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Summary (English)

Studying the interior of objects using tomography often require an image seg-
mentation, such that di�erent material properties can be quanti�ed. This can for
example be volume or surface area. Segmentation is typically done as an image
analysis step after the image has been reconstructed. This thesis investigates
computing the reconstruction and segmentation simultaneously. The advantage
of this is that because the reconstruction and segmentation are computed jointly,
reconstruction errors are not propagated to the segmentation step. Furthermore
the segmentation procedure can be used for regularizing the reconstruction pro-
cess. The thesis provides models and algorithms for simultaneous reconstruction
and segmentation and their performance is empirically validated.

Two method of simultaneous reconstruction and segmentation are described in
the thesis. Also, a method for parameter selection is given. The reconstruction
and segmentation are modeled as two parts: the image that is reconstructed and
a so-called Hidden Markov Measure Field Model (HMMFM). Pixel values in the
image contain material attenuation coe�cients and the HMMFM contains pixel-
wise probabilities for material classes. The number of material classes and their
parameters are assumed known a priori. These parameters are the mean value of
the class attenuation coe�cients and their standard deviations. Given this input
together with projection data, the problem is to �nd the image and HMMFM.
The segmentation is obtained from the HMMFM as the most probable class in
each pixel.

The solution for the reconstruction and segmentation problem is found using an
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algorithm that simultaneously minimizes the reprojection error, deviation of the
grey levels of pixels from known mean values and the spatial di�erences in the
class probabilities.

In the �rst Simultaneous Reconstruction and Segmentation (SRS) method data is
assumed Gaussian distributed and the minimization is done using standard opti-
mization techniques in two stages. Experimental validation on both phantom and
real data shows that modeling the reconstruction and segmentation simultane-
ously has superior performance, especially when the problem is underdetermined,
i.e. when the number of unknowns in the reconstruction exceeds the number of
observations.

The second SRS method assumes Poisson distributed data, which is the case for
data originating from discrete events like photon counts. The algorithm is again
based on solving a minimization problem. In addition a relaxation strategy is
employed in order to avoid being stuck in local minimum. This model is also
validated on arti�cial data.

Selecting appropriate regularization parameters can be di�cult, so the last thing
that we consider is a parameter selection approach. The most promising approach
was a modi�ed L-curve algorithm, which was empirically analyzed.

This thesis contributes with methods for simultaneous reconstruction and seg-
mentation and demonstrates the bene�ts of this approach in situations where
only few projections are available and data is noisy. Here a higher precision
image as well as segmentation can be computed.



Summary (Danish)

Studier af objekters indre struktur ved brug af tomogra� kræver ofte segmente-
ring, så forskellige materialeegenskaber kan blive kvanti�ceret. Dette kan eksem-
pelvis være volumen eller over�adeareal og lignende. Segmenteringen gøres typisk
ved et billedanalyseskridt, efter billedet er blevet rekonstrueret. I denne afhand-
ling undersøges teknikker til at rekonstruere og segmentere simultant. Fordelen
er at kun et skridt er nødvendigt, og herved undgås at rekonstruktionsfejl propa-
gerer til segmenteringen. I tillæg hertil kan segmenteringsproceduren bruges til at
regularisere rekonstruktionsprocessen. Afhandlingen giver modeller og algoritmer
til simultan rekonstruktion og segmentering, og disse er empirisk valideret.

To metoder til simultan rekonstruktion og segmentering (SRS) er beskrevet i
denne afhandling samt en metode til parameterudvælgelse. Rekonstruktionen og
segmenteringen er modelleret i to dele, nemlig billedet som rekonstrueres samt en
såkaldt Hidden Markov Measure Field Model (HMMFM). Pixelværdier i billedet
angiver dæmpningskoe�cienter, og HMMFM'en indeholder pixelvise sandsynlig-
heder for materialeklasser. Antallet af materialeklasser og deres parametre er
antaget kendt a priori. Disse parametre er middelværdier og standardafvigelser.
Med dette input samt det målte projektionsdata, hvilket er radiogra�er af et ob-
jekt, er problemet at �nde billedet og HMMFM-parametrene. Segmenteringen er
givet fra HMMFM som den mest sandsynlige klasse.

Rekonstruktions- og segmenteringsproblemet er løst ved hjælp af en algoritme,
som på samme tid minimerer reprojektionsfejlen, afvigelse i gråtoneværdier fra
kendte middelværdier og den rumlige forskel i sandsynligheder for klasserne.
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I den første SRS-metode antages data gaussisk fordelt og minimeringen gennem-
føres med standard optimeringsmetoder i to stadier. Eksperimentel validering på
både fantomdata og virkeligt data viser, at modellering af både rekonstruktionen
og segmenteringen på samme tid forbedrer performance, især når problemet er
underbestemt, det vil sige at antallet af ukendte i rekonstruktionen overstiger
antallet af observationer.

I den anden SRS-metode antages data at være Poisson-fordelt, hvilket typisk
gælder for data, som kommer fra en diskret proces som eksempelvis fotontælling.
Algoritmen er igen baseret på at løse et minimeringsproblem. I tillæg hertil benyt-
tes en relakseringsstrategi til at undgå lokale minima. Denne model er valideret
på fantom-data.

Valget af passende regulariseringsparametre kan være vanskeligt, så den sidste
metode omhandler parametervalg. Den mest lovende tilgang var en modi�ceret
L-kurve-algoritme, som er blevet analyseret empirisk.

Bidraget i denne afhandling er metoder til simultan rekonstruktion og segmen-
tering, og fordelene ved denne tilgang er demonstreret i situationer, hvor kun få
projektioner er tilgængelige, og data er støjfuldt. I disse tilfælde bliver både det
rekonstruerede billede og rekonstruktionen mere præcis.



Preface

This thesis was prepared at DTU Compute in ful�lment of the requirements for
acquiring an PhD in Scienti�c Computing.

The thesis deals with problem of simultaneous reconstruction and segmentation
using class priors known in advance.

The thesis consists of nine chapters. In the �rst chapter we overview the reasons
why the tomography is needed, then we talk about the physical background of
tomography and measurement techniques. In chapter 3 we discuss classical re-
construciton techniques. Then we move to the classical segmentation techniques.
After that follows the overview of related work that joins reconstruction with
segmentation. In chapter 6 we introduce Simultaneous Reconstruction and Seg-
mentation algorithm with class priors. After that we introduce the relaxed SRS
modi�cation algorithm. Finally, we propose the parameter selection algorithm
for this method and make a conclusion of the work.

This work was part of the project HD-Tomo funded by Advanced Grant No.
291405 from the European Research Council.



vi

Lyngby, 31-October-2015

Mikhail Romanov



Acknowledgements

I would like to thank my supervisors, Per Christian Hansen and Anders Bjorholm
Dahl for invaluable help in becoming a researcher and introducing me a good
culture of writing paper, my parents, Julia Romanova and Victor Efremov and
grandparents, Maria Efremova and Alevtina Romanova for a strong psychological
support. I would like to thank my girlfriend, Xenia Borisovskaya for patience and
understanding and providing an inspiration.



viii



Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

1 Introduction 1
1.1 Tomography: Why Do We Need It? . . . . . . . . . . . . . . . . . 1
1.2 Tomography Applications . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Problem Formulation . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Measurement Techniques 9
2.1 X-Ray and Transmission Tomography with Applications . . . . . . 9
2.2 Emission Tomography with Applications . . . . . . . . . . . . . . . 13
2.3 On the Geometry of Measurements . . . . . . . . . . . . . . . . . . 14

3 Classical Methods of Reconstruction 19
3.1 Inverse Radon Transform: Filtered Back Projection . . . . . . . . . 19
3.2 Algebraic Reconstruction . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Pseudoinverse Matrix . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Landweber Iteration . . . . . . . . . . . . . . . . . . . . . . 22
3.2.3 Row Action Methods . . . . . . . . . . . . . . . . . . . . . . 23
3.2.4 SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Variational and Statistical Methods . . . . . . . . . . . . . . . . . . 26



x CONTENTS

4 Classical Segmentation Techniques 35
4.1 Markov Random Field . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Variational l0 Method . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Hidden Markov Measure Field Models . . . . . . . . . . . . . . . . 38
4.4 Other Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Joint Reconstruction and Segmentation 43
5.1 Simultaneous Reconstruction and Segmentation with Entropy Prior 43
5.2 Discrete Algebraic Reconstruction Technique (DART) . . . . . . . 44
5.3 Simaultaneous Reconstruction and Segmentation Algorithm using

the Hidden Markov Measure Field Model . . . . . . . . . . . . . . 46
5.4 Simultaneous Reconstruction and Segmentation without Neigh-

borhood Prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.5 Other Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.6 Place of Our Work in This Context . . . . . . . . . . . . . . . . . . 52

6 Simultaneous Tomographic Reconstruction and Segmentation with
Class Priors 55
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3 Assumptions for the CT Reconstruction Problem . . . . . . . . . . 60

6.3.1 Data Fitting Term . . . . . . . . . . . . . . . . . . . . . . . 61
6.3.2 Class Fitting Term . . . . . . . . . . . . . . . . . . . . . . . 62
6.3.3 Regularization Term . . . . . . . . . . . . . . . . . . . . . . 62
6.3.4 The Reconstruction Model . . . . . . . . . . . . . . . . . . 63
6.3.5 Simpli�cations . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.4.1 Stage 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.4.2 Stage 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.5.1 Test Using Arti�cial Data . . . . . . . . . . . . . . . . . . . 69
6.5.2 Robustness Test . . . . . . . . . . . . . . . . . . . . . . . . 76
6.5.3 Test Using Real Data . . . . . . . . . . . . . . . . . . . . . 78

7 Relaxed Simultaneous Tomographic Reconstruction and Segmen-
tation with Class Priors for Poisson Noise 85
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.3 Simpli�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.4.1 First Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.4.2 Second Stage . . . . . . . . . . . . . . . . . . . . . . . . . . 95



CONTENTS xi

7.4.3 Additional aspects of the algorithm . . . . . . . . . . . . . . 97
7.5 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.7 Appendix: Explanation of Modi�ed Standard Deviation . . . . . . 108

8 A Parameter Choice Method for Simultaneous Reconstruction
and Segmentation 115
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
8.2 Brief Description Of the SRS Method . . . . . . . . . . . . . . . . 118
8.3 Parameter Selection Algorithm . . . . . . . . . . . . . . . . . . . . 120
8.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9 Conclusion and Future Work 133



xii CONTENTS



Chapter 1

Introduction

In which we talk about the reasons of the needs for tomography. This chapter
is about the general things in tomography. It concerns such things as why do
we need tomography and what are the main applications of tomography. Also in
this chapter we will talk about the contribution of our work in this area.

1.1 Tomography: Why Do We Need It?

The world is full of di�erent mechanisms that act in di�erent ways: the trees grow,
the engines spin the shafts, the animals breathe, the people make the decisions
about their lives, even our planet sometimes produces earthquakes, tsunamies.
The question, why the mechanisms, bodies or organisms act in the way they act
is one of the most complicated questions of philosophy from ancient times and
was referred to as 'The Nature of Things'.

This question is relevant nowadays too: we want to know the principles on which
the acting mechanisms or physical bodies are built in order to use these principles
to improve the organisation of mechanisms, heal the human beings or by other
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means to improve our day-to-day life. More than that, this question is far from
being closed and answered � if it is possible in principle to answer this question
at all.

Some of the principles of the world organisation are not that hard to observe and
to research, while the others are quite inconvenient in these terms. The reason
is that many of the mechanisms or the objects cannot be cut open. In some
cases it is just impossible: for example, it is impossible to cut open the planet or
it is quite hard to cut open the mountain, in other cases opening the object or
mechanism will violate its internal structure and, thus, it will lose the feature of
functioning that we wanted to investigate. As an example, in case one cuts open
the engine to see, what happens inside - it will become non-hermetic and will not
be able to transform the fuel into the energy. The other very good example in
this sense is the human eye: once it is cut open - it cannot function any more.
In case one opens the brain - it is not the same brain as before and, although, in
principle, it can function after it, in many cases it loses many capabilities.

Thus, we need a technique that does not destroy the completeness of the object,
but still can 'look' inside of it. These techniques are called 'Non-Invasive' and
'Non-Intrusive'. The main idea of such techniques is that instead of opening the
object we use it as a medium for some physical phenomenon (usually transition,
scattering or emission of waves or particles) that a�ect the object very lightly and
does not make harm to its functionality and internal structure or as a source.

The data about how the object transmits, scatters or emits in di�erent directions
(and, in some cases, in di�erent conditions) is recorded and after that is used to
compute the model of the object in hand. This process is known as reconstruction.
After the reconstruction is done, we have a notion about how the object looks
inside and how it functions or why it does not function as it should, while the
object itself is still complete and not torn apart.

1.2 Tomography Applications

The tomography may be found not in many areas of our life, while these areas
are very important for the quality of our existence.

Medicine: This is the number one application of tomography. The investigating
what is wrong with a patient is an important question and it is better in case the
answer may be found without breaking into the body of the patient and risking
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his life.

In this area X-ray tomography is usually used to investigate bones, lungs, stom-
ach, teeth, breast, intestine, etc. This is one of the cheapest and most commonly
used tomographic techniques in medicine.

Another quite common approach in this area is Ultrasound investigation. It is
very common to use it in liver diagnosis, pancreas, kidneys, heart and many other
organs. This technique is also extremely cheap. Also, it is harmless for the body.
On the other hand, the precision of this approach is quite low.

One more approach to medical imaging is Magnetic Resonance Imaging (MRI)
that is used to produce very precise models of the the organs and systems of
organs. Although this approach is capable of giving the best results, it is used
quite rarely due to its cost. Also, the MRI tomography has some limitations that
are connected with usage of very strong magnetic �elds in the process of data
collection.

Quite rare, but highly developed approach at the moment is Electrical Impedance
Tomography. It has quite low precision and is usually used for monitoring.

The top interest at the moment is the problem of deciphering of the human's
brain in which tomography plays one of the central roles. Also, a lot of research
is done in the area of recognition of the intentions of person in order to provide
direct control for some devices to the brain.

Geological Survey is another important application of tomography. The main
role of tomography here is to �nd mineral resources as well as to investigate the
structure of the subsurface. Due to the high cost of drilling the survey is very
important in these cases.

Usually the data collection in this case is based on so called Seismic Tomography,
where several sources of seismic waves (usually created by explosions) produces
strong acoustic waves that afterwards are detected by seismographs in di�erent
locations. Because we have a very limited access to the interior of the Earth, the
problem of reconstruction of the volume of interest is quite a hard task.

Another application of tomography in this area is the survey of the ocean's bot-
tom. In this case devices that are called echo-sounders are used. It is also impor-
tant for the extraction of mineral resources from the sea bottom and, especially,
for extraction of oil and natural gas from the shelf.
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Engineering. This application area is very important for the industrial pur-
poses. Usually before the mechanism or the material is being built, many numer-
ical and physical experiments are carried out. Unfortunately, these experiments
have in many cases serious limitations and, due to that, there is a need to verify
the declared features of the product.

There are many speci�c applications in this area. One of the most complicated
tasks here is the scanning of engines and other mechanical devices. The problem
is that usual measurement instruments are not capable of penetrating the metal
parts - and, thus, it is hard to make a good scan of how the gas �ows inside of the
engine tubes and what happens inside of cylinders. Fortunately, there is a way
to scan such devices � the neutron tomography. Unfortunately, the equipment
that is needed for neutron tomography is quite large, that makes this technique
quite expensive and less popular than the X-ray scanners.

Another application concerns the research of building materials [2], [4], [3]. In
these cases the Electrical Impedance Tomography is used as it is the best candi-
date for detection of the conductor disconnection. Usually the fragment of the
material is exposed to extremal overloads and the interior structure is observed.

To sum up, it is obvious that the tomography is highly relevant �eld in science,
healthcare and engineering and it is worth looking into it and improving it.

More about the applications and instruments of tomography may be found in the
book [1].

1.3 Research Problem Formulation

It is quite logical that the more data we collect about the object of interest � the
more we know about the object � the better is the reconstruction of this object.
Also, big amounts of data may compensate the imperfectness of the collected
data: as it is quite hard to make a perfect measurements, usually the data is
measured with some errors or noise that may be produced by the physics of the
process.

In many cases the collection of big amounts of data is unwanted due to cost of the
measurements, the exposure to X-rays, time of making measurements or many
other reasons. Thus, there is a need for compensating for the lack of data by
some other knowledge about the object of interest. The more we know about
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the object, the more data we can compensate. Here it is important to note that
we should use only the information that is relevant for the object. Otherwise we
may get a reconstruction that has nothing in common with the real object.

In this work we concentrate on CT, and we investigate if we can use the knowledge
about the materials (we assume that we know the attenuation coe�cients of the
materials and information is given beforehand in the form of mean value of the
attenuation coe�cient and standard deviation of the attenuation coe�cient) that
the object consists of. That seems to be a good idea as it is a strong knowledge
about the object: since we know the materials the only problem is now to locate
the positions of the material clusters. This problem should be simplier than the
problem of computing whole image.

1.4 Thesis Organisation

We start with the chapter where we overview, how the measurements are carried
out. As the main objective of our work is the Transmission Tomography problem,
in this chapter we carefully discuss X-Ray tomography, but also we take a quick
look at the Emission Tomography problem.

After that we consider the aspects of the geometry of the measurement devices,
which of the geometries are used in di�erent devices.

Next, we discuss the classical reconstruction algorithms and segmentation algo-
rithms, then we do the overview fo relevant work, where the reconstruction and
segmentation are combined into one procedure.

Then we give exact copies of our paper in Chapter 6 that was submitted to the
journal "Inverse Problems in Science and Engineering" in coauthorship with Per
Christian Hansen, Ander Bjorholm Dahl and Yiqiu Dong. We have also done
two technical reports the texsts of which we give in Chapters 7 and 8: "Re-
laxed Simultaneous Tomographic Reconstruction and Segmentation with Class
Priors for Poisson Noise" and "A Parameter Choice Method for Simultaneous
Reconstruction and Segmentation".
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Chapter 2

Measurement Techniques

In this chapter we consider more closely the means of measurements that are used
in tomography and that are relevant for our work. We also take a brief look at
the geometry of measurements as it is an important aspect of the measurement
process.

The presentation in this chapter is based on the book [1].

2.1 X-Ray and Transmission Tomography with Ap-
plications

The most common way to look into an object is based on the technology of X-ray
scanning. The principle of the measurements is based on the high energy photons
that propagate through the object along some trajectory, but as the photons have
quite small wavelengths, it is possible to neglect the deviations from the straight
line. The photons are usually created by a high energy photon source and after
that it is usually collimated to avoid the unwanted background radiation. The
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majority of photons propagate along the directions that are not limited by the
collimator. Photons, after penetrating the object, are caught by the detector
which counts the photons that have reached it.

The photon source is a vacuum tube that contains cathode and anode. The
photon source works according to the following principle: the electrons leave the
cathode and are accelerated by an electric �eld. Then the accelerated electrons
collide with the anode. When this collision happens, the electron looses the
majority of its energy in the form of radiation. This radiation forms the X-ray
beam.

As this process is driven by a big amount of particles, the nature of the process
is statistical. That means that in di�erent moments of the process a di�erent
amount of photons are being produced. It is possible to show that the amount
of the photons n that are being produced in one time unit follows a Poisson
distribution:

p(Ne = n) =
(E(Ne))n

n!
exp(−E(Ne)), (2.1)

where E(Ne) is an expected amount of emitted photons (that can be treated as
the average amount of emitted photons per time unit over the long time).

As the photons propagate along a straight line, some of the photons interact with
the medium through which they propagate. Because of these interactions not all
of the photons that were emitted by the source in the direction of the detector
reach the destination.

The interaction of the photons with the medium may be described as the super-
position of two physical phenomena: one is the refraction of the photons, another
is the absorption. In both cases the photons are deviated form movement along
the straight line. As we can detect only the amount of photons that were not
deviated from the straight line, the interaction of the X-ray photons with the ma-
terial is characterized by the material-speci�c attenuation coe�cient that takes
into account both refraction and absorption. The important part here is that the
attenuation coe�cient depends only on the material (and is completely de�ned
by the properties of the material) and does not depend on the location of the
material or the time when the interactions take place.

In case the photon passes through a small piece of material with attenuation
coe�cient µ and the length of the ray inside of the material is dl, then the
photon has the following probability of passing through:

Ptl = 1− µl dll. (2.2)
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Taking into account that the probability of passing through the system of pieces
of materials is equal to the product of probabilities:

Pt =
∏
l

Ptidx. (2.3)

Taking the logarithm of this expression it is possible to convert the product into
the sum:

logPt =
∑
l

logPtl (2.4)

The logarithm of the equation (2.2), taking into account that dl → 0, turns into
the following expression:

d logPtl = log(1− µl dll) = −µ dl. (2.5)

In the real world we deal with objects with �nite length and the attenuation
coe�cient in di�erent places of the object may be di�erent (as some of the places
may be made of di�erent materials). The overall probability of passing through
is the product of probabilities of passing through the small slices, or the loga-
rithm of the probability of passing through the object is the sum of logarithm of
probabilities of passing through a small slices of object:

d logPt = −
∫
µ(l) dl. (2.6)

The expected value of the transmitted photons is

E(nr) = NePt. (2.7)

Thus, substituting Pt in (2.7) by (2.6), we get

E(Nt) = Ne exp

(
−
∫
µ(l)dl

)
. (2.8)

As each of the photons carries some amount of energy, we may conclude that the
intensity of the X-ray after passing through the object is equal to

I = I(0) exp

(
−
∫
µ(l)dl

)
, (2.9)

where I(0) is the intensity of the X-Ray before the object. This relation is known
as Lambert-Beer's Law.

As in the case with photon emission, the process in this case has a statistical
nature (many of the photons pass through the object) � that means that in the
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di�erent moments di�erent amount of photons passes through. The probability
that nt photons are transferred through the object may be represented by the
Bernoulli distribution given that the source emitted Ne photons:

P(Nt = n|Ne) =

(
Ne
n

)
Pnt (1− Pt)Ne−n. (2.10)

It is possible to show that in case we assume that the Ne is distributed accord-
ing to (2.1) - then the overall probability of the transmitted photons obeys the
distribution:

P(Nt = n) =
(PtE(Ne))n

n!
exp (−PtE(Ne)) . (2.11)

As we see, the amount of transmitted photons is also distributed according to a
Poisson distribution, where the parameter of the distribution has changed from
E(Ne) in (2.1) to PtE(Ne) (2.11).

After the photons pass through the object they collide with a detector. The
detector may with some probability Pd detect a photon, while the others are not
detected by it. The probability distribution of detection of n photons is described
by the following expression:

P(Nd = n|Nt) =

(
Nt
n

)
Pnd (1− Pd)Nt−n. (2.12)

Again, as in the situation with transmission, it is possible to show that in case
we take into account the distribution of the transmitted photons in (2.11), the
overall probability of detection of Nd photons is equal to

P(Nd = n) =
(PdPtE(Ne))n

n!
exp (−PdPtE(Ne)) . (2.13)

Again, the amount of detected photons is distributed according to a Poisson dis-
tribution. Here the parameter of the Poisson distribution is equal to PdPtE(Ne).

When the amount of emitted photons is very large (as it usually is), one can
derive from (2.13) the following expression:

P(Nd = n) =
1√

2πPdPtE(Ne)
exp

(
− (PdPtE(Ne)− n)2

E(Ne)

)
. (2.14)

As we can see, when Ne →∞, the amount of detected photons is distributed ac-
cording to a Gaussian distribution with mean equal to PdPtE(Ne) and a standard
deviation

√
PdPtE(Ne).
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It is important to note that, according to this result, the signal-to-noise-ratio is
equal to

SNR =
E(Ne)√
E(Ne)

=
√
E(Ne). (2.15)

Thus, the more photons we detect, the more reliable is the result. On the other
hand, as the attenuated photons a�ect the object of interest, in many cases it
is not wanted to expose the object to big amount of X-ray photons. Excess
of exposure of the object to the X-ray radiation may result in damage of the
internal structure of the object. In case of medical this may lead to cancer, in
case of material study this may result in change of chemical composition of the
object. Thus, one should �nd a compromise between the reliability of data and
the damage to the object.

To sum up, the process of measurements of X-ray photons has a statistical na-
ture. Due to this it is hard to make the precise measurements of the integral
of the attenuation coe�cient

∫
µ(l)dl and the data that we use to make our

recononstructions from the projections contains noise. In case we do low-dose
X-ray tomography, this noise is distributed according to a Posson distribution.
Otherwise we can approximate Poisson distribution with Gaussan distribution
according to the (2.14). We will use this result below.

2.2 Emission Tomography with Applications

Emission tomography has several important di�erences compared to X-ray to-
mography. The most important is that in case of Emission Tomography the
role of the source of the photons plays the object itself. Because of that the
probabilities of recording the photons are described by di�erent expressions.

First of all, in this case instead of the attenuation coe�cient µ, the activity γ of
di�erent areas is what we want to �nd. The object generates the photons, and
then the overall amount of photons is measured in the end.

Consider the process of measuring of the amount of photons that were emitted in
the direction of the detector by small pieces of object that are situated on the line
l (we can catch only the photons that were emitted by these pieces by inserting
collimator in front of the detector). The expected value of photons that the small
piece of object emits in each direction is the same and along the line l is γ(l)dl.
The overall expected amount of emitted photons by the pieces of object on the
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line l is equal to

E(Ne) =

∫
γ(l)dl. (2.16)

The overall amount of emitted photons along the line l in the direction of the
detector is distributed according to a Poisson distribution:

P(Ne = n) =
(E(Ne))n

n!
exp (−E(Ne)) . (2.17)

Thus, by analogy with X-ray scanning, we can conclude that the overall amount
of detected photons is equal to

P(Nd = n) =
(PdE(Ne))n

n!
exp (−PdE(Ne)) . (2.18)

As we can see from equation (2.18), the probability is slightly di�erent from
equation (2.13). This especially concerns the term E(Ne) which has signi�cantly
di�erent form.

2.3 On the Geometry of Measurements

As we have already mentioned, we consider only cases where the measurements
are made along straight lines. The location of these straight lines is referred to as
the geometry of rays. The geometry of rays vary from problem to problem and
depends on the locations of the source of photons and the detectors.

The easiest geometry for the reconstruction is a parallel-beam projection. The
data that was generated with the help of this approach is very easy to deal with
by means of the very traditional and most commonly used algorithms in the
area: the Filtered Back Projection (FBP). The shortcoming of this geometry is
that the parallel beam is quite hard to get: either the source and the detector
should be able to move along the parallel rails or there should be many sources
that emit parallel beams of photons independently. The problem of the �rst
approach is that the time of measurements is quite big in this case as in between
making measurements for the same projection we have to move the source and
the detector physically and that takes the majority of time of the measurements.
Also, as the mechanical details are not perfect, the errors in the positions of
projections are quite often and the devices do not last long. The problem of
the second approach is that we need several sources of the rays, one for each
projections. That makes the devices quite expensive. In both cases the system
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physically rotates around the object that also creates similar inconveniences as
with moving the detector and the source.

More practical approach is to use the fan-beam geometry for the medical devices.
In these kind of devices only one source of the X-Rays is used and the array
of the detectors records the photons that were emerged by the only source in
several directions. This approach of measurements is more convenient than the
parallel-beam geometry - it is cheap, more robust and the speed of measurements
is higher. The Filtered Back Projection algorithm with some modi�cations [3]
may be applied to reconstruction of the object interior from this data too. Nev-
ertheless, this system still has problems: still whole system rotates around the
object.

Even more advanced approach is instead of using the physically rotating system
is to use the electrically controlled beam of electrons that falls on the round
anode that is situated around the object of interest (Electron Beam Tomography)
[2]. The anode emits the photons that make projections. These devices make
very fast projections. Although the geometry of these devices is fan-beam, the
di�erent beam may lay in di�erent planes - this makes the geometry even more
complicated.

In many cases the object is scanned and reconstructed slice-by-slice - and, thus,
the 3D object interior is reconstructed as a set of 2D images. It is acceptable in
many cases, but to reduce the amount of projections it is often better to make
the projections in more sophisticated manner. Quite often the helix trajectory
of projections is used, when the plane next projection is slightly shifted from the
previous one. In this case it is not possible to compute the 3D object as a set of
2D slices.
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Chapter 3

Classical Methods of
Reconstruction

There is a variety of methods of reconstruction of the object model from data.
In this chapter we will make an overview of the most used techniques for recon-
struction. We will consider their strong and weak sides and peculiarities in a
brief way.

3.1 Inverse Radon Transform: Filtered Back Pro-
jection

The Filtered Back Projection (FBP) is the most common reconstruction tech-
nique that is widely used in the industry due to its simplicity and speed. We
will not consider this technique in details here, but we will say a couple of words
about it's features.

This technique deals with data that is generated by the Radon Transform that is
usually known as a sinogram. It is possible to show that in case we have a full set
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of data (that means that we have all the projections and all the values of rays),
we may fully reconstruct the object using the Filtered Back Projection. Unfortu-
nately, it is not possible to collect all the data as the amount measurements that
should be done is in�nite. Thus, we have to deal with the fact that sometimes
the image will not be reconstructed perfectly in all the cases. More than that, as
to make the perfect measurements is impossible, the reconstruction of the object
will also be a�ected by the noise.

As for the shortcomings of the FBP, the main drawback is that to get a reliable
reconstruction a lot of data is needed. Besides that FBP produces the blurry
results, with low amount of data it tends to produce the artifacts and its inputs
be preprocessed heavily in many cases.

More information about the FBP may be found in [17], [4], [22], [26].

3.2 Algebraic Reconstruction

This chapter is based on the software package [14].

In the previous section we considered a problem of reconstructing an object from
the data, where the data was obtained as a continuous transform from the image
to the sinogram. As it is impossible to measure all the data it is possible to
consider the discretization of the sinogram and the image may be considered
as a set of pixels that has �nite size and inside of these pixels the attenuation
coe�cient is uniform.

In this chapter we will consider the image x to be a set of pixels, where each of
the pixles of the image j has uniform attenuation coe�tient xj . Each of the data
values bi is obtained from the image x using the following rule:

bi =

N∑
j=0

aijxj + εi(bi), (3.1)

where εi(bi) is an independent noise in the data element with number i and aij is
the length of the ray along which the measurement i is made inside of the pixel j.
Also, we substitute the integral with sum as we are dealing with discrete model
of object. We should note here that the noise models were described in chapter
2. Also we should note that, in general, the noise level may depend on di�erent
things, but in our work we consider only the Poisson and the Gaussian noise.
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The Poisson noise depends only on the signal value, while the Gaussian noise
does not depend on the signal value. We also should note that we consider that
the noise in di�erent data instances is independent. The values aij are de�ned
by the geometry of measurements.

This equation may be reformulated in a more convenient matrix notation:

b = Ax + ε(b). (3.2)

The Algebraic Reconstruction approaches try to solve the problem without re-
spect to the noise. In these approaches we consider that

b = Ax (3.3)

and we try to solve the problem of �nding image from data as a problem of
solving a system of ordinary linear equations.

More information about algebraic reconstruction techniques may be found in
books [12], [19].

3.2.1 Pseudoinverse Matrix

As we want to �nd a solution to the system of linear equations, it may seem
logical to solve it using the inversion of the matrix A:

x = A−1b. (3.4)

Unfortunately, this is only possible in case the matrix A is a square and full-rank
matrix. In many problems we have less data points than pixels in image (in this
case the problem is called underdetermined) and we have to deal with this or we
may have more data then the amount of pixels (in this case the problem is called
overdetermined) and we would like to use it to be able to produce a better result.

One of the ways to solve this problems is instead of using the inverse matrix A−1

to use the pseudoinverse matrix A+. Then the solution to the problem may be
found in the following way:

x ≈ A†b. (3.5)

The pseudo-inverse matrix was presented by Moore [23] and Penrose [27]. In
case the matrix A is a full-rank matrix and has linearly independent columns,
the pseudoinverse is equal to

A† =
(
ATA

)−1
AT . (3.6)
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In case the matrix A is a full-rank matrix and has linearly independent rows, the
pseudoinverse is equal to

A† = AT
(
AAT

)−1
. (3.7)

There are many ways to compute the pseudoinverse matrix and we do not consider
them here.

We should note that solving the problem using the pseudoinverse matrix is not
reliable as in case the data contains some amount of noise and is underdetermined
- the results usually contain a lot of noise. Thus, in case we have noise in data
we have to compensate it with bigger amount of data.

3.2.2 Landweber Iteration

As in the ideal case the image x satis�es the equation (3.3), this also means that

Ax− b = 0. (3.8)

Thus, the problem of solving the (3.3) is equivalent to �nding the minimum of
the squared residual function, i.e.

arg min
x
φ(x) = arg min

x

1

2
(Ax− b)T (Ax− b). (3.9)

That approach is referred to as least squares problem. We should note here that
the system (3.3) may be unsolvable, but we may consider the solution to the least
squares problem to be the alternative to the solution as it is the solution x that
minimizes the residual (3.3).

To solve the least squares problem (3.9) we may use the standard gradient descent
approach: we start with some initial approximation x0. Then we do the update
in the following way:

xk+1 = xk − αk∇φ(xk). (3.10)

It is easy to get the following expression for the gradient of the least squares
function:

∇φ(xk) = AT (Ax− b). (3.11)

Thus, the gradient descent transforms into the following rule:

xk+1 = xk − αkAT (Ax− b), (3.12)

where αk is a step length, k is a number iterations that already been done. This
method was �rst presented in [21].
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It is worth noting that using this technique it is guaranteed that we �nd the
minimum of the least squares problem with any precision given beforehand (unless
it is smaller than the machine epsilon for a chosen precision). This is due to the
problem (3.9) is convex.

There are several approaches that may be treated as a modi�cation of this ap-
proach. One is the Cimmino iteration, where the next approximation is computed
the following expression:

xk+1 = xk − αkAT
1

m
diag

(
1∑N

j=0 a
2
ij

)(
b−Axk

)
. (3.13)

Another important approach is known as Simultaneous Algebraic Reconstruction
Technique (SART) [1]. The next iterate in this approach is computed in the
following way:

xk+1 = xk − αkdiag

(
1∑N

j=0 aij

)
AT

(
Ax− b∑M
i=0 aij

)
. (3.14)

There are many other �avours of the algorithms above, but the ones that were
presented above are the most important ones.

3.2.3 Row Action Methods

In this section we will consider a special �avour of Algebraic Methods which,
instead of using the whole matrix of the linrear system A, uses instead only one
of the rows of the matrix ai: to compute the next iterate.

These methods also may be considered as the methods that solve the problem
(3.9) in the following way: the minimization problem is considered as a sum

arg min
x
‖Ax− b‖22 = arg min

x

M∑
i=0

(ai:x− bi)2. (3.15)

Each iteration minimizes one of the sum's components. To decrease the compo-
nent with index i, the new image xk+1 should be closer to the projection of the
current solution xk on the surface that is de�ned by the matrix's row ai: than
the current solution. The direction of the projection is de�ned by the vector
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the elements of which are the values in the column ai:. Thus, the new image is
computed according to the following rule:

xk+1 = xk + αai:, (3.16)

where α is a step length. The distance from the current point xk to the plane
de�ned by ai: may be shown to be equal to

ρ =
1

‖ai:‖2
(
ai:x

k − bi
)
. (3.17)

Thus, the new image may be computed by the following rule:

xk+1 = xk + α′
bi − ai:xk

||ai:||22
ai:, (3.18)

where α′ ∈ (0, 1] is a relaxation parameter that shows how close should we be
to the projection of xk on the plane de�ned by aa:. This algorithm is called a
Kaczmarz's iteration [18].

This algorithm has several important features that we have to mention here:
�rst, in case the iterations converge to the least squares solution in case the
α′ < 1. Besides that, in case the object has sharp edges, Kaczmarz's method
has the feature that is called semiconvergence [6]: the best aproximation to the

solution in terms of the second norm ‖xk−x‖2
‖x‖2 is obtained after a �nite amount

of iterations, but after that the algorithm starts to over�t the noise in the data.
Thus, it is possible to get better solution than the least squares solution just
by stopping the iterations at the particular point (this approach is called Early
Stopping [33]).

3.2.4 SVD

Another approach to solve the problem (3.9) is to use the Singular Value Decom-
position (SVD) [11].

The SVD decomposition of the matrix is de�ned as follows:

A = UΣV T , (3.19)

where U and V are the unitary matrices, Σ is a diagonal matrix that consists
of the so-called singular values. The matrices U, V and singular values have the
following feature:

σlul: = Avl:, (3.20)
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and
σ−1l vl: = A−1ul: (3.21)

where σl is the i-th singular value, the vectors ui: and vi: are the corresponding
rows from the matrices U and V respectively. Usually. for convenience, the
singular values in the diagonal of the matrix Σ are ordered descending.

We should note here that the matrices U and V have the following feauture:

x = V V Tx =
∑
l

vTl: x vl: (3.22)

and
b = UUTu =

∑
l

uTl b ul, (3.23)

where index l runs over all of the rows. Thus, the matrix's U rows may be
considered to be a basis in the space of the image x, while the matrix's V rows
may be considered to be a basis in the space of the data b.

Using this matrix decomposition (3.23) and the relation (3.21), we may constuct
the solution in the following way:

x = A−1b =
∑
l

uTl: b

σl
vl:. (3.24)

The problem of inverting the matrix A as shown in (3.24) may cause problems as
the singular values σl decrease to 0 with growth of i, but due to the presence of
noise in the data b, the numerator after some time stops tending to zero (Picard
Condition [13]). Because of this in the expression (3.24) with growth of l the
ratio may start to tend to in�nity, over�tting the noise and spoiling the solution.

One of the ways to deal with this problem may be solved as in the previous
chapter: we may only leave several �rst vl that will go to our solution and leave
out all the others (Truncated SVD [32], [15]). Another way to avoid this problem
is to substitute in the denominator the σl with value(

σl
σ2
l + λ2

)−1
, (3.25)

where λ > 0 and thus, we will prevent the divisions by zero in the expression
(3.24). As a result, the expression (3.24) will transform to∑

l

uTl: bσl
σ2
l + λ2

vl:. (3.26)
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This approach may be referred to as Tikhonov Regularization. Changing the
parameter λ we may regulate, how much the solution will be a�ected by the rows
of the matrix V that correspond to the low singular values.

3.3 Variational and Statistical Methods

In the previous section we have already considered the problem of reconstructing
the object x from the data b as a minimization problem. In this chapter we
will consider how to formulate the minimization problem and discuss the general
techniques to solve this minimization problem.

As was already stated above, the problem of �nding the solution to the system
of linear equations

Ax = b (3.27)

may be represented as a minimization problem

arg min
x
‖Ax− b‖22. (3.28)

It is possible to show that these two formulations are equivalent to each other: to
�nd the stationary point of (3.28) one needs to take the gradient of the minimized
expression and after that should assign it to zero and solve the problem. The
minimized function in (3.28) may be represented in the following way:

‖Ax− b‖22 = (Ax− b)
T

(Ax− b) . (3.29)

Taking the gradient of this and assigning it to zero we get the following equation:

2AT (Ax− b) = 0 (3.30)

that is equivalent to the linear system (3.27).

There are many ways to solve the minimization problems. This includes simple
methods as gradient descent, more complicated methods as Newton methods
(it is not recommended to use such methods here as the Hessian matrix has
O(N) elements, thus, the time that is needed to estimate it will be quadratic),
Quasi-Newton methods such as BFGS [3], [8], [10], [29], and more complicated -
as Conjugate Gradients method [7], Limited BFGS (L-BFGS) method [25], [5],
Nesterov-type methods [24] and many others.
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Unfortunately, in case the matrix A has less rows than columns - that means that
we have less data than variables. Thus, in this case, the solution of the system
is non-unique (and that means that there are many minima of the minimized
function). The presence of noise in the data b may spoil the situation even
more: it may drive the solution of the system of linear equations far from the
true solution. To deal with that we need to improve the minimization problem.
To make the solution of the minimization problem more robust to the noise, we
introduce the regularization:

‖Ax− b‖22 + λReg(x), (3.31)

where Reg is a function that penalizes some unwanted features of the image.
The λ is a regularization parameter and it regulates, how much in�uence the
regularization has on the solution. Many regularization functions may be used
here to make the solution more robust. The classical regularization term is

Reg(x) = ‖x‖22. (3.32)

It is also known as Tikhonov regularization ([31], [30]). It penalizes the grey
levels of the pixels of the image � and, thus, prevents them from getting very
high values. Another quite popular regularization term is

Reg(x) =
∑
j

‖Djx‖22, (3.33)

where Dj is the discrete approximation of the gradient in the pixel j. This
regularization term penalizes the gradient of the image � thus we prefer the
images with less gradient to the images with more gradient.

Another very important type of regularization is called Total Variation (TV) reg-
ularization [28]. The Total Variation corresponds to the following regularization
term:

Reg(x) =
∑
j

‖Djx‖2. (3.34)

One of its main features is that it prefers the reconstructions with sharp edges.
Another feature is that it penalizes the gradients. Thus, this regularization term
is used when one wants to reconstruct the sharp objects from the noisy data.
Also, this regularization approach is used in image deblurring when we have
objects that are almost constant inside and few sharp edges of the objects.

We should note here that all the regularization parameters that were introduced
above keep the problem (3.31) convex. Also it is possible to show that all these
problems with regularization parameter λ > 0 have the only solution. It is quite
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well-known that these regularization techniques treat the noise well and are also
capable of dealing with insu�cient data.

The formulation (3.31) may be obtained using the Maximum a Posterioiri Proba-
bility approach (MAP). Consider the problem of reconstructing the image x from
the data b, where the data is noisy and we know the statistics of this noise. We
may formulate this problem in the following way:

arg max
x

p(x|b), (3.35)

where p(x|b) is a probability of image x given the �xed data b. This formulation
of reconstruction problem is quite logical as we want to �nd the most possible
image that given the data that was measured beforehand.

We may modify this problem according to Bayes rule:

arg max
x

p(x|b) = arg max
x

p(b|x)p(x)

p(b)
. (3.36)

In the formulation (3.36) we may see in the enumerator the product of probabil-
ities of obtaining data b given the image x and the apriori probability of image
x. The �rst term p(b|x) corresponds to the noise model of the system and is
also often referred to as data �tting term or data �delity term. The second term
represents the probability of the image itself. For example, we may think of the
image that has too big values of the gradient to be less possible than the image
with lower values of gradient. The value in the denominator is constant in terms
of x and, thus, can not be minimized.

The formulation (3.36) is a product of probabilities. It is possible to show that
the maximum of the positive function is equal to the maximum of the logarithm
of this function. Knowing this and the fact that the logarithm turns products to
sums it is possible to reformulate the problem (3.36):

arg max
x

p(b|x)p(x)

p(b)
= arg max

x
log p(b|x) + log p(x) + const. (3.37)

Now we may formulate each of the terms of the minimization problem. In case
the noise is Gaussian, indepent in each of the data points, and has the same
parameters (i.e., mean value and standard deviation), the data �delity term may
be written in the following way:

p(b|x) =

M∏
i=0

1√
2πσnoise

exp

(
−

(bi −
∑N
j=0 aijxj)

2

2σnoise2

)
. (3.38)
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Taking the logarithm of this we will get the expression that is up to a constant
coe�cient is equal to the function in (3.28):

log p(b|x) = const−
N∑
j=0

(bi −
∑N
j=0 aijxj)

2

2σnoise2
. (3.39)

Thus, in case we solve the problem with Gaussian noise it corresponds to the
least squares problem (3.28).

We should note here that the noise in the data may be non-Gaussian (the noise
models were overviewed in chapter 2), and in this case the data �delity term will
be di�erent and will not resemble the least squares problem. The data �tting
term depends on the noise model and the physics of the measurement process.

Now let us consider the term log p(x). This term could be interpreted as a
regularization term. But in this formulation it has a clear meaning: this term
represents our knowledge about the image without taking into account any data.
This term is also known as prior. We may assign the prior to be equal to any of
the regularizations that were introduced above and we may conclude that

− log p(x) = λReg(x) (3.40)

Here we should also note that not all of the priors are convex. Due to this, not
for all priors it is possible to solve the problem using the standard optimization
techniques. For non-convex priors there exist global optimization techniques such
as Monte-Carlo methods [2], [16], Simulated Annealing [20], [9] and many others.
Although they are quite powerful as a minimization tools, for the problems with
many data it is unwanted to use them as the running time of these methods is
exponential.

As an example of the non-convex prior we can give the l0 norm of the gradient
approximation:

− log p(x) = λReg(x) = λ
∑
j

I(‖Djx‖2), (3.41)

where the function I is an indicator function that is equal to 0 when the argument
is equal to zero or is false and is equal to 1 otherwise.

This regularization term penalizes the edges between di�erent grey levels. Thus,
the optimizer of the problem with regularization term (3.41) will be more likely
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to contain less edges than without this regularization term. Amount of edges will
depend on the regularization parameter λ. Unfortunately, this regularization
term is non-convex. More than that, it is possible to show that �nding the
optimizer of the problem (3.31) with regularization term from (3.41) is an NP-
hard problem in general.
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Chapter 4

Classical Segmentation
Techniques

In this chapter we will make a short overview of the segmentation techniques that
are related to the segmentation techniques we are using. We analyse pros and
cons of these methods.

4.1 Markov Random Field

The Markov Random Fields (MRF) is a quite widely used model for segmentation.
It is a discrete model, where each of the pixels (or sometimes superpixels [12]) of
the image x are assigned to one of the possible classes. The information about
the classes may be known beforehand or may be extracted from the image using
clustering techniques along with segmentation process.

This problem may also be formulated in the statistical way:

s = arg max
s
p(s|x), (4.1)
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where s is a segentation of the image x, the elements sj of the segmentation s are
called the labels. This problem is usually reformulated in terms of a potential:

s = arg min
s
−p(s|x) = arg min

s
U(s,x), (4.2)

where U is called a potential and is wanted to be minimized. Then the following
assumption is usually made: the potential contains two terms. One of these terms
takes into account, how much the segmentation label of a pixel (or superpixel)
depends on the features of this pixel (or superpixel). This term is usually referred
to as a unary potential. Another term re�ects how much the labels of two neigh-
bouring pixels (superpixels) a�ect each other taking into account the similarity
between these pixels. This term is usually referred to as a binary potential.

Thus, the segmentation problem may be reformulated now in the following way:

s = arg min
s

U(s,x) =

arg min
s

∑
j

Uu(sj , xj) +
∑
j

∑
j′∈N(j)

I(sj 6= sj′)Ub(xj , xj′)

s.t. sj ∈ N

(4.3)

where Uu is an unary potential, Ub is a binary potential, j is an index of the pixel
(superpixel), N(j) are the indices of neighbours of the pixel (superpixels) of the
pixel j.

Usually the �rst unary potential term takes into account di�erent information
about the pixel (superpixel). This may include the colors in the pixel (superpixel),
location, in case of the superpixel this may also include di�erent descriptors [5]
as well as the area of the superpixel.

The binary potential usually takes into account the similarity between two di�er-
ent pixels/superpixels, but this is not necessary. The binary term plays the same
role as a regularization in reconstruction problem. It prevents the segmentation
from over�tting the data (that in this case is an image) - and, thus, makes the
solution more robust.

The problem (4.3) is a discrete optimization problem. Now we will consider some
optimization techniques for these problems.

In case the segmentation contains only two classes (this problem is often referred



4.2 Variational l0 Method 37

to as separation object from the background), it is possible to represent this
problem in the form of solving the problem of minimum cut of a graph. (4.3).

This graph may be constructed in the following way: for each of the pixels (or
superpixels) of the image we make a vertex. Also we make two vertices one of
which is called the source, the other is called the terminal. We connect each of
the vertices that correspond to the pixel (or superpixel) j to the terminal with
the edge with capacity Uu(1, xj) and with the source Uu(0, xj). After this we
connect each of the pixels j with each of its neighbors j′ ∈ N(j) with edge with
capacity Ub(xj , xj′).

After that the minimum cut algorithm is applied to this graph [1]. The aim of
the minimum cut algorithm is to separate the source from the terminal cutting
the edges with minimal overall capacities. Thus, when we �nd the minimum cut
we can say that we have found a minimizer to the problem (4.3).

Unfortunately, this only works for the problem of separation of the object from the
background. The problem with more than two labels is an NP-hard problem. To
�nd an approximation to the solution of this problem we may use the algorithms
that are called Alpha-Expansion algorithm and Alpha-Beta Swaps [4], but these
algorithm compute only the approximation.

It is also possible to �nd an approximation of the problem (4.3) via the approach
that is called Message Passing for Markov Random Fields [11].

Other methods that may be applied here are based on the Monte-Carlo method
and usually need a lot of time to produce a reliable result.

4.2 Variational l0 Method

This method, in principle, solves a special case of the problem that was described
in section 3.3. In this method we solve the following minimization problem:

s = arg min
s
‖x− s‖+ λ

∑
j

I(‖Djs‖)

s.t. ∀j sj ∈ R,

(4.4)

where I is an indicator function discussed in equation (3.41), Dj is a discrete
approximation of the gradient in pixel j that was introduced in equation (3.33).



38 Classical Segmentation Techniques

The regularization term penalizes the amount of pixels, where the gradient is
non-zero. Thus, the amount of jumps of grey levels is forced to be limited.
As a consequence, the image that corresponds to the solution of this problem
has regions, where the grey level does not change at all. These regions may
be called segments, the grey level of the region may be treated as label and
the image that corresponds to the solution of this problem may be treated as
a segmentation. Thus, we approximate the image x with another image that is
treated as a segmentation s. The data �tting term corresponds to the Euclidean
distance between the segmentation s and the image x and the amount of jumps
in the segmentation is penalized by the regularization term.

In case the segmentation s contains only two values, this model is referred to as
the Chan-Vese model [2]. Also we should note here another important related
method of segmentation that also includes the penalty on the curvature of the
contour that separates regions with di�erent grey level. It is called the Mumford-
Shah model [7].

As was already mentioned above, these models are NP-hard problems.

4.3 Hidden Markov Measure Field Models

The Hidden Markov Measure Field Models (HMMFM) [6] are the relaxation
of the concept of the Markov Random Fields on the real number values. The
HMMFM assigns to each pixel (or super pixel) j the probability δjk to belong to
the class k. Thus, it is easy to compute the corresponding segmentation to the
given HMMFM:

sj = arg max
k

δjk. (4.5)

Thus, given a HMMFM there is a unique corresponding segmentation. We may
formulate the problem of computing the optimal Hidden Markov Measure Field
Model as a minimization problem in case we want to optimize the HMMFM
together with class parameters θ in the following way:

arg max
δ,θ

p(x|δ, θ)p(δ)p(θ)
p(x)

s.t. ∀j
∑
k

δjk = 1

∀j, k δjk ≥ 0,

(4.6)
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, where p(x|δ, θ) is a marginal probability of image x given the HMMFM δ and
the parameters θ. In case we want to optimize only the HMMFM having the
class parameters �xed we may formulate the problem in the following way:

arg max
δ

p(x|δ, θ)p(δ)p(θ)
p(x)

s.t. ∀j
∑
k

δjk = 1,

∀j, k δjk ≥ 0.

(4.7)

We should note here that the constraints come form the de�nition of the HMMFM:
as each of the elements of HMMFM is a probability, it should be greater than
zero and overall probability of assigning the pixel j to any class should be equal
to 1.

Thus, the problem �nding the best HMMFMmay be formulated as a optimization
problem. This problem may be solved using standard constraint optimization
techniques.

4.4 Other Methods

There are many other methods of computing the segmentation of the image, but
they are not that related to our work. These methods include watershed method
[10], level sets [9], snakes [3], region-growing methods [8] and many others. In
our work we deal with the variational formulation - and, thus, it is hard to use
those methods.
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Chapter 5

Joint Reconstruction and
Segmentation

Usually the segmentation of the reconstruction is done after the reconstruction
has already been computed. The main advantage of this approach is simplicity:
the reconstruction process does not need to interact with segmentation process.
Thus, it is possible to use standard reconstruction and segmentation techniques.
But this approach does not use the information about the classes in the recon-
struction process. Thus, it is logical to unite the segmentation and reconstruction
into one procedure to make use of prior knowledge about the classes. In this chap-
ter we overview the joint reconstruction and segmentation techniques.

5.1 Simultaneous Reconstruction and Segmenta-
tion with Entropy Prior

This approach was presented in [3]. In this paper the problem of reconstructing
the image from the CT projections is solved. The reconstruction problem is
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formulated using the of Maximum a Posteriori Probability:

arg max
x

log p(b|x) + log p(x), (5.1)

where b is the data, the prior p(x) is the exponent of the negative entropy:

p(x) = exp

(
−λ
∑
a

Px(a) logPx(a)

)
, (5.2)

where Px(a) is a normalized histogram of the image x, i.e., the probability of
the randomly chosen pixel to have the grey value a and λ is a regularization
parameter.

Unfortunately, this function is non-convex. In this work, the regularization pa-
rameter is being increased along iterations to avoid being stuck in local minimum.

This technique does not use segmentation as a special step, but it penalizes the
number of di�erent grey levels in the image and, by this, forces the image to have
small amount of grey levels. Thus, the value of the grey level may be treated as
a label and the image parts that have the same grey level may be treated as the
pixels that belong to the same class.

5.2 Discrete Algebraic Reconstruction Technique
(DART)

In this section we will consider the Discrete Algebraic Reconstruction Technique
(DART) [1]. The DART is a relaxation of the Algebraic Reconstruction Technique
on the space of discrete images (i.e., discrete pixel values). DART approach solves
the problem that is represented in the form of linear system of equations:

b = Ax

s.t. xj ∈ V,
(5.3)

whereV is a set of allowed grey level values. As was mentioned in Section 3.2, this
problem may be considered as a squared residual minimization problem (3.9) and
may be solved by means of approaches that were described in sections 3.2 and 3.3.
The DART approach is based on the iterative approaches from the section 3.2. To
reconstruct the image with this algorithm it is needed to have data b, knowledge
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about the geometry in form of matrix A or equivalent and set of discrete values
µk for the intensity levels known to be present in the reconstructed object.

The algorithm acts in the following way. First, an iterative algorithm (usually
SIRT) is run until it yields an approximation for the reconstruction. After that
this approximation is thresholded. The thresholds are computed using the fol-
lowing rule:

tk =
µk − µk+1

2
, (5.4)

where k is an index of the class. Thresholding produces a new image x† where
the elements are computed according to the following rule:

x†j =


µ0 if xj < t0

µ1 if t0 ≤ xj < t1

. . .

µK if tK−1 ≤ xj

. (5.5)

After that the boundary pixels are being found. The boundary pixels are the
pixels that contain at least two neighbour pixels with di�erent values of the
image x†. The other pixels are called internal pixels (I is a set of the indices of
internal pixels).

Then the image is updated in the following way:

xj =

{
x†j if j ∈ I
xj if j /∈ I.

(5.6)

After this update is done, the boundary pixels values are recomputed using the it-
erative algorithm (usually SIRT) having the other pixels �xed. After this process
is completed, the result is smoothed.

After that the algorithm is repeated from the thresholding step (5.5) and several
times iterated until convergence.

With this approach it is possible to get the images that contain only the grey
levels known beforehand. The pixels that belong to the same grey level tend to lie
together in the result of this approach. The rule that we change only the pixels
that are situated on the border between di�erent grey levels may be treated as
implicit regularization.

This algorithm shows very good performance on the data with a small amount
of projections. It is especially e�ective for binary images. It is capable of re-
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constructing the object when other reconstruction algorithms fail to give reliable
results.

As this algorithm is based on the other reconstruction algorithms, it is possible
to take advantage of the both iterative algorithms together with knowledge about
materials in the reconstructed object.

The performance of this approach on the complicated problem was demonstrated
in the paper [2], where the approach was tested on the problem of reconstructing
three-dimensional grains of complicated shape.

This approach was developed further in work [7], where authors improve the
update step of the algorithm that improves the performance of the algorithm in
some cases.

5.3 Simaultaneous Reconstruction and Segmen-
tation Algorithm using the Hidden Markov
Measure Field Model

The Simultaneous Reconstruction and Segmentation Algorithm that inspired our
work was developed by M. Brady and Dominique Van de Sompel [10]. In this ap-
proach the reconstruction of the image is computed together with a segmentation
and class parameters (mean values of the class and the standard deviations for
each of the classes). We should underline that our work is based on this approach
and, because of that, has many similarities with it.

The reconstruction is based on assumption that the image pixels belong to a set
of classes, each with Gaussian distributed grey levels. The number of classes is
assumed to be known a priori.

The segmentation in this approach is based on the Hidden Markov Measure Field
Model (HMMFM) that we denote as δ.

In this approach the image x and the segmentation δ are computed as an opti-
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mizers of the following energy function:

x, δ, θ = arg max
x,δ,θ

log p(b|x, δ, θ)+

log p(x|δ, θ)+
log p(δ) + log p(θ),

(5.7)

where θ is the set of class parameters for classes, θ is a set of parameters of the
classes. The parameters of classes are mean value µk and standard deviation σk.
Thus, θ contains all the pairs (µk, σk). The logarithms of the terms have clear
meaning and formulated as follows:

log p(b|x, δ, θ) = log p(b|x) =
∑
i

bi log
∑
j

aijxj −
∑
j

aijxj (5.8)

is a data �tting (or data �delity term),

log p(x|δ, θ) =
∑
j

log
∑
k

δjk
1√

2πσk
exp

(
− (xj − µk)2

2σ2
k

)
(5.9)

is a class �tting term, and

log p(δ) = λ
∑
k

∑
j

∑
j′∈N(j)

(δjk − δj′k)2 (5.10)

is a regularization term for the HMMFM, where λ is a regularization parameter
and

log p(θ) (5.11)

is a regularization terms for the parameters of the classes (it may be di�erent in
case there is a knowledge about the class parameters and constant if there is no
prior information about class parameters). In the paper [10] the optimization is
done in three-steps fashion. First, the image x is computed having the HMMFM
δ and parameters θ �xed. To do that the following problem is solved:

arg max
x

log p(b|x) + log p̃(x|δ, θ), (5.12)

where p̃(x|δ, θ) is an approximation of the term (8.14). The approximation is
formulated in the following way:

log p̂(x|δ, θ) = −
∑
j

(xj − µ̂j)2

2σ̂2
j

, (5.13)
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where the parameters µ̃ and σ̃ are computed according to the following rules:

µ̂j =
∑
k

δjkµk, (5.14)

σ̂2
j =

∑
k

δjk(σ2
k + µ2

k)− µ̂j . (5.15)

In the other words, the proability distribution p(x|δ, θ) in each pixel is approsi-
mated with a single Gaussian.

After the image is updated, the HMMFM δ is computed having the image x and
parameters θ �xed as an optimizer of the function

arg max
δ

log p(x|δ, θ) + log p(δ). (5.16)

Finally, when the image and HMMFM are updated, the parameters of classes are
reestimated having the image x and HMMFM δ �xed as follows:

arg max
θ

log p(x|δ, θ) + log p(θ). (5.17)

We should note that we have tried to use this approach to compare our algorithm's
results, but we have encountered an issue here: the problem (5.17) is non-convex
and authors in the paper [10] are not speci�c about which approach they used
for solving this problem.

5.4 Simultaneous Reconstruction and Segmenta-
tion without Neighborhood Prior

A similar problem was solved in [4], where the problem of joint reconstruction
and segmentation was solved using similar Maximum a Posteriori Probability
(MAP) aprroach, where the probability of the measured data was formulated as

arg max
x,δ,θ

p(b|x, δ, θ) = arg max
x,δ,θ

p(b|x)p(x|δ, θ)p(δ, θ), (5.18)

or, taking the logarithm of the objective function, one can get

arg max
x,δ,θ

log p(b|x) + log p(x|δ, θ) + log p(δ, θ). (5.19)
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The data �tting term was formulated for the case where the data has a Poisson
noise (for Transmission case):

log p(b|x) = −
∑
i

bi
∑
j

aijxj −
∑
i

exp

−∑
j

aijxj

 . (5.20)

The grey values of the classes were treated as being distributed according to the
Gamma distribution. Thus, the class �tting term log p(x|δ, θ) is the logarithm of
a mixture of Gamma distributions (θ are the parameters of these distributions).

log p(x|δ, θ) = log
∏
j

∑
k

δjkp(xj |k, θ), (5.21)

where p(xj |k, θ) is a Gaussian distribution.

As the so-called hyperprior (p(δ, θ)) the following information is used: the mixture
parameters (that we call HMMFM) are assumed to be distributed according to
the Gamma distribution, the distribution parameters are also distributed as a
Gamma distribution (for more details see the paper).

The optimization is done as an iterative two-steps algorithm. The �rst step is
the image update with HMMFM δ and the parameters θ �xed:

arg min
x

log p(b|x) + log p(x|δ, θ), (5.22)

the second step is the HMMFM and parameters update. It is computed as a
solution of the following optimization problem:

arg min
δ,θ

log p(x|δ, θ) + log p(δ, θ). (5.23)

The update strategy for both steps may be found in the paper [4]. After both
steps are complete, the next iteration is carried out starting with the image
update.

5.5 Other Related Work

Similar ideas of doing the reconstruction and segmentation simultaneously were
used in the paper [8]. This paper deals with the problem of ultrasound imaging
which uses classes as priors for denoising the resulting image.
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In the work [11] the authors deal with the problem of reconstructing the image
from noisy data (the cases of tomographic reconstructions and image deblurring
were considered) with l0 regularization . The problem is formulated as follows:

arg min
x
‖Ax− b‖22 + λI(‖Djx‖), (5.24)

where I is an indicator function that is equal to one when the argument is non-
zero and is equal to zero, when the argument is zero. As was already mentioned,
this objective function penalizes the borders between di�erent grey level areas of
the image. As a result, the larger the regularization parameter λ the less borders
are presented in the result. Thus, this regularization produces piecewise constant
reconstructions, where regions where the colour is constant may be treated as
the pixels that belong to the same class.

As was already mentioned, this regularization term is non-convex. Because of it
that, this way of dealing with this problem is quite inconvenient to solve as it
is NP-hard in general. In this work authors compute an approximation to the
solution of this problem using the fact that in case x is 1D array and the matrix
A is an identity matrix, this problem becomes not NP-hard.

In the work [9] the authors deal with problem of reconstruction and segmentation
by means of a level set approach for the CT problems. The problem that is being
solved is formulated as follows:

arg min
x
‖Ax− b‖22 + λ|Γ|, (5.25)

where Γ is a set of points, in which the image x may have discontinuities and λ is
a regularization parameter. In other words, the problem that is solved is similar
to reconstruction with l0 regularization.

The minimization algorithm runs as follows:

1. The initial approximation for the set of points Γ0, where the image is al-
lowed to have singularities is selected.

2. After that the image x is optimized varying the pixels that belong to the
set Γ and the grey levels of the other regions that are separated by the set
Γ.

3. After this the set of points with discontinuities is changed using the Level-
Sets approach.

4. Repeat steps 2 and 3 until convergence.
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For the technical details of the update steps please refer to the paper.

This approach was further developed in the paper [6] where the authors apply
this approach to the SPECT/CT problem. A similar approach was presented in
the work [5].

Another interesting approach to the reconstruction and segmentation is discussed
in the paper [12]. In this work the object jth element xj of the solution x is
represented in the form

xj = x1jH(φ(j)) + x2j(1−H(φ(j))), (5.26)

where H is a Heaviside function that is equal to 1 when the argument is greater
than zero, and is equal to zero otherwise, the vectors x1 and x2 are the smooth
images that describe the object in di�erent adjacent regions and the function
φ(j) is a level set function that separates the regions.

The problem is formulated as follows:

arg min
x1,x2,φ

‖Ax− b‖22 + λ1
∑
j

‖Djx1‖22H(φ(j))+

λ2
∑
j

‖Djx2‖22H(φ(j)) + λ3
∑
j

‖DjH(φ(j))‖

s.t. ∀j l1 ≤ x1j ≤ h1, l2 ≤ x2j ≤ h2

(5.27)

where λ1, λ2, λ3 are the regularization parameters, Dj is a discrete approximation
of the gradient, l1 and l2 are the lowest allowed values for x1 and x2 respectively,
h1 and h2 are the highest values of x1 and x2.

Thus, the reconstruction here is done in the form of regularized optimization
problem, the segmentation is done using the Level Sets approach.

The optimization procedure of this problem is an iterative process with two steps.
First, the images x1 and x2 are updated having the function φ(j) �xed. Then the
function φ(j) is updated having the images x1 and x2 �xed. After the function
φ is updated, the images are recomputed again and so on until convergence.

The optimization of the images is carried out using the Gradient Projection
Congugate Gradient approach (GPCG).

For the details about the reconstruction process and for results please see the
paper.
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Using this procedure it is possible to get the objects that have some areas with
smooth intensity levels inside of the larger areas with smooth intensity areas
(though it is important that three di�erent areas do not touch each other as it is
not possible to represent three di�erent regions that touch each other with only
two component images as shown in (5.26)). The object have sharp edges between
di�erent smooth areas.

5.6 Place of Our Work in This Context

In our work we want to use additional knowledge about the reconstructed object
in order to get better reconstruction. We selected the Hidden Markov Measure
Field Model (HMMFM) approach to be our segmentation model for that reasons
because it is real-valued (i.e., non-discrete), probabilistic model. It is easy to
regularize and it is not hard to solve the optimization problem as the standard
optimization techniques are applicable here.

It is possible to make link between our HMMFM-based approach and DART:
the �rst step of DART iteration (i.e. the thresholding) may be treated as an
approximation of the HMMFM segmentation, the algebraic (SIRT) step may be
treated as computation of next image approximation. The last is valid because
the l2 regularized HMMFM will have values di�erent from 1 and 0 for some of the
classes on the borders of the area with the same grey level inside, and because of
that the grey level is more likely to change near the edge of the area than inside
of the area.

For our HMMFM we need the following data: the matrix A, the data b, the
mean values µk and standard deviations σk for each class and two regularization
parameters λ1 and λ2. The set of the input parameters is quite similar to what
is needed for a DART algorithm.



Bibliography

[1] Kees Joost Batenburg and Jan Sijbers. �DART: a fast heuristic algebraic
reconstruction algorithm for discrete tomography�. In: Image Processing,

2007. ICIP 2007. IEEE International Conference on. Vol. 4. IEEE. 2007,
pp. IV�133.

[2] KJ Batenburg et al. �DART: a robust algorithm for fast reconstruction of
three-dimensional grain maps�. In: Journal of Applied Crystallography 43.6
(2010), pp. 1464�1473.

[3] Maarten Depypere et al. �The minimal entropy prior for simultaneous re-
construction and segmentation of in vivo microCT trabecular bone images�.
In: Biomedical Imaging: From Nano to Macro, 2009. ISBI'09. IEEE Inter-

national Symposium on. IEEE. 2009, pp. 586�589.

[4] Ing-Tsung Hsiao, Anand Rangarajan, and Gene Gindi. �Joint-MAP recon-
struction/segmentation for transmission tomography using mixture-models
as priors�. In: Nuclear Science Symposium, 1998. Conference Record. 1998

IEEE. Vol. 3. IEEE. 1998, pp. 1689�1693.

[5] Esther Klann. �A Mumford-Shah-like method for limited data tomography
with an application to electron tomography�. In: SIAM Journal on Imaging

Sciences 4.4 (2011), pp. 1029�1048.

[6] Esther Klann, Ronny Ramlau, and Wolfgang Ring. �A Mumford-Shah level-
set approach for the inversion and segmentation of SPECT/CT data�. In:
Inverse Probl. Imaging 5.1 (2011), pp. 137�166.



54 BIBLIOGRAPHY

[7] F Javier Maestre-Deusto et al. �ADART: An adaptive algebraic reconstruc-
tion algorithm for discrete tomography�. In: Image Processing, IEEE Trans-

actions on 20.8 (2011), pp. 2146�2152.

[8] Marcelo Pereyra et al. �Segmentation of skin lesions in 2-D and 3-D ul-
trasound images using a spatially coherent generalized Rayleigh mixture
model�. In: Medical Imaging, IEEE Transactions on 31.8 (2012), pp. 1509�
1520.

[9] Ronny Ramlau and Wolfgang Ring. �A Mumford�Shah level-set approach
for the inversion and segmentation of X-ray tomography data�. In: Journal
of Computational Physics 221.2 (2007), pp. 539�557.

[10] Dominique Van de Sompel and Michael Brady. �Simultaneous reconstruc-
tion and segmentation algorithm for positron emission tomography and
transmission tomography.� In: ISBI. 2008, pp. 1035�1038.

[11] Martin Storath et al. �Joint image reconstruction and segmentation using
the Potts model�. In: Inverse Problems 31.2 (2015), p. 025003.

[12] Sungwon Yoon, Angel R Pineda, and Rebecca Fahrig. �Simultaneous seg-
mentation and reconstruction: A level set method approach for limited view
computed tomography�. In: Medical physics 37.5 (2010), pp. 2329�2340.



Chapter 6

Simultaneous Tomographic
Reconstruction and

Segmentation with Class
Priors

We consider tomographic imaging problems where the goal is to obtain both a re-
constructed image and a corresponding segmentation. A classical approach is to
�rst reconstruct and then segment the image; more recent approaches use a dis-
crete tomography approach where reconstruction and segmentation are combined
to produce a reconstruction that is identical to the segmentation. We consider
instead a hybrid approach that simultaneously produces both a reconstructed
image and a segmentation. We incorporate priors about the desired classes of
the segmentation through a Hidden Markov Measure Field Model, and we impose
a regularization term for the spatial variation of the classes across neighboring
pixels. We also present an e�cient implementation of our algorithm based on
state-of-the-art numerical optimization algorithms. Simulation experiments with
arti�cial and real data demonstrate that our combined approach can produce
better results than the classical two-step approach.
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6.1 Introduction

In computed tomography (CT) it is often the case that the reconstructed 2D or
3D image is also used as an intermediate result in order to arrive at a segmentation
of the reconstructed object. The purpose of the segmentation is, e.g., to separate
an object from the background [36] or to identify speci�c objects or regions
[4], and this has many applications in medical imaging and in non-destructive
testing in materials science. The classical approach is �rst to produce a 2D or 3D
reconstruction, followed by segmentation of this image. Both steps are likely to
introduce errors and artifacts, and the errors in the reconstructed image usually
propagate to the segmentation.

In order to avoid this one can try to combine the image reconstruction and seg-
mentation in a single reconstruction model (leading to a more complex problem).
One idea is to allow only a small number of (known or unknown) pixel values,
leading to the problem of discrete tomography � see [4], [3], [14] for examples.
Another idea is to use segmentation principles to identify objects with known
pixel values in order to obtain sharper edges around these objects [36]. In both
cases, the segmented image is identical to the reconstructed image.

In this work we take a di�erent approach, which we refer to as Simultaneous

Reconstruction and Segmentation (SRS), where we simultaneously produce both
a reconstructed image and a segmentation. This idea was originally proposed by
Van de Sompel and Brady [33] who used a Hidden Markov Measure Field Model
(HMMFM) [24] that �learns� information about the di�erent types of objects or
phases from the given data during the SRS process. They demonstrate that the
combined approach is able to produce good reconstructions with sharp boundaries
of the objects. A di�erent algorithm that simultaneously reconstructs and
segments directly from the CT data was proposed by Ramlau and Ring [30], and
later generalized to SPECT in [22]. The same approach was also applied to CT
problems with limited data in [21]. Other papers that describe the use of a hidden
Markov �eld are [25] and [35].

Instead of �learning� or estimating information about the segmentation classes
during the reconstruction phase, we want to use this information as a prior to
stabilize the solution. We therefore propose a variant of the above method where
we explicitly specify prior information about the di�erent classes (i.e., about
di�erent types of phases), to be used in the segmentation via the HMMFM.

There is a variety of computational algorithms for tomographic reconstruction
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that use regularization in order to deal with the di�culties of the underly-
ing inverse problem [16]. Filtered back projection and its extension to 3D ge-
ometries are very popular algorithms [11], [19] that work well when enough
data/projections are available and the noise is not too large. Algebraic iterative
reconstruction methods [17] are also used frequently, and they can give better
reconstructions in case of limited data. Yet other algorithms are based on varia-
tional formulations where one minimizes a combination of a data-�tting term and
a regularization term (such as [6], [32]) that penalizes unwanted features; these
methods can be more �exible and compensate for large noise and limited data.
While TV regularization has been very popular in recent years, it still has some
limitations such as smearing of texture-rich regions and staircasing [34].

Concerning segmentation techniques, there are many approaches to the problem
of extracting regions of the image, e.g., by modeling the boundary between regions
either using implicit contour models like the level-set methods [31], [28], [1] or
including an explicit boundary model as in snakes [20]. Another group of methods
are based on pixel labeling, e.g., modeled by a Markov Random Field where
solutions can be obtained e�ciently using graph-cut methods [10], [8]. In order to
segment texture-rich images methods based on texture-features like the structure
tensor [12] are popular, but also sparse methods have shown to be e�ective for
texture segmentation [23], [15]. Some methods however require manual input
[20], [15], [26] in order to work correctly. In CT all of the methods may be used,
but it is preferable to use methods that do not need initialization by the user.

The classical approach with two separate steps (�rst reconstruct the image and
then segment it) has proven to be quite e�ective. However, although prior knowl-
edge about the expected types of objects or phases can be used during the seg-
mentation, this knowledge is rarely used in the reconstruction step. Discrete
tomography provides one way to incorporate such information about the desired
pixel intensities.

In this paper we consider a general SRS framework and we show how various
assumptions about the problem lead to a speci�c computational problem that
can be handled by means of state-of-the-art numerical optimization methods.
We then use numerical simulations to show that our algorithm can give very
good segmentation result for problems where the parameters of the reconstructed
phases are known, because our speci�c use of this prior information shrinks the
range of possible solutions and hence increases the quality of the reconstructed
image.

Our algorithm employs a user-speci�ed HMMFM to assign to each pixel the prob-
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abilities for belonging to the given classes. In this way we give a quantitative
measure of the similarity between each reconstructed pixel and each given class.
This approach to the segmentation problem allows us to naturally use the con-
nection between the HMMFM and the posterior probability density distribution.
Our computational algorithm uses e�cient numerical optimization algorithms,
thus avoiding the slowly converging sampling methods.

Recall that X-ray CT is based on the principle that if we send X-rays through an
object and measure the damping of each ray then, with in�nitely many rays, we
can perfectly reconstruct the object. The attenuation of an X-ray is proportional
to the object's attenuation coe�cient, as described by Lambert-Beer's law [13,
�2.3.1]. We divide the domain onto pixels whose unknown nonnegative attenua-
tion coe�cients are organized in the vector x ∈ RN . Similarly we organize the
measured damping of the rays into the vector b ∈ RM . Then we obtain a linear
system of equations Ax = b with a large sparse system matrix governed solely
by the geometry of the measurements: element aij is the length of the ith ray
passing through pixel j, and the matrix is sparse because each ray only hits a
small number of pixels [27].

Our paper is organized as follows. In Section 6.2 we present our general for-
mulation of the reconstruction model, and in Section 6.3 we make our model
more speci�c by means of assumptions related to the CT problem. Section 6.4
presents our considerations related to an e�cient computational algorithm for
the SRS problem. Our numerical experiments are presented in Section 6.5, and
we �nish the paper with a short conclusion. Throughout the paper we use the
following notation:

� i is the data index.

� j is the pixel index.

� k is the class index.

� b is a vector with the measured data b1, b2, . . . , bM .

� x is a vector with the pixels x1, x2, . . . , xN of the image (the columns of the
image are stacked into one long vector); the pixel values are the attenuation
coe�cients of the object.

� A is the M × N system matrix for the CT problem which describes the
linear relationship b = Ax between the attenuation coe�cients and the
data.
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� δ = {δjk} is the set of probabilities in the HMMFM for each class k of the
object and for each pixel j, satisfying

∑K
k=1 δjk = 1 for all j.

� p(x, δ | b) is the posterior probability density function for the image and the
HMMFM, given the data.

In each pixel, the probabilities for all the classes of the HMMFM must sum to
one. We note that the above notation trivially generalizes to 3D problems where
xj denotes a voxel instead of a pixel.

6.2 Problem Formulation

To solve inverse problems it is necessary to incorporate prior information about
the solution, in order to obtain a well-de�ned problem and a stable solution.
In this work, our prior takes the form of explicit information about the di�erent
types of phases in the object, which provides a rigorous prior for the segmentation.
Speci�cally, we assume that the object's attenuation coe�cients (the pixels of the
reconstruction) belong to K classes, where K is much smaller than the number N
of pixels. We assume that K is known and we provide prior information about
these classes in the form of probability densities associated with the classes. The
parameters of the di�erent classes (the mean attenuation coe�cients µk and their
variances σk for k = 1, . . . ,K) are assumed to be known from previous studies;
see �6.3.2. Moreover, following [24] we use an HMMFM to incorporate a spatial
prior inspired by the framework introduced in [33].

Our reconstruction problem originates from a classical constrained Bayesian for-
mulation:

argmax
x,δ

p(x, δ | b) (6.1)

s.t.

K∑
k=1

δjk = 1, δjk ≥ 0, j = 1, . . . , N, k = 1, . . . ,K.

In accordance with Bayes' rule, the probability p(x, δ | b) in (6.1) can be formu-
lated as:

p(x, δ | b) =
p(b |x, δ) p(x | δ) p(δ)

p(b)
, (6.2)

where
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� p(b |x, δ) = p(b |x) is the probability of obtaining the data b given the
image x; the data does not depend on the segmentation of the image.

� p(x | δ) is the probability of x given the probabilities of each class in each
pixel.

� p(δ) expresses our belief in the HMMFM; usually, the more complex or
chaotic the δ, the less we trust in it.

� p(b) is a normalization constant.

The function given in (6.2) is a product of several probabilities, and to make
the optimization process easier (as is common) we consider the logarithm of the
objective function instead of the function itself. Thus, ignoring the normalization
constant p(b), we arrive at the general formulation of the SRS problem:

(x∗, δ∗) = argmax
x,δ

log p(x, δ | b)

= argmax
x,δ

(
log p(b |x) + log p(x | δ) + log p(δ)

)
(6.3)

s.t.

K∑
k=1

δjk = 1, δjk ≥ 0, j = 1, . . . , N, k = 1, . . . ,K.

This model can be used for simple classi�cation situations (e.g., graylevel/intensity
classi�cation) as well as for more complex classi�cation algorithms. In this paper
we will use and analyze this framework for a simple graylevel problem.

Having solved the problem for x and δ, it is easy to obtain the segmentation
knowing the HMMFM. For each pixel xj we compute the corresponding labels
sj as:

sj ≡ argmax
k

δjk, j = 1, . . . , N (6.4)

which is simply the most probable class in each pixel. Hereby we both obtain a
reconstructed image and a segmentation based on speci�c model assumptions.

6.3 Assumptions for the CT Reconstruction Prob-
lem

To make the general SRS framework (6.3) more speci�c we make assumptions
about the probability density functions that we use. Here we consider them as
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known, and indeed in many cases we will know the attenuation coe�cients and
their uncertainties for the phases under study (e.g., muscle, fat, bone, and air in
medical imaging). How to obtain these parameters is not part of this work.

6.3.1 Data Fitting Term

Our �rst assumption regards the noise model. According to [2], the measured
data is usually a sum of several terms:

� Data received from the X-ray illumination of the object, with Poisson noise.

� Poisson noise of the measuring equipment and from external sources.

� Gaussian noise caused by the electronics and the conversion from an analog
signal to digital data.

Following [2] we assume that the signal-to-noise level is high enough that we
can approximate the total noise by additive unbiased Gaussian noise N (0, σ2

noise)
where σnoise is the standard deviation of the noise. We also assume that the noise
is uncorrelated with the data and independent such that p(b |x) = p(ε), where
the vector ε represents the Gaussian noise, i.e., εi ∼ N (0, σ2

noise). Consequently
the �rst term in our reconstruction model, which we refer to as the data �delity

term, is given by:

p(b |x) =

M∏
i=1

p(bi |x) =
1√

2MπMσMnoise
exp

(
−

M∑
i=1

(Ax− b)2i
2σ2

noise

)

=
1√

2MπMσMnoise
exp

(
−‖Ax− b‖22

2σ2
noise

)
,

where (Ax − b)i denotes the ith element of the residual vector. The �rst term
in (6.3) thus becomes:

log p(b |x) = −‖Ax− b‖22
2σ2

noise

− 1

2
log(2MπMσ2M

noise), (6.5)

and we note that 1
2 log(2nπnσ2n

noise) is a constant that is una�ected by the op-
timization. The data �delity term in this problem formulation is identical to a
classical least squares �tting term.
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6.3.2 Class Fitting Term

To specify the second term of (6.3) related to the classes of the image, we as-
sume that the object is composed of a set of K di�erent phases, and that each
phase has the same attenuation coe�cient everywhere. Speci�cally, we assume a
Gaussian mixture where we specify the distribution of the attenuation coe�cients
within a class as a normal distribution with mean value µk equal to the expected
attenuation coe�cient and a (small) standard deviation σk. Here, all µk and σk
for k = 1, . . . ,K are assumed to be known, and we have

p(xj | class = k) =
1√

2πσk
exp

(
− (xj − µk)2

2σ2
k

)
.

Now let δj = {δj1, . . . , δjK} denote the set of the K class probabilities associated
with pixel j. Then we can write the probability p(x | δ) as

p(x | δ) =

N∏
j=1

p(xj | δj) =

N∏
j=1

K∑
k=1

p(xj | class = k) p(class = k | δj).

Since we assume that p(class = k | δj) = δjk is the probability of the pixel j
belonging to class k, the above expression takes the form:

p(x | δ) =

N∏
j=1

K∑
k=1

δjk
1√

2πσk
exp

(
− (xj − µk)2

2σ2
k

)
.

Thus, the second term of (6.3) can be written as

log p(x | δ) =

N∑
j=1

log

[
K∑
k=1

δjk√
2πσk

exp

(
− (xj − µk)2

2σ2
k

)]
. (6.6)

We refer to this as the class-�tting term.

6.3.3 Regularization Term

The third term of (6.3) is our con�dence in the segmentation and it is thus a
regularization term where we specify our prior knowledge about the behavior
of the segmentation. Contrary to classical regularization methods, our prior is
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concerned with the classes (and not the pixel values). We use the following generic
formulation

log p(δ) = −
K∑
k=1

R(δk), (6.7)

where δk = {δ1k, . . . , δNk} is the set of probabilities for class k and R is a function
that expresses our prior, such as our knowledge of the expected spatial correla-
tions of the classes among the pixels. In this paper, we use two di�erent functions
inspired by common choices in image reconstruction, cf. [16].

For ease of presentation, consider the case where x represents a 2D image (the
extension to 3D is obvious) and let j′ and j′′ denote indices to the two elements
of x, in its 2D representation, that are neighbors horizontally and vertically. Let
J denote the set of indices j for which both j′ and j′′ refer to pixels inside the
image.

� The total variation (TV), i.e., the 1-norm of the gradient magnitude for the
kth class associated with all pixels of x:

RTV(δk) =
∑
j∈J

(
(δjk − δj′k)2 + (δjk − δj′′k)2

)1/2
. (6.8)

� A Tikhonov-type regularizer equal to the squared 2-norm of the gradient
magnitude for the kth class associated with all pixels of x:

RTik(δk) =
∑
j∈J

(
(δjk − δj′k)2 + (δjk − δj′′k)2

)
. (6.9)

The use of the TV function RTV (6.8) allows discontinuities in the probabilities
for the classes associated with neighboring pixels � and one expects this to be well
suited for the segmentation process. The use of the Tikhonov function RTik (6.9)
enforces some spatial smoothness of the probabilities among classes associated
with neighboring pixels.

6.3.4 The Reconstruction Model

At this time we assemble the three terms speci�ed above into the complete recon-
struction model. In doing so, we introduce two regularization parameters λnoise
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and λclass that let us balance the weight given to the noise term and the regu-
larization term, respectively, and as is common we absorb the factor 1/(2σ2

noise)
into λnoise. The complete reconstruction model thus takes the following form
(swapping �min� for �max� and changing signs of the terms):

(x∗, δ∗) = argmin
x,δ

(
λnoise‖Ax− b‖22 + λclass

K∑
k=1

R(δk)

−
N∑
j=1

log

[
K∑
k=1

δjk√
2πσk

exp

(
− (xj − µk)2

2σ2
k

)])
(6.10)

s.t.

K∑
k=1

δjk = 1, δjk ≥ 0, j = 1, . . . , N, k = 1, . . . ,K.

To summarize, our reconstruction problem (6.10) takes as input our data b and
the class parameters µk, σk, k = 1, . . . ,K, together with the regularization func-
tion R(·) and the regularization parameters λnoise, λclass, and produces the solu-
tion pair x∗ and δ∗. We note that the reconstruction problem is non-convex in x
and our computational algorithm (described in the next section) must take this
into account.

6.3.5 Simpli�cations

To deal with the non-convexity of the problem, we introduce two di�erent simple
convex approximations to the class-�tting term p(x | δ), and both of them are
used in the algorithm described in the next section. Note that the objective
function in (6.10) is a multi-modal function for each pixel, consisting of a sum of
Gaussian functions, that causes the non-convexity of the problem. The underlying
idea is then to approximate this function with a uni-modal approximation � a
single Gaussian function � such that we can use standard methods from convex
optimization.

The �rst type of simpli�cation was introduced in [33], and for each pixel xj it
�lumps� the parameters δjk, µk and σk into the parameters µ̂j , σ̂j and δ̂j = 1,
where

µ̂j =

K∑
k=1

δjkµk, σ̂2
j =

K∑
k=1

δjk(σ2
k + µ2

k)− µ̂2
j , j = 1, . . . , N. (6.11)
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Figure 6.1: Illustration of the simpli�ed uni-modal class-�tting functions
p̂(x | δ) (6.12) and p̃(x | δ) (6.13) together with the multi-modal
function p(x | δ) (6.6). We use the parameters K = 4, δj =
{0.11, 0.53, 0.32, 0.04}, µ1 = 0.15, µ2 = 0.4, µ3 = 0.55, µ4 = 0.75,
and σ1 = σ2 = σ3 = σ = 4 = 0.02.

The simpli�ed function then takes the form (omitting an additive constant):

log p̂(x | δ) = −
N∑
j=1

(xj − µ̂j)2

2σ̂2
j

. (6.12)

The second type of simpli�cation takes a di�erent approach. When we are close
to the solution we expect that for most of the pixels xj the corresponding δjk
will approach a situation where one of them, say, δjkj , is close to 1 while the
remaining ones are small � corresponding to a high probability that this pixel
belongs to class kj . In this situation it is natural to set

δ̂jk =

{
1, if k = kj ,

0, otherwise,
j = 1, . . . , N

and then (6.11) simpli�es to µ̂j = µkj , σ̂j = σkj , and we obtain the simpli�ed
function

log p̃(x | δ) = −
N∑
j=1

(xj − µkj )2

2σ2
kj

. (6.13)

Figure 6.1 illustrates these approximations.
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6.4 Algorithm

We compute a solution to the reconstruction problem (6.10) using an iterative, al-
ternating optimization algorithm as is common practice for non-convex problems.
Our algorithm is based on the following idea. First we use the simpli�cation in
(6.12) to roughly approximate the solution. When we are close to the solution,
we instead use the simpli�cation (6.13) in order to improve the reconstruction
result. Hence the algorithm has two overall stages, and in both stages the iter-
ations alternate between two steps in which we update either the image or the
classes. In the �rst stage we compute an approximate solution pair (x̂∗, δ̂∗) using
the simpli�ed expression (6.12). This approximation is then used as initial guess
for the second stage based on the alternative simpli�ed function in (6.13). The
algorithm is summarized in Fig. 6.2 at the end of this section.

6.4.1 Stage 1

In the �rst stage we apply our iterative scheme to problem (6.10) with the simpli-
�cations (6.11) and (6.12). Our algorithm alternates between two steps in which
we update either x̂n or δ̂n, where the superscript n denotes the iteration. In the
image-update step we update the pixel values:

x̂n+1 = argmin
x

λnoise‖Ax− b‖22 +

N∑
j=1

(xj − µ̂nj )2

2(σ̂nj )2

 , (6.14)

and we note that µ̂nj and σ̂nj depend on the iteration � they are functions of the
current HMMFM and computed using (6.11)). The function in (6.14) is convex
in x and we compute its minimum by means of the Conjugate Gradient Least
Squares (CGLS) algorithm [7] which is well suited for large-scale problems. As
the initial guess for CGLS we use the image from the previous iterate.

In the class-update step we update the classes:

δ̂n+1 = argmin
δ

λclass K∑
k=1

R(δk)−
N∑
j=1

log

[
K∑
k=1

δkj√
2πσk

exp

(
−

(x̂nj − µk)2

2σ2
k

)]
(6.15)

s.t.

K∑
k=1

δjk = 1, δjk ≥ 0, j = 1, . . . , N, k = 1, . . . ,K.
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Di�erent algorithms can be used to solve this problem; we use the iterative Frank-
Wolfe algorithm [5], also known as the conditional gradient method, which en-
forces the conditions (for j = 1, . . . , N and k = 1, . . . ,K)

K∑
k=1

δ̂n+1
jk = 1 and δ̂n+1

jk > 0.

We choose the initial guess δ̂ for this algorithm as δ̂0jk = 1/K, for all j and k,
which by numerical experiments was found to be the most robust initialization.

6.4.2 Stage 2

When the changes in the image x̂n and the classes δ̂n become small during
Stage 1, this signals that we are making little progress with the approach based
on the simpli�cations (6.11) and (6.12). We stop these iterations when

‖x̂n+1 − x̂n‖2/‖x̂n‖2 ≤ 10−6. (6.16)

At this stage, most of the pixels j in the image have been assigned to a single
class, meaning that the corresponding δjk are close to 0 or 1 and σ̂j � 1.

It is now natural to switch to Stage 2 in which we use the second type of sim-
pli�cation in (6.13) where, for each pixel, we only use the class with the highest
probability. The main goal of this stage is to consider those remaining pixels for
which δjk have not yet approached 0 or 1, which typically are those at the edges
inside the image. Equation (6.13) ensures that these pixels are also assigned to
a single class, forcing σ̂j � 1. We emphasize that, according to our experiments,
Stage 2 will give good results only when most pixels have been assigned to a
single class in Stage 1.

First we perform the image-updating step, which now takes the form:

xn+1 = argmin
x

λnoise‖Ax− b‖22 +

N∑
j=1

(xj − µkj )2

2σ2
kj

 , (6.17)

where kj is the index to the largest δjk for the jth pixel. We still use CGLS
to solve (6.17). The class-updating step is identical to that of Stage 1, and
again we solve it with Frank-Wolfe algorithm. Usually it is enough to perform
1�3 iterations of the Stage 2. Our observation is that the �ne-tuning of the
classi�cation results in an improved reconstruction.
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Initialization: δ̂0jk = 1/K, ∀j, k.

Stage 1
For n = 1, 2, . . . , n1

Compute µ̂j and σ̂j using (6.11).
Compute x̂n using (6.14) by means of CGLS with initial guess xj = µ̂n−1j .
Compute δ̂n using (6.15) by means of FWA with initial guess δ̂n−1.

Stage 2

Set xn1 = x̂n1 and δn1 = δ̂n1 .
For n = n1 + 1, n1 + 2, . . . , n1 + n2

Compute kj such that δjkj = maxk δjk, ∀j.
Compute xn using (6.17) by means of CGLS with initial guess xj = µn−1kj

.
Compute δn using (6.15) by means of FWA with initial guess δn−1.

Finish: Set x∗ = xn1+n2 and δ∗ = δn1+n2 .

Figure 6.2: Summary of our SRS algorithm; �CGLS� is a robust implementa-
tion of the Conjugate Gradient algorithm for Least Squares prob-
lems, and �FWA� denotes the Frank-Wolfe algorithm. Note that an
initial image is not needed for the SRS algorithm.

6.5 Numerical Results

In this section we present a series of numerical experiments where we compare our
two-stage algorithm SRS with the classical approach where the reconstruction and
segmentation are performed in two consecutive independent steps. We consider
two versions of our algorithm, SRS-TV and SRS-Tik, corresponding to the two
di�erent regularization terms (6.8) and (6.9), respectively. We use quite small
test images such that the artifacts of the di�erent algorithms are clearly visible.

For the reconstruction step of the classical approach we use two di�erent algo-
rithms: the Filtered Back Projection (FBP) method as implemented in MAT-
LAB's iradon function, and Total Variation (TV) regularization as implemented
in the software package1 TVReg [18] which solves the problem

min
x

1/2‖Ax− b‖22 + αTV(x), 0 ≤ xi ≤ 1, i = 1, . . . , N, (6.18)

1The code for TVReg is available from http://www2.compute.dtu.dk/∼pcha/TVReg/.
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where TV(x) uses standard �nite di�erences to compute the gradient magnitude.
The segmentation in the classical approach is done by means of a Markov random
�eld algorithm via graph cuts [9] using the graph-tool software [29], assuming
that the number K of classes is known.

6.5.1 Test Using Arti�cial Data

The test problem used throughout these experiments is a standard 2D CT prob-
lem with 58 projections at angles (i/58) · 180◦, i = 1, 2, . . . , 58, and with 181
parallel rays for each angle, and the image is 128×128 pixels. The corresponding
sparse matrix A is thus of size M × N = 10, 499 × 16, 384 corresponding to an
underdetermined system. Each nonzero element aij is the length of ray i through
pixel j, and A was generated by means of the function paralleltomo from the
MATLAB package2 AIR Tools [17]. Given the exact test image xexact we gen-
erate data with additive Gaussian noise as b = Axexact + e, where each element
of the noise vector e is from the same normal distribution with zero mean and
standard deviation chosen such that ‖e‖2/‖Axexact‖2 = 0.01.

To study the performance of the algorithms, we use four di�erent test images
xexact (they are shown in Figures 6.5�6.6):

1. The Shepp-Logan phantom from MATLAB.

2. A binary (2-class) phantom consisting of an image with random �ne struc-
tures that are mostly horizontal.

3. A 4-class phantom with random regions separated by thin structures.

4. A gray-scale image with sharp contours and regions with smoothly varying
intensities.

We include the Shepp-Logan phantom because it is so widely used (although it is
an easy problem for TV regularization). The last other phantoms are generated
by the function phantomgallery in AIR Tools.

In the FBP reconstructions we used the Hann �lter and linear interpolation.
In the TV reconstruction algorithm and in our method we manually chose the

2Version 1.2 of the AIR Tools package is available from

http://www2.compute.dtu.dk/∼pcha/AIRtools/.
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Table 6.1: Regularization parameters used in the SRS algorithm for the di�er-
ent test problems in this section and the real-data example in the
next section.

Shepp-Logan Binary 4-class Gray-scale Real data
SRS-Tik λnoise 4.2 · 10−3 4.5 · 10−4 6.5 · 10−4 4.0 · 10−4 0.2

λclass 1.0 0.5 0.5 0.4 0.3
SRS-TV λnoise 2.0 · 10−2 9.5 · 10−4 3.0 · 10−2 8.5 · 10−4 �

λclass 0.4 0.3 0.32 0.5 �

regularization parameters that minimize the image reconstruction error. In the
SRS algorithm we choose the regularization parameters to give a good balance
between reconstruction errors and segmentation errors; the parameters we use
are listed in Table 6.1. The development of an automatic procedure for choosing
these parameters is outside the scope of this paper. The number of iterations n1
in Stage 1 is based on the stopping rule (6.16); in Stage 2 we always used n2 = 5
iterations.

6.5.1.1 Study of Convergence

Given the reconstructed image x∗, the relative image reconstruction error is
de�ned as

εrec = ‖xexact − x∗‖2/‖xexact‖2. (6.19)

Given the vector s∗ of labels computed by means of (6.4), the relative segmenta-

tion error is de�ned as the fraction of mislabeled pixels,

εseg =
1

N

N∑
j=1

I(sexactj 6= s∗j ), (6.20)

where sexact is the vector of true labels, N is the number of pixels in the image,
and I is a logical indicator function.

The error histories for algorithm SRS-Tik are shown in Fig. 6.3, and images and
segmentations for selected iterations are shown in Fig. 6.4 (the error histories,
reconstructions, and segmentations for SRS-TV are very similar and not shown
here). The error decreases monotonically; the �rst few iterations give the biggest
reduction and then the error reaches a plateau. During Stage 1 both the recon-
struction and the segmentation improve � the image intensities improve, noise



6.5 Numerical Results 71

Table 6.2: Summary of errors. In each entry, the top and bottom numbers are
the relative image reconstruction error εrec and the relative segmen-
tation error εseg, respectively.

Test problem FBP→Seg TV→Seg SRS-Tik SRS-TV

1: Shepp-Logan
0.34 0.038 0.021 0.023
0.056 0.0038 0.0026 0.0031

2: Binary
0.46 0.33 0.18 0.26
0.096 0.035 0.015 0.029

3: 4-class
0.39 0.16 0.047 0.055
0.38 0.077 0.0057 0.0064

4: Gray-scale
0.24 0.082 0.060 0.087
0.095 0.0040 0.0047 0.0051

is removed, and the edges become increasingly sharper. A few steps of Stage
2 improves the quality of the reconstruction, while the segmentation is hardly
changed.

6.5.1.2 Study of Reconstruction and Segmentation Errors

The reconstruction and segmentation errors εrec and εseg for all algorithms and
phantoms are summarized in Table 6.2, and the computed images and segmen-
tations are shown in Figures 6.5 and 6.6. �FBP→Seg� and �TV→Seg� denote
reconstruction by means of FBP and TV, respectively, followed by segmentation,
while �SRS-Tik� and �SRS-TV� denote our algorithm with the regularization
terms (6.9) and (6.8), respectively.

We see from both the table and the �gures that the worst results are produced by
FBP → segmentation; both the reconstructed image and the segmented image
contain a lot of noise and artifacts.

The results for TV → segmentation are closer to the ground truth, but the
reconstructions and the segmentations have the characteristic TV artifacts: the
reconstructions capture small details but they also exhibit the standard TV stair-
casing e�ect, they include a number of small unwanted �clusters� of pixels, and
the pixel intensities tend to be incorrect. Indeed, the images of the pixel-wise ab-
solute errors |xexact−x∗| clearly show the incorrect image intensities with errors
in the range 0.1�0.4. The underlying problem is that we underestimate jumps in
the image intensities [34].
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Image reconstruction errors εrec Segmentation errors εseg
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Figure 6.3: Error histories: the evolution of the image and segmentation errors
εrec and εseg during the iterations of the SRS-Tik algorithm (the
error histories for SRS-TV are very similar).
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Stage 1 Stage 2
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Figure 6.4: Images xn (top) and segmentations sn (bottom) for selected iter-
ations during the SRS-Tik algorithm. For colorbars, see Figs. 6.5
and 6.6.
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Figure 6.5: Results for the Shepp-Logan test problem (four top rows) and the
binary test problem (bottom four rows). The left and right color-
bars are for the reconstructions and segmentations, respectively.
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Figure 6.6: Results for 4-class test problem (top four rows) and the gray-scale
test problem (bottom four rows). The left and right colorbars are
for the reconstructions and segmentations, respectively.
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We note that the TV reconstructions are slightly under-regularized, i.e., they
include some amount of noise. Our empirical experience is that a bit of under-
regularization in TV give less segmentation errors, because a slightly under-
regularized TV reconstruction is more likely to include small features of the
ground truth image.

For test problems 1, 2 and 3 the results from our SRS algorithm are more accu-
rate than those from the classical approach, both for the reconstructions and the
segmentations. This is especially true for test problems 2 and 3 which contain
a lot of �ne-structure, and for all test problems our reconstructions look signi�-
cantly sharper than those from FBP and TV. Moreover we avoid the staircasing
e�ect associated with TV reconstructions.

From a computational point of view, the TV regularization term RTV (6.8) in
algorithm SRS-TV is more di�cult to handle than the Tikhonov term RTik (6.9)
used in SRS-Tik. As a consequence, for SRS-TV the range of appropriate reg-
ularization parameters is quite small and the computing time is large, while for
SRS-Tik the range for appropriate parameters is larger and the computing time
is signi�cantly smaller. From a practical point of view this makes the SRS-Tik
algorithm more favorable.

Another advantage of SRS-Tik over SRS-TV is that during the iterations the for-
mer allows more �exibility in the location of sharp transitions in the probabilities
in the HMMFM. This is because TV insists on putting discontinuities in these
probabilities, while Tik allows more smooth transitions, and hence the location
of the edges is done in a more �exible way. This is particularly evident from test
problem 3, see the images during the iterations shown in Fig. 6.4. That means
that in the pixels that are close to the detected edge the σj is rather big and that
allows to tune the edge better during the iterations.

In conclusion we propose to use the Tikhonov regularization term and the corre-
sponding SRS-Tik algorithm, because it requires less computing time, the choice
of the regularization parameter is less critical, and its reconstructions and seg-
mentations are competitive with those of algorithm SRS-TV.

6.5.2 Robustness Test

In our algorithm we assume that the user speci�es the parameters µk and σk. It
is interesting to see how sensitive the computed reconstruction and segmentation
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Table 6.3: Sensitivity experiments with the 4-class phantom and the SRS-Tik
algorithm. The true estimates are µ1 = 0, µ2 = 0.33, µ3 = 0.66,
µ4 = 1 and the results in the previous section were obtained with
σk = 10−4, k = 1, 2, 3, 4. For these values the errors are εrec = 0.047
and εseg = 0.0057, cf. Table 6.2. See the text for an explanation of
the experiments.

Experiment µ 0.5 0.55 0.6 0.7 0.75 0.8
1 εrec 0.14 0.106 0.074 0.056 0.095 0.139

εseg 0.05 0.027 0.013 0.007 0.023 0.06
2 εrec 0.27 0.247 0.165 0.082 0.122 0.151

εseg 0.146 0.130 0.065 0.018 0.040 0.076
3 εrec 0.132 0.103 0.083 0.067 0.105 0.142

εseg 0.042 0.025 0.016 0.011 0.033 0.065

are to the estimates µk of the attenuation coe�cients and the associated σk. To
study this we changed one of the estimates to a wrong value and analyzed how the
resulting reconstruction and segmentation change, compared to results obtained
with the correct estimate.

The results are shown in Table 6.3 for the SRS-Tik algorithm with the same
choice of λnoise and λclass as before applied to the 4-class phantom. In all the
experiments we kept µ1, µ2 and µ4 at the correct values and varied µ3 around its
correct value 0.66. We show the reconstruction and segmentation errors (6.19)
and (6.20) for the following three experiments:

1. Here we kept σ1 = σ2 = σ3 = σ4 = 10−4.

2. Here σ1 = σ2 = σ4 = 10−4 while σ3 = 2 · 10−4.

3. Here σ1 = σ2 = σ3 = σ4 = 2 · 10−4.

When µ3 assumes an incorrect value then clearly the errors increase, but we
note that the results are still better than the results obtained with the TV→Seg
algorithm for which the errors are εrec = 0.16 and εseg = 0.077 (from Table 6.2).
Hence, our algorithm can handle an incorrect estimate as long as it does not
take a value close to one of the other estimates (in which case the segmentation
becomes wrong).

One might expect that we can compensate for a wrong estimate µ3 with a bigger
σ3. Unfortunately, this is not true for our algorithm as documented in the table.
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Figure 6.7: The measured data (the sinogram) for the real-data problem.

In fact, changing only one σk tends to increase the errors, and in particular the
segmentation error, because many pixels are mislabel when the parameters σk
are unbalanced. As also shown in the table, increasing all σk to the same value
is preferable, and we note that we obtain almost the same errors when all σ2 are
twice as large.

The conclusion of this experiment is that we should use balanced values for σk
and that we cannot use σk to compensate for an incorrect µk.

6.5.3 Test Using Real Data

We complete our performance studies with some experiments using real data.
The data was collected using a micro-CT scanner with fan-beam geometry that
scans the object slice-by-slice. For our reconstruction we use 167 projections,
with 512 rays in each projection. The reconstructed image contains 362 × 362
pixels, and hence the amount of pixels is approximately 1.5 times larger than the
amount of data. The data, in the form of the sinogram, is shown in Fig. 7.3.

The scanned object is a candy that contains air, a nut at the center, pieces of
nuts, chocolate, and wa�e, enclosed in a thin aluminum foil. Nuts and wa�e
have almost the same attenuation coe�cients, so we treat them as the same
class. The foil, which has a high attenuation coe�cient, is very thin and since the
resolution is too low to accurately represent the foil, the reconstructed coe�cients
are inaccurate; for this reason we do not account for the foil in our classes. As
priors for the classes we used the following mean values and standard deviations.
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Figure 6.8: Results for the real-data problem; all reconstructs/segmentations
have the same color scale.
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� Air: µ1 = 0, σ1 = 0.001.

� Nuts and wa�e: µ2 = 0.0033, σ2 = 0.001.

� Chocolate: µ3 = 0.0044, σ3 = 0.001.

Knowing that FBP is not well suited for underdetermined problems, we compare
two algorithms: TV→ segmentation (using again the alpha-expansion segmenta-
tion algorithm) and our SRS-Tik algorithm. The matrix A for this problem was
generated with the function fanbeamtomo from AIR Tools [17].

The reconstructions are shown in Fig. 6.8. We computed TV reconstructions
for two di�erent values of the regularization parameter α in (6.18); for the small
value we are able to recover small details in the segmentation, but there are many
misclassi�ed pixels; for the larger parameter we have more homogeneous areas in
the segmentation but we miss many small details (for example, it is di�cult to
see the edges between di�erent phases). In conclusion, the TV → segmentation
algorithm does not perform so well.

In the SRS-Tik reconstruction the edges are always clearly visible and overall
image looks signi�cantly sharper than TV reconstruction. Although our recon-
struction looks slightly more noisy (because we do not use a smoothing prior in
the reconstruction), we emphasize that the majority of the noise-looking pixels
are actually correlated with the texture of the reconstructed object. Our segmen-
tation of the object identi�es more correct pixels than the TV → segmentation
algorithm.

Although we do not know the foil's precise attenuation coe�cient, in the SRS-
Tik reconstruction the position of the foil is reconstructed correctly and better
than in case TV→Seg algorithm � in both algorithms it is assigned to the second
class.
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Chapter 7

Relaxed Simultaneous
Tomographic

Reconstruction and
Segmentation with Class
Priors for Poisson Noise

This work is a continuation of work on algorithms for simultaneous reconstruction
and segmentation. In our previous work we developed an algorithm for data with
Gaussian noise, and in that algorithm the coe�cient matrix for the system is
explicitly store. We improve this algorithm in two ways: our new algorithm can
handle Poisson noise in the data, and it can solve much larger problems since it
does not store the matrix. We formulate this algorithm and test it on arti�cial
test problems. Our results show that the algorithm performs well, and that we
are able to produce reconstructions and segmentations with small errors.
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7.1 Introduction

In this work we continue developing the method of Simultaneous Reconstruction
and Segmentation (SRS) that makes reconstruction and segmentation in joint
fashion that �rst was presented in the work [22] and was further developed in [19].
The main goal of this work is to solve larger problems and to apply the algorithm
to problems with Poisson noise. We will call our method in this work SRS-II as
it is di�erent from the one we presented in the �rst work. To make the search for
a minimum of a non-convex function more robust, we use approach similar to the
Simulated Annealing approach. We test our approach on an arti�cial problem.

There is a variety of methods that allow to make reconstruction. The main ana-
lytical method is Filtered Back Projection (FBP), also known as inverse Radon
Transform [7], [13]. The strong sides of this algorithm are simplicity and low
computational time, but many projections are usually needed for a good recon-
struction. In case the amount of data that is provided for the reconstruction is
not enough, the results will be poor. Another drawback of this algorithm is that
it is signi�cantly a�ected by noise. In case the data that was collected is not very
precise - the reconstruction may be noisy. This drawback in many cases may
be compensated by amount of data, but collecting big amounts of data in many
cases is unwanted or expensive. One more drawback of this approach is that the
supported geometries are very limited.

Another class of important techniques are the algebraic reconstruction techniques
[11]. This includes Kaczmarz method [12], Cimmino method [16] and many oth-
ers. These methods rely on the phenomenon of semiconvergence [10]. The main
advantage of these techniques is that they support any reconstruction geometry
as long as it may be formulated in the form of a set of linear system of equa-
tions b = Ax, where A is a matrix, x is a vector that represents object, b is the
vector that represents the measurements. These methods are easy to use and
well researched. There are several drawbacks of these algorithms. One of them
is that these methods usually do not take into account the speci�c types of the
noise that may appear during the measurement process. Another drawback is
that these methods usually are not noise robust: small deviations in the data
may lead to big deviations in solutions in case the problem is underdetermined.

Next, quite important set of methods are variational techniques [3], [21]. These
techniques are based on well-known and widely used optimization algorithms.
The main idea of this approach is to formulate the reconstruction problem as an
optimization problem and after that to solve this problem with any of available
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optimization technique. To solve the optimization problem fast and precise, usu-
ally, the problem should be convex and the function under optimization should
have an analytical gradient. This approach is signi�cantly more �exible than
algebraic reconstruction techniques. As the problem may be solved as soon as it
is convex, the formulated problem may be quite complex. The method that is
described below belongs to this class of the approach.

One of the most interesting variation of this approach for us is the Total Variation
(TV) reconstruction method [9]. It's main idea is to maximize the likelihood of
observing the data that was received during the measurements (that in the future
we will call data �tting term) and, in the same time, to minimize the integral of
the norm of the gradient in the image (this is usually referred to as a regularization
term). The advantages of this approach are: simplicity, usage of well researched
optimization techniques, predictable behaviour, noise robustness. Also, to make
a good reconstruction with this method less data is needed than with all the
methods that were described above. One of the main aims of this method is
to prevent smoothening of the edges. As for the disadvantages, this methods in
many cases smears out some important small details. Also, the staircasing is a
well-known artifact of this method (usually happens on the edges of the object
or on the regions with a gradient, substitutes the gradient or the edge with a set
of steps with di�erent intensity that is the same inside of the step) [23].

The Monte-Carlo approaches to these problems are able to �nd the global mini-
mum of the objective function. It solves non-convex problems, but the long time
of computing the solution is a signi�cant drawback of this approach. Because of
that this is very rarely used to solve real problems. As an example of a good
problem for this approach is a reconstruction with l0 norm of the gradient of the
image that corresponds to penalty of the length of the edges in the image. We
do not consider this approach as a good candidate to solve our problem.

As well as for the reconstruction, for segmentation there exist many approaches
to do a segmentation. One of the main direction here is called snakes [14]. This
approach needs manual input and thus is not good for our application as we want
to register the regions automatically without any interaction with human.

Another approach in this area is based on Markov Random Fields (MRF) such
as Potts model, where for each of the pixels (or in some applications, regions)
one label is assigned as a class to which the pixel belongs. Usually in this ap-
proach the algorithm that is used to get the results is Graph-Cut method [5],
[4], [6]. In case of more than two labels classi�cation, Alpha-Expansion algo-
rithm (modi�cation of Graph-Cut method) is used, although this approach gives
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only the approximation to the solution as overall problem in case of non-binary
segmentation is NP-hard as the problem is discrete.

Finally, another popular set of segmentation methods is called Level-Set meth-
ods[20], [17], [1]. These methods are real-valued methods that use convex opti-
mization techniques to �nd the segmentation. The advantage of these methods
is that in case of well-formulated (i.e., convex and has an analytical gradient)
problem, it will output the only minimum with given precision. Also, for the
majority of the optimization techniques, the dependency of computational time
on precision is well-known.

In our work as a model for a segmentation we use a Hidden Markov Measure
Field Models (HMMFM) [15]. The main idea of the HMMFM is to assign to
each of the pixels the probability with which it belongs to each of the classes.
Thus, the HMMFM may be considered as a relaxation of the MRF. The problem
of computing the optimal HMMFM may be easily formulated as an optimization
problem with a regularization term and may be easily solved as soon as the
problem is convex.

Usually in the applications one does reconstruction �rst and after that makes
a segmentation of the received segmentation. This approach itself usually gives
good results, but in case the expected classes are known, does not utilize all the
available information to generate a good reconstruction output. More than that,
in case some errors occur on the reconstruction step - they are likely to propagate
to the segmentation of the reconstruction.

We would like to improve the results of both reconstruction and segmentation by
utilizing information about the classes of materials that are likely to exist in the
object and by incorporating the segmentation and the reconstruction into one
joint procedure.

To accomplish this we use variational approach for both reconstruction and seg-
mentation problems. As a model for segmentation we use Hidden Markov Mea-
sure Field Models (HMMFM). This makes our problem a constrained optimiza-
tion problem. We use a statistical approximation to make this problem convex.
After that we are able to apply standard optimization techniques to compute
reconstruction and segmentation. For the image optimization we use well-known
L-BFGS algorithm [8] and for HMMFM optimization we use Frank-Wolfe algo-
rithm [2].



7.2 Problem formulation 89

Table 7.1: A simple example of the HMMFM; the numbers in the table are the
probabilities in the HMMFM for each class and each pixel.

class k pixel 1pixel 2pixel 3pixel 4· · · pixel j· · · pixel N
1 0.1 0.2 0.2 0.3 · · · δj1 · · · 0.9
2 0.0 0.1 0.2 0.0 · · · δj2 · · · 0.0
...

...
...

...
...

...
...

K 0.8 0.6 0.3 0.0 · · · δjk · · · 0.1∑K
k=1 δjk 1.0 1.0 1.0 1.0 · · · 1.0 · · · 1.0

7.2 Problem formulation

We solve the problem of reconstruction of an image x given the set of projections
b. We denote the values of the pixel j of the image as xj and the recorded
projection i value as bi. The projection matrix is denoted as A in the matrix
form and the element that encodes the length of the ray i inside of the pixel j is
denoted as aij . The projections b and the projection matrix A are known. Thus,
the forward model can be formulated as

Ax = b. (7.1)

We consider the noise to be Poisson noise.

We start with the summary of the theory from our previous work and then develop
it for our new problem.

We assume the classes of materials that could be found in the reconstructed
image known. We consider that the classes have Gaussian distribution of the
attenuation coe�cients with the mean values µk and standard deviations σk,
where k is the index of the class.

To do the segmentation of the image we use the concept of the Hidden Markov
Measure Field Model (HMMFM). We denote the HMMFM as matrix δ. The
HMMFM can be represented as a table of probabilities of the pixel to belong to
the speci�c class. The HMMFM illustration can be found on the Table 7.1. The
value of the HMMFM for the pixel j and class k we denote as δjk. Thus, the
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HMMFM over the classes should sum up to one in each pixel:

∀ j
∑
k

δjk = 1;

∀ j, k δj,k ≥ 0.

(7.2)

It is easy to formulate the problem of reconstructing x and δ from b in terms of
probability maximization:

x∗, δ∗ = arg max
x,δ

p(x, δ|b)

s.t. ∀ j
∑
k

δjk = 1;

∀ j, k δj,k ≥ 0

∀j xj > 0

(7.3)

This problem can be reformulated using Bayes rule:

p(x, δ|b) =
p(b|x, δ)p(x|δ)p(δ)

p(b)
. (7.4)

Here the probability of the measured data given the HMMFM δ and the image x
can be written as p(b|x) because the data b depends only on the image x. Due
to the positivity of the probability and the monotonicity of the logarithm, the
problem (7.3) can be represented as a maximization problem of the logarithm of
the probability p(x, δ|b):

log p(x, δ|b) = log p(b|x) + log p(x|δ) + log p(δ)− log p(b). (7.5)

The probability p(b) does not depend on variables under optimization (x and δ).
Therefore, the optimization problem without the last term and with it have the
same optimal point meaning that we can consider the problem without it:

log p(x, δ|b) = log p(b|x) + log p(x|δ) + log p(δ) + const. (7.6)

In this formula the �rst term is a data �delity term, the goal of this term is to �t
the data the best possible way. In this work we consider only the problems, where
the projections are obtained via measurements of the photons. In this problem
the measured values are distributed according to the Poisson distribution:

p(b|x) =
∏
i

λbii exp(−λi)
bi!

, (7.7)
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where the λi are the expected value of the measured values on the detector i.
In case of the Emission Tomography the Poisson distribution has the following
expected values for the measurements:

λi =
∑
j

aijxj . (7.8)

In our approach we maximize the logarithm of the probability instead of the
probability itself. Taking logarithm of the equation (7.7), we get the following
expression taking into account that log(bi!) does not depend on the values λi and,
thus, does not depend on x due to (7.8):

log p(b|x) =
∑
j

(bi log λi − λi) + const. (7.9)

The second term log p(x|δ) in (7.6) is a class �delity term. The probability under
the logarithm is the product of the weighted mixture of Gaussians for each pixel,
where weights are de�ned by the HMMFM, while the parameters σk, µk of the
Gaussians are assumed to be known:

p(x|δ) =
∏
j

∑
k

δjk
1√

2πσk
exp

(
− (xj − µk)

2σ2
k

)
. (7.10)

The third term log p(δ) of the sum in (7.6) is the statistical prior for the HMMFM.
In this work we use the neighbourhood prior: in case a pixel is more likely to
belong to a speci�c class, then the neighbours are encouraged to belong to the
same class:

p(δ) = exp (−Φ(δ)) . (7.11)

Here the function Φ(δ) is an l2 norm of discrete approximation of the gradient
for each of classes of the HMMFM:

Φ(δ) =
∑
j,k

∑
j′∈N(j)

(δj,k − δj′,k)2, (7.12)

where N(j) is a set of adjacent pixels of pixel j. In case of a 2D problem the
N(j) consists of the pixel that is 1 pixel above the pixel j and of the pixel that
is 1 pixel to the left from the pixel j. From our experience the performance of
di�erent norms do not vary much, and l2 norm has some advantages in terms of
�exibility of segmentation and it is signi�cantly easier to optimize.

Taking into account (7.4), (7.9), (7.10), (7.11), the overall problem (7.3) has the
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following form:

x∗, δ = arg max
x,δ

λ1

∑
i

bi log
∑
j

aijxj −
∑
i

∑
j

aijxj

+

+
∑
j

log
∑
k

δjk
1√

2πσk
exp

(
− (xj − µk)2

2σ2
k

)
−

− λ2Φ(δ)

s.t. ∀j
∑
k

δjk = 1; ∀j, k δjk ≥ 0

∀j xj > 0

(7.13)

Here we introduce two regularization parameters λ1, λ2 that regulate how much
the result is a�ected by the class �delity and by neighborhood prior.

7.3 Simpli�cation

The problem (7.13) is convex in terms of HMMFM δ, but is non-convex in terms of
image x. More than that, this problem for the majority of HMMFM realisations
has many local minima. The main source of this non-convexity is the second
term (7.10) of the optimization problem. To deal with this di�culty we make the
substitution of the second term:

p̃(x|δ) =
∏
j

1√
2πσ̃j

exp

(
− (xj − µ̃j)2

2σ̃j

)
, (7.14)

where the mean values and standard deviations are computed for each pixel:

µ̃j =
∑
k

δj,kµk, (7.15)

σ̃2
j =

∑
k

δjk(σ2
k + µ2

k)− µ2
j . (7.16)

This simpli�cation is convex in terms of x, but non-convex in terms of δ. It
is an approximation with a normal distribution of the distribution p(x|δ) with
the mean estimated with an expected value of this distribution and square of
standard deviation estimated with variance of this distribution.
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7.4 Algorithm

We minimize the problem iteratively and in the l-th iteration we would like to
compute an approximation to the solution of the following problem:

xl+1, δl+1 = arg max
x,δ

λ1

∑
i

bi log
∑
j

aijxj −
∑
i,j

xjaij

+

+
∑
j

log
∑
k

δjk
1√

2πσk
exp

(
− (xj − µk)2

2σ2
k

)
−

− λ2Φ(δ)

s.t. ∀j
∑
k

δjk = 1; ∀j, k δjk ≥ 0

∀j xj > 0.

(7.17)

Since to the problem is non-convex, we minimize the problem above using a two-
stage algorithm. In the �rst stage we compute the approximation to the solution,
while in the second stage we compute the �nal solution. In both stages we use the
approximation to the second term of the problem to make the problem convex
for the HMMFM.

7.4.1 First Stage

Since we have two variables to optimize, for one of which the problem is non-
convex, we minimize this problem iteratively in two steps. In the �rst step we
compute the approximation to the image x given the �xed HMMFM δ.

Thus, in the �rst step we would like to compute the solution to the part of the
problem above that includes all the terms with the variable x:

xl+1 = arg max
x

λ1

∑
i

bi log
∑
j

aijxj −
∑
i,j

xjaij

+

+
∑
j

log
∑
k

δljk
1√

2πσk
exp

(
− (xj − µk)2

2σ2
k

)
s.t. ∀j xj > 0,

(7.18)
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but, as it was already mentioned, the second term here is non-convex. To deal
with this non-convexity we use the approximation (7.14):

xl+1 = arg max
x

λ1

∑
i

bi log
∑
j

aijxj −
∑
i,j

xjaij

+

+
∑
j

(xj − µ̃lj)2

2(σ̃lj)
2

s.t. ∀j xj > 0.

(7.19)

With this approximation the problem becomes convex and we can easily minimize
it using any optimization technique. We use a Limited Memory BFGS (L-BFGS)
optimization algorithm [8] to minimize it. As we do many iterations of this two-
steps algorithm - it is enough to do just few iterations of the L-BFGS - and we
will get the next iteration of the image.

Although the problem (7.19) is convex, the overall problem is not. To deal with it
we tried two approaches. One approach is to start with big data regularization λ1
and gradually reduce it to a small value that was speci�ed before the algorithm
starts. Another approach is instead of λ1 to gradually modify σk along the
iterations.

We propose in the �rst approach to use the following expression for the regular-
ization parameter:

λl1 = λ1(1 + Cβl), (7.20)

and for the second approach we propose to use the similar expression:

σlk = σk(1 + Cβl), (7.21)

where C and β is a constant. We require that λl1 → λ1 for l →∞ and σlk → σk
for l → ∞. In order to achieve that, we should assign constant β to belong to
the interval (0, 1). In our experiments we use C = 1000, β = 0.9.

For the �rst approach the image reconstruction step will turn into the following
problem:

xl+1 = arg max
x

λl1

∑
i

bi log
∑
j

aijxj −
∑
i,j

xjaij

+

+
∑
j

(xj − µ̃lj)2

2(σ̃lj)
2

s.t. ∀j xj > 0,

(7.22)
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for the second approach we need to recompute the values for σ̃lj according to the
rule 7.16, where σk should be substituted by σlk. Then the reconstruction step
turns into the following problem:

xl+1 = arg max
x

λ1

∑
i

bi log
∑
j

aijxj −
∑
i,j

xjaij

+

+
∑
j

(xj − µ̃lj)2

2(σ̃lj)
2

s.t. ∀j xj > 0.

(7.23)

In principle, we could iterate L-BFGS to convergence to the solution of (7.23),
but since this computation is only one step of our iterations, it is enough to
improve the solution by few iterations of L-BFGS algorithm.

Once the image is updated we should �nd the next iteration of the segmentation.
In the full problem (7.17) we keep the x �xed and optimize δ:

δl+1 = arg max
δ

∑
j

log
∑
k

δjk
1√

2πσk
exp

(
−

(xl+1
j − µk)2

2σ2
k

)
−

− λ2Φ(δ)

s.t. ∀j
∑
k

δjk = 1; ∀j, k δjk ≥ 0.

(7.24)

This is a convex problem with constraints. The constraints of this problem are
simplices and we minimize it with a modi�ed Frank-Wolfe algorithm that is spe-
cially designed to minimize the problems with these constraints.

Again, it is possible to do these iterations until convergence, but it is su�cient
to make small improvement of the result.

7.4.2 Second Stage

In our original algorithm we also included a second stage. In this work we do not
implement this approach, but we still want to formulate it. The purpose of the
second stage is to force the solution to be closer to the class prior.

The second stage of the algorithm is very similar to the �rst stage: it consists of
iterations that include the image optimization and HMMFM optimization using
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the same optimization techniques. The only di�erence here is the approximation
of the second term of the problem (7.17).

In the previous stage we assumed that the distribution of the grey levels in the
pixel could be represented by a single Gaussian with a mean value that corre-
sponds to the mean value of the mixture of Gaussians and the standard deviation
that corresponds to the standard deviation of the mixture of the Gaussians (7.15),
(7.16). In this stage we assume that the grey levels distribution in each pixel is
a Gaussian distribution with the mean value µ̃j equal to the mean value of the
most probable class and standard deviation equal to the standard deviation of
the most probable class.

In other words, if

kj = arg max
k

δjk

then

µ̃j = µkj , σ̃j = σkj .

As in the previous stage, �rst we do the image optimization

xl+1 = arg max
x

λ1

∑
i

bi log
∑
j

aijxj −
∑
i,j

xjaij

+

+
∑
j

(xj − µ̃j)2

2σ̃2
j

,

s.t. ∀j xj > 0.

(7.25)

And, knowing the new image approximation, we do the segmentation of this
image:

δl+1 = arg max
δ

∑
j

log
∑
k

δjk
1√

2πσk
exp

(
−

(xl+1
j − µk)2

2σ2
k

)
−

− λ2‖Dδ‖2
s.t. ∀j

∑
k

δjk = 1; ∀j, k δjk ≥ 0.

(7.26)

After few iterations we can stop the process.
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Require: L1, L2, L1 ≤ L2, β < 1, λ1, λ2, {µk} , {σk} , A,b
x← ones
δ ← equal probabilities
l← 0 (iteration index)
while l < L1 do . SRS-II procedure, stage 1

l← l + 1
Compute µ̃j , σ̃j according to (7.15), (7.16)
Compute λl1 according to (7.20) or σlk according to (7.21).
xl+1 ← result of 20 iterations of L-BFGS optimization of (7.22) or (7.23)

using µ̃j , σ̃j with �xed δl

δl+1 ← result of 20 iterations of Frank-Wolfe optimization of (7.24) with
�xed xl+1

end while
while l < L2 do . SRS-II procedure, stage 2

l← l + 1
xl+1 ← result of 20 iterations of L-BFGS optimization of (7.25) with �xed

δl

δl+1 ← result of 20 iterations of Frank-Wolfe optimization of (7.26) with
�xed xl+1

end while
return xl, δl

Figure 7.1: SRS-II algorithm.

7.4.3 Additional aspects of the algorithm

As we have mentioned, the regularization parameter λl1 or the class standard
deviations σlk change from iteration to iteration according to formulae (7.20)
(7.21). In our algorithm we use the following values in these formulae: C = 1000,

β = 0.9. The plot of the values λl
1

λ1
and σl

k

σk
can be found in Figure 7.10.

Quite important question is selection of the starting point for each of the the
optimization subproblems in each iteration. We select the previous iterates for
both image and HMMFM as a starting point for both optimization problems. As
for the initial guess for the overall algorithm, we choose the initial image equal
to all ones, the initial HMMFM is chosen as equal probabilities for all the classes
in all the pixels, but the initial guess should not a�ect the result of the process.

The algorithm listing can be found on �gure 7.1.
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Figure 7.2: Ground truth of the experiment. Left - the phantom, right - the seg-
mentation. The phantom is generated using the AIR Tools pack-
age.

7.5 Computational Results

To check the reconstruction properties of our algorithm we have done a series
of experiments. We generated arti�cial phantoms of size 384 × 384 pixels with
following mean values: [33, 66, 99, 133], see Figure 7.2.

The geometry for the problem was generated using the package ASTRA [18]. The
advantage of this package is that instead of generating the explicit projection ma-
trix A which corresponds to the geometry of the scanning device, the information
about the geometry is stored. That allows to make matrix-vector multiplications
on the GPU.

We generated two data sets, one with 172 projections and the other with 86
projections, both sets have b

√
2 · 384c = 543 rays in each projection. The pro-

jections were produced using parallel-beam geometry. The projection angles are
evenly distributed between 0 and 180 degrees in both data sets. Thus, the ra-
tio between amount of data and amount of pixels is #data

#pixels = 0.62 for the �rst

dataset and #data
#pixels = 0.31 for the second dataset meaning that both problems

are underdetermined. Moreover, some of the rays do not hit the phantom at all
because of the square geometry of the phantom. We assume the noise in the data
is Poisson-distributed, which corresponds to an Emission Tomography problem.
Each measurement corresponds to the integral of the emission coe�cient along a
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Figure 7.3: The sinograms of two experiments. Top: for 170 projections, bot-
tom: for 85 projections. The noise level in the data is ‖b−b

∗‖2
‖b∗‖2 =

0.0068 in both cases, b∗ is the data without noise, amount of rays
in each of the projections is 543.

measurement line. We get the following quantity for the amount of noise:

‖b− b∗‖2
‖b∗‖2

= 0.0068,

for both data sets, where b∗ is the data without noise.

The original phantom and the segmentation are shown in �gure 7.2. The sino-
grams are shown in �gure 7.3.
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Figure 7.4: Left - reconstructed images, right - di�erence between current image
and the ground truth |xl − x∗| (the x∗ is a true image) for SRS-II
algorithm applied to the test problem with 170 projections. The
following iterations represented: 1, 33, 66, 100.
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Figure 7.5: Left - computed segmentations, right - misclassi�ed pixels (white)
for SRS-II algorithm results computed from 170 projections. The
following iterations are presented: 1, 33, 66, 100.
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Figure 7.6: Left - reconstructed images, right - di�erence between current image
and the ground truth |xl − x∗| (the x∗ is a true image) for SRS-
II algorithm applied to the test problem with 85 projections. The
following iterations represented: 1, 33, 66, 100.
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Figure 7.7: Left - computed segmentations, right - misclassi�ed pixels (white)
for SRS-II algorithm results computed from 85 projections. The
following iterations are presented: 1, 33, 66, 100.
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Figure 7.8: Error histories for SRS-II problem with 170 projections. Top: error
history for l1 image error ‖x−x

∗‖1
‖x∗‖1 . Bottom: segmentation error -

the fraction of misclassi�ed pixels. The x∗ is a true image.

In the numerical experiments we expect to see that the use of the segmentation
in the reconstruction process, jointly updating the image and the segmentation,
will improve both the image and the segmentation. In the beginning of the
iterations the regularization parameter λl1 is quite big meaning that the class
�tting term and the regularization term have very little in�uence on the result of
the optimization process. The fact that we get a better reconstruction during the
iterations indicates that using the segmentation in the reconstruction process we
are able to produce a better reconstruction. This is due to the "feedbck e�ect"
between the segmentation and the reconstruction.

For the reconstruction process the following parameters were chosen: for the
problem with 170 projections: λ1 = 250, λ2 = 0.8, for the problem with 85
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Figure 7.9: Error histories for SRS-II problem with 85 projections. Top: error
history for l1 image error errors ‖x−x

∗‖1
‖x∗‖1 . Bottom: segmentation

error - the fraction of misclassi�ed pixels. The x∗ is a true image.

projections: λ1 = 800, λ2 = 1.0. These parameters were obtained using trial-
and-error and produced the best possible result.

We show the evolution of the reconstructions of the image and segmentations as
well as the di�erences between the reconstruction of the phantom and misclassi-
�ed pixels. Figures 7.4 and 7.5 show results for 170 projections and �gures 7.6,
7.7 show results for 85 projections. The amount of misclassi�ed pixels decreases
with iterations, the quality of reconstruction increases over the iterations. We
also see that with iterations the precision of location of the edges increases. From
the �gures one can conclude that the majority of misclassi�cations in the segmen-
tation and errors in the reconstruction occur on the edges between the classes.
This is easy to explain: the lower is the amount of photons - the less reliable is
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Figure 7.10: Evolution of the coe�cients.

the data and the less precise the possible reconstruction could be. As a result,
the position of the edge is less predictable, and this leads to the misclassi�cations
on the edges. The error histories are presented in �gure 7.8 for 170 projections
and �gure 7.9 for 85 projections. As a measure for the image error we used the
relative l1 error:

‖xl − x∗‖1
‖x∗‖1

,

where x∗ is the true image We have chosen this error because it penalizes small
deviations and big deviations equally and, because of that, corresponds better to
visual inspection. As an error measure for the segmentation we have chosen the
fraction of misclassi�ed pixels: ∑

j I(sj 6= s∗j )

#pixels
,

where I is a indicator function that is 0 when the argument is false and 1 when
the argument is true; s∗ is a true segmentation.

We can see that both reconstructions and segmentations improve along the it-
erations. In the same time, the reconstructions that were obtained with these
methods are piecewise constant and the edges are sharp, staircasing artifacts are
minimal. Besides, the noise is suppressed by the regularization.

We have also compared the performance of the di�erent �avours of the algorithm
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(Table 7.2). First experiment was done with the SRS-II algorithm with 2-norm
data �tting term

‖Ax− b‖2

with the data with #data
#pixels = 0.3 ratio between amount of data and amount of

pixels (85 projections) and with 0.01 relative Gaussian noise. The reconstruction
algorithm used standard deviations σk that were equal for all the classes and were
identical and equal to 0.001. The regularization parameters that were used for
this experiment are: λ1 = 0.9, λ2 = 1.0. Another experiment used Poisson data
�tting term (the de�nition for the data �tting term for the Poisson noise is given
in (7.17)), the amount of data over the amount of pixels was #data

#pixels = 0.3 (85
projections), relative amount of Poisson noise was 0.0068, the standard deviations
of classes were set to be equal to σk = 0.001µk. The regularization parameters
that were used for all the other problems are: λ1 = 2000.0, λ2 = 0.8. The
di�erence between the third experiment and the second is only in the standard
deviations of the classes. We need this comparison to be able to tell if the choice
of the standard deviations may compensate for the features of the Poisson Noise:
it tends to have bigger errors in places, where the intensity is higher. Here we
used the standard deviations that are equal to 0.01. For comparison we added
one more numerical experiment with more data: the ratio between amount of
data and amount of pixels #data

#pixels = 0.6 (170 projections).

From this table one can make the following conclusion: though it may seem logical
to use the standard deviation of the classes proportional to the mean values of
the classes - this changes the results insigni�cantly and does not improve them.
The problems with more data produce better results with the same regularization
parameters. This is logical and predictable. Also, the algorithm is good for the
reconstruction of the image from the data with Gaussian Noise too.

Gaussian
σk = 0.001,
#data
#pixels = 0.3

Poisson
σk =
0.001µk,
#data
#pixels = 0.3

Poisson
σk = 0.001,
#data
#pixels = 0.3

Poisson
σk = 0.001,
#data
#pixels = 0.6

l1 image er-
ror

σk reduction 0.06 0.07 0.061 0.035

λ1 reduction - 0.077 0.08 0.048
segm. error σk reduction 0.052 0.062 0.056 0.023

λ1 reduction - 0.085 0.077 0.037

Table 7.2: The table of comparison of di�erent reconstruction approaches.
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7.6 Conclusion

We have developed an algorithm for Poisson noise in the data. It is suited for
large-scale-problems as we do not store the matrix A explicitly. The algorithm
performs well on arti�cial test problems. The priors σk for the classes can be
either �xed, or proportional to µk, but the computed results are almost the
same. The solutions that are generated by this algorithm have sharp edges.

7.7 Appendix: Explanation of Modi�ed Standard
Deviation

In the expression (7.23) and (7.22) we use the term σlk and λ
l
1 to gradually shrink

the searching range of the image, starting with big standard deviations σlk or high
λl1 values that correspond to signi�cantly underregularized problems. Along the
iterations we reduce values λl1 and σlk to the values λ1 and σk and, by that we
gradually increase the regularization of the problem.

To show the importance of this modi�cation we will make the thought experiment:
consider the problem (7.19), where σ̃ and µ̃ are computed using the formulae
(7.15), (7.16) two speci�c realization of δ. As an information about the classes
we will take two classes

µ0 = 1, µ1 = 2,

σ0 = 0.1, σ1 = 0.1.

As an example of di�erent HMMFM realizations we will take one with all equal
probabilities:

∀j, k δjk = 1/2,

and another realization will have

∀j δj0 = 1, δj1 = 0.

In both cases it is easy to estimate parameters µ̃j and σ̃j for each pixels: in the
�rst case the approximate parameters for each pixel are

µ̃j = 0.5, σ̃j =
√

0.26 ≈ 0.5.
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in the second case the approximate parameters for each pixel are:

µ̃j = 1.0, σ̃j = 0.1.

In the �rst case - the standard deviation is large enough - meaning that any
combination of grey levels of the pixels in the range between 0 and 1 is acceptable
as far as it satis�es the data �tting term.

In the second case the standard deviation is small, meaning that the acceptable
range of the grey levels of the pixels is in the range from 0.9 to 1.1. Hence, the
data in this case may be �tted signi�cantly worse due to these limits - and that
means that the image that we can get in the end of the optimization process is
overregularized.

In case after this image optimization step we will try to optimize the HMMFM
- in the �rst case we will get HMMFM that corresponds to the image that �ts
data quite well. In the second case - we will get a HMMFM that corresponds
to the overregularized image - meaning that HMMFM has very small chance to
change.

That automatically means that di�erent initializations of the HMMFM may lead
to completely di�erent results due to this fact. Another problem that is a con-
sequence of this e�ect is that the algorithm without modi�cations tends to stuck
in the local minimum. We would like to get rid of both these problem that may
spoil the results of the algorithm.

Consider now the modi�ed standard deviations:

σlk = σk(1 + Cβl).

Consider also σk = 0.001, C = 1000, β = 0.9. In the second case the result of
the 7.15 and 7.16 with l = 0 will be

µ̃j = 1.0, σ̃j = 1.0

that will mean that the image in the beginning (when l is small) can change
signi�cantly. On the other hand, consider l = 100. In this case the value of the
expression 7.15 will not change, but the value of 7.16 will be

σj ≈ 0.001

meaning that in the end the result is regularized signi�cantly by HMMFM δ.
This approach is related to the Simulated Annealing approach.
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The same e�ect will take place when, instead of σk we shrink the λ1 over the
iterations:

λl1 = λ1(1 + Cβl).

Although, in the �rst case the form of the class prior also changes, while in this
case only the level of regularization changes. From our experience, it is better to
change σk over the iterations, but shrinking λ1 it is also possible to get a good
result.
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Chapter 8

A Parameter Choice Method
for Simultaneous

Reconstruction and
Segmentation

The problem of �nding good regularization parameters for the reconstruction
problems without knowledge of the ground truth is a non-trivial task. We
overview the existing parameter-choice methods and present the modi�ed L-
curves approach for a good regularization parameters selection that is suited
for our Simultaneous Reconstruction and Segmentation method. We verify the
validity of this approach with numerical experiments based on reconstructions of
arti�cial phantoms from noisy data, and the problems in our numerical experi-
ments are underdetermined.
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8.1 Introduction

In this work we consider tomographic reconstruction of an object's interior from
X-ray transmission projections. The geometry of the projections is parallel-beam
geometry. The amount of data is less than the amount of the pixels in image -
thus, the problem is underdetermined. Also, the data is not perfect and contains
some amount of noise.

To deal with this problem we formulate a minimization problem that contains
three terms:

λ1D(x), C(x, δ), λ2R(δ), (8.1)

where x is the image, δ is a Hidden Markov Measure Field Model (will be ex-
plained later), D is a data �tting term, C is a class �tting term, R is a segmen-
tation regularization term. To balance these terms we need two regularization
parameters: λ1, λ2. In order to make the best reconstruction, we need to �nd the
best regularization parameters. In this work we consider an approach that may
help to �nd good regularization parameters.

The parameter selection is an important problem for the reconstruction process.
In case the ground truth of the reconstruction is known, then the process of
selection of the optimal parameters is trivial: the set of parameters are checked
and after that the parameters that leads to the smallest errors are selected.

In real-world problems this task may not be trivial as the ground truth is not
known. In this case the choice of the best parameters for the reconstruction
algorithm is hard, and we need to use some heuristics to understand how good
or how bad is the resulting reconstruction. Also, the fact that usage of these
heuristics does not perform well in all cases should be accepted. In addition,
each of the heuristics has its own limitations. In some cases one of the heuristics
will perform very well, in other cases it will fail.

In this work we will make our proposal for a good heuristic that will lead to a
good choice of the regularization parameters for the Simultaneous Reconstruction
and Segmentation Algorithm (SRS) [15].

The main idea of the SRS algorithm is to compute a reconstruction with a segmen-
tation (i.e. the di�erent materials locations) in a joint fasion. The information
about the materials is given beforehand. We use this information to make the
reconstructions and segmentation more precise than what is possible to do in a
classical, non-simultaneous way. The SRS algorithm is a variational algorithm,
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the minimization problem has three terms and two regularization parameters.

There is a bunch of well-known techniques to choose the regularization parameter.
One approach to solve this problem is the discrepancy principle (DP) [11][1][17].
The main idea of this method is that the discrepancy between the measured
data and the data predicted by the reconstructed image should be comparable
to the standard deviation of the noise. In case the discrepancy is bigger then
the standard deviation of noise, that means that the solution may be computed
better. In case it is smaller, then there is high risk of over�tting the noise.
This approach is applicable to problems with Gaussian noise. In case the noise
is di�erent from Gaussian, then the estimation of discrepancy may be a tough
problem. Besides, the amount of noise needs to be known. This also causes some
limitations.

A modi�cation of the previous method that generalizes the approach and makes it
possible to use it without knowing the exact level of the noise is called the L-curve
method [3][8][6]. The main idea of this approach is that a good regularization
parameter represents a good balance between the data �t and the regularization.
This good compromise is usually seen on the plot of the regularization term
plotted versus the data �tting term and represented by a corner of the graph.

Another important method is Generalized Cross-Validation (GCV) [2][13][10].
The main idea of cross validation is that reconstruction of the image is done from
incomplete data, where one of the instances is left out, and then we compute
the estimated value of the left out instance from the image reconstruction. In
principle we do this procedure for each of the data instances and the regulariza-
tion parameter is chosen such that the prediction errors are minimized. GCV is
another method for doing this. Instead of doing the reconstruction for leaving
out each of the data points, one may do only one reconstruction for each of reg-
ularization parameters and then to compute the residual norm normalized by a
factor that takes into account the reduction of the amount of degrees of freedom
the measurement geometry. The objective is to �nd the regularization parame-
ters that minimize this normalized sum of the errors. This method is one of the
most e�cient ones, but it has a signi�cant drawback: de�ning and computing
the denominator for the GCV function is a di�cult problem, except for Tikhonov
Regularization [16] and Truncated SVD [7].

One more important method of parameter selection is called Normalized Cumula-
tive Periodogram (NCP) [12]. The idea of this method lies in the �eld of spectral
analysis. In this approach we analyze the di�erence between the real data and
the data predicted by the image, referred to as residual. If the solution is un-
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derregularized, the high frequencies are more represented in the residual. In case
the solution is overregularized, the low frequencies will be more represented in
the residual. The optimal regularization parameter, from the point of view of the
NCP, represents an equal amount of high and low frequencies. The shortcoming
of this approach that to use this criterion, we need to know or to be able to
compute the spectrum of the problem.

More information about the regularization parameter choice methods can be
found in the books [5], [4].

To sum up, we have four candidate strategies to �nd the optimal regularization
parameters: DP, L-curve, GCV, NCP. The use of GCV is not possible as we do
not know how to de�ne the normalization coe�cients in the error function. For
the DP we need to know the norm of the noise that is not always known. As for
the other methods, it makes sense to try them.

8.2 Brief Description Of the SRS Method

In this work we reconstruct the object x from the projections b. The underlying
problem has the form:

b = Ax + ε, (8.2)

where ε is the vector of noise in each datum. In this work we assume that the
noise is Gaussian and is independent in all di�erent measurements, has zero mean
and the same standard deviation in each datum. The matrix A corresponds to
the projections geometry. The element of this matrix aij is the length of the ray
that corresponds to the measurement i inside of the pixel j.

We want to make a reconstruction of the object's attenuation coe�cients x from
the data b with the assumption that the object consists of several materials,
each of these materials is characterized by the mean value µk of the attenua-
tion coe�cient and the standard deviation σk of the attenuation coe�cient and
with Gaussian distribution of the attenuation coe�cient. Thus, the attenuation
coe�cient has the following distribution given that it belongs to class k:

p(xj |k) =
1√

2πσk
exp

(
− (xj − µk)2

2σ2
k

)
. (8.3)

The algorithm that we use for the tomographic reconstruction of the image is the
Simultaneous Reconstruction and Segmentation (SRS) algorithm. This algorithm
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uses the concept of a Hidden Markov Measure Field Model (HMMFM) as the
model for the segmentation. This model assigns to each of the pixels j the
probability δjk to belong to each of the possible classes k. As these values are
probabilities, they sum to 1:

∀j
∑
k

δjk = 1. (8.4)

Also, the probabilities can not be negative:

∀j, k δjk ≥ 0. (8.5)

The problem that is solved is formulated in the following way:

min
x,δ

λ1‖Ax− b‖22−∑
j

log
∑
k

δjk√
2πσk

exp

(
− (xj − µk)2

2σ2
k

)
+

λ2
∑
j

∑
j′∈Nj

∑
k

(δjk − δj′k)
2

s.t. ∀j
∑
k

δjk = 1,

∀j, k δjk ≥ 0.

(8.6)

Here xj is the value of the attenuation coe�cient inside pixel j, λ1 and λ2 are the
regularization parameters that we would like to �nd, Nj is the set of neighbours of
pixel j. This problem is non-convex because of the second term. In this approach
we use µk and σk as a prior knowledge about the object under the reconstruction.

To solve this problem an iterative two-step approach is used. In the �rst stage
we �nd the new image iterate solving the problem

xl+1 = arg min
x

λ1‖Ax− b‖22+∑
j

(xj − µ̂j)
2σ̂j

,
(8.7)

where xl+1 is the l+ 1 iterate for x, the values µ̂j and σ̂j are the expected value
of the pixel j attenuation coe�cient and the standard deviation of the pixel j
attenuation coe�cient:

µ̃j =
∑
k

δjkµk (8.8)
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σ̃2
j =

∑
k

δjk(µ2
k + σ2

k)− µ̂2
j . (8.9)

The substitutions (8.7), (8.8), (8.9) of the original image optimization problem
that is part of the problem (8.6) makes it convex and easy to solve.

After the image has been updated, we update the HMMFM solving the problem:

δl+1 = arg min
δ
−
∑
j

log
∑
k

δjk√
2πσk

exp

(
−

(xl+1
j − µk)2

2σ2
k

)
+

+ λ2(δjk − δj′k)2

s.t. ∀j
∑
k

δjk = 1,

∀j, k δjk ≥ 0.

(8.10)

After the HMMFM is updated using (8.10), the image is recomputed again ac-
cording to (8.7) and so forth. After the convergence of this process it is possible
to add one more stage of making the image more sharp. This enhancement deals
with the fact that we do not solve the original problem (8.6), but a simpli�ed ver-
sion of it. From our experience, this makes sense only in case the iterative process
described above converges to a good approximation of the solution. Thus, we do
not consider this enhancement here as the optimal parameters for this procedure
should also be optimal for the procedure above.

To sum up, our aim is to �nd the regularization parameters for the reconstruction
procedure, described by (8.7), (8.10). For more details and numerical examples,
see [14].

8.3 Parameter Selection Algorithm

To �nd a good parameter selection algorithm we have modi�ed the L-curve cri-
terion.

The original L-curve criterion is formulated as follows: suppose we have the data
�tting term D(x) (in our case this is ‖Ax − b‖2) and the regularization term
R(x), where both terms are convex. In this case the whole problem may be
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formulated as:
min
x
λD(x) +R(x). (8.11)

Then the L-curve is de�ned as a log-log plot of D(x) against R(x) for di�erent
regularization parameters λ. As an example, in case the reconstruction problem
is formulated as

min
x
λ‖Ax− b‖22 +

∑
j

‖Djx‖2, (8.12)

where Dj is a discrete approximation of the gradient length in the pixel j, then
the L-curve is the plot of ‖Ax − b‖2 against

∑
j ‖Djx‖2 as a function of the

regularization parameters. The best regularization parameter is usually supposed
to be in the corner of the L-curve that represents a balance between the data
�tting term and the regularization term. In case the regularization parameter
deviates to the larger side, the more emphasis is put on the data �tting term
and the more is the over�tting of the noise. This corresponds to a signi�cant
growth of the regularization term R(x) and insigni�cant improvement of the
data �tting term D(x). In case the regularization parameter is lower then the
optimal one, less emphasis is put on the data �tting term and, thus, the result is
overregularized. This situation corresponds to insigni�cant improvement of the
regularization term R(x) and signi�cant growth of the data �tting term D(x).

Our problem has a nice variational formulation and, thus, the L-curve is a good
candidate for the parameter selection approach. On the other hand our problem
is a non-convex problem (see (8.6)) and this may cause some di�culties during
analysis of the L-curve. To deal with it, we need to make some modi�cations to
the L-curve approach. Also, we have two regularization parameters. This makes
the problem signi�cantly more complicated. We also have to �nd a way to deal
with this.

First, let us consider the task of �nding a good regularization parameter λ1 for
our reconstruction problem, when λ2 is �xed.

The λ1 regularization parameter sets the balance in Equation (8.10) between the
data �tting term

D(x)‖Ax(λ1, λ2)− b‖22 (8.13)

and the class �tting term

C(x, δ)−
∑
j

log
∑
k

δjk√
2πσk

exp

(
− (xj(λ1, λ2)− µk)2

2σ2
k

)
. (8.14)

Note that here the solution x(λ1, λ2) depends on the regularization parameters
λ1 and λ2. The term (8.14) is the probability density value of the grey value
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xj given the class probabilities δj,k for all k. The L-curve in this case should
be represented by terms (8.13) and (8.14) values plotted against each other. We
suggest to substitute the second terms' values with the values computed using
the following approximation:

Ĉ(x, δ)
∑
j

min
k

(xj − µk)2

2σ2
k

, (8.15)

that corresponds to the value (8.14), where the actual values δjk are substituted
by 1 for the class with highest probability density in the point xj and 0 for all
the other classes. The smaller the term (8.15), the closer the grey values of the
pixels are to the means of the classes in terms of di�erences normalized by σ−1k .
To use this approach is quite logical as the smaller is the distance of grey levels
of pixels to the means of the classes, the larger is the in�uence of the class �tting
term is. The bigger the distance the more noise in the data is over�tted.

Now, let us consider the problem of �nding of good regularization parameter λ2.

The parameter λ2 corresponds to the balance between the last two terms in
Equation (8.10). The �rst of the terms is the class �tting term (8.14). The
second term is the HMMFM regularization term:

R(δ) =
∑
j

∑
k

∑
j′∈Nj

(δjk − δj′k)2. (8.16)

As before, the second term (8.14) is too complex to be analyzed. Instead of it,
we will use the data �tting term (8.15) value for comparison.

We will present the results of this modi�ed L-curve approach in the next section.

8.4 Results

To test our idea for choosing the regularization parameter we used two test prob-
lems. For both of these problems the arti�cial phantom was used as images x.
The �rst one was created using the standard MATLAB command phantom. Another
one was the binary phantom from the AIR Tools package [9] and was created
using the command phantomgallery. In both cases the phantom consists of
128× 128 pixels. The phantoms are shown on Figure 8.1.
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Figure 8.1: The phantoms that are used in the experiments. Left: Shepp-Logan
phantom, generated with MATLAB command phantom, right: binary
phantom, generated with command phantomgallery from package
AIR Tools.

The �rst phantom has several typical attenuation coe�cients: 0.0, 0.1, 0.2, 0.3,
0.4 and 1.0. The second phantom consists of only two classes of attenuation
coe�cients: 0.0 and 1.0.

The geometry of the projections for both problems was selected to have parallel-
beam projections. The number of projections is 59, there are b

√
2·128c = 181 rays

in each of the projections. Thus, the ratio between amount of data and amount
of pixels is equal to #data

#pixels = 0.6. Thus, all the problems are underdetermined.
The projection matrix A was generated using the package AIR Tools using the
function paralleltomo.

For both problems the data was computed according to the rule

b = Ax + ε, (8.17)

where for both problems ε is the di�erent for each problem vector of independent
Gaussian noise. The amount of this noise for both problems was set to be

‖ε‖2
‖b‖2

= 0.01.

We have computed the solutions for a large set of regularization parameters.
For each of the pairs of regularization parameters the relative image error was
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Figure 8.2: The modi�ed L-curves plot for the Binary phantom for λ1 param-
eter selection. The λ2 parameter is constant along the yellow lines.
The optimal pair of λ1 and λ2 parameters is denoted by a green
star. The colour represents the relative image error in this point:
‖x−x∗‖22
‖x∗‖22

, where x∗ is the ground truth, x is the reconstructed image.
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Figure 8.3: The modi�ed L-curves plot for the Shepp-Logan phantom for λ1
parameter selection. The λ2 parameter is constant along the yellow
lines. The optimal pair of λ1 and λ2 parameters is denoted by a
green star. The colour represents the relative image error in this
point: ‖x−x

∗‖22
‖x∗‖22

, where x∗ is the ground truth, x is the reconstructed
image.
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Figure 8.4: The modi�ed L-curves plot for the Binary phantom for λ2 param-
eter selection. The λ1 parameter is constant along the yellow lines.
The optimal pair of λ1 and λ2 parameters is denoted by a big green
star. The colour represents the relative image error in this point:
‖x−x∗‖22
‖x∗‖22

, where x∗ is the ground truth, x is the reconstructed image.
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Figure 8.5: The modi�ed L-curves plot for the Binary phantom for λ2 param-
eter selection. The λ1 parameter is constant along the yellow lines.
The optimal pair of λ1 and λ2 parameters is denoted by a big green
star. The colour represents the relative image error in this point:
‖x−x∗‖22
‖x∗‖22

, where x∗ is the ground truth, x is the reconstructed image.
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Figure 8.6: 4 class phantom for testing the L-curve approach testing.

Figure 8.7: Testing of the regularization parameter selection approach. Left
- curves for λ1 parameter selection, blue - curve that corresponds
to λ2 = 0.6, green - curve that corresponds to λ1 = 0.78, right -
curve for λ2 parameter selection. The green stars show the selected
regularization parameters.
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computed: ‖x−x
∗‖22

‖x∗‖22
, where x∗ is the ground truth image. The L-curves described

in Section 8.3 are plotted

� in Figure 8.2 for the binary phantom for data �tting term and approxima-
tion of the class �tting term,

� in Figure 8.3 for the Shepp-Logan phantom for data �tting term and ap-
proximation of the class �tting term,

� in Figure 8.4 for the binary phantom for data �tting term and HMMFM
regularization term,

� in Figure 8.5 for the Shepp-Logan phantom for data �tting term and HMMFM
regularization term.

Consider the Figures 8.2 and 8.3. On these �gures the yellow lines denote the
lines, along which we do not change the λ2 parameter changing only λ1 regu-
larization. Although these curves may look di�erent, they have the shape that
resembles the shape of the L-curve. Some of these lines have a corner. Also, we
may note that the error value in the vicinity of the points where the L-curves
change the behaviour is the smallest in all the �gure (the error is denoted by
a color). Thus, we may conclude that the regularization parameters that corre-
spond to points in the vicinity of the corner of the L-curve produce good recon-
struction. Thus, using this modi�ed L-curves approach it is possible to select the
λ1 regularization parameter.

Next, consider the Figures 8.4 and 8.5. On these �gures we do not change the
λ1 regularization parameter, changing only λ2. We can see that the behaviour
of these lines is di�erent. We can see that the curves go from the left bottom
corner up to the right top corner. In the beginning the curves go more or less
along the axis. At some point the curve changes behaviour. We can see that the
area where this happens corresponds to the optimal λ2 regularization parameter.
Thus, we have to �nd the λ2 regularization parameter that corresponds to the
point where the L-curve changes behaviour.

Using these approaches it is possible to �nd good regularization parameters λ1
and λ2 for the problem (8.6).

We have tested this approach on a test problem that contains 4 classes. The pa-
rameters of this problem are the same as the parameters of the problems consid-
ered above: the amount of the rays in the projection, the amount of projections,
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the amount of noise in the data, the geometry of projections are exactly the same.
The attenuation coe�cients that are present in the image are 0.0, 0.33, 0.66, 1.0.
The phantom may be found on Figure 8.6

Next, consider the graphs in Figure 8.7. We have started with �nding the λ1
regularization parameter with λ2 = 0.6. The λ1 was selected to be equal to 1.83.
After that, having the λ1 regularization �xed, the λ2 regularization was selected
according to the rule that was stated above. The regularization parameter was
selected to λ2 = 0.78. Next, the search for the regularization parameter λ1 was
run again. The selected regularization parameter was again equal to 1.83. Thus,
we have found the pair of regularization parameters: λ1 = 1.83, λ2 = 0.78. The
relative image error that was achieved with these parameters is equal to 0.16.

8.5 Conclusion

We have shown that an L-curve approach to the problem of selection good regular-
ization parameters with some modi�cations gives some ideas about how to select
good regularization parameters for the SRS algorithm. Although the problem
of �nding good regularization parameters for our algorithm is very complicated
due to non-convexity of the problem (8.6), the minimal modi�cations based on
intuitive understanding is a good heuristic in this case. We have validated this
approach with two arti�cial problems. Although to select the second regulariza-
tion parameter λ2 we cannot use the L-curve criterion itself, there is a convenient
substitution for this criterion that we have formulated above.
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Chapter 9

Conclusion and Future Work

We consider the problem of computing a tomographic reconstruction and a cor-
responding segmentation in a joint operation based on the philosophy that the
joint process will improve both the reconstruction and the segmentation. We de-
veloped a new algorithm called Simultaneous Reconstruction and Segmentation
(SRS) in which the segmentation is based on given class priors. This informa-
tion, in the form of means values and standard deviations for the classes, acts
as prior for the reconstruction in the form of a Hidden Markov Measure Field
Model (HMMFM).

We compared our approach to other techniques, and we �nd that the results
obtained with our SRS algorithm (with given class parameters) produces bet-
ter reconstruction and segmentation. We also tried two di�erent regularization
strategies spatial correlation of the classes: Tikhonov regularization and Total
Variation regularization. We found that the results of these two strategies are
equally good, but the Tikhonov regularization strategy leads to a simpler and
faster implementation.

We introduced some modi�cation to this approach such as relaxation of the regu-
larization parameter (λ1 decrease with iterations) and relaxation of the standard
deviations (σk decrease with iterations) of the classes. We also compared the
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e�ect of using di�erent values for the standard deviations and mean values of
the classes. Moreover we found a good heuristics for �nding good regularization
parameters for the SRS algorithm without knowing the ground truth.

Still, there are a lot of things to look at. This includes: Use of another class
regularization term. We have used a Gaussian class-�tting term, since it is
a common way of approximating an unknown distribution. This term has the
form:

log p(x|δ) =
∑
j

log
∑
k

δjk exp

(
− (xj − µk)2

2σ2
k

)
. (9.1)

It would be also interesting to look at another class-�tting term of the form:

log p(x|δ) =
∑
j

log
∑
k

δjk exp

(
−|xj − µk|

2

σk

)
(9.2)

which will lead to a LASSO-type regularization of the pixel values. Spatial
regularization of the pixels in the reconstruction. In the present work
the spatial regularization is applied to the classes only, in order to see how well
this regularization was able to in�uence the reconstruction. Another direction of
research is therefore to incorporate in the SRS algorithm some form of spatial
regularization of the pixels in the reconstruction. It is expected that spatial regu-
larization of the reconstruction may (signi�cantly) improve the reconstruction (cf.
Tikhonov regularization and Total Variation regularization). Combining our ap-
proach with spatial regularization of the reconstruction may reduce the amount
of artifacts that appear in the solution when only the spatial regularization is
present. As a spatial regularization the following terms may be considered:

Reg(x) =
∑
j

‖Djx‖2 (9.3)

Reg(x) =
∑
j

∑
j′∈N(j)

∣∣∣∣∣∑
k

δjk
xj − µk
σk

−
∑
k

δj′k
xj′ − µk
σk

∣∣∣∣∣ . (9.4)

More tests. It is also interesting to test this approach on more di�erent real
data from CT scanners.
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