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Abstract

We present a solution method for the liner shipping network design problem which is a
core strategic planning problem faced by container carriers. We propose the first practical
algorithm which explicitly handles transshipment time limits for all demands. Individual
sailing speeds at each service leg are used to balance sailings speed against operational costs,
hence ensuring that the found network is competitive on both transit time and cost. We present
a matheuristic for the problem where a MIP is used to select which ports should be inserted
or removed on a route. Computational results are presented showing very promising results
for realistic global liner shipping networks. Due to a number of algorithmic enhancements, the
obtained solutions can be found within the same time frame as used by previous algorithms
not handling time constraints. Furthermore we present a sensitivity analysis on fluctuations
in bunker price which confirms the applicability of the algorithm.

1 Introduction

Given a fleet of container vessels and a selection of ports, the classical Liner Shipping Network
Design Problem (LSNDP) constructs a set of scheduled routes (services) with a fixed frequency
for container vessels to provide transport for containers worldwide (Brouer et al., 2014a). This
paper presents the Competitive Liner Shipping Network Design Problem (CLSNDP) extending the
classical LSNDP to consider level of service, i.e. the transit time provided for a given cargo as well
as the transportation cost charged. These two parameters are the main concern for customers, and
hence they are crucial parameters for designing competitive networks.

The classical LSNDP is offset in the main objective of the carrier; to maximize profit through the
revenues gained from container transport taking into account the fixed cost of deploying vessels and
the variable cost related to the operation of the services. The opposing objectives of the customer
and the carrier represents an inherent trade-off in the design of a liner shipping network. Minimizing
the cost of the network will provide low freight rates, but are likely to result in prolonged transit
times as shown by Karsten et al. (2015a). On the other hand, designing a network to minimize
transit times is likely to result in a very costly network favoring direct connections at high sailing
speeds.

The models for the classical LSNDP differ on two traits. First, the ability to model and charge
transshipments between services. Containers are often not transported directly from their port of
origin to their port of destination, and hence it is important to be able to handle the time and
cost of transshipments. Second, models differ on requiring a fixed frequency of service or providing
flexibility in the frequency. A service is cyclic but may be non-simple, that is, ports can be visited
more than once. In this model we allow a single port to be visited twice, yielding a so-called
butterfly route.
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The paper by Agarwal and Ergun (2008) imposes a weekly frequency of service and allows for
transshipment, but the model cannot cater for the handling cost associated with transshipments.
The paper by Alvarez (2009) can cater for transshipment and transshipment costs (except within
butterfly services) and allows for flexible frequencies of service. In Reinhardt and Pisinger (2012)
each vessel is treated separately allowing flexible frequencies, and the model allows for transship-
ment costs also on butterfly routes. Brouer et al. (2014a) provides an analysis of the real life
requirements and present a reference model for the classical LSNDP. The model is offset in Alvarez
(2009) accounting correctly for transshipments on all services and allowing both flexible and fixed
frequencies. The above models are all variants of specialized capacitated network design problems.

Meng et al. (2014); Christiansen and Fagerholt (2011); Christiansen et al. (2013) provide
broader reviews of recent research on routing and scheduling problems within liner shipping. In the
literature several papers extend the classical LSNDP e.g. by incorporating intermodal considera-
tions (Liu et al., 2014) or aiming to narrow the definition of service (Plum et al., 2014). However,
it is generally acknowledged that considering level of service is the most important extension to
the classical LSNDP because it is the decisive factor in designing a competitive network (Alvarez,
2012; Brouer et al., 2014a). Two approaches for considering level of service has been suggested in
the literature. The first method is to include inventory cost in a multi-criteria objective function
as seen in Alvarez (2012). Inventory cost is primarily a concern to the shipper and the idea of
introducing it for the carrier is to ensure that longer transit times will result in lower freight rates.
However, the bilinear expression proposed by Alvarez (2012) is not computationally tractable. An-
other approach is to impose restrictions on the allowed transit times for each container. The idea
here is that the carrier needs to provide competitive transit times in a market of several players.
Wang and Meng (2014) introduce deadlines on cargo in a non-linear, non-convex mixed-integer
programming (MIP) formulation of a LSNDP. A drawback of this formulation is that it cannot
cater for transshipments of cargo which is the backbone of global liner shipping networks. Recently
Brouer et al. (2015) presented a capacitated multi-commodity network design formulation that im-
poses transit time restrictions while still allowing transshipments between services and Karsten
et al. (2015a) showed that time restricted multi-commodity flow problem arising as a sub-problem
can be efficiently solved for a large global shipping network. The CLSNDP in this paper build
upon these contributions.

Introducing transit time restrictions is essential in the LSNDP from a customer perspective, but
to maintain low fuel (bunker) cost this must be accompanied by modelling the services with variable
speed. Traditionally, models of the LSNDP operate with a constant speed on services although
variable speed on each leg is used in practice. In a network with constant speed the most transit
time restricted commodity will force the entire service to speed up, and hence increase the bunker
consumption of the service unnecessarily with a resulting increase in both cost and CO2 emissions.
Figure 1 illustrates the problem of maintaining constant speed during the design process. The
container entering at A and leaving at B, kAB , has the tightest transit time requirement among
the containers currently transported on service s with a transit time restriction of 3 days, which
requires a speed of 14 knots. This results in a deployment of 2 vessels at a speed of nearly 21
knots, because of only two possible deployments with constant speed and the weekly frequency
requirement imposed. If speed can be determined individually on each sailing leg, 3 vessels can
be deployed with a speed of 14 knots between A and B and a speed of 12 knots on the remaining
sailing legs maintaining the weekly frequency but resulting in a significant decrease in the bunker
consumption (since the bunker consumption is a cubic function of the speed (Brouer et al., 2014a)).
The computational results presented in Brouer et al. (2015) support a higher average speed and
low fleet deployment in networks optimized with transit time restrictions and constant speed.

Therefore, the CLSNDP is extending the reference model for LSNDP Brouer et al. (2014a)
to consider transit time restrictions coupled with variable speed on each sailing leg in order to
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Figure 1: A service illustrated with constant speed and weekly frequency. The nodes are ports and
the solid lines correspond to sailing edges. Two deployments are possible to complete the round
trip of 5,000 nm (nautical miles) within the speed bounds: Three vessels deployed (ne = 3) results
in a constant speed of 12.25 knots, while two vessels deployed (ne = 2) results in a constant speed
of 20.83 knots. The most transit time critical commodity, k, on the service is for the commodity
illustrated by the dashed line from A to B, where the transit time restriction is 3 days requiring a
speed of 14 knots.

properly address the trade-off between providing competitive transit times, while reducing cost
as well as CO2 emissions. In this paper we propose the first algorithm to solve CLSNDP by an
adaptation of the matheuristic of Brouer et al. (2014b) that considers transshipment times and
optimize speed on each sailing leg. The underlying basis for the model is a capacitated multi-
commodity network design formulation where we can accurately model transshipment operations,
cost structures, and restrictions on container transit time of individual containers. The formulation
adheres to the objective and constraints of Brouer et al. (2014a) with a fixed weekly frequency.
As we are not solving the mathematical formulation using an exact algorithm we have chosen to
place the mathematical model in A.

Speed optimization in maritime transportation has received quite a lot of interest in the litera-
ture across economics and operations research over the past decade. Psaraftis and Kontovas (2013)
survey models and taxonomy on speed optimization and in Psaraftis (2015) “slow steaming” as a
phenomenon is discussed. Notteboom and Vernimmen (2009) and Ronen (2011) provide insights
on speed optimization in liner shipping and show the importance of optimizing speed in liner ship-
ping networks by studying a single service. There are numerous examples of speed optimization
within liner shipping e.g. the non-linear MIP formulation presented in Wang and Meng (2012c), or
speed optimization coupled with fleet deployment e.g. (Gelareh and Meng, 2010; Meng and Wang,
2011; Zacharioudakis et al., 2011). A number of contributions are concerned with the coupling
between transit time and speed in optimizing the network (Cheaitou and Cariou, 2012; Wang and
Meng, 2012a,b). Reinhardt et al. (2015) present a MIP model for adjusting the port berth times
such that the fuel consumption is minimized while retaining the customer transit times. A penalty
is assigned to each change of berth time in order to limit the number of changes. Karsten et al.
(2015b) use Benders decomposition to simultaneously optimize sailing speed and container routing.
All containers have an associated limit on the transit times that needs to be met.

Deciding an optimal speed configuration in a liner shipping network requires consideration of the
network in its entirety as transit times of commodities may be decided by several interoperating
services. Likewise commodity paths are likely to change with the speed optimization if cargo
routings are flexible. However, computational results from the above mentioned papers indicate
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that this is not computationally tractable for revaluation in a large-scale heuristic search. The
matheuristic for the CLSNDP proposed in this paper is considering speed as one of the dimensions
in the solution space and therefore a fast method for optimizing speed is needed. In tramp shipping
speed optimization of an isolated route in the network is optimal. Variable speed for a single ship
route in tramp shipping has been explored in Fagerholt et al. (2009); I. Norstad and Laporte
(2011); Hvattum et al. (2013), where the introduction of speed optimization allowing variable
speed on a sail route results in significant fuel savings. In Fagerholt et al. (2009) a MIP with
a non-linear objective function depicting the vessels fuel consumption as a function of speed is
presented. The speed optimization problem can be transformed into a directed acyclic graph if
speeds are discretized and the resulting speed profile is simply a shortest path, which can be
efficiently calculated for a directed acyclic graph. The approach by Fagerholt et al. (2009) cannot
be adopted directly, since a liner shipping service will be carrying multiple commodities and hence
the time windows are defined per pickup node. Transforming the problem into a graph would
result in node specific time windows accounting for times between every OD pair assigned to the
service, which would require a resource constrained shortest path with a specific resource for every
port in the service. This is unlikely to be efficiently solved. However, we can adapt the non-linear
MIP formulation of Fagerholt et al. (2009) to optimize speed on a single service given constraints
on the slack time of each commodity currently transported on the service. As a novelty we also
consider opportunity cargo not currently transported, as speed optimization may lead to new
attractive transport opportunities. The non-linear bunker consumption function is approximated
by a piecewise linear function of the time to sail a given leg and the speed optimization MIP can
be efficiently solved using a standard MIP solver making it suitable to incorporate into a heuristic.
Our computational results show that it is tractable to incorporate level of service in the network
design process by considering container transit time restrictions and variable speed in a heuristic
context, and we are able to design profitable networks for scenarios resembling global liner shipping
networks.

The rest of the article is organized as follows. Section 2 discuss the extensions from the LSNDP
to the CLSNDP. Section 3 gives an overview of our solution method and describe the level of
service implications in detail. Section 4 presents computational results on realistic instances from
the benchmark suite LINER-LIB before we conclude and discuss future work in Section 5.

2 Problem description

Given a fleet of container vessels and a selection of ports, the CLSNDP constructs a set of services
to provide transport for containers worldwide. It extends the classical LSNDP to consider level
of service as this is the main concern for the shipper. The CLSNDP we present here is based on
the reference model for the LSNDP presented in Brouer et al. (2014a) which has been extended
in Brouer et al. (2015) to consider transit time restrictions for all commodities, see A for a full
description of the model. The primary change in order to accommodate transit time restrictions
into the model of Brouer et al. (2014a) is to decompose the multi commodity flow problem into a
path flow formulation. In the path flow formulation only paths respecting the maximal transit time
for a given commodity are feasible. This extension of the LSNDP with transit time restrictions is a
non-compact formulation with integer service variables defining a port call sequence, a vessel type,
number of ships and a constant speed, and real path variables for routing the commodities. As
transit times are closely linked to speed, the constant speed needed to accommodate transit time
restrictions will generally be determined by the commodity with the most restrictive transit time.
However, it is unnecessary to maintain a high speed throughout the service if this commodity is
only carried on part of the service. Therefore we use service variables that include variable speed
by allowing each sailing to take on any speed within the feasible speed interval, while maintaining
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a weekly frequency of service. The overall objective of CLSNDP is to maximize profit, however,
the extensions potentially results in fuel savings and/or a larger cargo uptake in the network along
with ensuring a competitive level of service in the network.

The next section provides a broad overview of the algorithm and its components. The overview
includes the extensions necessary to enable consideration of level of service, namely transit time
restrictions for each individual commodity and optimizing speed on each sailing in the network.
Following the overview the extensions will be described in further detail.

3 Algorithm

The proposed matheuristic is based on the algorithm from Brouer et al. (2014b). Since the evalua-
tion of the objective function makes it necessary to flow all containers through the network, only a
limited number of iterations can be evaluated throughout the search, and therefore it is important
to use a large neighborhood search, combined with a shrewd way of choosing the direction of the
search.

Algorithm 1 presents high level pseudocode for the overall matheuristic. Initially a solution is
constructed by dividing the available fleet onto services. Subsequently the services are populated
with port calls following a greedy parallel insertion procedure according to the distance and the
trade volume between ports in the service in line 1. The subsequent search for improved solutions
is guided by a simulated annealing scheme in the while loop of lines 5-25. The primary component
of the matheuristic is a neighbourhood for inserting and removing port calls on a single service
which is formulated as an integer program in line 8. The integer program is described in detail in
Section 3.1. In order to optimize speed in the network a heuristic method based on a non-linear
MIP is applied. The heuristic optimizes the speed of all legs on a single service given the time
limits of cargo currently transported on this service and the time limit of opportunity demands,
that are currently rejected due to transit time restrictions. This MIP is called in line 10 after
resolving the multicommodity flow problem in line 9 given the changes to service s. As changes
are only made to a single service, the column generation algorithm used is warm started using the
technique described in Brouer et al. (2014b). The simulated annealing scheme decides whether
the new solution is accepted in line 12. The reinsertion heuristic in line 18 introduces butterfly
ports on promising candidate services. The perturbation heuristic in line 23 diversifies the service
composition. The two latter heuristics are unchanged to the versions in Brouer et al. (2014b).

3.1 The improvement heuristic with level of service considerations

The integer program described in line 8 of Algorithm 1 is a move operator in a large-scale neigh-
borhood search based on altering a single service at a time. The objective of the integer program
are estimation functions for changes in the flow of the network and the duration of the service
due to insertions and removals of port calls. The solution of the integer program provides a set
of moves in the composition of port calls and fleet deployment. Flow changes and the resulting
change in the revenue for relevant commodities to the insertion/removal of a port call are estimated
by solving a series of resource constrained shortest path problems considering feasibility of transit
time restrictions as well as the cost of transport including transshipments.

Given a total estimated change in revenue of revi and port call cost of c
e(s)
i Figure 2(a) illustrates

estimation functions for the change in revenue (Θs
i ) and duration increase (∆s

i ) for inserting port
i into service s controlled by the binary variable γi. The duration controls the number of vessels
needed to maintain a weekly frequency. Figure 2(b) illustrates the estimation functions for the
change in revenue (Υs

i ) and decrease in duration (Γsi ) for removing port i from service s controlled
by the binary variable λi.
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(a) Blue nodes are evaluated for insertion corresponding to variables γi for
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(b) Red nodes are evaluated for removal corre-
sponding to variables λi for the set of current port
calls F s on service s.

Figure 2: Illustration of the estimation functions for insertion and removal of port calls.
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Algorithm 1 High Level algorithm for CLSNDP

Require: An instance of the CLSNDP
1: Construct an initial solution x using a greedy algorithm
2: Set the best known solution x∗ = x
3: Set the iteration counter iter = 0
4: Set the initial temperature temp = temp0

5: while temp > 0.01 AND time < MAXtime do
6: for each service s ∈ x do
7: x′ ← x \ s
8: s′ ← IP (s): improve solution by insertion/removal of port calls on service s
9: Resolve cargo flow

10: Optimize speed of each sailing on s′

11: x′ ← x′
⋃
s′

12: if accept solution according to cooling scheme then
13: Set x← x′

14: Possibly update best known solution: x∗ ← x
15: iter ← iter + 1
16: temp← temp · 0.98
17: if iter mod 4 = 0 then
18: Apply reinsertion heuristic to obtain new solution x′ with promising butterfly routes
19: if Solution improves then
20: Set x← x′

21: Possibly update best known solution: x∗ ← x
22: if iter mod 10 = 0 then
23: Apply perturbation to obtain a solution x′ with a different service composition
24: Set x← x′

25: Possibly update best known solution: x∗ ← x
26: return (x∗)

For considering the transit time in the IP, it is necessary to estimate how insertions and removals
of port calls will affect the duration of the existing flow on the service. If an insertion is estimated
to result in exceeding the transit time restriction of existing flow, and there is no possibility of
rerouting the flow on a different path respecting the transit time limits, a loss of revenue can
be expected. The loss is estimated to correspond to the full revenue obtained from the demand
quantity. Figure 3 illustrates a case of a path variable in the current basis of the MCF model,
which becomes infeasible due to transit time restrictions when inserting port B on its path.

In order to account for the transit time restrictions of the current flow, constraints (8) are
added to the IP and a penalty, ζx corresponding to losing the cargo, is added to the objective if
the transit time slack for an existing path variable becomes negative. This is handled through the
variable αx, where x refers to a path variable with positive flow in the current solution and sx refers
to the current slack time according to the transit time restrictions of the variable. Variable speed
is considered in the estimation function for the flow as well as for the estimation of the service
duration. The speed on the sailings to and from the port evaluated for insertion is estimated to
be equal to the speed sailed between the two ports previously connected and is denoted by the
constant Kγi . Upon evaluating a removal of a port the actual speed of the sailing in question is
used to reduce the duration of the service. The constant Kλi expresses the weighted average speed
of the current speeds for the sailings entering and leaving the port estimated for removal. The
speeds used for the estimation functions are illustrated in Figure 4.
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Figure 3: Insertions/removals affect transit time of the flow. Commodity kAD has a maximum
transit time of 48 hours and the insertion of γB will make path variable xAD infeasible.
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calls F s on service s. A weighted average speed is

used KλC = dAC
dAC+dCD

· sAC + dCD
dAC+dCD

· sDC

Figure 4: Illustration of the speeds used by estimation functions for insertion and removal of port
calls.
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For ease of reading, Table 1 gives an overview of additional sets, constants, and variables used
in the IP.

Sets

F s Set of port calls in s
Ns Set of neighbors (potential port call insertions) of s
Xs Set of path variables on service s in current flow solution with positive flow
Nx ⊆ Ns Subset of neighbors with insertion on current path of variable x ∈ Xs

F x ⊆ F s Subset of port calls on current path of variable x ∈ Xs

Li Lock set for port call insertion i ∈ Ns or port call removal i ∈ F s

Constants

Y s Distance of the route associated with s
Bi Berthing time for port call i ∈ F s is
V s Estimated weighted average speed over all sailings on the service s
Vγi Speed between insertion points on the service s
Vλi Speed on sailing removed from the service s
Ce Cost of an additional vessels of class e(s)
ne Number of deployed vessels of class e(s) to s in the current solution
Me Number of undeployed vessels of class e in the current solution
Is Maximum number of insertions allowed in s
Rs Maximum number of removals allowed in s
∆s
i Estimated distance increase if port call i ∈ Ns is inserted in s

Γsi Estimated distance decrease if port call i ∈ F s is removed from s
Θi Estimated profit increase of inserting port call i ∈ Ns in s
Υi Estimated profit increase of removing port call i ∈ F s from s
ζx Estimated penalty for cargo lost due to transit time
sx Slack time of path variable x

Variables

λi Binary, 1 if port call i ∈ F s is removed from s, 0 otherwise
γi Binary, 1 if port call i ∈ Ns is inserted in s, 0 otherwise
ωs Integer, number of vessels added (removed if negative) to s
αx Binary, 1 if transit time of path variable x ∈ Xs is violated, 0 otherwise

Table 1: Overview of sets, constants, and variables used in the IP

The objective of the move operator is to maximize the estimated profit increase obtained from
removing and inserting port calls, accounting for the estimated change of revenue, transshipment
cost, port call cost, and fleet cost.

max
∑
i∈Ns

Θiγi +
∑
i∈F s

Υiλi − Ceωs − ζxαx (1)

First, we need to estimate the number of vessels ωs needed on the service s (assuming a weekly
frequency) after insertions/removals while accounting for the change in the service time given the
current weighted average speed on the service V s:

Y s

V s
+
∑
i∈F s

Bi +
∑
i∈Ns

(
∆s
i

Vγi
+Bi

)
γi −

∑
i∈F s

(
Γsi
Vλi

+Bi

)
λi ≤ 24 · 7 · (ne + ωs) (2)

Next, we must ensure that the solution does not exceed the available fleet of vessels. Note that ωs

does not need to be bounded from below by −ne because it is not allowed to remove all port calls:

ωs ≤Me (3)
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Then, a limit on the number of port call insertions and removals is enforced in order to minimize
the error in the computed estimates: ∑

i∈Ns
γi ≤ Is (4)∑

i∈F s
λi ≤ Rs (5)

Furthermore, the flow estimates are based on cargo flowing to and from a set of related port calls on
the service. The affected ports are placed in a lock set, Li, for insertions and removals respectively,
i.e. ports in a lock set cannot be removed to avoid large deviations in the flow estimates:∑

j∈Li

λj ≤ |Li|(1− γi) i ∈ Ns (6)

∑
j∈Li

λj ≤ |Li|(1− λi) i ∈ F s (7)

Finally, we need to activate the estimated penalty for lost cargo due to an estimated violation of
the transit time for the commodity on this particular path:∑

i∈Nx

(
∆s
i

V s
+Bi

)
γi −

∑
i∈Fx

(
Γsi
V s

+Bi

)
λi − UBαx ≤ sx x ∈ Xs (8)

The domains of the variables are:

λi ∈ {0, 1}, i ∈ F s γi ∈ {0, 1}, i ∈ Ns αx ∈ {0, 1}, x ∈ Xs ωs ∈ Z, s ∈ S

As opposed to the move operator proposed in Brouer et al. (2014b) the change in revenue may
be related to not transporting cargo for which the path duration is estimated to exceed the transit
time of the commodity.

3.2 Variable Speed on Service Legs

To include variable speed in the matheuristic (Algorithm 1 line 10) we formulate the speed opti-
mization problem as a mixed integer program with a non-linear objective function that can easily
be solved for each service s ∈ S during the iterative search. m is the number of port calls in the
round trip of s and m + 1 is the first port of call. The function g(tj,j+1, dj,j+1) represents the
bunker consumption from port j to j+1 expressed as a function of sailing time tj,j+1 and distance
dj,j+1, which indirectly models the speed vj,j+1. For each service we wish to determine the sailing
speed of each sailing leg which we do by finding the optimal sailing time tj,j+1 between ports j
and j + 1. We arrive in port j at time tj and the sailing time must be determined such that
the weekly frequency of a service is maintained. If the sailing speed is changed significantly it is
possible to add or remove an additional vessel to the service provided that additional vessels are
available. As a novelty we also consider commodities that are not currently transported but could
be transported on service s if a sufficient speed increase is profitable. To find the set of candidate
commodities for a service we solve an unconstrained shortest path problem on the residual capacity
graph of the current network for all commodities that are not currently transported. We add the
ones that have a profitable path through service s to the set but where transit time is then violated
to Kp,s and calculate the potential profit based on the residual capacity (which may be less than
the demand of a cargo), the cost of the path and the service penalty (which we potentially can
avoid). Additionally we keep track of the time decrease needed (corresponding to a speed up) to
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Sets

Ks Set of commodities currently transported on s where tok < tdk
K̃s Set of commodities currently transported on s where tok > tdk
Kp,s Set of commodities that potentially could be transported on s where tok < tdk
K̃p,s Set of commodities that potentially could be transported on s where tok > tdk

Constants

Tmin Time to complete service s at minimum speed
tsk Time commodity k currently uses on service s and the possible slack time

between the time of the current path and the overall transit time limit of k

zk Net revenue that will be lost if not transporting the demand k ∈ Ks ∪ K̃s

rk Net revenue that can be obtained by transporting all of demand k ∈ Kp,s ∪ K̃p,s

tcurs,k Time commodity k ∈ Kp,s ∪ K̃p,s currently would spend on service s

tlacks,k Time currently lacking for commodity k ∈ Kp,s ∪ K̃p,s

Variables

tj Continuous, arrival time at port j
tj,j+1 Continuous, sailing time between ports j and j + 1
δe Integer, change in the number of vessels of class e(s) deployed to service s
ρk Binary, 1 if commodity k will be lost due to transit time violation
ηk Binary, 1 if commodity k will be available if transit time is reduced

Table 2: Overview of sets, constants, and variables used in the Speed MIP

make the path feasible. The constants, sets and variables used in the model for a specific service
s ∈ S are summarized in Table 2.

Using this notation, the objective for each service is to minimize the objective function ac-
counting for the bunker cost, the expected loss of revenue due to transit times not met and the
deployment cost of additional vessels less the profit from demand that become available for trans-
port by adjusting the speed. The objective can be written as:

min

m∑
j=1

cBg(tj,j+1, d
e(s)
j,j+1) +

∑
Ks∪K̃s

zkρk + Ceδe −
∑

Kp,s∪K̃p,s

rkηk (9)

A number of constraints need to be satisfied: First, we need to set the time for each port on a
route and the sailing time between ports for calculating the bunker consumption:

tj+1 − tj − tj,j+1 ≥ Bj j = 1 . . .m (10)

Next, we decide the number of vessels needed to maintain a weekly frequency on the service
including berthing time for each port call:

tm+1 − 168 · δV = 168 · ne −
m∑
j=1

Bj (11)

The service time is set by the constraint:

m∑
j=1

tj,j+1 = tm+1 (12)

Moreover, we invoke a loss of revenue if the transit times of commodities on board the service s
are not met. A separate constraint is necessary for commodities where tok < tdk to account for
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the total round trip time:

tdk − tok − ρkTmin ≤ tk k ∈ Ks (13)

tdk − tok − ρkTmin + tm+1 ≤ tk k ∈ K̃s (14)

Similar constraints allow a service to pick-up additional cargo if speed is increased sufficiently to
make paths for cargo that was previously rejected due to transit time limits:

tdk − tok − (1− ηk)Tmin ≤ tcurs,k − tlacks,k k ∈ Kp,s (15)

tdk − tok − (1− ηk)Tmin + tm+1 ≤ tcurs,k − tlacks,k k ∈ K̃p,s (16)

Finally, we need to enforce speed bounds of the vessel class used by service s:

tj,j+1 ≥
dj,j+1

vmax
j = 1 . . .m (17)

tj,j+1 ≤
dj,j+1

vmin
j = 1 . . .m (18)

The variable δe is bounded from above by the number of available vessels if the service slows down
overall by adding an additional vessel to the service. The bounds on δe are tightened in order to
give a good solution close to the current deployment such that −1 ≤ δV ≤ min{1,Me}, i.e. it is
only possible to add or remove at most one vessel. The variable domains are:

δe ∈ {−1, 0,min{1,Me}} (19)

tj , tj,j+1 ∈ R+ j = 1 . . .m (20)

ρk ∈ {0, 1} k ∈ Ks ∪ K̃s (21)

ηk ∈ {0, 1} k ∈ Kp,s ∪ K̃p,s (22)

The objective function can be linearized by modeling the bunker consumption as a piecewise linear
function for each tj,j+1 and the model (9)-(22) can be solved efficiently by a standard mixed integer
programming solver. We use 100 pieces to accurately model the bunker consumption function
(the solution times for the speed optimization problem are generally less than 0.1 seconds in the
instances we have solved in Section 4 and the number of pieces used to aprroximate the objective
only has limited impact on this.)

As described earlier, when a service in the network is changed we re-solve the cargo flowing
subproblem using a warmstarting procedure where previously generated columns are used leading
to a very effective solution of the flow problem. It should be noted that solving the speed optimiza-
tion for each service separately leads to a sub-optimal configuration of the network as a significant
portion of the demands uses more than one service and hence the transit time for each demand is
determined by more than one service, but as we solve the problem many times for each service as
part of the search procedure large differences can be reduced.

4 Computational Results

The matheuristic was tested on data from the benchmark suite LINER-LIB described in Brouer
et al. (2014a). The instances can be found at http://www.linerlib.org. Table 3 gives an overview
of the instances. The transit time restrictions have been updated according to the most recent
published liner shipping transit times for a small number of the origin-destination pairs as described
in Brouer et al. (2015).
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Category Instance and description |P | |K| |E|
Single- Baltic Baltic sea, Bremerhaven as hub 12 22 2
hub WAF West Africa, Algeciras as hub 19 38 2
Multi-hub Mediterranean Algeciras, Tangier, and Gioia Tauro as hubs 39 369 3
Trade- Pacific Asia and US West Coast 45 722 4
lane AsiaEurope Europe, Middle East and Far East regions 111 4000 6
World WorldSmall 47 main ports worldwide 47 1764 6

Table 3: The instances of the benchmark suite with indication of the number of ports |P |, the
number of origin-destination pairs |K|, and the number of vessel classes |E|.

The matheuristic has been coded in C++ and run on a linux system with an Intel(R) Xeon(R)
X5550 CPU at 2.67GHz and 24 GB RAM. The algorithm is set to terminate after the time limits
imposed in Brouer et al. (2014a) if the stopping criterion of the embedded simulated annealing
procedure is not fulfilled at the time limit.

We fix the berthing time, Bp to 24 hours for all ports as in Brouer et al. (2014a) and the
transshipment time, ta is fixed to 48 hours for every connection as the concrete time schedule is
not known at this stage. The bunker price is set to $ 600 per ton as in Brouer et al. (2014a). Prices
for bunker have nearly halved in the past five years, and to this end Section 4.2 is a case study of
key performance indicators for networks constructed with bunker prices ranging from $ 150 to $
700 per ton.

4.1 Computational results for LINER-LIB

Table 4 shows the performance of the algorithm on the six instances described in Table 3. For
each instance the performance of the algorithm is shown when the networks are designed with
constant and variable speed. We evaluate the average performance of ten networks in the two
settings and also report the best found network. In both the constant speed and variable speed
setting the algorithm can find profitable solutions (negative objective values) for Baltic, WAF,
WorldSmall, and AsiaEurope. The Pacific instance yields unprofitable solutions though both
fleet deployment and transported cargo volume is high. For all instances except the single-hub
instances the networks generated with variable speed are consistently better than the constant
speed network with an improvement of up to 10% for the average values and up to a more than
60 % better objective value for the best Pacific network. On average around 85% to 95% of
the available cargo volume is transported except in the Mediterranean instance. Generally the
constant speed instances transport slightly more of the cargo volume than the networks operating
at variable speed and the fleet deployment is significantly higher for networks operating at variable
speed suggesting overall slower sailing speed. This is also evident from Table 5 where the weighted
average speed for each vessel class is shown for networks with constant and variable speed. Most
of the vessel classes sail significantly slower for the larger networks and variable speed networks
generally operate around or below design speed whereas the networks with constant speed operate
at or in some cases much above design speed.

Table 6 gives statistics on the rejected cargo in the networks with variable speed. The reasons
for cargo to be rejected is that there are no cargo paths that meet transit time restrictions, that
there is no residual capacity or that the origin-destination pair is not connected in the graph.
For Baltic, WAF, and Mediterranean cargo is primarily rejected because the corresponding origin-
destination pairs are not connected. This indicates that there is a set of ports that the algorithm
asses to be unprofitable to call. For Pacific, WorldSmall, and AsiaEurope cargo is mainly not
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Instance Obj. Val. Deployment Transp. Vol. CPU Time

Z(7) D(v) D(|E|) T(v) (S)
(%) (%) (%)

Baltic

Best (constant speed) −1.41 · 104 100 100 87.4 101
Average (constant speed) 7.45 · 104 100 100 86.7 108
Best (variable speed) −0.46 · 104 100 100 87.9 144
Average (variable speed) 17.4 · 104 100 100 85.1 115

WAF

Best (constant speed) −5.59 · 106 83.3 85.7 97.0 255
Average (constant speed) −4.87 · 106 83.3 85.2 94.3 354
Best (variable speed) −5.48 · 106 97.2 97.6 97.6 362
Average (variable speed) −4.89 · 106 86.2 87.6 91.7 396

Mediterranean

Best (constant speed) 2.42 · 106 91.9 95.0 86.9 710
Average (constant speed) 2.70 · 106 90.5 94.0 78.9 737
Best (variable speed) 2.19 · 106 91.9 95.0 83.8 1200
Average (variable speed) 2.65 · 106 92.5 95.0 79.8 1200

Pacific

Best (constant speed) 3.05 · 106 95.0 91.0 93.3 3600
Average (constant speed) 3.65 · 106 94.0 91.9 94.0 3600
Best (variable speed) 1.13 · 106 98.2 97.0 90.3 3600
Average (variable speed) 3.44 · 106 97.0 96.0 89.5 3600

WorldSmall

Best (constant speed) −3.54 · 107 82.0 85.2 91.1 10800
Average (constant speed) −3.15 · 107 82.3 85.4 90.9 10800
Best (variable speed) −4.05 · 107 90.5 96.6 89.1 10800
Average (variable speed) −3.48 · 107 90.3 95.8 88.0 10800

AsiaEurope

Best (constant speed) −1.67 · 107 84.6 90.9 88.8 14400
Average (constant speed) −1.45 · 107 83.9 91.9 88.5 14400
Best (variable speed) −1.88 · 107 94.4 96.0 85.6 14400
Average (variable speed) −1.52 · 107 94.0 96.8 84.9 14400

Table 4: Best and average of 10 runs on an Intel(R) Xeon(R) X5550 CPU at 2.67GHz with 24
GB RAM. Results with constant and variable speed. Weekly objective value (Z(7)); percentage
of fleet deployed as a percentage of the total volume D(v) and as a percentage of the number of
ships D(|E|). T(v) is the percentage of total cargo volume transported and (S) is the execution
time in CPU seconds.

transported because of transit times that cannot be met but also to a large degree because of
lacking capacity. For these only around 25 % is rejected because of no connections. Generally for
the cargo that is rejected because of no connection the percentage of rejected demands in terms
of number of demands (k) compared to the volume (v) not connected show that there is a lot of
low volume cargo here. Further inspection shows that these demands often are from smaller feeder
ports where the total available volume is very low which is why they are assessed to be unprofitable
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Instance Vessel Class

F450 F800 P1200 P2400 PostP SuperP

Baltic

Constant Speed 10.8 13.7
Variable Speed 11.1 13.9

WAF

Constant Speed 11.5 13.2
Variable Speed 10.8 11.7

Mediterranean

Constant Speed 11.9 13.7 13.9
Variable Speed 11.7 13.0 15.5

Pacific

Constant Speed 12.0 14.2 15.9 18.2
Variable Speed 11.2 12.4 14.9 15.6

WorldSmall

Constant Speed 12.7 15.5 17.5 19.4 19.4 18.2
Variable Speed 12.0 13.2 16.4 16.4 15.8 15.6

AsiaEurope

Constant Speed 11.7 13.7 16.5 18.0 19.7 17.6
Variable Speed 11.5 12.8 16.1 14.8 16.6 15.8

Class Characteristics

Design Speed 12.0 14.0 18.0 16.0 16.5 17.0
Max speed 14.0 17.0 19.0 22.0 23.0 22.0

Table 5: Weighted average speed per vessel class over ten runs. The last two rows indicate the
design speed and max speed of the corresponding vessel class. F is Feeder, P is Panamax.

by the algorithm.

4.2 Sensitivity to Bunker Price

The price of bunker is very decisive for the cost of the network and the soaring oil prices of more
than 600 $ per ton seen at the beginning of this decade along with a surplus of capacity in the
market gave rise to the “slow-steaming” era. Recently, oil prices have been plummeting to less than
300 $ per ton, which means that the trade-off between slow steaming by deploying extra vessels
and speeding up services is shifting. This section concerns the performance of the algorithm with a
varying price of bunker. The test is performed on several WorldSmall instances, where we are using
the same initial solutions for different bunker prices. The subsequent improvement heuristic will
be highly dependent on the bunker price in evaluating a given move and the best found solutions
will potentially differ significantly. We compare solutions for bunker prices in the range from $
150 to $ 700 per ton in terms of vessel deployment, the percentage of cargo transported, and the
weighted average speed of the network.

Table 7 and Figure 5 show the correlation between bunker price and the profit margin, which is
decreasing with increasing bunker prices. Furthermore, it can be seen that the amount of available
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Instance Total Transit Capacity Transit time Not
rejected time and capacity connected

|R| FFE tt(k) tt(v) C(k) C(v) ttC(k) ttC(v) L(k) L(v)
(%) (%) (%) (%) (%) (%) (%) (%)

Baltic µ 8 732 1.1 0.2 22.6 77.1 0.0 0.0 76.3 22.7
σ 1 164 3.5 0.6 11.5 10.4 0.0 0.0 14.1 10.6

WAF µ 8 712 7.0 1.2 14.0 26.1 1.7 0.1 77.3 72.6
σ 2 314 12.1 2.2 9.7 25.3 5.3 0.3 13.5 24.9

Mediterranean µ 107 1527 35.3 50.0 0.2 0.4 4.3 4.0 60.1 45.7
σ 8 250 7.2 9.6 0.7 1.0 4.6 3.9 5.9 8.6

Pacific µ 240 4657 51.5 34.4 7.8 27.4 13.3 29.9 27.3 8.3
σ 23 641 6.7 7.4 3.3 12.6 4.1 11.8 5.9 3.4

WorldSmall µ 325 15334 35.8 40.2 19.9 16.7 21.1 23.9 23.2 19.2
σ 45 1872 6.5 8.3 9.4 8.3 11.1 11.7 20.4 43.5

EuropeAsia µ 1029 11597 41.9 44.9 8.4 14.3 21.3 26.4 28.4 14.4
σ 97 1008 7.5 8.3 2.9 3.5 5.8 7.3 8.5 6.3

Table 6: Statistics on the rejected demand reporting average (µ) and standard deviation (σ) over ten runs. |R|
is the number of rejected OD pairs and FFE is the corresponding rejected volume; tt(k) is the percentage of OD
pairs rejected due only to transit time and tt(v) is the corresponding percentage of the total volume; C(k) is the
percentage of OD pairs rejected due only to lack of capacity and C(v) is corresponding percentage of the total
volume; ttC(k) is the percentage of OD pairs rejected due to both transit time and lack of capacity and ttC(v)
is the corresponding percentage of the total volume; L(k) is the percentage of OD pairs not connected and L(v) is
the corresponding percentage of the total volume.

Bunker Obj. Val. Deployment Transp. Vol.

Price Z(7) D(v) D(|E|) T(v)
($/ton) ($) (%) (%) (%)

150 7.67 · 107 91.8 95.6 90.3
200 7.24 · 107 90.2 95.1 90.1
250 6.85 · 107 91.0 95.3 89.8
300 6.45 · 107 93.5 96.3 91.1
350 5.81 · 107 94.4 95.9 89.9
400 5.20 · 107 91.3 96.3 88.9
450 4.86 · 107 95.0 97.3 89.3
500 4.39 · 107 95.0 97.4 88.7
550 4.15 · 107 94.8 96.9 89.3
600 3.54 · 107 93.0 96.0 88.4
650 2.90 · 107 91.5 96.2 86.2
700 2.26 · 107 93.7 96.7 85.7

Table 7: Bunker price and the development in the objective value Z(7), deployment percentage
of volume D(v) and number of vessels D(|E|) and the percentage of cargo transported T(v).
Average of five different runs.

cargo transported only decrease a few percent with more then a quadrupling of the bunker price.
In Table 9 and Figure 6 the expected trend of a decreasing speed with an increasing bunker price

is clear for all vessel classes except the SuperP class. The weighted average speed confirms this
trend. Also, Figure 6 shows how the overall deployment is increased when the speed is decreased.
The algorithm performs as expected under varying conditions and confirms that even under very
different economics conditions we can design profitable networks. The characteristics in terms of
deployment and sailing speed of these networks is rather different, but in all cases the algorithm
is able to design networks with a high transportation percentage. It should be noted that in
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Figure 5: Development in objective value, Z (left y-axis), and cargo transported in percentage of
total available, trnsp (right y-axis), with increasing bunker price. The results are an average of
five runs.

Bunker Total Transit Capacity Transit time Not
price rejected time and capacity connected

|R| FFE tt(k) tt(v) C(k) C(v) ttC(k) ttC(v) L(k) L(v)
(%) (%) (%) (%) (%) (%) (%) (%)

150 280 12443 33,0 37,4 21,9 21,1 16,5 19,3 28,6 22,2
200 264 12638 41,2 48,3 31,3 24,3 17,7 21,1 9,8 6,4
250 281 13025 38,6 45,0 22,9 17,9 18,3 22,3 20,3 14,8
300 254 11408 43,5 49,4 25,4 21,2 21,9 23,3 9,2 6,1
350 277 12963 47,1 48,1 27,7 21,1 20,7 27,7 4,5 2,9
400 305 14228 49,4 55,6 15,4 11,6 13,5 17,6 21,8 15,3
450 295 13776 38,6 41,2 22,5 17,0 21,7 30,0 17,2 11,8
500 303 14523 50,0 52,4 21,7 18,2 17,3 21,9 10,9 7,3
550 299 13720 43,5 44,0 24,7 20,9 27,8 31,8 3,9 3,1
600 319 14902 40,2 42,0 15,5 15,5 21,3 26,6 23,0 15,9
650 374 17709 53,3 61,0 18,7 13,3 16,3 17,9 11,7 7,9
700 382 18310 46,0 50,3 18,2 18,3 18,6 20,7 17,3 10,7

Table 8: Rejected demand given the difference in bunker price. |R| is the number of rejected OD pairs and FFE is
the corresponding rejected volume; tt(k) is the percentage of OD pairs rejected due only to transit time and tt(v)
is the corresponding percentage of the total volume; C(k) is the percentage of OD pairs rejected due only to lack of
capacity and C(v) is corresponding percentage of the total volume; ttC(k) is the percentage of OD pairs rejected
due to both transit time and lack of capacity and ttC(v) is the corresponding percentage of the total volume; L(k)
is the percentage of OD pairs not connected and L(v) is the corresponding percentage of the total volume. The
results are an average of five runs.

these tests only the bunker price is varied while in a real setting the freight rates also depend
on the bunker price leading to different network characteristics. However, the sensitivity analysis
illustrates how the algorithm also can be used as a managerial tool to conduct “what if” analyses
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$/ton F450 #v F800 #v P1200 #v P2400 #v PostP #v SuperP #v Total V W. Av. S.

150 11,8 24 14,0 29 17,2 66 17,8 74 17,3 53 16,8 7 251 16,5
200 11,9 24 13,5 29 17,1 67 17,8 74 17,5 50 14,0 7 250 16,5
250 11,8 24 13,3 29 16,7 67 17,2 72 16,9 53 13,0 6 251 16,0
300 11,9 24 13,2 28 16,6 65 17,6 74 16,8 55 18,6 7 253 16,2
350 12,2 24 13,3 29 16,4 64 16,6 73 16,6 53 16,2 9 252 15,7
400 11,5 24 13,7 29 16,4 68 16,7 73 16,4 55 12,4 5 253 15,7
450 11,5 24 13,1 29 16,4 67 16,7 74 15,8 54 16,1 9 256 15,5
500 11,7 24 13,4 29 16,2 67 16,3 74 16,1 54 15,9 8 256 15,5
550 11,6 23 12,8 29 16,5 67 16,3 73 15,9 55 17,0 8 255 15,5
600 11,4 24 13,4 29 16,3 67 16,5 73 15,8 52 15,3 8 252 15,4
650 12,0 24 13,2 29 16,1 68 15,8 73 15,7 54 15,6 6 253 15,2
700 11,7 24 13,8 29 16,1 66 15,9 74 15,3 55 15,5 7 254 15,2

Table 9: Relation between bunker price, weighted average speed per vessel class and vessel deploy-
ment for each class. Weighted Average speed (W. Av. S.) is a weighted by the number of vessels
deployed in the class (#v). The results are an average of five runs.
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Figure 6: The weighted average speed (W.Av.S.), of an instance, the cargo transported in per-
centage of total available (Trnsp.), and the fleet capacity deployed in percentage of total volume,
(Depl.) as a function of bunker price. The red dashed trend lines are based on a linear regression
fit. The results are an average of five runs.

at a strategic level.
The red trend lines in Figure 6 show linear fits of the speed (f(x) = −0.002x+16.8), deployment

(f(x) = 0.002x + 95.2), and amount of transported cargo (f(x) = −0.008x + 92.2). These linear
approximations confirm the expectation that speed decrease with increased bunker price (0.2 nm/h
per 100 $/ton increase), the amount transported decrease with increased bunker price (0.8 % per
100 $/ton increase), and deployment increase with increased bunker price (0.2 % per 100 $/ton
increase). This is expected as the bunker consumption is cubic in speed and as the price increase
we need more vessels as the network is operating at lower speeds. This also implies that some
demands can not meet their transit times even with different service layouts.

The sensitivity analysis illustrates how the incentives towards slow steaming for liner shipping
companies change with varying bunker prices. It will be a more active choice to maintain a greener
profile in periods with low oil prices as attaining “an acceptable environmental performance in the
transportation supply chain, while at the same time respecting traditional economic performance
criteria” (Psaraftis, 2015) is only a win-win solution when oil prices are high.
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5 Conclusion

We have presented the competitive liner shipping network design problem where we include level of
service requirements in the form of tight transit time restrictions on all demands while maintaining
the ability to transship between services. To improve the networks, getting more realistic transit
times and a better fleet utilization, we propose a method that can handle variable speed on all
sailing legs in the network.

The proposed matheuristic can handle tight transit time restrictions on all demands and adjust
speed on all sailing legs. The core components of the matheuristic is an integer program considering
a set of removals and insertions to a service and an integer program that adjust the speed of
each service iteratively. We extend the integer program to consider how removals and insertions
influence the transit time of the existing cargo flow on the service. Each iteration of the matheuristic
provides a set of moves for the current set of services and fleet deployment along with a proposed
sailing speed on each service leg, which lead to a potential improvement in the overall profit. The
evaluation of the cargo flow for a set of moves requires solving a time constrained multi-commodity
flow problem using column generation.

Extensive computational tests, including a sensitivity analysis on bunker price, show that the
algorithm is applicable in practice and that it is possible to generate profitable networks for the
majority of the instances in LINER-LIB while considering level of service requirements. Especially
for the larger instances the approach generates networks of good quality where the fleet is well
utilized and the majority of demands are transported while satisfying transit time restrictions.
Still, some smaller demands are not served and the fleet is not utilized completely, suggesting that
further algorithmic improvements may lead to even better solutions. We expect that especially
more flexibility in terms of possible vessel class swaps could improve the algorithmic performance
and the quality of the generated networks.
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A Mathematical model

In the following we introduce a mathematical formulation of the CLSNDP. This is partly based
on Brouer et al. (2015) and extends the problem description of the LSNDP presented in Brouer
et al. (2014a) to handle transit times and variable speed. The model enforces a weekly frequency
resulting in a weekly planning horizon.

A solution to the CLSNDP is a subset of the set of all feasible services S. A feasible service
consists of a set of ports P ′ ⊆ P , a number of vessels, and a vector of sailing speeds corresponding
to each sailing leg such that the total round trip time is a multiple of a week. A weekly frequency
of port calls is obtained by deploying multiple vessels to a service. Let e(s) ∈ E be the vessel class
assigned to a service s and ne(s) the number of vessels of class e(s) required to maintain a weekly
frequency. A round trip may last several weeks but due to the weekly frequency exactly one round
trip is performed every week. The service time Ts is the time needed to complete the cyclic route.

An instance of the CLSNDP consists of the set of ports, P , with an associated port call cost cep
for vessels of class e(s), (un)load cost cpU , c

p
L, transshipment cost cpT and berthing time Bp spent

on a port call. Furthermore, we have a set of demands, K, available for transport each week where
each demand has an origin Ok ∈ P , a destination Dk ∈ P , a quantity, qk, a revenue per unit,
zk, a reject penalty per unit z̃k and a maximal transit time, tk. To service the routes, there is a
set of vessel classes, E, with specifications for the weekly charter rate, Ce, capacity Ue, minimum
(vemin) and maximum (vemax) speed limits in knots per hour, bunker consumption as a function of
the speed, gev, and bunker consumption per hour, when the vessel is idle at ports he. There are Ne
vessels available of class e ∈ E. The price for one metric ton of bunker is denoted cB . Finally we
have a matrix, D, of the direct distances deij between all pairs of ports i, j ∈ P and for all vessel
classes e ∈ E. The distance may depend on the vessel class draft as the Panama Canal is draft
restricted. Along with deij follows an indication of the cost leij associated with a possible traversal
of a canal.

The mathematical model of the CLSNPD relies on a set of service variables and a path flow
formulation of the underlying time constrained multi-commodity flow problem as described in
Karsten et al. (2015a).

We define a directed graph, G(V,A), with vertices V corresponding to ports and arcs A. The
set of arcs in the graph can be divided into (un)load arcs, transshipment arcs, sailing arcs, and
forfeited arcs to reject demand. We associate with each arc a ∈ A a cost ca, traversal time ta,
sailing speed va, and capacity Ca. The arcs used by service s is denoted As.

Let Ωk be the set of all feasible paths for commodity k ∈ K including forfeiting the cargo. Let
Ω(a) be the set of all paths using arc a ∈ A. The cost of a path ρ is denoted as cρ and it includes
the revenue obtained by transporting one unit of commodity k sent along path ρ ∈ Ωk. The real
variable xρ denotes the amount of commodity k sent along the path. The weekly cost of a service

is cs = ne(s)Ce(s) +
∑

(i,j)∈As

(
cB(he(s)Bp + g

e(s)
v(s)d

e(s)
ij ) + c

e(s)
j + l

e(s)
ij

)
accounting for fixed cost of

deploying the vessels and the variable cost in terms of the bunker and port call cost of one round
trip. Define binary service variables ys indicating the inclusion of service s ∈ S in the solution.

Then the mathematical model of the CLSNDP can be formulated as follows.
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min
∑
s∈S

csys +
∑
k∈K

∑
ρ∈Ωk

cρxρ (23)

s.t.
∑
ρ∈Ωk

xρ = qk k ∈ K (24)

∑
ρ∈Ω(a)

xρ ≤ Ue(s)ys s ∈ S, a ∈ As (25)

∑
s∈S:e(s)=e

ne(s)ys ≤ Ne e ∈ E (26)

xρ ∈ R+ ρ ∈ Ωk, k ∈ K (27)

ys ∈ {0, 1} s ∈ S (28)

The objective (23) minimizes cumulative service and cargo transportation cost. As the cargo
transportation cost includes the revenue of transporting the cargo, this is equivalent to maximizing
profit. The cargo flow constraints (24) along with non-negativity constraints (27) ensure that all
cargo is either transported or forfeited. The capacity constraints (25) link the cargo paths with
the service capacity installed in the transportation network. The fleet availability constraints (26)
ensure that the selected services can be operated by the available fleet. Finally, constraints (27)
and (28) define the variable domains.



BIBLIOGRAPHY 22

References

Agarwal, R. and Ergun, O. (2008). Ship scheduling and network design for cargo routing in liner
shipping. Transportation Science, 42(2):175–196.

Alvarez, J. F. (2009). Joint routing and deployment of a fleet of container vessels. Maritime
Economics & Logistics, 11(2):186–208.

Alvarez, J. F. (2012). Mathematical expressions for level of service optimization in liner shipping.
Journal of the Operational Research Society, 63(6):709–714.

Brouer, B., Alvarez, J., Plum, C., Pisinger, D., and Sigurd, M. (2014a). A base integer program-
ming model and benchmark suite for liner shipping network design. Transportation Science,
48(2):281–312.

Brouer, B., Desaulniers, G., Karsten, C., and Pisinger, D. (2015). A matheuristic for the liner
shipping network design problem with transit time restrictions. In Corman, F., Voß, S., and
Negenborn, R., editors, Computational Logistics, volume 9335 of Lecture Notes in Computer
Science, pages 195–208. Springer International Publishing.

Brouer, B., Desaulniers, G., and Pisinger, D. (2014b). A matheuristic for the liner shipping network
design problem. Transportation Research Part E: Logistics and Transportation Review, 72:42–59.

Cheaitou, A. and Cariou, P. (2012). Liner shipping service optimisation with reefer containers ca-
pacity: an application to northern europe–south america trade. Maritime Policy & Management,
39(6):589–602.

Christiansen, M. and Fagerholt, K. (2011). Some thoughts on research directions for the future:
Introduction to the special issue in maritime transportation. INFOR, 49(2):75–77.

Christiansen, M., Fagerholt, K., Nygreen, B., and Ronen, D. (2013). Ship routing and scheduling
in the new millennium. European Journal of Operational Research, 228(3):467–483.

Fagerholt, K., Laporte, G., and Norstad, I. (2009). Reducing fuel emissions by optimizing speed
on shipping routes. The Journal of the Operational Research Society, 61(3):523–529.

Gelareh, S. and Meng, Q. (2010). A novel modeling approach for the fleet deployment problem
within a short-term planning horizon. Transportation Research Part E: Logistics and Trans-
portation Review, 46(1):76–89.

Hvattum, L. M., Norstad, I., Fagerholt, K., and Laporte, G. (2013). Analysis of an exact algorithm
for the vessel speed optimization problem. Networks, 62(2):132–135.

I. Norstad, K. F. and Laporte, G. (2011). Tramp ship routing and scheduling with speed optimiza-
tion. Transportation Research Part C: Emerging Technologies, 19(5):853–865.

Karsten, C. V., Pisinger, D., Ropke, S., and Brouer, B. D. (2015a). The time constrained multi-
commodity network flow problem and its application to liner shipping network design. Trans-
portation Research Part E: Logistics and Transportation Review, 76:122–138.

Karsten, C. V., Ropke, S., and Pisinger, D. (2015b). Simultaneous optimization of container ship
sailing speed and container routing with transit time restrictions. Technical report, Technical
University of Denmark.

Liu, Z., Meng, Q., Wang, S., and Sun, Z. (2014). Global intermodal liner shipping network design.
Transportation Research Part E: Logistics and Transportation Review, 61:28–39.



REFERENCES 23

Meng, Q. and Wang, S. (2011). Optimal operating strategy for a long-haul liner service route.
European Journal of Operational Research, 215(1):105–114.

Meng, Q., Wang, S., Andersson, H., and Thun, K. (2014). Containership routing and scheduling in
liner shipping: Overview and future research directions. Transportation Science, 48(2):265–280.

Notteboom, T. E. and Vernimmen, B. (2009). The effect of high fuel costs on liner service config-
uration in container shipping. Journal of Transport Geography, 17(5):325–337.

Plum, C., Pisinger, D., and Sigurd, M. M. (2014). A service flow model for the liner shipping
network design problem. European Journal of Operational Research, 235(2):378–386.

Psaraftis, H. N. (2015). Green Transportation Logistics: The Quest for Win-Win Solutions, volume
226. Springer.

Psaraftis, H. N. and Kontovas, C. A. (2013). Speed models for energy-efficient maritime trans-
portation: A taxonomy and survey. Transportation Research Part C: Emerging Technologies,
26:331–351.

Reinhardt, L. B. and Pisinger, D. (2012). A branch and cut algorithm for the container shipping
network design problem. Flexible Services and Manufacturing Journal, 24(3):349–374.

Reinhardt, L. B., Pisinger, D., Plum, C. E., Sigurd, M. M., and Vial, G. T. (2015). The liner
shipping berth scheduling problem with transit times. Transportation Research Part E: Logistics
and Transportation Review, page submitted.

Ronen, D. (2011). The effect of oil price on containership speed and fleet size. Journal of the
Operational Research Society, 62(1):211–216.

Wang, S. and Meng, Q. (2012a). Liner ship fleet deployment with container transshipment opera-
tions. Transportation Research Part E: Logistics and Transportation Review, 48(2):470–484.

Wang, S. and Meng, Q. (2012b). Liner ship route schedule design with sea contingency time and
port time uncertainty. Transportation Research Part B: Methodological, 46(5):615–633.

Wang, S. and Meng, Q. (2012c). Sailing speed optimization for container ships in a liner shipping
network. Transportation Research Part E: Logistics and Transportation Review, 48(3):701–714.

Wang, S. and Meng, Q. (2014). Liner shipping network design with deadlines. Computers and
Operations Research, 41(1):140–149.

Zacharioudakis, P. G., Iordanis, S., Lyridis, D. V., and Psaraftis, H. N. (2011). Liner shipping
cycle cost modelling, fleet deployment optimization and what-if analysis. Maritime Economics
& Logistics, 13(3):278–297.







 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
DTU Management Engineering 
Institut for Systemer, Produktion og Ledelse 
Danmarks Tekniske Universitet 
 
Produktionstorvet 
Bygning 424 
2800 Kongens Lyngby 
Tlf. 45 25 48 00 
Fax 45 93 34 35 
 
www.man.dtu.dk 
 
 
 

We present a solution method for the liner shipping network design problem which is a core strategic 
planning problem faced by container carriers. We propose the first practical algorithm which explicitly 
handles transshipment time limits for all demands. Individual sailing speeds at each service leg are 
used to balance sailings speed against operational costs, hence ensuring that the found network is 
competitive on both transit time and cost. We present a matheuristic for the problem where a MIP is 
used to select which ports should be inserted or removed on a route. Computational results are 
presented showing very promising results for realistic global liner shipping networks. Due to a number 
of algorithmic enhancements, the obtained solutions can be found within the same time frame as used 
by previous algorithms not handling time constraints. Furthermore we present a sensitivity analysis on 
fluctuations in bunker price which confirms the applicability of the algorithm 
 


