary prevention [25].

Another interesting outlook for the future is

the introduction of well-powered rare variant

discovery through large-scale sequencing

efforts. Although conceptually different, sev-

eral examples exist where genes with rare

coding variants for disease association are also

affected by common expression-modulating

variants, such as PCSK9 [4]. We believe that

future innovations in this field will concern the

combination of alternative phenotyping (e.g.,

disease progression), and novel measurements

(rare-variant sequencing). However, here, we

want to raise the point that public data sets

already contain rich information for use in

pragmatic drug-discovery guidance, if not

stand-alone discovery.

Concluding remarks

Here, we have proposed and implemented a

new method to help select drug target can-

didates, based on their relevance to specific

indications. The relevance of a target is

assessed, based on their causal involvement in

disease risk. SNPs that cause overexpression of

specific genes and are associated with in-

creased disease risk render the gene in ques-

tion causal in the disease. Thus, altering ligand-

induced signaling could decrease the disease

risk or severity.

This approach is well founded and consti-

tutes a pragmatic step to enable drug devel-

opment to benefit from the large investments

in genetics that have been made globally in

recent years, both by academia and the

pharmaceutical industry. This simple concept

complements existing drug discovery meth-

ods, such as animal models and in vitro studies,

with disparate advantages and shortcomings.

By increasing the confidence of the relevance

of a target in a disease, we anticipate that

higher-quality drug targets can be selected

for further development, which will be valu-

able if the attrition rate of new drug candi-

dates in clinical proof-of-principle studies

remains high.
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