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ABSTRACT 

Modern wind turbine rotor blades are normally assembled from large parts bonded together by 

adhesive joints. The structural parts of wind turbine blades are usually made of composite materials, 

where sandwich core materials as well as fibre composites are used. For most of the modern wind 

turbine blades the aerodynamically formed outer shell structure is manufactured as an upper and a 

lower part in separate moulds in order to simplify the production process. The aerodynamic shell 

structures are then bonded to internal load bearing structures during the production process. Adhesive 

joints exist where the load bearing structure is connected to the shells and at the joints of the upper and 

lower shells, usually at the leading and trailing edges. Maintenance inspections of wind turbines show 

that cracks in the vicinity of the trailing edge are typically occurring forms of damage. The cause of 

trailing edge failure is very complex and can arise from manufacturing flaws, damages during 

transportation and erection as well as under general and extreme operational conditions. 

 

The focus in this study is put on the geometrical nonlinear buckling effect of the trailing edge under 

combined loading and how it affects the ultimate strength of a holistic blade. For this reason a 34m 

long blade was studied experimentally and numerically under ultimate load until blade collapse. The 

interaction between trailing edge buckling on damage onset and sandwich panel failure was studied in 

detail. Numerically applied fracture mechanics approaches showed good agreement with the 

experimental results and helped to understand the relations between trailing edge buckling and blade 

collapse.  

 

1 INTRODUCTION 

Rotor blade issues constitute with approximately 2% to 5% to the annual failure rate of wind 

turbines but cause 8% to 20% of the total downwind time of wind turbines according to a NREL report 

[1]. In average 2% of wind turbines per year during the first 10 years operational period require blade 

replacements. Blade replacements in the first two years of operation are typically caused by 

manufacturing defects or damages originated during transport and erection [1]. Rotor blades see 

increased failure rates or reduced reliability as the concept goes from simple design concepts (simple 

Danish concept) with small rotor diameters towards more advanced technologies with bigger rotor 

span [1].  

 

Inspection reports and technical papers such as Ataya and Ahmed [2] indicate that trailing edge 

failure is frequent observed for rotor blades. The cause of trailing edge failures is complex and often 

results as a combination of complex loading conditions, anisotropic material behaviour, complex 

geometries, manufacturing process and blade design. Non-linear geometry effects and their impact on 

the trailing edge have been studied in [2, 3, 4, 5]. The effect of bondline shapes was investigated by 

Eder and Bitsche [6].  

 

Often simplified methods like slice approaches, linear Beam Cross Section Analysis Software 

(BECAS) [7] or similar methods are used. The methods are computational efficient but have the 
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disadvantage of neglecting the holistic view. In order to understand the stresses and strains occurring 

under complex loading and to predict the blade response accurately, detailed structural modelling with 

Finite Element Methods (FEM) of the entire wind turbine blades has to be conducted. This approach 

can be computational expensive. Often shell element models are used to model blades. But does this 

method allow accurate predictions of trailing edge failures? And how can trailing edge failure be 

included without huge modelling afford but still representing damage mechanics sufficiently?  

 

In this study an answer is given on how a simplified trailing edge model can predict the effect of 

damage in the trailing edge and on how this damage affects the response of the wind turbine blade 

structure under ultimate loading. Therefore, numerical studies were compared to experimental 

findings.  

 

2 METHODS 

2.1 Experimental setup  

DTU Wind Energy tested 3 wind turbine rotor blades of the 1.5MW class with an original length of 

34m. The blade tip was truncated at a radial position of 29.5m to a fit into the blade testing facility at 

DTU Risø Campus. The blade root was bolted to an adapter ring under a pitch angle of -30º.  

The adapter and so the blade axis featured an angle of 8º in order to increase the distance between 

blade tip and floor. Four curved anchor steel plates with an approximately size of 0.4m x 0.4m x 

0.015m were glued to blade on the suction-side cap and acted as load points (LPs). Pulleys were 

connected to the adhesively connected anchor plates. The blade was loaded by means of displacement 

controlled winches pulling steel cables running through the pulleys towards the floor (see Figure 1).  

 

 

Figure 1: Sketch of the experimental test setup [taken from Haselbach et. al. [5]]. 

 

The blade was loaded by pulling incrementally at all load points at a low rate of ≤ 0.1m min
-1

 

leading to a quasi-static load. The blade deflection was measured by the use of linear cable position 

sensors of type ASM HBM Posiwire 6250 (ASM). Four ASMs measuring the global blade 

displacement between suction side cap and floor long the radial blade position of z=10.0m, z=16.0m, 

z=22.0m and z=29.0m were installed.  

 

The trailing edge displacement between 10.0m and 16.0m radial position was measured by means 

of an optical displacement measurement camera system and two additional ASMs attached to the 

trailing edge at 10.0m and 16.0m. The optical displacement measurement system is an in-house stereo 

photogrammetry tracking the 3D displacement of marker points along the trailing edge described more 

in detail in [5].  

 

2.2 Applied loads and aero-elastic simulations  

A bending moment distribution corresponding to the bending moment distribution extracted from 

aero-elastic simulation was applied. The load ratio for the individual LPs are given in Table 1.  
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  LP1 LP2   LP3 LP4 

Distance [m] 28.50 24.80 18.40 13.00 

Load ratios [ - ] 1.000 0.937 0.775 0.775 

Table 1: Locations and target load ratio for the four load points (LPs). 

 

The loads applied at the LPs leading to the maximum bending moment under which the blade 

collapsed is defined as the reference loads. The load ratios are calculated by normalising these with the 

reference loads. 

 

Aero-elastic simulations with the DTU owned software package HAWC2 version 11.9 (Horizontal 

Axis Wind turbine simulation Code 2
nd

 generation [8, 9]) were conducted to benchmark the ultimate 

load of the blade. All relevant Design Load Cases (DLCs) according to IEC 61400-1 [10] were 

computed in order to predict the design load. The blade airfoil geometry and cross section stiffness 

properties of the blade were used together with an available Neg Micon NM80 turbine. Originally, the 

NM80 was designed for a rated power of 1.75 MW to 2.5 MW. The wind turbine model of the NM80 

was chosen due to similar blade lengths of 38.8m. The turbine model was down-rated to 1.5 MW and 

its controller setup adjusted accordingly. The controller was fitted by means of the aero-elastic-servo-

elastic stability tool HAWC2Stab2 [11]. The extreme loads include the DLCs corresponding safety 

factors. The bending moments for cross sections along the blade span for a load direction of -30º were 

evaluated and the highest magnitudes picked. From each individual cross section a bending moment 

distribution for the blade for the given angle could be determined. The procedure and chosen model 

was considered to be suitable as a benchmark to the experimentally determined ultimate load.  

 

2.3 Numerical model and approaches  

For the Finite Element Analysis Abaqus version 13.9 [12] were used. The blade geometry was 

discretized with 67,000 8-node doubly curved thick shell elements with reduced integration (Abaqus 

type S8R) with a characteristic element length of approximately 0.05m. The adhesive bondline at the 

trailing edge between the upper and lower aero-dynamic shell was modelled by the use of 8-node 

linear brick elements with reduced integration and hour glass control (Abaqus type C3D8I). This 

modelling approach was used in order to easily apply different fracture mechanics approaches to the 

trailing edge. The adhesive of the trailing edge starting at a radial position of 8m to the end of the 

truncated blade at 29.5m was modelled with a bondline width of 0.08m. Different degrees of 

discretization depending on the chosen fracture mechanic model were used in order to balance 

accurate prediction and computation time. The finest discretization was based on 275,000 8-node 

linear brick elements discretising the geometry with fours layers of elements through the thickness and 

a characteristic element length of 0.005m. The roughest discretization had 120,000 8-node linear brick 

elements with only two layers of elements with a characteristic element length of 0.01m. The solid 

brick elements were connect by means of tie-constraints to the shell elements as shown in Figure 2. 
 

All degrees of freedom in the central node at the blade root were restrained and transferred via a 

kinematic (rigid) coupling constraint assigned to the nodes at the blade root circumferences. Besides 

gravity loading, the blade was loaded force-controlled by means of four axial connector elements (see 

Figure 3). Four load introduction points (LPs) acted as master nodes for rigidly connected nodes 

representing the anchor plates placed at the cap along the suction side. Axial connector elements 

connected the master nodes of the four individual LPs at the blade with the referring reference points 

at the rigid floor (see Figure 4). The connector elements were chosen due to the advantage that the 

applied force is axial aligned with the connector elements. Thus, the model represented more 

realistically the experimentally applied loading conditions in conjunction with the large blade 

deformation.  
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Figure 2: Wind turbine blade model cross section with rendered shell elements and solid elements 

in the trailing edge. The solid elements are tied to the shell elements with tie-constraints. 

 
Figure 3: Boundary conditions of the blade model. 

The numerical analysis was executed as a quasi-static geometric non-linear analysis. A dynamic 

implicit solver was chosen. The loads were slowly ramped up, thus the kinematic energy level could 

be neglected and a quasi-static performance was reached.  

 

Different failure criteria and fracture mechanic models were applied to the model in order to 

capture relevant parameters and to model progressive damage and failure. Maximum strain, maximum 

stress, Tsai-Hill, Azzi-Tsai-Hill and Tsai-Wu failure theories were used for a primarily failure 

prediction, whereas, the Hashin criterion [13, 14, 15, 16] and cohesive element methods were used for 

more detailed progressive damage and failure simulation [17, 18]. The Virtual Crack Closure 

Technique (VCCT) was used to extract nodal forces and the relevant strain energy release rate ratio 

(SERR) along the trailing edge [12, 19].  

 

The maximum strain and maximum stress failure criteria are very simple criteria. Failure occurs 

when any of the strain or stress components in the principal material axes exceed the corresponding 

critical value. The components are independently judged and the failure envelope is a rectangle. For 

the maximum strain criteria an interaction of stresses based on the Poisson´s effect is given and the 

failure envelope is a parallelogram.  
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Figure 4: Kinematic coupling constraints acting as anchor plates and load introduction for the 

applied transversal forces. 

 

The Tsai-Hill, Azzi-Tsai-Hill and Tsai-Wu are quadratic, orthotropic plane stress failure criteria 

normally used for fiber-reinforced composite materials. These criteria calculate an equivalent stress 

and make an attempt to take account of interactions in a multi-axial stress state. The failure envelopes 

are ellipses.  

 

The Hashin criterion is a progressive damage and failure theory for elastic-brittle materials with 

anisotropic behavior, like e.g composite materials. The progressive failure theory is based on two 

steps. Firstly, a failure criterion is evaluated for each lamina individual and at each load step. If a 

lamina exceeds the critical value, the lamina is considered as failed and its stiffness is reduced and the 

entire stiffness matrix has to be recalculated. This progressive damage calculation can be repeated 

until ultimate failure is reach and the structure fails [13, 14, 15, 16]. 

 

Surface-based cohesive behavior allows simulating debonding processes of interfaces. The 

cohesive behavior is based on a linear elastic traction-separation law. The approach allows crack 

growth and debonding of the adhesive bondline at the trailing edge. Two different scenarios had been 

considered. One with the manufacturer specific bondline material properties of the adhesive (fracture 

toughness = Kc = 3.55 MPa, GIc = 4400J/m
2
, GIIc = GIII = 5460 J/m

2
) and another one with a reduce 

fracture toughness of approximately 80% of the original strength. The reduced fracture toughness was 

considered in order to take account for expected flaws in the bondline as detected by ultrasound 

scanning for a similar blade described in Eder et al. [6]. For the model and the failure theories the 

material properties given in Table 2 were used. The fracture energies for all laminates were set to 1200 

J/m
2
 for Mode I and 4000J/m

2
 for Mode II and Mode III according to [20].  

 

Engineering 

constant 

 U/D 

Glass 

Triaxial 

Glass 

Triaxial 

Glass 

(HRC) 

Biaxial 

Glass 

Biaxial 

Glass 

(Pre-preg) 

Polymer 

Foam 

 

E1 [GPa] 41.26 20.26 16.67 12.75 11.58 0.0485 

E2 [GPa] 11.39 10.42 8.587 12.75 11.58 0.0485 

12 – 0.33 0.50 0.50 0.50 0.50 0.40 

G12 [GPa] 3.91 7.35 6.605 10.06 10.06 0.0391 

𝜺tensile – 0.021 0.023 0.023 0.017 0.011  - 

𝜺compressive – 0.016 0.012 0.016 0.015 0.014 - 

𝜺shear 

X
T 

X
C 

Y
T 

Y
C 

S
L 

S
T
 

– 

[MPa] 

[MPa] 

[MPa] 

[MPa] 

[MPa] 

[MPa] 

0.0037 

90.00 

66.00 

42.14 

42.14 

58.65 

58.65 

0.014 

47.21 

32.42 

12.71 

12.71 

9.925 

9.925 

0.014 

38.90 

26.72 

10.48 

10.48 

8.917 

8.917 

0.014 

21.42 

18.49 

18.49 

18.49 

14.39 

14.39 

0.014 

12.39 

15.63 

15.63 

15.63 

14.39 

14.39 

- 

0.14 

0.14 

0.14 

0.14 

0.14 

0.14 

Table 2: Material properties: longitudinal modulus E1, transverse modulus E2, Poisson´s ratio 12 

shear modulus G12, allowable tensile strain 𝜺tensile, allowable compressive strain 𝜺compressive, allowable 
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shear strain 𝜺shear, longitudinal tensile strength X
T
, longitudinal compressive strength X

C
, transverse 

tensile strength Y
T
, transverse compressive strength Y

C
, longitudinal shear strength S

L
 and transverse 

shear strength S
T
. Triaxial is a triaxial glass fibre fabric and Triaxial 2 is a triaxial glass fibre fabric 

too, but contains higher amount of resin (high resin content = HRC). UD represents unidirection glass 

fibre cloths, Biaxial Pre-preg represents biaxial glass fibre pre-preg cloths, whereas Biaxail is a sprint 

biaxial glass fibre cloth and Glue represents the epoxy-based bonding paste used for the joints. 

 

3 RESULTS 

3.1 Aero-elastic loads and ultimate load 

 

The maximum design load based on the conducted aero-elastic simulation for the blade, at the load 

direction shown in Figure 1, led to approximately 90% of the experimentally found ultimate load, at 

which the blade collapsed under the experimental testing.  

 

During testing initial blade damage occurred at approximately 90% of the ultimate load. This 

resulting bending moment corresponds to the range of the ultimate design load (including safety 

factor) of the blade under the specific load angle considering all relevant DLCs. 

Figure 5a shows the corresponding load levels normalised to 1.  

  
Figure 5: (a) Comparison between experimentally applied bending moments and the designated 

maximum design load determined by aero-elastic load analyses (left). (b) Comparison between 

experimentally measured displacements by means of ASM and numerical results (right).  

  

3.2 Model validation 

 

Before conducting an ultimate test, the blade was loaded up to approximately 75% of the ultimate 

load. This test was used to validate the accuracy of the numerical blade model. The global blade 

response measured by means of the ASM installed at radial positions of 10.0m, 16.0m, 22.0m and 

29.5m, was compared to numerical results. The comparison showed an excellent agreement between 

the numerical and experimental results as shown in  

Figure 5b and Table 3. The maximum deviation for the global displacement was less than 2% at the 

blade tip.  

 

Radial position [m] z=29.5 z=22.0 z=16.0 z=10.0 

ASM 

Numeric 

[m] 

[m] 

-1.914 

-1.880 

-0.797 

-0.802 

-0.307 

-0.311 

-0.102 

-0.102 

Deviation [%] -1.77 0.62 1.38 0.00 

Table 3: Experimental (ASMs) and numerically obtained global deformation at 75% of the 

reference load. 
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3.2 Nonlinear simulation results without progressive damage mechanic modelling 

 

In Figure 6a the global displacement of the trailing edge measured with the optical displacement 

measurement camera system between at radial position of 12m to 16m is plotted in comparison to 

numerically predicted displacements. Clearly the onset of nonlinear geometric deformation of the 

trailing edge can be seen for loads above 75% of the ultimate load. In order to visualize the buckling 

onset a 4
th
 order polynomial curve fit following the global displacement of the entire trailing edge is 

plotted as a dash line for the numerical results. Subtracting the global displacement from the course of 

the 4
th
 order polynomial curve fit led to the Δuy shown in Figure 6b. The local trailing edge 

deformation showed a distinct increase in magnitude when the load was raisen from 67% to 76%. 

Here, the numerical prediction differs from the experimentally gained data. The numerical model 

underestimates the magnitude of the buckle slightly. Interesting is also that the deformation seems to 

move slightly with increasing load. For the experimental obtained displacement the buckling wave is 

moving slightly towards the blade tip for increased loads while it moves towards the root for the 

numerical results. This means that even though the position of the buckling wave agrees well at low 

load level, this is not the case at higher load level where they move further apart. 

 
Figure 6: (a) Comparison of measured trailing edge displacement uy of marker points and 

numerical displacement results (left). (b) Comparison of local deformation as offset from a curve fit 

through the global displacement (right). 

 

With increasing load level the buckling wave formation became more distinct as shown in Figure 

7a. In general, the numerical simulation differed from the experimental results in buckling peak 

location and buckle wave magnitude. The magnitudes of numerical model are less marked compared 

to the measured local deformation and their position is offset by approximately 1m radial position at 

failure.  

 
Figure 7: (a) Comparison of measured trailing edge displacement uy of marker points and 

numerical displacement results (left). (b) Comparison of local deformation as offset from a curve fit 

through the global displacement (right).  
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The reason for the differences in magnitude was found in a damage onset in the vicinity of the 

trailing edge under experimental testing. The trailing edge buckling caused kinking of the sandwich 

panel. In the numerical model without progressive damage and failure implementation, the damage 

was predicted but had no stiffness degradation effects on the structure. The experiments showed a 

distinct kink in the trailing edge panel on pressure side whereas the model showed high stresses 

without kinking. With increased load the kink became more distinct as shown in Figure 8.  

 

 

Figure 8: Trailing edge deformation just before reaching the ultimate load (right). Note the distinct 

kink at the upper surface. 

 

The nonlinear simulations without progressive damage mechanic predicted ply failure for load 

levels between 90% and 100% of the ultimate load. The ply failure was predicted in the sandwich 

structure forming the trailing edge panel in the vicinity of the buckled trailing edge. Depending on the 

applied failure criteria, the failure was predicted for different load levels as given in Table 4. The 

stress-based failure theories were more conservative than the Maximum strain criterion. The most 

conservative criterion was the Tsai-Wu failure criterion predicting ply failure at a load level of 

approximately 90% of the ultimate load. Max stress, Tsai-Hill, Azzi-Tsai-Hill predicted ply failure 

around a load level of 95%. The maximum stress criterion predicted failure at ultimate load.  

 

Failure criterion [-] Tsai-Wu Tsai-Hill Azzi-Tsai-Hill Max stress Max strain 

Load level  [%] 90 95 95 95 100 

Table 4: Failure criteria and referring load level. 

 

Obviously the trailing edge buckle caused damage in the sandwich composite panel at the pressure 

side. According to Zenkert [21] there exist different failure modes for sandwich panels. The sandwich 

panel at the pressure side was due to the deformation bended and loaded in compression and started to 

kink. The load configuration prevailed in the vicinity of the kinked sandwich composite panel 

corresponded to failure mode face wrinkling, where the skin buckles. Final failure of the sandwich 

face usually leads to crushing of the core. The failure mode typically occurs for thin skin sandwich 

structures with relatively low-density core material as used for wind turbine blades. Also the failure 

mode map present by Triantafillou and Gibson [22] indicates wrinkling as the failure type. The face 

sheet thickness (hf) to span length (L) ratio is approximately hf/L = 0.002 and the core relative density, 

ρc/ρu = 0.06 (ρc =density of the foam material, unfoamed, ρu = solid material properties of the foam 

base material). 

 

3.2 Nonlinear simulation results progressive damage mechanic modelling 

 

In order to consider the sandwich panel damage and its impact on the blade stiffness Hashin´s 

progressive damage and failure theory was applied to the blade structure. Hashin´s theory predicted at 

a load level of approximately 85% a combination of shear and compressive matrix damage initiation 

and damage propagation in outer skin layers of the composite material forming the suction side panel 

as shown in Figure 9. Shortly after, the core material crushed under a combination of shear and 

compression failure.  
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Figure 9: Hashin´s compressive matrix damage critierion. The gray marked area indicates ply 

failure in the outer most skin layer of the suction side at a load level of 85%. 

 

The applied progressive damage and failure theory affected the response of the numerical model. 

The trailing edge deformation became more pronounced in magnitude (see Figure 10a). The numerical 

results now show very good agreement with the magnitude of the measured trailing edge displacement 

u
y
 and Δu

y
 as shown in Figure 10b. 

 

 
 

Figure 10: (a) Comparison of measured trailing edge displacement uy of marker points and 

numerical displacement results (left). (b) Comparison of local deformation as offset from a curve fit 

through the global displacement (right).  

 

The higher the loads, the more prone is the trailing edge buckling and the progressive damage in 

the sandwich panel grows. This finally had a significantly effect on the bondline in the trailing edge. 

The buckling wave had a big impact on the local stress and strain ratio acting at the bondline and 

changed this with increase buckling wave magnitude. In order to determine the strain energy release 

rate (SERR) at the bondline a small crack in the middle of the adhesive glue was simulated and the 

SERR calculated. The SERR increased significantly at a load level of approximately 85%, when 

sandwich failure in the vicinity of the trailing edge onset (see Figure 11). The mode-mixity changed 

from an opening mode (Mode I) to a shear dominated mode (Mode III). Looking the Finite Element 

Analysis the buckled trailing edge had its maximum at a radial position of around 13.0m. The buckling 

wave forced the upper and lower trailing edge panels in a state, where they were closing and the shear 

stress dominated. Accordingly, GIII was dominating the mode-mixity. The stress concentration in the 

trailing edge increased with increasing load as shown in Figure 11 and calculated with the following 

Equation (1) and (2)  

Gtot = GI + GII + GIII (1) 

Gequ = GIc +(GIIc-GIc)* ((GII+GIII)/Gtot)
λ
 (2) 

 

where Gtot is the total energy, GI, GII and GIII are the strain energy releases rates for Mode I, Mode 

II and Mode III, respectively. Gic determines the critical energy release rates and Gequ is the equivalent 
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energy release rate. The exponent λ describes the interaction between the mode-mixity and depends on 

the resin type (λ= 2 for brittle resins and λ= 3 for ductile resins) [6].  

 
Figure 11: Gtot/Gequ as function of the radial blade position. 

 

In the numerical prediction with the reduced fracture toughness, the critical damage initiation stress 

is satisfied at a load level of 85% of the experimentally determined ultimate load and damage initiation 

therefore started in the trailing edge. Only a small initial crack started which did not separate the 

bondline completely. At that load level of 97.5% the crack propagated and the energy in the trailing 

edge Gequ exceeded the critical energy level GC, which led to a sudden trailing edge failure (see Figure 

12). The numerically predicted failure mode is in agreement with the recorded failure mode during the 

test.  

 

9 DISCUSSION AND CONCLUSIONS 

The conducted study showed how the interaction between trailing edge and sandwich panel failure 

led to blade collapse. The chosen numerical modelling approach showed accurate trailing edge failure 

prediction. By applying the Hashin´s progressive damage and failure theory, sandwich failure could be 

predicted, which improved the accuracy significantly. The modelling approach seems to be suited for 

accurate numerical fracture prediction in combination with the applied fracture mechanical 

approaches.  

 

The uses of Hashin´s degradation progressive damage and failure theory was computational 

expensive and only applied in order to understand the entire fracture process that occurred during 

testing. This computational expensive method is not necessary to implement for design processes since 

the sandwich panel damage was a successive failure caused by prone trailing edge buckling. The 

trailing edge buckling should be considered as the primary failure. The primary failure could to some 

extend be predicted with the simple failure criteria by means of running a geometrical nonlinear 

simulation and does not require advanced failure mechanics implementation. However, the failure 

evolution and series of events clearly demonstrates the importance of geometrically nonlinear 

simulations. Linear elastic simulations would not reveal the series of events and its consequences.  

 

The presented model was subjected to some restrictions, which may influence the final blade 

failure prediction. Firstly, progressive damage growth was only implemented for elements on the 

pressure side and not applied to the blade suction side. The limitation was made in order to save 

computational time and because the damage on the suction side was considered to be neglectable. 

Furthermore, crack growth in the trailing edge was limited to crack growth in the middle of the 

bondline. 

 

This work showed explicitly how the combined load led to trailing edge buckle at early load levels 

and clearly visible at a load level of approximately 75%. Strongly connected to the buckling wave was 

the significantly increase of the energy release rate at trailing edge joint. Surprisingly, at load levels 
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below the design load level the buckling wave initially occurred and had strong impact on the 

occurring energy release rates. Further investigation will be undertaken to investigate that in more 

detail.  

 

  
 

Figure 12: (a) Sudden trailing edge opening initiating blade collapse. (b) Numerical simulation and 

trailing edge opening (scaled with a factor 2). 
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