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Optimizing Wellfield Operation in a Variable
Power Price Regime
by Peter Bauer-Gottwein1, Raphael Schneider2, and Claus Davidsen2

Abstract
Wellfield management is a multiobjective optimization problem. One important objective has been energy efficiency in terms

of minimizing the energy footprint (EFP) of delivered water (MWh/m3). However, power systems in most countries are moving in the
direction of deregulated markets and price variability is increasing in many markets because of increased penetration of intermittent
renewable power sources. In this context the relevant management objective becomes minimizing the cost of electric energy used
for pumping and distribution of groundwater from wells rather than minimizing energy use itself. We estimated EFP of pumped
water as a function of wellfield pumping rate (EFP-Q relationship) for a wellfield in Denmark using a coupled well and pipe network
model. This EFP-Q relationship was subsequently used in a Stochastic Dynamic Programming (SDP) framework to minimize total
cost of operating the combined wellfield-storage-demand system over the course of a 2-year planning period based on a time
series of observed price on the Danish power market and a deterministic, time-varying hourly water demand. In the SDP setup,
hourly pumping rates are the decision variables. Constraints include storage capacity and hourly water demand fulfilment. The SDP
was solved for a baseline situation and for five scenario runs representing different EFP-Q relationships and different maximum
wellfield pumping rates. Savings were quantified as differences in total cost between the scenario and a constant-rate pumping
benchmark. Minor savings up to 10% were found in the baseline scenario, while the scenario with constant EFP and unlimited
pumping rate resulted in savings up to 40%. Key factors determining potential cost savings obtained by flexible wellfield operation
under a variable power price regime are the shape of the EFP-Q relationship, the maximum feasible pumping rate and the capacity
of available storage facilities.

Introduction
Groundwater forms the backbone of water sup-

ply systems in many countries. Previous studies have
addressed optimal management of groundwater resources
and wellfields, combining models of the physical sys-
tem with optimization and control strategies (Mayer et al.
2002; Fowler et al. 2008; Tsai et al. 2008; Hansen et al.
2013a). Typically, wellfield management is a dynamic and
multiobjective optimization problem. Often, management
objectives include maximizing supply reliability and water
quality while minimizing contamination risk and energy
consumption.
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Pumping and conveyance of groundwater consumes
significant amounts of energy. For example, in Denmark,
where 98% of drinking water is supplied from groundwa-
ter sources, electrical power consumption for pumping and
conveyance of groundwater is estimated as ca. 80 GWh
per year (Hansen et al. 2012). A focus of previous work
has been to optimize wellfield operation in order to min-
imize the energy footprint (EFP) of delivered water (e.g.,
Ahlfeld and Laverty 2011; Hansen et al. 2013b, 2012).
In this article, we define EFP as the amount of energy
consumed per unit of water delivered, given in units of
MWh/m3.

In many countries, power systems are evolving in
the direction of deregulated markets. Market organization
varies from country to country and the outcomes of
restructuring processes have been described in several
comprehensive reviews (e.g., Al-Sunaidy and Green 2006;
Sioshansi and Pfaffenberger 2006). A relatively recent
and important trend in many power markets is increased
penetration of highly intermittent power sources such as
solar and wind (e.g., Jónsson et al. 2010). In the absence
of large-scale storage options for power, intermittent
renewable power sources lead to large price fluctuations
on the wholesale electricity market. On the Nord Pool
market, which Denmark is a part of (Flatabo et al. 2003),
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prices fluctuate widely and can even become negative, for
instance in very windy conditions.

Against this background, the objective of wellfield
management with respect to power should be minimizing
costs arising from electric energy consumption for pump-
ing and distribution, rather than minimizing EFP. This
is the rational economic objective from the perspective
of the individual wellfield operator and is also optimal
from a societal perspective: When the opportunity cost
of electric energy is high (i.e., power price is high) a
large EFP of delivered water is undesirable because power
could be used beneficially elsewhere and is produced by
expensive and typically carbon-intensive power sources at
the margin. However, when the power price is low, high
energy consumption due to high EFP and large amounts
of water pumped does not hurt because power cannot be
put to beneficial use otherwise and is produced mainly
by clean renewable sources. The rationale behind flexible
wellfield pumping is to use power when it is abundant and
clean, thereby accepting a higher total energy consump-
tion for groundwater pumping and delivery. The decision
how much to pump now and the given water demand
together determine how much will have to be pumped
later. If prices are low now, then it makes sense to fill
up the storage, while at high prices, the optimal deci-
sion is to stop the pumps and supply the users from
storage.

The objective of this study is to quantify the cost
savings which can be obtained from flexible wellfield
management in a variable power price regime. We con-
sider a highly simplified water supply system as depicted
in Figure 1: To keep things simple, we only consider usage
charges for electric energy in this paper and assume zero
demand charges. Costs are thus proportional to the amount
of energy used (in MWh) and independent of the power
draw (in kW). A wellfield pumps water into a storage
facility and a deterministic time-variable water demand
is served from the storage facility. The wellfield is char-
acterized by a relationship between the EFP of delivered
water and the pumping rate (EFP-Q relationship). The
EFP-Q relationship is determined offline either from direct
observations or using a model that represents the vari-
ous system components. The EFP-Q relationship should
take into account all relevant management constraints and
objectives other than power, such as contamination risk,
water quality considerations etc. Operators of the wellfield
are assumed to buy electric power to drive the pumps on
the wholesale power market, i.e., power price is variable.
The management problem consists of finding the optimal
sequence of pumping decisions that minimizes the total
cost for electric energy over a given planning period, while
guaranteeing water demand fulfilment and respecting the
maximum capacity constraint of the storage facility. We
solve this problem with a Stochastic Dynamic Program-
ming (SDP) algorithm that exploits the auto-correlation in
the price time series. The performance of SDP decision
rules is benchmarked against a constant-rate pumping pol-
icy that represents current wellfield management practice
and an optimization run that assumes perfect foresight of

Figure 1. Conceptual system diagram. A wellfield is oper-
ated in a deregulated power system, where power price
changes in time. The wellfield is characterized by an energy
footprint function of the delivered water, which specifies the
specific energy used for pumping and conveyance as depen-
dent on the pumping rate. Pumped water can be stored in a
storage facility (e.g., water tower), before being delivered to
the public. Hourly water demand is deterministic and spec-
ified as a hard constraint.

future price signals and quantifies the maximum savings
that can be achieved with a hypothetical perfect price
forecast.

EFP of Delivered Water
We use the Søndersø wellfield in Eastern Denmark

as a case example to develop an EFP-Q relationship.
This wellfield, which is located at approximately 55.773
latitude north, 12.362 longitude east, has been the subject
of previous studies (Hansen et al. 2013b, 2012) which
focused on the trade-offs between minimizing EFP of
delivered water and minimizing contamination risk. In
the absence of actual observations of EFP at different
pumping rates, we use a combined well and pipe network
model to simulate EFP over a range of pumping rates.
Key data on the wellfield are summarized in Table 1
and an overview of wellfield layout is given in Figure 2.
Along with a number of other wellfields, Søndersø
wellfield conveys water to the Tinghøj reservoir, which
serves the Copenhagen area. Tinghøj is a large reservoir
with a storage capacity of about 80 times the average
hourly demand (Københavns Kommune 2011). We use
a similar wellfield simulation model as presented in the
study by Hansen et al. (2013b); however, for reasons
of computational efficiency, we replace the numerical
groundwater model with a simplified analytical aquifer
response function using the well-known Thiem solution
(Kruseman and de Ridder 1990). The aquifer response
function is needed to obtain the static head against which
the pumps have to produce water. The reader is referred to
Hansen et al. (2013b) and Hansen et al. (2012) for details
on the wellfield and its components as well as details on
the wellfield modelling approach. We used the pump setup
A2 from the study by Hansen et al. (2013b) to develop
the EFP-Q relationship. In this pump setup, all wells
are equipped with variable-frequency pumps. Because
the Tibberup wellfield is equipped with suction pumps,
the Tibberup wellfield was assumed to be pumping at a
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constant rate (Table 1). Consequently, Tibberup pumping
rates are not considered when computing EFP. However,
Tibberup flows affect the EFP of water delivered by
Søndersø wellfield, because pumped groundwater from
Søndersø East, Søndersø West and Tibberup flows through
the same pipes and the head loss in those pipes will thus
depend on Tibberup flows.

To determine the EFP-Q relationship, we find the
optimal set of pump frequencies at the 11 wells in
the Sønderø East and Søndersø West wellfields, which
guarantees delivery of a given amount of water while
minimizing the EFP of the delivered groundwater:

min EFP (f)

s.t.

Q (f) ≥ Qreq (1)

In this equation, the vector f contains the 11 non-negative
pump frequencies, which are the decision variables, Q is
the wellfield pumping rate, which depends on the pump
frequencies, EFP is the energy footprint of delivered
water, which also depends on the pump frequencies and
Qreq is the requested amount of water delivery. The
wellfield model determines EFP and Q for a given set
of pump frequencies, taking into account well drawdown,
head losses in the pipe network and pump characteristic
curves for the pumps deployed in the system (see Hansen
et al. 2012, 2013a for details). The relationships between
EFP and Q and the pump frequencies are both highly
nonlinear.

This optimization problem is solved using a genetic
algorithm (GA) implemented in the MATLAB software
package for scientific computing. Alternatively, any global
search algorithm for nonlinear and multidimensional
search spaces can be used. Figure 3 presents the resulting
EFP-Q relationship. Red dots in the left-hand panel
indicate the optimal EFP solution found by the GA for
a range of pumping rates. The black line shows a third
order polynomial fitted to the data series, which is used
as the EFP-Q relationship for the Søndersø wellfield in
the SDP optimization. The right-hand panel of Figure 3
shows the optimal pump frequencies for each of the
11 individual wells as determined by the GA for each
requested pumping rate. The frequencies are given relative
to a baseline frequency of 60 Hz and are plotted on a
relative scale between 0 and 1.

The only constraint enforced in the GA optimization
is the constraint on minimum water delivery. To keep
things simple, we did not consider potential additional
constraints due to contamination risk, water quality
considerations or ecological flow requirements. Such
constraints and objectives can be important in real-
world applications and can be incorporated in the
wellfield model and/or the GA optimization. This will
result in more complex wellfield simulation models and
higher computational effort in the GA optimization.
However, because the EFP-Q relationship is determined

offline, this does not pose any problems for operational
application.

Power Price and Water Demand
Hourly time series of spot market price of electricity

in Eastern Denmark are publicly available from the
Danish nonprofit grid operator energinet.dk. A time series
for the years 2012 and 2013 was downloaded from
their archive of market data and is shown in Figure 4.
Power prices in this period are highly variable ranging
from negative prices to more than 1000 Danish kroner
(DKK) per MWh (1 DKK ≈ 0.134 Euro). The price time
series was normalized by subtracting the mean price
for each hour of the day and dividing by the standard
deviation for the same hour of the day. The normalized
price time series was modelled as a Markov chain. The
time series was classified into five equally likely price
classes, i.e., class breaks were set to the 0.2, 0.4, 0.6,
and 0.8 quantiles of the empirical distribution of power
price. Transition probabilities between price classes were
determined separately for each hour of the day based
on the observed market data. Synthetic power price time
series were generated using the price classes and transition
probabilities. The first two statistical moments of the
synthetic power price distributions matched the moments
of the empirical price distribution well.

Water demand was assumed to be deterministic.
According to the data presented in Table 1, the average
long-term abstraction from Søndersø wellfield is equiva-
lent to the water consumption of about 120,000 people.
Diurnal variation of water demand was obtained from the
study by Miljøstyrelsen (2005) and is shown in Figure 5.

Stochastic Dynamic Programming
Traditionally, pumping rates at water supply wells are

relatively constant. The distribution of pumping between
different wellfields and between different wells within
a wellfield is determined based on empirical decision
rules and experience. Operators take into account criteria
such as reliability, quality of the water pumped from
different wells, and EFP. Pumping rates are adjusted
every now and then (e.g., for maintenance and repair)
but not on a daily or hourly time scale, because this
requires advanced real-time control tools which are not
commonly implemented at wellfields. Because wholesale
power prices vary significantly on the hourly time scale
(Figure 4), flexible management of pumping rates at
this time scale can result in significant cost savings in
wellfield operation and can contribute to balancing the
power market, enabling higher penetration of renewable
energy sources (“smart grid”). In our approach, we assume
that pumping rates are adjusted at the hourly time scale
based on economic decision rules derived from the results
of the SDP optimization run, which minimizes the total
cost. Total cost is defined as the sum of immediate and
expected future cost. In every single hourly time step, the
optimal pumping rate is determined based on the present
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Table 1
System Characteristics

Value Source

Long-term average abstraction Søndersø West 153 m3/h Hofor Vand København (2013)
Long-term average abstraction Søndersø East 435 m3/h Hofor Vand København (2013)
Long-term average abstraction Tibberup 236 m3/h Hofor Vand København (2013)
Long-term average inflow to Tinghøj reservoir 2843 m3/h Københavns Kommune (2011)
Capacity Tinghøj reservoir 228,000 m3 Københavns Kommune (2011)
Per capita water demand in the Copenhagen area (summed over all sectors) 164.1 l/day Københavns Kommune (2011)

Figure 2. Map of Søndersø wellfield. Wells labelled Ø . . . belong to wellfield Søndersø East, wells labelled V . . . belong to
wellfield Søndersø West.

wholesale power price, the amount of water in storage
and the hour of the day. The immediate cost of pumping
depends on the pumping rate and the present wholesale
power price, while the expected future cost depends on the
amount of water in storage at the end of the time step and,
because of auto-correlation in the price time series, on the
present wholesale electricity price. The auto-correlation
in the price time series is modelled as a Markov Chain.
Future cost is a stochastic variable because future power
prices are unknown.

The wellfield management problem can be formalized
as a stochastic dynamic program (e.g., Stedinger et al.
1984). SDP finds the series of hourly pumping rates that
minimizes the total cost of groundwater pumping and
delivery over a given planning period, subject to the

constraint that deterministic hourly water demands must
be fulfilled and respecting the finite capacity of the storage
facility (Figure 1):

min (Q × EFP (Q) × P × �t + EFC (St+1, P ))

s.t.

St+1 = St + Q × �t − Dt × �t

St ≤ K (2)

where �t is the time step used in the SDP scheme (one
hour in our case), Q is the pumping rate (m3/h), EFP(Q)
is the energy footprint (MWh/m3), P is the power price
on the market (DKK/MWh), S is the storage (m3), Dt is
the water demand (m3/h), K is the storage capacity (m3),
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(a) (b)

Figure 3. Energy footprint of delivered water as a function of total pumping rate for the Søndersø wellfield. (a) Red dots:
Minimum energy footprint of delivered water for different pumping rates as determined by the genetic search algorithm.
Black line: third-order polynomial fitted to the red dots. (b) Pump frequencies for the 11 individual wells determined by the
genetic search algorithm in the optimal solution. Frequencies are given relative to a baseline frequency of 60 Hz.

(a)

(b)

Figure 4. Power price on the Danish wholesale market (DK-East segment). (a) Time series of hourly power price for the
years 2012 and 2013 (black). 48-h moving average of price time series (red). (b) Histogram of hourly power prices in the
period 2012–2013.

and EFC is the expected future cost, which depends on the
storage at the end of the time step and, because of auto-
correlation in the price time series, on the present power
price. All variables are constrained to be non-negative.
The decision variables in this problem are the hourly
pumping rates.

Because the EFC is a strictly convex function of stor-
age, we can use a semidiscrete variant of SDP known as
the water value method (Stage and Larsson 1961; Wolf-
gang et al. 2009). The water value method uses a series
of linear constraints (or “cuts”) to represent the EFC. The
water value method operates with finite discrete time steps

(hourly time steps in our case) and finite discrete storage
volumes. The outer loop through the time steps proceeds
backwards in time. For each initial storage volume in the
inner loop (which runs through all discrete storage vol-
umes), an optimization subproblem is solved. In this sub-
problem, the end storage for the time step is a continuous
free decision variable. Figure 6 provides a graphical illus-
tration of the procedure. Choosing the end storage fixes
both the immediate cost (via the water balance equation
and the EFP-Q relationship) and the expected future cost
(via the cuts). The slopes and intercepts of the linear con-
straints on the EFC (“cuts”) are determined recursively in
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Figure 5. Variation of water demand over the course of the day in Denmark. The bars indicate the fractions of total daily
water demand that fall into each hourly interval of the day.

the backward-in-time procedure from the objective func-
tion value and the shadow price on the water balance
constraint resulting from the solution of Equation (2). The
EFC for time step t is equal to the weighted average
of the total costs obtained for time step t + 1 (note that
these are already available because we proceed backwards
in time), weighted by the transition probabilities of the
Markov chain representing the power price variability.
The problem (2) is transformed into a constrained opti-
mization problem with two additional decision variables
(expected future cost, EFC and end storage, S t+1), which
are linked by a series of linear constraints (Figure 6):

min (Q × EFP (Q) × P × �t + EFC)

s.t.

St+1 = St + Q × �t − Dt × �t

St ≤ K

EFC ≥ α1 (St+1 − S1) + β1

EFC ≥ α2 (St+1 − S2) + β2

. . .

EFC ≥ αi (St+1 − Si) + βi (3)

The storages Si are the points on the storage axis evaluated
at the previous stage of the recursive backward moving
loop. The number of storage points (storage discretization)
is determined by the trade-off between accuracy and
computational load. Typically, future cost at the end of
the planning period is set to zero for all storage levels,
but the backward-in-time recursion can be initiated with
any convex future cost function. The coefficients of the
linear cuts, α and β, are weighted averages of shadow
prices and objective values in the different price classes
of the Markov chain that represents the power price
variability. The weight of each price class is given by
the corresponding transition probability of the Markov
chain. Problem (3) is solved using an interior-point
optimization algorithm for constrained nonlinear problems
implemented in MATLAB and described by Byrd et al.

(1999). Because problem (3) has to be solved for a
number of points on the storage axis, for each power price
class and for each hour of the day, the computational
effort is significant and high-performance computing
(HPC) facilities are required. The SDP algorithm is
straightforward to parallelize because problem (3) can be
solved independently for each point on the storage axis
within one stage of the recursive loop. We used the HPC
cluster of the Technical University of Denmark to solve
the SDP. Each SDP run was solved in parallel on 12
individual cores. This resulted in run times ranging from
a few hours to three days for the different SDP scenarios.
We do not consider the significant computational load as a
problem for operational applicability of the methodology,
because the SDP runs are performed offline and produce
decisions rules which are then used in operational
management. Application of predetermined SDP decision
rules in operational management requires negligible
computational resources.

In the SDP optimization, the recursive backward
loop was repeated until the shadow prices of the water
balance constraint (the so-called water values) became
approximately constant for every hour of the day, every
price class and every storage level. Convergence was
completed after less than 100 days in all scenarios.
These equilibrium water values were subsequently used
as decision rules in a forward-moving simulation run for
the entire planning period, forced by the true observed
time series of power prices. In the forward simulation
run, equilibrium shadow prices and intercepts are used
to solve Equation (3) repeatedly for every time step of
the simulation period. We start from an arbitrary initial
storage (which we chose as one half of the maximum
storage) and then simulate sequential pumping decisions,
considering in each time step, the present power price,
storage level and hour of the day. The sum of all real
costs occurring in this simulation run was compared to the
total cost resulting from a constant-rate pumping scenario.
Savings were computed as the relative difference between
the total cost in the constant-rate pumping scenario and
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Figure 6. Illustration of the water value method. The figure illustrates the discretization of time and of the storage axis, the
backward moving procedure (total cost of time step t becomes future cost of time step t − 1), and the construction of the
future cost cuts. Note that a case with only one price class is shown, in order to keep the figure simple and clear.

the simulation run using equilibrium water values from
SDP as decision rules, and are reported in percent.

Total operational costs resulting from the application
of SDP decision rules were compared to two benchmarks:
Constant pumping and perfect foresight. In the constant
pumping benchmark, the assumption is that the wellfield
pumps at a constant rate, equal to the average water
demand (588 m3/h). In the perfect foresight benchmark,
the backward recursive loop was run for the entire price
time series, resulting in a set of water values for each
individual hour of the 2-year time series. System operation
was subsequently simulated i.e., managers were assumed
to exactly know future price signals and be able to adjust
their decisions to those.

A complete listing of the MATLAB code used to
perform the SDP optimization may be found in the
additional Supporting Information of the online version
of this article.

Results of SDP Optimization Runs
Prior to running scenario simulations, a convergence

analysis was carried out for the baseline conditions in
order to determine the maximum storage discretization
in the SDP scheme that would still result in acceptable
accuracy. Figure 7 presents the results of the convergence
analysis. Savings are plotted as a function of storage
discretization for two different storage capacities. Savings
converge for storage discretization intervals below about
half the average hourly water demand for both storage
capacity scenarios. From this result, we conclude that a
storage discretization equal to half the average hourly
water demand results in the best compromise between
accuracy and computational load and this discretization
is subsequently used in all scenario runs. Figure 7 also
compares the performance of SDP runs with 1, 3, 5, 7, and

9 price classes as well as the perfect foresight scenarios.
Obviously, the perfect foresight run outperforms all SDP
runs by a significant margin. The 7- and 9-price class runs
do not result in significantly better performance compared
to the run with 5 price classes. We concluded from this
result that a set-up with 5 price classes offers the best
compromise between performance and computational load
and used 5 price classes in all subsequent scenario runs.

Figure 8 presents a set of equilibrium water values
for a scenario with the baseline EFP-Q relationship, 5
price classes and a total storage capacity equivalent to 20
times average hourly water demand. Equilibrium water
values range from zero to about 0.1 DKK per m3. When
deciding on the hourly pumping rate the equilibrium water
value is compared to the present cost of pumping water
into storage. If that cost is higher than the equilibrium
water value, no water will be pumped and vice versa.
Equilibrium water values are significantly different for the
different price classes and track the diurnal variation of
water demand. Figure 9 presents selected policy results
for the baseline scenario. Storage variations in the storage
facility are much more pronounced in both the SDP
and perfect foresight runs as compared to the constant-
rate pumping benchmark. In the flexible management
runs (perfect foresight and SDP), the storage capacity
is used actively to bridge periods of high power prices
while the storage is re-filled during low-price periods.
Significant variation of pumping rates and EFP occur
over the course of the planning period. While the flexible
management runs result in reduced cost compared to the
constant-rate benchmark, the total amount of energy used
for pumping and distribution of water is higher in the
flexible pumping scenarios as compared to the constant-
rate pumping scenario.

Table 2 presents an overview of the scenarios consid-
ered in this analysis. In all scenarios, the same Markov

NGWA.org P. Bauer-Gottwein et al. Groundwater 7



Figure 7. Results of convergence analysis. Cost savings (expressed as percent of costs at constant pumping rate) plotted against
storage discretization (expressed relative to average hourly demand) for SDP runs with 1, 3, 5, 7, and 9 price scenarios as
well as for the perfect foresight run. Upper panel: Storage capacity equal to 10 times average hourly water demand. Lower
panel: Storage capacity equal to 80 times average hourly water demand.

chain was used to represent power price variability and
the same historical price time series was used to evaluate
performance of decision rules. The “Baseline” scenario
represents conditions at Søndersø wellfield according to
pump set-up A2 in the study by Hansen et al. (2013b).
The EFP-Q relationship is shown in Figure 3 and the max-
imum pumping rate that can be delivered by the wellfield
is 995 m3/h. The “Larger Wellfield” scenario represents a
situation where the wellfield has been expanded with new
wells and pumps so that a larger amount of water can
be pumped for a given EFP. The scenario assumption is
that the wellfield has been scaled up by 50%, i.e., for any
given EFP, 50% more water can be delivered than in the
Baseline scenario. Consequently the maximum pumping
rate is also 50% higher than in the Baseline scenario. The
“Stronger Pumps” scenario represents a situation where
the existing wells in the wellfield have been equipped with
stronger pumps, i.e., the wellfield can deliver more water
but only at a higher EFP. In this scenario, it is assumed
that the maximum pumping rate from the wellfield is
increased by 50% and the EFP-Q relationship is extrap-
olated to the higher pumping rates using the 3rd order
polynomial from Figure 3. The scenario “Flat EFP” is a
purely hypothetical scenario. A constant EFP is assumed,
equal to the EFP at the average hourly pumping rate,
independent of the actual pumping rate. The maximum
pumping rate is still constrained to the same value as in the

Baseline scenario. This scenario serves as a benchmark to
show what cost savings could be achieved, if it was possi-
ble to reduce the slope of the EFP-Q relationship to close
to zero, for instance by increasing wellfield capacity. The
“Ideal World” scenario assumes a flat EFP-Q relationship
and an unlimited pumping rate from the wellfield. In this
hypothetical scenario, there are no physical constraints on
the pumping and pumping rates can adjust entirely flex-
ibly to the price signals coming from the power market.
Finally, the “EFP offset” scenario represents a situation
where the total EFP “from aquifer to storage” is con-
sidered in the SDP by increasing the baseline EFP by a
constant and rate-independent offset. The offset was cho-
sen such that the EFP at the average pumping rate matches
the 0.2 kWh/m3 from the study by Hansen et al. (2012).
This resulted in an offset of 0.12 kWh/m3.

Figure 10 presents savings as a function of storage
capacity for all scenarios and both SDP and perfect
foresight runs. The considered range of storage capacity
is from 5 times average hourly pumping rate to 120 times
average hourly demand (for comparison: Tinghøj capacity
is 80 times average hourly demand). For all scenarios
except the Ideal World scenario, the marginal value of
additional storage capacity is decreasing and the savings
curves flatten out for higher storage capacities. The lion’s
share of possible savings can be realized with a storage
capacity of 20 times the average hourly demand in all

8 P. Bauer-Gottwein et al. Groundwater NGWA.org



Figure 8. Equilibrium water values as dependent on relative
storage level, hour of the day and present power price class.
Price classes are sorted from lowest (class 1) to highest
(class 5). Class breaks are located at the 20-, 40-, 60- and
80-percentiles of the empirical distribution of power price.
The example shown here is for a total storage capacity equal
to 20 times the average hourly water demand.

scenarios except the Ideal World scenario. For the Ideal
World scenario, savings keep increasing roughly linearly
as a function of the logarithm of the storage capacity.
This is expected because in this scenario the pumping
rate is unlimited, i.e., the storage can be completely re-
filled in the periods when power price is low or negative,
irrespective of the size of the storage facility. However,
this results in extremely high and unrealistic pumping
rates during low-price periods. Relative savings in the
“EFP offset” scenario are very close to relative savings in
the baseline scenario. While the absolute power costs and
the absolute magnitude of the savings are very different
in the two scenarios, it appears that the fraction of the
costs that can be saved by switching to a flexible pumping
strategy are more or less equal for the two scenarios. For
all scenarios, SDP performance is significantly worse than
performance under perfect foresight. However, a large
share of the perfect foresight savings can be realized
using the SDP decision rules. Savings in the Larger
Wellfield and Stronger Pumps scenarios are comparable
in magnitude and significantly higher than in the baseline
scenario.

Discussion
This study presented an approach to quantify potential

cost savings that can be obtained by flexible wellfield
management at the hourly time scale and provided
first-order quantitative estimates of actual savings for a
wellfield in Eastern Denmark. While we believe that

these estimates are robust, a number of limitations and
simplifications need to be highlighted and discussed.

The EFP-Q relationship for Søndersø wellfield was
derived using a number of simplifying assumptions. The
most significant simplification is the representation of
the aquifer response to pumping with the stationary
Thiem solution. In reality well drawdowns will adjust
dynamically to time-variable pumping rates, while the
Thiem solution assumes steady state between the well and
a given radius of influence. This allows us to formulate the
EFP as a function of the present pumping rate only, while
in reality EFP will be a function of the present pumping
rate and the recent history of pumping rates. In real-world
applications, the EFP-Q relationship should preferably
be determined from actual observations of EFP or from
wellfield models that integrate a distributed groundwater
model and do not rely on simplified aquifer response
functions. In such an approach, other dynamic effects
in the groundwater system (e.g., seasonal variations of
recharge etc.) could also be taken into account and could
be considered in management through seasonally varying
water values.

In real-world applications it is also important to con-
sider additional operational constraints when developing
the EFP-Q relationship. These constraints could include
limits on mixing ratios for water from specific wells due
to groundwater quality variations, limits on pumping rates
for individual wells or wellfields due to contamination risk
or limits due to surface water-groundwater interaction and
ecosystem flow requirements.

The EFP-Q relationship used in this study represents
the EFP of the water from the aquifer to the Søndersø
waterworks. However, ideally, the EFP from aquifer to
storage should be used in the SDP runs. Because of
lack of data, we were unable to quantify the EFP of
water transport form Søndersø waterworks to Tinghøj
reservoir. However, the dominant factor for pumping rate
dependence of EFP is well drawdown. Water transport
from Søndersø waterworks to Tinghøj by pressurized
pipe is therefore expected to shift the EFP-Q relationship
upwards by a more or less constant, rate-independent
offset. Comparison of scenario results for the “Baseline”
and “EFP offset” scenarios indicates that this will change
the absolute magnitudes of costs and savings but savings
relative to costs in a constant pumping strategy remain
more or less unchanged.

In order for wellfield operators to take advantage of
the cost savings generated by flexible wellfield pumping,
power price signals from the wholesale electricity market
must be passed on to wellfield operators. This implies that
wellfield operators either act as buyers on the wholesale
electricity market or that they have special agreements
with the power utility. The first scenario would generate
significant transaction costs for the wellfield operators,
which might be larger than the savings that can be
achieved. Therefore, a plausible application scenario
would be that the power utility obtains some level of
control of wellfield pumping rates in return for lower
power prices charged to wellfield operators. Another key
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Figure 9. Policy results for the five price classes SDP run (gray) and the perfect foresight run (black). Total storage capacity:
80 times average hourly water demand. (a) Time series of total storage. The two red lines bracket the storage variation for
constant pumping. (b) Histogram of hourly pumping rates. The red line indicates the average pumping rate. (c) Histogram
of energy footprints of delivered water. The red line indicates the energy footprint of delivered water at the average pumping
rate. (d) Cost and energy consumption relative to the run with constant pumping rate. The red line indicates performance of
the constant-rate pumping policy

assumption in the presented approach concerns the amount
of information available at the time the decision is taken.
We assume that hourly decisions are taken based on
present power price and that no additional information
on future prices is available to managers except the
statistical auto-correlation of price signals. In real-world
applications, managers may have access to price forecasts
or, depending on market organization, may even know
prices for some time in advance. In such a situation, larger
savings can probably be obtained compared to the SDP
model. However, this is not expected to change the order

of magnitude of possible savings, because savings will
always be bounded by what is achievable under perfect
foresight of future prices and the SDP model already
achieves about two thirds of perfect foresight savings for
most scenarios (Figure 10).

Besides the financial advantages for individual well-
field operators flexible wellfield management also has a
desirable stabilizing effect on the power market. This is
in line with the ideas of the smart grid, which are exten-
sively discussed in the power systems literature. The basic
concept is that power demands should be made adaptive

Table 2
Overview of Scenarios

Scenario EFP-Q Relationship Maximum Pumping Rate (m3/h)

Baseline Søndersø, see Figure 3 995
Larger wellfield Baseline relationship scaled by 1.5. The amount of water that can be

extracted for each EFP is 1.5 times the amount in the baseline scenario
1493

Stronger pumps Baseline relationship extrapolated to 1.5 times the baseline maximum rate 1493
Flat EFP Constant EFP equal to EFP at average pumping rate in the baseline

scenario
995

Ideal world Same as Flat EFP No limit
EFP offset Baseline EFP + 0.12 kWh/m3 995

10 P. Bauer-Gottwein et al. Groundwater NGWA.org



Figure 10. Cost savings (in percent of cost at constant
pumping) vs. total storage capacity (plotted relative to
average hourly water demand) for different scenarios.
S1, baseline scenario, SDP; S2, baseline scenario, perfect
foresight; S3, ideal world scenario, SDP; S4, ideal world
scenario, perfect foresight; S5, flat EFP scenario, SDP; S6,
flat EFP scenario, perfect foresight; S7, larger wellfield
scenario, SDP; S8, larger wellfield scenario, perfect foresight;
S9, stronger pumps scenario, SDP; S10, stronger pumps
scenario, perfect foresight; S11, EFP offset scenario, SDP;
S12, EFP offset scenario, perfect foresight.

or elastic to the extent possible so that power is con-
sumed when it is abundant (i.e., prices are low) and power
demand is low when power is scarce (i.e., prices are high).
Along with other initiatives (e.g., smart household appli-
ances, fridges, dishwashers), flexible wellfield scheduling
can contribute to increased power demand elasticity and
support increased penetration of clean renewable power
sources in the power market. While the total power con-
sumption of wellfields is relatively small, wellfield man-
agement is centralized at a few waterworks and adaptive
power demand management is therefore much easier to
implement than, for instance, for household appliances.

A last important limitation of the presented approach
is the so-called curse of dimensionality: SDP methods
are limited to less than a few state dimensions because
the computational effort increases exponentially with the
number of states. In our problem, the relevant state dimen-
sions are the storage facilities, so problems with more than
2–3 coupled storage facilities in the water supply system
will test the limits of what is computationally feasible
today. It is clear that the water supply system shown in
Figure 1 is highly simplified. Most real-world systems will
have several inter-connected storages. A promising tech-
nique to handle more complex systems with a higher num-
ber of inter-connected storages is stochastic dual dynamic
programming (SDDP; Pereira and Pinto 1991), which has
been successfully applied to multireservoir problems in
river basin planning. Alternatively heuristic search algo-
rithms such as evolutionary algorithms (Nicklow et al.
2010) may provide effective solution strategies for com-
plex water supply systems.

Conclusions
This study presented an approach to quantify cost

savings obtainable from flexible wellfield management at
the hourly time scale in a variable power price regime.
Quantitative estimates of potential savings indicate that
with present infrastructure, electric energy costs could
be reduced by about 7%. To put this into perspective,
we can estimate annual absolute savings for all of
Denmark. The total groundwater abstraction in Denmark
is about 392 million m3 per year (Thorling 2009). With
an average EFP of 0.2 kWh/m3 (Hansen et al. 2012)
and an average power price of 287.5 DKK/MWh, the
total cost is 23 million DKK per year and a 7% saving
would be equivalent to about 1.61 million DKK per year.
Infrastructure upgrades could increase the possible savings
as shown in the scenario runs presented in this study.
In the hypothetical “Ideal World” scenario, where no
infrastructure constraints limit flexibility, savings could
be increased to about 35%, which is equivalent to 7
million DKK per year for all of Denmark. The key
factors determining the magnitude of the savings which
can be achieved by managing wellfields flexibly are the
shape of the EFP-Q relationship, the maximum wellfield
pumping rate and the available storage capacity. An
equally important aspect of this study is the potential
contribution of flexible wellfield pumping to the smart
grid. Wellfield power consumption, albeit small, can
contribute to increased penetration of renewable power
sources in the power system because it is managed
centrally and can be flexibly scheduled to make total
power demand more elastic.
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