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Abstract

We introduce a decision support tool for liner shipping companies to optimally determine
the sailing speed and needed fleet for a global network. As a novelty we incorporate cargo
routing decisions with tight transit time restrictions on each container such that we get a
realistic picture of the utilization of the network. Furthermore, we show that it is possible to
extend the model to include optimal time scheduling decisions such that the time associated
with transshipments is also reflected accurately. To solve the speed optimization problem
we propose an exact algorithm based on Benders decomposition and column generation that
exploits the separability of the problem. Computational results show that the method is
applicable to liner shipping networks of realistic size and that it is important to incorporate
cargo routing decisions when optimizing speed.

1 Introduction
Liner shipping companies operate a set of sailing routes to provide transport for containers so as
to maximize their revenue. Once the strategic decisions of which markets to serve have been made
by a carrier and the sailing routes have been determined, most companies will adjust the network
continuously. This is done due to changes in the global economic environment such as fluctuations
in fuel prices, freight rates, and container demand. One way of optimizing the profitability of the
network is to minimize the cost related to the operation of the routes, the deployment of vessels,
and the handling of cargo. However, Karsten et al. (2015) recently showed that this approach will
likely result in prolonged transit times. From a customer perspective not only low cost but the level
of service offered is of concern. The level of service represents both the transportation cost and
the transit time provided for a given cargo. Therefore, among the most influential decisions is the
sailing speed between the serviced ports and the deployment of the available fleet. Higher sailing
speeds will offer better transit times to the customers but will at the same time be more expensive
to operate as there is an inherent trade-off in operating a low cost network versus a competitive
network which is optimized in terms of both cost and offered cargo transit times. In the longer
perspective, changes in sailing speed will also affect strategic decisions regarding the required fleet
size as sailing routes, usually called rotations, are cyclic and require a weekly frequency, i.e. for a
route the number of vessels deployed will correspond to the number of weeks it takes one vessel to
complete a round trip, which will vary greatly depending on the sailing speed. The sailing speed
has a significant impact on the operating costs as bunker may constitute more than 75% of the
total operating cost of a vessel (Ronen, 2011). Furthermore, the consumption is approximately
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cubic in speed. Therefore, it is important to have a model that accurately assesses the impact of
changes in sailing speed both from an operational, tactical and strategic perspective.

As a novelty we integrate the problems of sailing speed optimization, fleet deployment, and time
constrained cargo routing as the decisions are highly dependent. Our model and solution method
is aimed at optimizing the sailing speed for all sailing legs or a subset of these in a global liner
shipping transportation network so as to maximize profit. For each rotation the fleet deployment
can be adjusted maintaining weekly frequency and the speed between any pair of serviced ports is
selected from a discrete set of speeds based on the characteristics of the deployed vessel class. The
model is solved using Benders decomposition (constraint generation) where the rows are generated
by solving a time constrained multi-commodity flow problem using column generation. That way
we select the optimal sailing speed for each sailing leg under consideration of cargo transit time
restrictions. This also means that by speeding up, new cargo that is not currently transported may
become available to transport. Furthermore, we show in Appendix A that it is possible to extend
the model to include optimal time scheduling decisions such that the port arrival and departure
times, and the time associated with transshipments is also reflected accurately. The extended
model makes it possible to determine an optimal time schedule and corresponding optimal sailing
speeds while considering optimal routings of cargo subject to transit time restrictions.

Christiansen et al. (2004, 2013) provide comprehensive reviews of the more recent literature on
ship routing and scheduling. Brouer et al. (2014a) and Meng et al. (2014) give an introduction to the
domain of liner shipping and an overview of recent literature specific to this area. The literature on
optimization of liner shipping networks has been growing significantly during the last decade, and
several planning problems at both the strategic, tactical and operational level have been addressed.
Notteboom and Vernimmen (2009) and Ronen (2011) give background on speed optimization in
liner shipping and show the importance of optimizing speed in liner shipping networks by studying
a single rotation. Wang and Meng (2012c) formulate the speed optimization problem in a liner
shipping network as a non-linear MIP. Cargo routing is considered for a pre-defined set of container
routes where all demand must be met and cost is minimized in the model. Cheaitou and Cariou
(2012) propose a model that explore and incorporate the available demands’ dependence on transit
time. Gelareh and Meng (2010) present a model for fleet deployment in a network where they also
determine the sailing speed necessary to meet all demand while minimizing costs. Meng and
Wang (2011) study the same problem for a single rotation. Similarly Zacharioudakis et al. (2011)
optimize speed in a fleet deployment model, which they solve by assigning ships using a genetic
algorithm. Xia et al. (2015) present a heuristic for optimizing fleet deployment and speed in an
aggregated network but do not consider transshipments. They report computational results based
on an aggregated network of up to 18 nodes. Psaraftis and Kontovas (2013) survey models and
taxonomy on speed optimization in maritime transportation and Psaraftis and Kontovas (2015)
discuss the practice of slow steaming. A related tactical problem is studied by Wang and Meng
(2012a) who consider fleet deployment and transit time in a space time network and Wang and
Meng (2012b) who study a tactical schedule model, where cost is minimized while maintaining a
required transit time under uncertainty. Karsten et al. (2015) develop an efficient algorithm for
the time-constrained cargo routing problem. This problem arise as a sub-problem in many of the
tactical and strategic planning problems encountered by liner shipping companies when level of
service is considered.

1.1 Industry Practice
The current practice used by major liner shipping companies is to vary speed across each of the
operated rotations. Figure 1 shows the speed profile for three rotations recently operated by one
of the leading global carriers, Maersk Line. It is clearly seen that speed is varied along the rotation
and that it is rarely operated at or near the average speed for the entire rotation. The main driving
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Figure 1: Speed profiles for three different rotations (AsiaEurope1, AsiaEurope10, AsiaEu-
rope6TP6) operated by Maersk Line. The distance is in nautical miles and speed in knots. The
steps corresponds to the average speed between waypoints (ports, canals etc.) on the rotation.
Hence, some parts of the rotations might be operated at a lower or higher speed than showed. The
dashed line is the average speed for the entire rotation.

factors in determining the sailing speed is the fuel price and whether the vessel is on its head or
back haul, i.e. sailing in the cargo intensive direction or not. Most empirical findings as well as
hydrodynamics suggest that the fuel consumption per time unit for container vessels is proportional
to the third power of the sailing speed. In other words the fuel consumption per unit distance is
proportional to the second power of the sailing speed. However, it is vessel dependent and the
relationship can best be derived empirically. There is some evidence that for certain weather and
hull conditions the bunker consumption can be greater than cubic in the speed, (Kontovas and
Psaraftis, 2011) and, for large container vessels sailing at high speed, the power requirement may
even be proportional to the fourth power of sailing speed (Man, 2013). For a fleet of vessels Wang
and Meng (2012c) found the exponent to be between 2.7 and 3.3 empirically. In accordance with
this, and following the benchmarks in Brouer et al. (2014a), we assume a third power relationship
in the rest of this paper. For this relationship reducing speed by 20% can give up to a 50%
reduction of fuel consumption and corresponding emissions for a vessel, or up to a 35% reduction
in fuel consumption for a rotation since it requires operating additional vessels in order to meet
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demand. However, some time critical transportation requests may not be available if operating at
reduced speeds. As a consequence, lowering transportation cost while offering competitive cargo
transit times (and a low number of transshipments) presents an inherent trade-off as fuel cost is
the most important factor contributing to the operational cost of a network. This means that it
may be worth selecting a more “expensive” rotation configuration which offers better connections.
However, this may also save one vessel on the rotation. To address this we introduce a model
to optimize the sailing speed and fleet deployment in a liner shipping network while considering
a tight transit time restriction on each individual container. To solve the model we propose a
decomposition based algorithm based on simultaneous column and row generation.

The rest of the paper is organized as follows. Section 2 introduces the needed transportation
network. Section 3 describes the optimization problem and Section 4 shows the decomposition,
derives stronger Benders cuts, and discusses how additional Benders cuts can be generated. Section
5 describes the solution algorithm. Computational results are presented in Section 6 for the speed
optimization problem before finally discussing possible extensions and concluding in Section 7.
Appendix A shows how the model and solution method can be extended to include a time schedule.
Appendix B discusses additional model improvements.

2 Transportation Network
Figure 2 illustrates a basic container shipping network. In this example the network is composed of
two rotations R1 and R2 visiting various ports (nodes) and the solid black arcs correspond to sailing
arcs. Containers can be transported between any pairs of ports and if the origin and destination
port is not serviced by the same vessel, it can be transshipped between rotations at intermediate
ports where rotations meet. In Figure 2 containers can be transshipped between rotation R1 and
R2 in node w by using a transshipment arc which has an associated cost and time. Depending
on the time schedule of the two rotations, the delay associated with the transshipment can be
determined. In the following an exact time schedule is not known so an estimated transshipment
time is used. Optimization with an actual time schedule is further addressed in Appendix A. The
capacity of each arc is determined by the size of the vessel deployed and the time it takes to traverse
an arc by the sailing speed. As there are two vessels assigned to each rotation the total round
trip time for each rotation must be two weeks to satisfy the weekly frequency requirement used by
most liner shipping companies (Brouer et al., 2014a), but the speed on each sailing leg can vary
greatly as discussed in the previous section.

Figure 3 a) shows an example of the transportation network we use in the model before speeds
have been selected. We duplicate each sailing leg (dashed black lines in the figure) and assign
different possible speeds to the duplicates such that cost and transit time is known a priori. E.g.
between port k and l it is possible for the model to choose between three different speeds, V1,
V2, and V3. Figure 3 b) shows an example flow from k to t where the speeds for each leg have
been selected. The sailing speed between e.g. k and l is selected at V1. This way it is possible
to calculate the transit time from k to s as the length of each sailing leg divided by the selected
speed for each of the legs plus the average transshipment time. If the total transit time from k to
s exceeds the requirement for a commodity going from k to s, there is no feasible path and it may
be worth adjusting the speeds. If the speed is increased significantly on all legs in a rotation, it
may be possible to reduce the number of vessels and still maintain weekly frequency. Likewise it
may be necessary to use an extra vessel if speed is reduced significantly on all legs.
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Figure 2: Simple representation of a liner shipping transportations network. The nodes correspond
to ports and the arcs to sailing legs. In port w it is allowed to transship containers between rotation
R1 and R2.

a)

b)

Figure 3: Figure a) a transportation network used for speed optimization. Figure b) the flow
through a network at a spcific speed where load and unload arcs are included to correctly account
for cost and time. The nodes correspond to ports and port w allows transshipments between
rotation R1 and R2.
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3 Mathematical Modeling
To formulate the sailing speed optimization problem we formally define the graph described in the
previous section G = (N,A) with nodes N and directed arcs A. The arcs in A are based on the
original sailing arcs in an existing network, Ā, at different speeds and hence A contains multiarcs.
This is illustrated in Figure 3 a). Here multiple arcs are shown which are based on the original
sailing arcs, Ā, shown in Figure 2. Therefore, if, for example, every original sailing arc is considered
at three different speeds, then |A| = 3|Ā|, as illustrated by Figure 3 a). For important sailing legs
the optimal sailing speed can be determined in greater detail (by considering more arcs) than at
other sailing legs which are less flexible, e.g. because of fixed berthing times at both the departure
and arrival port. To earn a revenue there is a set of commodities K that can be transported
through the network between various origin-destination pairs. The amount of commodity k ∈ K
that is available to be transported is dk. W.l.o.g. we assume that each commodity has a single
origin node and a single destination node. Furthermore, let qa be the capacity of arc a ∈ A and
ta be the travel time for arc a ∈ A measured in days, including port time in the destination port.
The decision variables xa specify whether arc a ∈ A is used. The amount of commodity k ∈ K
that is routed through path p is determined by ykp . The set of possible paths for commodity k is
denoted P k and the set of all paths is denoted P . Only paths that satisfy the given transit time
restriction for commodity k are included. The integer decision variable Lr specifies the number of
vessels used for rotation r. The set of rotations is denoted R. The set of rotations using vessel
class v ∈ V is given by R(v), and Nv specifies the number of available vessels of class v. The set
of arcs that can be used by a rotation is denoted E(r) ⊆ A. The set P (a, k) contains the set of
paths for commodity k ∈ K using arc a ∈ A. The multiarcs corresponding to a given sailing arc,
ā, at different speeds is denoted A(ā). The cost of using arc a ∈ A is ca and it includes the portion
of the vessels fuel used at this arc sailing at the corresponding speed. Hence, the model easily
allows different bunker consumption rates for different vessel classes and the non-linearity of the
consumption as a function of speed is handled through the multiarcs. The cost of using a vessel
at rotation r is Cr and the cost of sending commodity k through path p is rkp . A negative cost
corresponds to a profitable path where a revenue can be obtained. The revenue includes loading,
unloading, and transshipment costs and additionally there is a service penalty for not meeting
demand. The costs are handled by introducing additional load, unload, and transshipment arcs
as described in Karsten et al. (2015). Additionally, these arcs make sure we obtain the correct
travel time for cargo through the network, including loading, unloading and transshipment time.
We use the same objective (costs, revenues and penalties) as described in the reference model by
Brouer et al. (2014a) and a negative objective value indicates a profitable network. As we wish to
maximize profit, this corresponds to minimizing the following objective in the integrated sailing
speed optimization and cargo routing model, which is given by

min
∑
a∈A

caxa +
∑
r∈R

CrLr +
∑
k∈K

∑
p∈Pk

rkpy
k
p (1)
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subject to ∑
a∈A(ā)

xa = 1 ā ∈ Ā (2)

∑
p∈Pk

ykp ≤ dk k ∈ K (3)

∑
k∈K

∑
p∈P (a,k)

ykp ≤ xaqa a ∈ A (4)

∑
a∈E(r)

taxa ≤ 7Lr r ∈ R (5)

∑
r∈R(v)

Lr ≤ Nv v ∈ V (6)

ykp ∈ R+ k ∈ K, p ∈ P k (7)

xa ∈ {0, 1} a ∈ A (8)
Lr ∈ Z+ r ∈ R (9)

The objective (1) maximizes the total profit by minimizing the variable and fixed cost as well as the
transportation cost (a negative transportation cost corresponds to a profitable path). Constraints
(2) ensure that only one of the multiarcs at different speeds is selected such that a vessel is assigned
exactly one speed at arc a. Constraints (3) assign cargo to paths to meet the demand or reject
it if not profitable. Constraints (4) make sure that flow is only permitted on the selected arcs
and the capacity of the arc is not violated. Finally, Constraints (5) and (6) ensure enough vessels
are assigned to all rotations to meet the weekly frequency requirement without violating the fleet
availability for each vessel class. Here the time ta is measured in days and includes the port time
in the origin port. If ta is measured in hours the right-hand-side of (4) should be multiplied by
the number of hours per week (168) rather than the days per week.

4 Decomposition of the Speed Optimization Problem
The model (1)-(9) is difficult to solve directly since it contains a large number of variables. The
number of ykp variables can grow exponentially in the size of the graph. One solution approach
would be to solve the LP relaxation of the model using column generation and obtain integer
solutions using a branch-and-price algorithm (see e.g. Barnhart et al. (1998) for more information
about branch-and-price).

Here we suggest a different approach. We notice that the ykp variables all are continuous.
This means that we can apply Benders decomposition to model (1)-(9) and place the constraints
related to the ykp variables in the sub-problem. The sub-problem in Benders decomposition has
to be solved by column generation but the master problem can be solved either using a standard
integer programming solver or using a branch and cut framework that allows the user to add cut
callbacks. Both approaches are typically simpler to implement compared to a full branch-and-price
algorithm. A Benders decomposition algorithm furthermore has the advantage that it continuously
produces feasible solutions such that the method works as a heuristic when it is stopped before
optimality is reached. A potential drawback is that algorithms based on Benders decomposition
have a reputation of converging slowly.

In the following we are going to review the parts of Benders decomposition algorithm that are
necessary for our application. The presentation is largely based on Costa (2005). In general we

7



have a mixed integer problem (MIP1)
min cx+ dy

subject to

Ax+By ≥ b
Dx ≥ e
x ∈ Zn1

y ∈ Rn2

Let X = {x ∈ Zn1 : Dx ≥ e} then MIP1 can be reformulated as:

min
x̄∈X

{
cx̄+ min{dy : By ≥ b−Ax̄, y ∈ Rn2}

}
(10)

The inner minimization is a linear program (x̄ are merely constants in this problem), which we
denote the primal Benders sub-problem (PBSP). To ease the following we will assume that the
inner minimization problem is feasible and bounded for all choices of x̄ ∈ X since this is the
case for our decomposition (as will be explained in the sequel). We note that in general Benders
decomposition also applies when these assumptions do not hold, but is slightly more complex to
handle, see for example Benders (1962) or Costa (2005) for details.

If we let π be the dual variables corresponding to By ≥ b − Ax̄ then we can write the dual of
the inner minimization as:

max{π(b−Ax̄) : πB ≤ d, π ≥ 0}.

This problem is denoted the dual Benders sub-problem (DBSP). Since we assumed min{dy : By ≥
b−Ax̄, y ∈ Rn2} to be feasible and bounded the PBSP will be feasible and bounded as well. Using
the DBSP and strong duality we can rewrite (10) to:

min
x̄∈X

{
cx̄+ max{π(b−Ax̄) : πB ≤ d, π ≥ 0}

}
(11)

Here we notice that the constraints of the inner maximization problem are independent on the
choice of x̄ ∈ X. Furthermore, F = {πB ≤ d, π ≥ 0} is bounded and non-empty due to our
assumptions and we can use Minkowski-Weyl’s Theorem to express F using a set of extreme points
Π = {π1, . . . , πq}. DBSP will have an optimal solution at one of the extreme points in Π and we
can reformulate (11) to:

min
x̄∈X

{
cx̄+ max{π(b−Ax̄) : π ∈ Π}

}
using an auxiliary variable z ∈ R this problem can be written as:

min cx̄+ z

subject to

z ≥ π(b−Ax̄) π ∈ Π (12)
x̄ ∈ X (13)
z ∈ R (14)

This problem is denoted the Benders master problem (BMP). The constraints (12) are known as
optimality cuts. This BMP is usually solved in an iterative fashion since the cardinality of Π is
such that enumerating all extreme points is out of question.
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The lower bound on the optimal objective value is always a monotonic increasing function
as it is obtained from the relaxed master problem where more and more constraints, (extreme
points), are added and the formulation continuously gets tighter. However, the upper bound or
objective value is not guaranteed to be a monotonic decreasing function since it is just produced by
a sequence of feasible solutions but by maintaining the best found solution the algorithm converges
to the optimal solution.

We apply Benders decomposition to the speed optimization problem (1)-(9) such that (xa, Lr)
are found in the Benders master problem, BMP. This means that constraints (2), (5), (6), (8)
and (9) are moved to the master problem while constraints (3), (4), (7) are moved to the primal
sub-problem, which is given by:

min
∑
k∈K

∑
p∈Pk

rkpy
k
p (15)

subject to ∑
p∈Pk

ykp ≤ dk k ∈ K (16)

∑
k∈K

∑
p∈P (a,k)

ykpk ≤ x̄aqa a ∈ A (17)

ykp ∈ R+ k ∈ K, p ∈ P k (18)

where x̄a is the value of the xa variables chosen in the master problem. It is intuitive to view
constraint (17) as the two constraints (19) and (20)∑

k∈K

∑
p∈P (a,k)

ykpk ≤ qa a ∈ O(x̄) (19)

∑
k∈K

∑
p∈P (a,k)

ykpk ≤ 0 a ∈ C(x̄) (20)

where O(x̄) and C(x̄) denote “open” and “closed” arcs. The open arcs are the arcs with xa = 1 in
the BMP and the closed arcs have xa = 0. The PBSP is always feasible since setting all ykpk equal
to 0 produces a feasible solution. It is also bounded since constraints (16) and (18) ensure that
0 ≤ ykpk ≤ d

k for all a ∈ A, k ∈ K, pk ∈ P k.
The PBSP can be identified as the cargo routing multi-commodity flow problem, MCF, which

can be solved efficiently using column generation. When iterating through solutions from the BMP,
this method allows that some columns can be reused. We introduce side constraints on the transit
time such that we solve a time-constrained multi-commodity flow problem and hence determine
an optimal speed selection taking transit time restrictions into consideration as done in Karsten
et al. (2015).
To derive the optimality cuts for the BMP we associate with (16)-(20) the non-positive dual vari-
ables αik, δ

i
a, and λia. Then an extreme point solution gives a new Benders cut, which can be added

to the BMP

z0 ≥
∑
k∈K

αikdk +
∑

(a)∈O(x̄)

δiaqaxa +
∑

(a)∈C(x̄)

λiaqaxa (21)

With the set of all Benders cuts, BC, the BMP can be written as:

min
∑
a∈A

caxa +
∑
r∈R

CrLr + z0 (22)
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subject to

z0 ≥
∑
k∈K

αikdk +
∑

(a)∈O(x̄)

δiaqaxa +
∑

(a)∈C(x̄)

λiaqaxa i ∈ BC (23)

∑
a∈A(ā)

xa = 1 ā ∈ Ā (24)

∑
a∈E(r)

taxa ≤ 7Lr r ∈ R (25)

∑
r∈R(v)

Lr ≤ Nv v ∈ V (26)

xa ∈ {0, 1} a ∈ A (27)
Lr ∈ Z+ r ∈ R (28)

Where the Benders cuts (23) are added iteratively.

4.1 Decomposition and Solution of the MCF Sub-problem
The PBSP, (15)-(18), is the path-flow formulation of a multi-commodity flow problem. It has
|A|+|K| constraints, but the number of variables (paths) grows exponentially with the size of the
graph in the worst case. The necessary variables can be generated dynamically using another
decomposition technique, namely column generation, and in practice the path-flow model can be
solved efficiently even for very large scale instances, see Karsten et al. (2015). Column generation
works with a reduced version of the LP (15)-(18) defined by a reduced set of columns P̄ k for each
commodity k such that a feasible solution can be found using variables from ∪k∈K P̄ k. Solving this
LP gives rise to dual variables αk and δa corresponding to constraint (16) and (17), respectively.
For a variable j ∈ P let κ(j) denote the commodity that a variable serves, p(j) the path (set of
arcs) corresponding to the variable j, and cκ(j)

a the cost of sending one unit through arc a. The
reduced cost c̄j of each path variable j ∈ P is c̄j =

∑
a∈p(j)(c

κ(j)
a − δa)− ακ(j) and we wish to find

variables such that c̄j < 0, as this variable can potentially improve the current LP solution and give
new dual variables. To find a variable with negative reduced cost or prove that no such variable
exists, we solve a shortest path problem for each commodity from the source to the destination
on the reduced cost graph. As we want to accommodate the transit time restrictions for each
commodity, we use a resource constrained shortest path algorithm with time as the resource to
ensure that the transit time of each generated path is less than or equal to the maximum transit
time for the given commodity as described in Karsten et al. (2015). Transit time is in addition to
the sailing legs calculated by considering the multi-commodity flow problem on a graph including
transshipment, loading, and unloading arcs.

We can add Benders cuts based on the LP-relaxation of the BMP as the right hand side of
(17) is multiplied by the capacity qa of each arc, a ∈ A, such that this will correspond to solving
the same time constrained MCF problem but on a multi graph where the “fractional” capacity of
parallel arcs will sum to the original capacity.

In both cases we can warm start the column generation procedure by using the columns from
previous configurations.
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4.2 Strengthening the Benders Cuts
From duality we can gain some additional insights on the dual values associated with the “closed”
arcs. Let p(O(x̄)) and p(C(x̄)) be the set of “open” and “closed” arcs used by path p. The DBSP is

max
∑
k∈K

αk +
∑

a∈O(x̄)

qaδa +
∑

a∈C(x̄)

0λa (29)

subject to

αk +
∑

a∈p(O(x̄))

δa +
∑

a∈p(C(x̄))

λa ≤ rkp k ∈ K, p ∈ P k (30)

αk, δa, λa ≤ 0 k ∈ K, a ∈ A (31)

Since we want the Benders cut to be as strong as possible, we can optimize λa in the dual as it
does not contribute to the objective value. For a given solution where we obtain the dual values
α∗k and δ∗a we want to find an alternative solution where αk and δa take the values of α∗k and δ∗a
but where

∑
a∈C λa ≥

∑
a∈C λ

∗
a. This can be done by solving the following problem

max
∑

a∈C(x̄)

λa (32)

subject to ∑
a∈p(C(x̄))

λa ≤ rkp − α∗k −
∑

a∈p(O(x̄))

δ∗a k ∈ K, p ∈ P k (33)

λa ≤ 0 a ∈ C (34)

Let ykp be the dual corresponding to constraint (33), then we get the dual problem (corresponding
to the PBSP)

min
∑
k∈K

∑
p∈Pk

(rkp −
∑

a∈p(O(x̄))

δ∗a)− α∗k

 ykp (35)

subject to ∑
k∈K

∑
p∈P (a,k)

ykpk ≤ 1 a ∈ C(x̄) (36)

ykp ≥ 0 k ∈ K, p ∈ P k (37)

The problem has a similar structure to the original problem and can be solved using column
generation as well. For the set of columns, ∆k, the reduced cost for a path variable l ∈ ∪k∈K∆k

with original revenue/cost rkp − α∗k −
∑
a∈p(O(x̄)) δ

∗
a is given by the following resource constrained

shortest path problem
c̄l =

∑
(a)∈p(l)

(ca − δ∗a − λa)− α∗k(l) (38)

The columns for a given commodity are added to the master problem when the reduced cost is
less than the revenue associated with the commodity. When the solution to (32)-(34) is different
from the initially found duals we can add an additional Benders cut. However, this cut does not
necessarily dominate the original cut. Again we can reuse all columns corresponding to paths using
at least one closed arc to warm start the column generation.
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4.3 Generating Additional Benders Cuts
Generally, the Benders decomposition approach is more successful for standard multi commodity
network design problems when the BSP decomposes into even smaller sub-problems. It can de-
compose e.g. by commodity (Gendron, 2011) or by equipment type (Cordeau et al., 2000) and
especially if these can be solved by special purpose algorithms (Magnanti and Wong, 1981) such
that more cuts can be added very effectively in each iteration. In the present problem the multi-
commodity flow problem is not separable by commodity or equipment type but it is still possible to
generate several alternative cuts in each iteration. In Appendix B we describe a method for gener-
ating cuts in other areas of the solution space based on the solution found to the multi-commodity
flow problem.

4.4 Valid Inequalities
In this section we consider valid inequalities for the Benders master problem. We will solely focus
on inequalities defined on the xa and Lr variables, thus omitting the z variable.

We first introduce a lower limit on the number of needed vessels at a rotation by looking at the
maximum speed for each arc in a rotation.

Lr ≥ yrmin =

⌈ ∑
ā∈Ā(r)

min
a∈A(ā)

ta/7

⌉
r ∈ R. (39)

We add (39) to the BMP to strengthen the model. We can also define

Lr ≤ yrmax =

⌈ ∑
ā∈Ā(r)

max
a∈A(ā)

ta/7

⌉
r ∈ R (40)

which will not cut away any optimal solutions, but is strictly speaking not a valid inequality.
Next, we consider valid inequalities that can be constructed based on the frequency constraints

(25) along with the domain definitions for the variables and the arc selection constraint (24). In
other words, for each r ∈ R we are interested in the set

Br =
{
xa ∈ {0, 1} ∀a ∈ E(r), Lr ∈ Z+,∑

a∈E(r)

taxa ≤ 7Lr,
∑

a∈A(ā)

xa = 1, ymin ≤ Lr ≤ ymax
}

and valid inequalities for the polyhedron

Fr = conv{Br}.

Some families of valid inequality for a similar polyhedron (without the arc selection constraint)
have been proposed in Atamtürk and Rajan (2002). For the instances we are considering it is, in
practice, relatively easy to optimize over Fr, and we have observed that the arc selection constraint
improves the performance compared to not including it. Therefore, we will attempt to find any
possible valid inequality for the polyhedron using a cut-finding LP. The use of cut-finding LPs
to find all violated valid inequalities for a given polyhedron has, for example, been used by Boyd
(1994), Boccia et al. (2008) and Kaparis and Letchford (2010).
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4.4.1 Separation

For a given solution to the relaxation of the master problem, (x∗a, L
∗
r), we wish to determine a valid

inequality
∑
a∈E(r) πaxa + πrLr ≤ βr for Fr that is violated by the solution. We are to determine

the values of πa, πr and βr such that the inequality is valid and violated by (x∗a, L
∗
r). We say

that
∑
a∈E(r) πax

∗
a + πrL

∗
r − βr is the violation of the inequality. This can be done by solving the

following LP

max
∑

a∈E(r)

πax
∗
a + πrL

∗
r − βr (41)

subject to

πax̃a + πrL̃r ≤ βr (x̃a, L̃r) ∈ Br (42)
−1 ≤ πa ≤ 1 a ∈ E(r) (43)
−1 ≤ πr ≤ 1 (44)
πa, πr, βr ∈ R a ∈ E(r) (45)

The objective function (41) maximizes the violation of the inequality. The first constraints (42)
ensure that the inequality is satisfied by all solutions from Br and therefore is a valid inequality
and constraints (43)-(44) normalizes the inequality. Without these constraints, the LP would be
unbounded whenever a violated inequality exists (since such a constraint can be scaled to yield
any violation). Given that the πa and πr are now bounded we can further limit the range of βr:

−|E(r)| − yrmax ≤ βr ≤ |E(r)|+ yrmax a ∈ E(r)

Since the set Br can be prohibitively large, we initially remove the constraints (42) and add
them dynamically when violated. Given a solution (π∗a, π

∗
r , β
∗
r ) to the partial cut-finding LP (41),

(43)-(45) and a subset of constraints (42) the separation problem for constraints (42) is

max

 ∑
a∈E(r)

π∗axa + π∗rLr − β∗r : (xa, βr) ∈ Br


which written in full is:

max
∑

a∈E(r)

π∗axa + π∗rLr − β∗r (46)

subject to ∑
a∈E(r)

taxa ≤ 7Lr a ∈ E(r) (47)

∑
a∈A(ā)

xa = 1 ā ∈ Ā (48)

yrmin ≤ Lr ≤ yrmax (49)
xa ∈ {0, 1} a ∈ E(r) (50)
Lr ∈ Z+ (51)

If this IP has a positive value function then we have detected a solution (x̃a, L̃r) in Br that is
violated by the inequality given by (π∗a, π

∗
r , β
∗
r ) and we add

πax̃a + πrL̃r ≤ βr
to the cut finding LP and resolve.
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5 Algorithm
Traditional implementations of the Benders decomposition algorithm follow a cutting plane ap-
proach where the reduced master problem is solved iteratively to optimality, and a constraint of
type (23) (Benders cut) is added in each iteration based on the sub-problem. This procedure is
followed iteratively until optimality is reached (or the bounds are within an acceptable tolerance).
This has the downside that too much time may be spent on proving optimality and re-processing
nodes of the branch-and-bound tree that has already been cut off every time a new Benders cut
is added. However, most modern branch-and-bound solvers make it possible to effectively make
branch-and-cut algorithms where cuts are added using a callback routine as described by Bai and
Rubin (2009) and Fortz and Poss (2009). Using callbacks makes it possible to add cuts efficiently
both at integer and LP solutions whenever one is found. This comes at the cost of potentially
adding too many cuts, but a node will never have to be revisited. Both implementations have
advantages for different types of problems, which we will discuss in the computational section.
To improve the implementation of the Benders algorithm, we also test the effect of solving the
LP-relaxation of the BMP (we relax the variables related to the number of vessels on a rotation
(28) and arc selection variables (27)). After solving the LP-relaxation of the BMP, we add the
Benders cuts obtained from this to an initial pool of cuts before eventually solving the integral
version of the problem. This procedure has been shown to be very effective by e.g. Cordeau et al.
(2001) and Fortz and Poss (2009). Additionally, we add one warm starting cut a priori based
on a known initial configuration of the network, which is is usually quite good and hence can be
expected to improve performance. We terminate the algorithm when a relative gap of 1 % between
the best found solution and the lower bound is achieved, and set the tolerance of the mixed integer
programming solver to 1 % as well. The valid inequalities described in Section 4.4 based on the
frequency constraints are added dynamically as cuts using callbacks in both the traditional and
branch-and-cut approach. They are added to the LP-relaxation as well as the BMP, but only at the
root node. The inequalities (39) are always added a priori. The column generation procedure for
solving the multi-commodity flow problem is re-using previously generated columns to warm start
the algorithm for each new configuration of the network, but to manage the number of columns,
unused columns are deleted every 100th iteration of the overall algorithm. Additionally, we keep
columns generated for the initial configuration. In the column generation procedure used to gen-
erate the strengthened Benders cuts described in Section 4.2, we only reuse columns containing
closed arcs to warm start the procedure.

The model is implemented in C++. We use the Boost Graph Library to handle the graph
construction. The BMP is solved using Gurobi 6.0 and the PBSP using the COIN-OR linear
programming solver. All tests were performed using a single thread on a computer with an Intel
Xeon CPU X5550 2.67GHz. We allow the algorithm to run for up to three hours and if the
LP-relaxation is solved initially, up to one of the three hours is dedicated to this.

6 Computational Results
We test the algorithm as a post-processing tool on networks created based on realistic data from
Linerlib (Brouer et al., 2014a) using the matheuristic described in Brouer et al. (2014b, 2015). A
summary of the considered networks can be seen in Table 1. We use the average speed configuration
for generating the warm starting cut, whereas in a real world network we would have an already
optimized configuration which often could give a good quality cut. If there are no transit time
sensitive demands being transported by a given rotation, the most cost effective configuration will
be sailing all legs with average speed while maintaining a weekly frequency.

We create multigraphs by considering up to five possible sailing arcs for each original sailing arc
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Name |R| |K| |Ā| |A|
Baltic 3 22 14 46
WAF 10 37 40 130
Mediterranean 5 365 58 189
Pacific 14 722 141 464
WorldSmall 26 1764 287 951

Table 1: Characteristics of the considered networks. |R| is the number of rotations, |K| is the
number of commodities, |Ā| is the number of original sailing arcs, and |A| is the number of potential
sailing arcs. In addition to the sailing arcs our formulation adds (un)load and transshipment arcs.

in the rotation(s) being optimized such that the input speed, as well as duplicates corresponding to
±10% and ±25% speed change, are considered and added if the resulting speed is feasible for the
vessel class. For the Panamax 2400 vessel class sailing at 17 nm/h on a specific arc this corresponds
to arcs at 12.75, 15.3, 17, 18.7, and 21.25 since these are all within the speed limits of 12 and 22
nm/h. We set the loading and unloading time to one day and the transshipment time to two days
as in Brouer et al. (2015).

We consider optimization at three levels. Each rotation can be optimized separately (while still
considering the cargo routing in the entire network), all rotations using the same vessel class can
be optimized jointly, and finally all the rotations in a network can be optimized simultaneously.
Additionally, rotations can be optimized such that the number of vessels used by each rotation
is maintained i.e. Lr is fixed at the current deployment or the number of vessels used by each
rotation can be optimized as well such that the fleet deployment for each rotation, Lr, is flexible
within the bounds given by the total available fleet. Optimizing for a fixed fleet will be more
relevant under operational planning whereas the flexible fleet optimization is more targeted at
tactical planning. In both cases the cargo routing in the entire network is considered. In the
following we consider optimization at the three levels for a fixed and flexible fleet. Additionally,
we will discus the impact of the different proposed algorithmic improvements for the vessel class
and network optimization. In the vessel class optimization we present averaged results over several
classes, but when we find it relevant we also refer to the underlying detailed results, which are not
shown to keep the size of the tables manageable.

6.1 Single Rotation Optimization
Figure 4 shows the improvement for each rotation in the WorldSmall instance where the fleet is
flexible. The average improvement over all rotations is 2 % and the maximum improvement is 8 %
of the total profit. For most rotations the total cargo routed is unchanged or slightly reduced (less
than 0.2 % change in total volume) and for three of the rotations the speed optimization leads
to a slight increase in volume of the cargo routed. For all rotations the deployment is either the
same or increased i.e. the overall average speed is decreased. This illustrates that in this case the
improvements in profit are mainly driven by an overall speed decrease (some sailing legs maintain
or increase speed) and change in deployment, but in a few cases also by an increase in the volume of
cargo routed. Looking at the container paths used for the cargo routing in the optimized solution
(not just different speed but new itinerary or different rotation between same ports) reveals that
it is essential to consider cargo routing as part of the speed optimization. On average 9 % of the
container paths used in the best found solution are not used by the initial solution. The variation
is between 0 % and 20 %. Some of the difference may be accounted for by parallel paths having
the same cost and itinerary but using different rotations. Hence, from an objective function point
of view they are equally good, but lead to different routings. In practice it may be desired to have
as much of the routing unchanged as possible when optimizing speed, and simple modifications
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Figure 4: Percentage improvement in profit in the WorldSmall instance when optimizing each rota-
tion. The improvements are sorted according to the runtime for the branch-and-cut implementation
without any improvements.
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Figure 5: Runtime for each rotation in the WorldSmall instance sorted according to the runtime
for the traditional Benders implementation without any improvements b0. c0 is the branch-and-cut
implementation without any improvements. Notice the logarithmic scale of the y-axis.

that give preference to unchanged flow can easily be incorporated in the multi-commodity flow
problem.

Figure 5 shows the runtime for each rotation in the WorldSmall instance for the traditional and
branch-and-cut implementation of the Benders algorithm without any algorithmic improvements.
The runtimes are sorted according to the traditional implementation. For the rotations that take
longer time to optimize, the branch-and-cut implementation is generally faster than the traditional
implementation, and it also solves all instances within the time limit, whereas the gap is not closed
for two of the rotations using the traditional approach. For the rotations where the optimal
solution is found in short time, the traditional implementation converges to the desired solution
quality slightly faster.

6.2 Vessel Class Optimization
When the number of vessels is restricted, all configurations of the network may not be possible
and e.g. an overall speed decrease of all rotations may use more vessels than are available. Hence,
it is desirable to optimize rotations with the same class deployed simultaneously rather than each
rotation individually, as it leads to overly optimistic profit improvements corresponding to infeasible
deployments. In the following we show results for the vessel class optimization in the WorldSmall
instance where a major decision in the speed optimization process is the deployment of vessels to

16



rotations. The results can be found in Table 2 and some details on solution characteristics for each
vessel class (F450, F800, P1200, P2400, PostP, and SuperP where F is feeder and P is Panamax)
in the flexible deployment case can be found in Table 3.

Average over all vessel classes in WorldSmall
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Setting Fixed deployment Flexible deployment
× 0.2 4.0 0.2 3.8 - 23 5 4.8 34.5 1.3 32.4 - 23 3
× × 0.1 0.2 0.3 0.2 0.7 336 6 0.3 33.7 5.3 25.1 27.6 27 3
× × × 0.1 0.5 0.3 0.2 0.9 1197 6 3.2 21.6 2.7 17.7 20 23 3
× × × × 0.1 0.5 0.3 0.2 0.9 22 5 1.6 23.7 4.1 17.7 20 27 3
× × × × 0.1 2.4 0.3 2.2 2.8 26 5 2.7 52.7 4.5 43.6 45 31 3
× 0.2 2.6 0.1 2.4 - 7 5 3.3 51.1 1.7 47.0 - 12 3
× × 0.2 0.6 0.2 0.4 0.4 20 5 3.3 11.1 1.7 9.0 9.5 47 3
× × × 0.2 0.5 0.1 0.4 0.4 455 6 3.0 11.7 2.0 9.1 9.6 42 3
× × × × 0.2 0.5 0.1 0.4 0.4 651 6 3.0 11.6 1.9 9.1 9.6 79 3
× × × × 0.2 0.5 0.1 0.4 0.4 427 6 2.2 12.4 2.7 8.9 9.6 53 3
× × × × 0.2 0.5 0.3 0.4 0.4 283 6 4.3 9.6 0.8 8.6 8.7 71 3

Table 2: Computational Results: The algorithm is tested in the traditional implementation of the
algorithm and using callbacks. Improvement in profit is the improvement in profit obtained relative
to the average speed configuration. Runtime for solved classes is the average time to converge if this
is reached within the time limit of 3 hours. It includes the time used at solving the LP-relaxation
and up to 1 hour is dedicated to this. FUB is the final upper bound (i.e. the best found solution),
FUB* is the best final upper bound found across the different algorithmic settings (i.e. the overall
best found solution), FLB is the final lower bound, and ILB is the initial lower bound

Fixed Deployment

As seen in Table 2, the potential improvements in profit are less than 1 % on average for all
classes when the fleet is fixed and speed changes of 10 % and 25 % on each sailing leg are allowed.
However, even 0.2 % is significant for a global liner shipping network. The detailed results show
that in all cases the volume of containers routed is either maintained or increased slightly (less than
1 % increase in volume transported). Generally, the solution times are low but the branch-and-cut
implementation is superior. The traditional implementation only solves the problem to within the
desired tolerance within the time limit for all six vessel classes when Benders cuts based on the
LP-relaxation and the warm start cut is added initially. In the branch-and-cut implementation all
six classes are solved when the LP-relaxation is solved initially and a warm start cut is added. The
best average solution time, where all six classes were solved, is achieved when valid inequalities
are also added to the LP-relaxation as well as at the root node of the integral BMP, and the
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algorithmic improvements focusing on the bound does not hurt performance as all six instances
are solved. For the five instances that are solved by all configurations, the pure branch-and-cut
implementation without any improvements is superior.

Flexible Deployment

Table 2 also shows results for the flexible fleet case and Table 3 shows the solution characteristics for
the best found solution for each class. For three of the vessel classes (F450, F800, and SuperP) the
solution corresponding to the initial solution cannot be improved in the setting where speed changes
of 10 % and 25 % on each sailing leg are allowed, and for these three classes all configurations
of the algorithm find the optimal solution within the time limit. For the other three classes
(P1200, P2400, and PostP) the best solution is in all cases obtained using the branch-and-cut
implementation. Still, on average the traditional implementation with no improvements finds the
best solution, but the final lower bound is generally poor. Improvements up to 12.8 % are found
and it is clear that most of the improvements are due to changes in deployment such that the overall
average sailing speed is lowered. For rotations assigned the vessel classes F450, F800, and SuperP
no improvements larger than 1 % can be made, and the detailed computational results for these
(not shown) show that the optimization terminates quickly. This characteristic was also found in
the single rotation optimization case. For the three remaining vessel classes, P1200, P2400, and
PostP significant improvements in the profit can be made. Inspection of the solutions also reveal
that the sailing speed on some sailing legs are maintained or increased to meet critical transit
times for some demands, and as seen only a few demands cannot be met. For all classes when
deployment is flexible the volume of containers routed is either maintained or slightly decreased
(less than 0.6 %). Further improvements may be achievable for all classes if different/more sailing
speeds are considered. For the best found solution the weekly fuel cost is reduced from $ 68 mio.
to $ 64 mio., the weekly time charter rate of 11 additional vessels is $ 1.6 mio. and cargo revenue
decreases from $ 132.2 mio to $ 131.7 mio.

If we look at all rotations in the WorldSmall instance using the P1200 vessel class we see
a significant improvement in profit and the smallest gap of the classes leading to an improved
solution. Here we use 11 extra vessels which is exactly what is available in the instance. If we sum
the profit for the results of the individual rotations from Section 6.1, which are all solved to the
desired tolerance, a total improvement in profit of 9 % is possible, but it also requires 12 additional
vessels, which are not available. For the PostP vessel class seven additional vessels are available,
but the optimal solution to the optimization of the individual rotations uses 12 additional vessels in
this case. For the P2400 vessel class the best found solution uses the same number of vessels as the
optimal solution for each of the individual rotations, so in this case the single rotation optimization
could provide a very good warm start solution (but not optimal as transit time critical containers
may use two linked rotations from the same class where joint optimization could lead to a lower
selected speed on both). As expected there is a larger change in container paths used for the cargo
routing when optimizing all rotations in a class rather than a single rotation. On average 11 % of
the container paths used in the solutions are not used by the initial solution and the variation is
between 0 % and 40 %. The variation is correlated with how much the network is improved, but
the largest improvements do not necessarily lead to the largest changes in the container routing.

Adding valid inequalities and the solution of the LP-relaxation initially improves the perfor-
mance of the algorithm in terms of improving both the lower and upper bound. Adding the
strengthened Benders cuts and Benders cuts at node relaxations generally do not improve perfor-
mance in terms of best solution for vessel class optimization given the time limit, but does improve
the bound. The number of basic Benders cuts added by the algorithm (not reported) is generally
lower when additional/strengthened cuts are added as one “iteration” takes longer time. (We have
implemented the additional cuts discussed in Appendix B and also here the number of iterations is
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reduced, but it generally neither improves or deteriorates performance significantly). This means
that the derived cuts including the ones discussed in Appendix B do improve the “per iteration”
performance, and for the instances that are solved the number of added basic Benders cuts is lower.
When we are interested in solutions quickly (or better solutions with less guarantees on quality) it
can be advantageous to use a more basic implementation to reduce the time spent on improving
the LB. On the other hand the convergence of the LB is very slow when no improvements are made
and if the gap is too large only poor solutions may be found. The initial lower bound gap is only
reported when the LP-relaxation of the problems is solved initially (otherwise a dash) and here
the branch-and-cut implementation usually has better progress, and the detailed results show that
more Benders cuts are added within the time limit. When the valid inequalities are added in the
traditional implementation, the progress on the LP is very slow whereas they improve performance
in the branch-and-cut implementation. Warm starting the algorithm using a known configuration
helps to ensure a good initial solution and possible improvements can quickly be assessed.

Vessel class Number of Flow Additional Profit Final gap
(size in FFE) (rotations) (chg. in %) vessels deployed (chg. in %) (in %)
F450 3 0 0 0 <1
F800 3 0 0 0 <1
P1200 5 -0.3 11 8 6
P2400 5 -0.6 11 13 27
PostP 7 -0.6 6 10 19
SuperP 1 0 0 0 <1

Table 3: Solution characteristics of the best found solution for each vessel class in the WorldSmall
instance with flexible vessel deployment. We report the flow as the change in volume of the
container routing, the number of additional vessels deployed, the change in overall profit for the
network, and the final gap for the best found solution.

6.3 Network Optimization
The majority of cargoes in real liner shipping networks uses up to one transshipment to travel from
origin to destination port. Still, a significant amount of cargo uses two or more transshipments.
Hence, speed optimization decisions across several rotations, potentially with different capacity,
influence the cargo routing. The proposed method allows optimization of an entire network or
parts of a network e.g. within a region or some other grouping of rotations based on current
container routing. It should be noted that in practice all rotations in a global network are usually
not optimized simultaneously.

Table 4 shows the results for optimization of networks where all rotations are optimized si-
multaneously. We show results for two algorithmic settings. Setting s1 is the branch-and-cut
implementation with a warm start cut and solution of the LP initially. Setting s2 is as s1, but we
also add the strengthened Benders cuts, Benders cuts at node relaxations and valid inequalities at
the LP and the root node. Generally, setting s1 is faster on small instances and for the larger in-
stances setting s2 improves the initial and final gap significantly. For instances covering the Baltic
and WAF, the algorithm performs very well and finds optimal solutions quickly (showing that no
improvement can be made with fixed deployment) in both setting s1 and s2. For all instances it
is seen that valid inequalities significantly improve the initial gap in setting s2. In both Pacific
and WorldSmall there are issues with convergence of the LP and a significant final gap is reported.
In WorldSmall no improvement is found within the time limit, but we know from the vessel class
optimization that a significant improvement is achievable. However, in the flexible case, setting s2

provides a better initial and final gap whereas setting s1 is better in the more constrained fixed
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Algorithmic setting Fixed deployment Flexible deployment
Baltic

× × × 0 0 0 0.01 0 0 0 0.01
× × × × × × 0 0 0 0.01 0 0 0 0.01

WAF
× × × 0 0.2 0.2 0.2 1.9 0.9 4.2 0.5
× × × × × × 0 0.0 0.0 0.5 1.9 0.7 1.9 4.5

Mediterranean
× × × 2.0 1.1 2.4 t.l. 2.0 1.2 1.8 t.l.
× × × × × × 1.9 1.2 1.7 t.l. 2.0 1.2 1.6 t.l.

Pacific
× × × 2.1 2.8 4 t.l. 3.1 48 108 t.l.
× × × × × × 1.9 3.2 3.8 t.l. 7.9 70 73 t.l.

WorldSmall
× × × 0.7 3.3 3.6 t.l. 0.0 374 375 t.l.
× × × × × × 0.4 5.1 6.1 t.l. 0.0 365 349 t.l.
× × × 1.6 3.6 1.7 12h 0.0 265 262 12h
× × × × × × 0.4 6.3 4.4 12h 5.2 275 256 12h

Table 4: Computational Results: The algorithm is tested on networks where all rotations are
open to optimization. Improvement in profit is the improvement in profit obtained relative to the
average speed configuration. Runtime is the total time to converge to within the desired tolerance
including the time used at solving the LP and "t.l." indicates that the time limit of three hours
has been reached. LPLB is the lower bound obtained from solving the LP and FUB is the final
upper bound. The last row for WorldSmall show results where the time limit has been increased
by a factor four and up to 4 hours can be spent on solving the LP.

case. If the time limit is increased by a factor 4 such that we allow 12 hours in total and up to 4
hours at solving the LP, setting s2 is able to improve the network by 5.2 % whereas setting s1 still
is not. Furthermore, we see that solving the LP initially is very effective in improving the bound
(but still it does not converge within the time limit), whereas less improvement is achieved in the
integer phase. Generally, for the larger instances setting s1 shows better performance when the
fleet is fixed, and setting s2 shows better performance when the fleet is flexible.

The network results show that the method in its current form is not suitable for optimization
of an entire network as it has problems with convergence for the largest instances. However, for
simultaneous optimization of all rotations in a network the algorithmic performance can potentially
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be improved by solving the problem in several stages. Initially the single rotation optimization
can serve as input to vessel class optimization, which can eventually serve as input to optimization
of the full network. To find a feasible solution that can serve as input for the class optimization,
the rotations can be ranked according to expected impact and fleet usage can be updated after
optimization of each rotation. The solution found in the class optimization will always be a feasible
solution for optimizing the entire network.

7 Conclusion
In this paper we introduced a novel model and solution method for liner shipping companies
to optimally determine the sailing speed of one or several rotations simultaneously in a global
network. In the model and solution method we consider level of service explicitly, and incorporate
cargo routing decisions with tight transit time restrictions on each commodity in the entire network.
Furthermore, we show in Appendix A that it is possible to extend the model to include optimal
time scheduling decisions in the model. The solution method is based on Benders decomposition
and column generation and we show that it is able to effectively improve the profit of global size
networks. We have used a state of the art algorithm to generate the networks used for testing,
and our results show that variable speed on each sailing leg and fleet deployment can lead to
large savings in the network design process. Also, we have shown that speed changes can lead to
significant changes in the routing of the containers in a global network, and hence it is critical to
consider routing implications when optimizing speed in networks where transit time restrictions
are tight. In addition to the model and solution method we have proposed several algorithmic
enhancements, which all helps improving the bound on the solution. The model and algorithm
can be used as a basis for the development of decision support tools in liner shipping companies
and it applies in both tactical and operational settings. We believe that even if extended with the
time scheduling component described in Appendix A smaller initial gaps may be expected in an
actual planning setting since a good configuration is already in place. Often only speed changes
will be considered for smaller parts of the networks and potentially close to the existing operation
in terms of speed variation. The model and solution method can handle the large and complex
planning problems faced by leading liner shipping companies as networks are usually not entirely
changed, but merely incrementally improved to new operating conditions. Therefore, future work
could be in the direction of solving more restricted problems to improve the upper bounds and
obtain solutions faster. Additionally, this can help improve the lower bounds. Finally, searching
for improving solutions in the proximity (Fischetti and Monaci, 2014) of the best known solutions
rather than based on relaxations may improve the performance.
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a)

b)

Figure 6: Figure a) a transportation network used for speed and schedule optimization (the problem
considered in the BMP). Figure b) the flow through a network at a spcific speed and schedule
(the problem considered in the PBSP). The nodes correspond to port calls, which are numbered
consecutively around each service. The ten port calls correspond to nine physical ports (the port
calls 1 and 10 correspond to the same physical port) and it is possible to transship between rotation
R1 and R2 by using a transshipment arc from 1 to 10.

A Optimal Time Scheduling
It is possible to add time scheduling constraints to the model to include determination of an
optimal time schedule while satisfying the transit time restrictions. The time schedule determines
the timing of events, such as port calls, along a service. For each port we introduce a variable to
determine the departure time, and at the same time we introduce variables to reflect transshipment
time between rotations. These are coupled with the flow variables such that it is possible to consider
the influence of schedules in the flow calculations. The time scheduling and transshipment decisions
are included in the BMP. Duplicates of the transshipment arcs are considered with different layover
time corresponding to all possible schedules, and a binary variable is associated with each of the
transshipment arcs. The selected transshipment arc is included in the PBSP. If the departure time
for some or all ports are given a priori, this is easy to include by fixing part of the network.

Figure 6 is an extension of the example in Figure 3 and Figure 6 a) shows the transportation
network before the schedule and speeds have been selected. The transshipment time from rotation
R1 to R2 will depend on the schedule of the two rotations, but since both schedule and speed is
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variable we need to consider different transshipment arcs (blue dotted lines in the figure). In this
case there are seven arcs corresponding to a transshipment time of one to seven days. Figure b)
shows an example flow from 3 to 8 where the schedule and speeds have been selected. Rotation
R1 calls port 1 every Thursday and R2 departs from the same port (represented by a different
port call) every Friday, so the transshipment arc used in this case is the one corresponding to one
day. This way it is possible to calculate the transit time from 3 to 8 as the length of each sailing
leg divided by the selected speed for each of the legs plus the transshipment time corresponding
to the selected schedule. If the total transit time from the physical port corresponding to 3 to
the physical port corresponding to 8 is longer than what is allowed for a commodity going on this
path, there is no feasible path and it may be worth adjusting the speeds and the schedule.

A.1 Modeling
We wish to determine when each port is visited by which rotation and how this influences the
achievable transshipment times and thereby the cargo routing. For each rotation the schedule
(i.e. arrival and departure times) is determined in all ports for all rotations. The time it takes
to transship between two different rotations visiting the same port is determined by the arrival in
the port for each of the rotations and some buffer time. In the following we assume for simplicity
weekly rotations, but the model can be extended to accommodate bi-weekly frequencies. The set
of all port calls is I and in the example of nine physical ports in Figure 6 this corresponds to the
port calls 1 to 10 which are consecutively numbered along each service. For each rotation r ∈ R
we assign a starting port call σr a priori (port call 1 and 6 in Figure 6) and use this as reference
for the schedule of the subsequent ports in each of the rotations. The starting port will always be
the call with the lowest index within the rotation. Each service consist of several port calls, and
in the case of butterfly rotations the same port may have multiple corresponding port calls. The
set of physical ports is Q and the set of port calls in port q ∈ Q is I(q).The arrival time at port
call i ∈ I given in days is determined by the continuous decision variable Ti ∈ R and the integer
decision variable wi′i′′ ∈ Z is the offset in weeks between two port calls for the same port, i′ and
i′′, i.e., wi′i′′ is not necessarily equal to wi′′i′ . Usually two port calls i′ and i′′ at port p correspond
to two different rotations, but for butterfly rotations they can correspond to two calls from the
same service. Additionally, gi′i′′ is the necessary transshipment buffer time between arrival of port
call i′ and departure of port call i′′ in port p. The constant t̄i specify the length of the stay of
port call i and the continuous decision variable T̂i′i′′ ∈ R is the transshipment time from port
call i′ to port call i′′ in a specific port. A(i) is the set of multiarcs between port call i and i + 1,
i.e., arcs at different speeds between two consecutive ports on the same rotation. (i′, i′′) ∈ Q2(q)
denotes all the ordered pairs of rotations visiting port q. For each port q with a transshipment
opportunity and for each (i′, i′′) ∈ Q2(q), the set of arcs available for transshipment is given by
the set A(i′, i′′). The capacity of the corresponding arc, ui′i′′ , is given by the minimum capacity of
the rotation corresponding to port call i′ and the rotation corresponding to i′′ in a given port. All
transshipment arcs have an associated transshipment time, ta, and we include binary variables, xa
for a ∈ A(i′, i′′) that selects whether a transshipment arc is used. The time scheduling part of the
model is
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Ti = Ti−1 +
∑

a∈A(i−1)

taxa i ∈ I\ ∪r∈R {σr} (52)

T̂i′i′′ = (Ti′′ + t̄i′′)− Ti′ + 7wi′i′′ q ∈ Q, (i′, i′′) ∈ Q2(q) (53)∑
a∈A(i′i′′)

taxa ≥ T̂i′i′′ q ∈ Q, (i′, i′′) ∈ Q2(q) (54)

∑
a∈A(i′i′′)

xa = 1 q ∈ Q, (i′, i′′) ∈ Q2(q) (55)

gi′i′′ ≤ T̂i′i′′ ≤ gi′i′′ + 7 q ∈ Q, (i′, i′′) ∈ Q2(q) (56)
Ti ∈ R+ i ∈ I (57)

T̂i′i′′ ∈ R+ q ∈ Q, (i′, i′′) ∈ Q2(q) (58)

wi′′i′ ∈ Z q ∈ Q, (i′, i′′) ∈ Q2(q) (59)

xa ∈ {0, 1} q ∈ Q, (i′, i′′) ∈ Q2(q), a ∈ A(i′, i′′) (60)

The relation of the departure time for two consecutive ports is given by Constraints (52).
Notice that we in Constraints (52) let i run in the elements of I except the starting port call
of each rotation. The reason is that we need to avoid a cyclic definition of Ti, which would be
infeasible. The transshipment time in port p from port call i′ to port call i′′ is determined by
Constraints (53) and Constraints (54) and (55) makes sure we only select one transshipment arc
and that it is feasible. Constraints (56) limits the possible transshipment time. If we have a
schedule determined by the hour there are going to be 168 transshipment arcs for each feasible
(i′, i′′)-combination, but we can reduce the number of available transshipment arcs such that we
overestimate the transshipment time. There can e.g. be one available arc for each day, i.e., 7 arcs,
and for some ports we can have higher accuracy than others by including more arcs.

To illustrate the offset variable consider an instance with hourly accuracy where t̄i′′ = 8 and
gi′i′′ = 10 then if Ti′ = 24 and Ti′′ = 48 we get that wi′i′′ = 0 and T̂i′i′′ = 48 + 8 − 24 = 32. If
there is a too tight schedule, i.e., Ti′ = 24 and Ti′′ = 24, we get that the commodity will have to
wait because of the buffer time and we get that wi′i′′ = 1 and T̂i′i′′ = 24 + 8− 24 + 168 = 176. To
illustrate the influence of the schedule on longer rotations consider first Ti′ = 13 ∗ 24 = 312 and
Ti′′ = 24, then we get wi′i′′ = 2 and T̂i′i′′ = 24 + 8 − 312 + 2 ∗ 168 = 56. Conversely if Ti′ = 24
and Ti′′ = 312, then we get wi′i′′ = −1 and T̂i′i′′ = 312 + 8− 24− 168 = 128.

A.2 Including the Time Scheduling Part in the Benders Decomposition
Similarly to the coupling constraints for the sailing arcs, we can introduce a coupling constraints
for the transshipment arcs∑

k∈K

∑
p∈P (a,k)

ykpk ≤ xaui′i′′ a ∈ A(i′, i′′), q ∈ Q, (i′, i′′) ∈ Q2(q) (61)

Then including the time scheduling part in the Benders decomposition lead to a slightly modified
sub-problem where we are now considering the transshipment arcs as well such that the PBSP is
given by

min
∑
k∈K

∑
p∈Pk

rkpy
k
p (62)
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subject to ∑
p∈Pk

ykp ≤ dk k ∈ K (63)

∑
k∈K

∑
p∈P (a,k)

ykp ≤ x̄aqa q ∈ Q, i ∈ I(q), a ∈ A(i) (64)

∑
k∈K

∑
p∈P (a,k)

ykp ≤ x̄aui′i′′ q ∈ Q, (i′, i′′) ∈ Q2(q), a ∈ A(i′, i′′) (65)

ykp ∈ R+ k ∈ K, p ∈ P k (66)

This can still be solved using column generation, but now the column generation sub-problem
also contains dual variables corresponding to transshipment arcs. The BMP will be (22)-(28) +
(52)-(60).
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B Generating Additional Benders Cuts
It is possible to obtain additional Benders cuts in each iteration of the algorithm based on a
solution to the multi-commodity flow problem. When the sub-problem has been solved we modify
the problem to have an additional constraint restricting the objective to be at least as good as the
optimal solution but maximizing some distance to the solution, e.g.:

max
∑
k∈K

∑
p∈Pk

|ȳkp − ykp | (67)

subject to ∑
p∈Pk

ykp ≤ dk k ∈ K (68)

∑
k∈K

∑
p∈P (a,k)

ykpk ≤ qaxa (a) ∈ A (69)

∑
k∈k

∑
p∈Pk

rkpy
k
p ≤

∑
k∈K

∑
p∈Pk

rkp ȳ
k
p (70)

ykp ∈ R+ k ∈ K, p ∈ P k (71)

where ȳkp is an optimal solution and we use the set of already generated paths to find an alternative
solution. However, the objective (67) is non-linear so we modify it such that if ȳkp = 0 then we take
(ykp − ȳkp) and if ȳkp = dk then we take (ȳkp − ykp). If 0 < ȳkp < dk we use (ȳkp − ykp) as the objective

with probability ȳkp
dk

and ykp − ȳkp otherwise. Leaving out the constant term, the objective becomes

max
∑
k∈K

 ∑
p∈Pk:ȳkp=0

ykp − (
∑

p∈Pk:ȳkp=dk

ykp) +
∑

p∈Pk:0<ȳkp<d
k

Xpy
k
p

 (72)

Where Xp is a random variable of ±1 with probability ȳkp
dk
. Using only a reduced set of columns

when solving the primal problem will lead to the optimal primal solution, but the corresponding
dual solution may not be optimal/feasible as only a subset of constraints are considered. To obtain
appropriate dual values, the objective is changed to the original objective, such that constraint
(67) is removed and the problem is resolved using the solution as a warm start. The new dual
solution is checked by solving the pricing problem in multi-commodity flow problem once, and if
no reduced cost columns are returned an additional cut is added based on the new dual variables.
If a reduced cost column is found, we do not add a cut.

Similarly we could solve the multi-commodity flow problem with the set of columns already
obtained with an interior point method to obtain an alternative Benders cut based on a solution
centered towards the interior. Again we need to check the multi-commodity flow pricing problem
and only add the cut if no reduced cost paths are found.
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We introduce a decision support tool for liner shipping companies to optimally determine the 
sailing speed and needed fleet for a global network. As a novelty we incorporate cargo routing 
decisions with tight transit time restrictions on each container such that we get a realistic picture of 
the utilization of the network. Furthermore, we show that it is possible to extend the model to 
include optimal time scheduling decisions such that the time associated with transshipments is also 
reflected accurately. To solve the speed optimization problem we propose an exact algorithm 
based on Benders decomposition and column generation that exploits the separability of the 
problem. Computational results show that the method is applicable to liner shipping networks of 
realistic size and that it is important to incorporate cargo routing decisions when optimizing speed. 
 


