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Structural materials are used in myriad applications, including aerospace, automotive, 

biomedical, and acoustics. Most materials have positive or zero Poisson’s ratio, with cork 

serving as a well-known example of the latter type of behavior. The Poisson’s ratio describes 

the relative amount a given material contracts transversally when stretched axially.  Recently, 

artificial materials that exhibit a negative Poisson’s ratio have been introduced.[1–3] These 

auxetic materials expand transversally when axially stretched, seemingly defying the 

fundamental laws of nature.[1–3] They exhibit enhanced mechanical properties, such as shear 

resistance,[4,5] indentation resistance[6–9] and extraordinary damping properties,[10] making 

them well suited for targeted applications. To date, several types of auxetic materials have 

been introduced[2,3,11-20].  However, current embodiments suffer from two primary limitations: 
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(1) they only exhibit the desired response over a narrow range of strains (less than a few %) 

and (2) they are difficult to manufacture in a scalable manner.[17,21-25]  While recent structures 

(e.g. chiral honeycombs,[14] tilting square structures[24] or Bucklicrystals[19]), for specific 

values of Poisson’s ratio, exhibit near constant values over large strains, they are either not 

generalizable to other Poisson’s ratio values or they exhibit low effective stiffness and/or must 

be pre-stressed to yield the desired performance. 

Here, we combine topology optimization to programmably design their architecture 

with 3D printing to digitally fabricate the designs and validate against the numerically 

predicted behavior. Specifically, we create a new class of architected materials with 

programmable Poisson’s ratios between -0.8 and 0.8 that display a nearly constant Poisson’s 

ratio over large deformations of up to 20% or more. Figure 1 shows two representative 

examples of microstructures designed using topology optimization.[26] The linear model that is 

applied by existing design methods (Figure 1a) assumes small deformations. By contrast, an 

emerging approach (Figure1b), described in detail in a recent study[26] by Sigmund and co-

workers, uses a geometrically nonlinear model and includes a requirement of a constant 

prescribed Poisson’s ratio when straining the material. While both examples are designed to 

have a Poisson’s ratio of -0.8, the performance of the linearly designed material rapidly 

deteriorates when the material is strained more than a few percent (Figure 1c).   

Mathematically, the optimization goal is defined as minimizing the error between the 

actual and the pre-defined value of Poisson’s ratio over a range of discrete, nominal strain 

values up to 20%.[26] To ensure scalable fabrication of these architectures, several geometric 

constraints are imposed on the topology optimization design problem. A requirement of 

uniform structural features is implemented as a combination of imposing a minimum[27,28] and 

a maximum length scale. The topology optimization step leads to a beam-like layout, which 

may be converted into a simplified design composed of a set of parameterized superellipses. 
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Uniform feature size is guaranteed by specifying a constant width for all the superellipses, 

while the length of each superellipse is controlled by design points (Figure S1). Using shape 

optimization to fine-tune the superellipse designs, we obtain architectures with uniform 

features having the desired response.  

To demonstrate our approach, nine reference architectures are designed with equally 

dispersed and strain-independent constant Poisson’s ratio values between -0.8 and 0.8. Based 

on this discrete set of architectures, we derive a simple generic parameterization that provides 

a design guideline for any targeted value of the Poisson’s ratio within the range of -0.8 to 0.8. 

The details of the topology and shape optimization methodology as well as the derivation of 

the generic parameterization are provided in Supplementary Information and illustrated in 

Figure S2. We use direct ink writing (DIW) [29-31], an extrusion-based 3D printing method, to 

fabricate these topologically optimized materials (Figure 2a).  Inspired by initial results from 

the topology optimization process, we realized that materials with a negative or zero 

Poisson’s ratio could be designed to ensure a continuous print path (Figure 2b), which is not 

generally obtained in topology optimized architectures. This ultimately ensures their scalable 

fabrication via multinozzle arrays[32]. The uniform feature size obtained with the superellipse 

approach allows printing with a constant nozzle speed and volumetric flow, thereby 

minimizing patterning errors. The structures with a strictly positive Poisson’s ratio have a 

different topology requiring a modified printing strategy. The unit cell consists of round 

features connected by straight members (Figure 2c) and may be fabricated with a continuous 

print path by printing the connecting features with two passages of the nozzle, as indicated by 

the arrow in Figure 2c. This approach translates into a requirement of piecewise uniform 

feature size, with the double-printed features having correspondingly larger width, which is 

easily fulfilled using the superellipse approach. 

We fabricated a complete series of topology optimized architectures that exhibit nearly 

constant values of Poisson’s ratio over large deformations across nine equally dispersed 
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values ranging between -0.8 and 0.8 (Figure 3a-c).  These samples (10-layers) are printed 

using a silicone-based elastomeric ink and then cured. Each sample is then subjected to 

uniaxial tensile testing (Figure 3e) and its performance is compared to the numerical 

prediction (Figure 3f). The deformation patterns for samples of the two extremal Poisson’s 

ratio values (-0.8 and 0.8) clearly demonstrate the large deformations associated with the 

expanding versus contracting behavior (Figure 3d and 3g). The definition of Poisson’s ratio 

used for design and validation is the negative ratio of the transverse strain, ε2, to the 

longitudinal strain, ε1: 

𝜈 = −𝜀2
𝜀1

          (1) 

The applied strain measure is the engineering strain, i.e., 𝜀 = Δ𝐿 𝐿0⁄ , where Δ𝐿 is the change 

in distance between two points initially separated by the distance 𝐿0. The experimentally 

measured values are an average over the four (two by two) central unit cells.  Despite minor 

deviations, the experimental results are in good agreement with the predicted behavior for 

both the negative and positive Poisson’s ratio designs.  In the latter case, the experimental 

values are slightly below the numerical curve for large strains in all samples.  This deviation 

likely arises to slight geometrical differences between the fabricated samples and the 

programmed designs, rather than flaws in the numerical model. For example, the initial 

(lower) layers deform slightly due to gravitational and viscous forces as subsequent (upper) 

layers are printed.  The upper layers are drawn slightly inwards at sections with strong 

curvature due to viscous forces in the ink. Hence, the desired uniform feature size is not 

perfectly realized in those samples.   

As noted earlier, the four optimized microstructures with positive Poisson’s ratio share 

a very similar generic configuration (Figure 4a), while the five optimized microstructures 

with negative or zero Poisson’s ratio share another (albeit related) generic configuration 

(Figure 4b). To clearly demonstrate their configuration evolution versus Poisson’s ratio only 
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the skeletons of the optimized materials are shown. Based on the optimized design points for 

the nine reference designs, the microstructural configuration for any given Poisson’s ratio 

within the interval [-0.8, 0.8] can be obtained by using a B-spline interpolation of the design 

points. The validity of this interpolation is illustrated in Figure 4c, where the total absolute 

performance error, summed up over the entire strain range, is displayed not only for the nine 

reference structures, but also for seven interpolated structures between each design point in 

both the positive and the negative range of Poisson’s ratio.  Figure 4c clearly shows that all 

designs perform well in a predictable fashion with only small variations.   

In summary, by combining topology optimization with additive manufacturing, we 

have created a new class of architected materials. We have developed a simple geometric 

parameterization for the layout of the microstructural designs based on numerical 

optimization studies.  We have fabricated materials architectures with programmable 

Poisson’s ratio values ranging from -0.8 to 0.8 over deformations that are an order of 

magnitude greater than those observed previously. Our approach opens new avenues to the 

design and rapid fabrication of programmable materials possessing exotic properties.     

 

Experimental Section 

Silicone Ink: The ink is a polydimethylsiloxane (PDMS) silicone material, SE 1700 (Dow 

Corning), which consists of a 10:1:1 mix ratio of SE 1700 Clear Base, SE 1700 Catalyst (both 

Dow Corning) and silicone oil (viscosity 350 cSt (25 °C), Sigma-Aldrich Chemistry), 

respectively. The parts are mixed in a 15 mL container for 5 min at 2000 rpm using a 

planetary mixer (Dual Asymmetric Centrifugal SpeedMixer, FlackTek Inc., DAC 600.2 

VAC-P). For each test specimen, 6 g of mixed material is prepared. 

3D Printing: The ink is loaded into a 10cc, luer-lock syringe (Nordson EFD Optimum) and 

centrifuged for 10 min at 3000 rpm to remove air bubbles (Thermo Electron Corporation IEC 

Centra CL2 Centrifuge). The loaded syringe is placed on an Aerotech 3-axis positioning stage 
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(Aerotech, Inc.). Ink deposition is controlled pneumatically using an Ultimus V pressure box 

(Nordson EFD). The ink is printed through a 200 μm luer-lock syringe tip (Nordson EFD) 

onto a glass plate covered with PTFE-coated aluminum foil to prevent adhesion (Bytac, Saint-

Gobain). Print paths are generated from optimized designs by converting node positions into 

parameterized G-code scripts. Test specimens (10 layers with 136 μm layer thickness) are 

printed on a custom-designed 3-axis motion-controlled stage (Aerotech, Inc). Printed parts are 

cured at 100 °C for 4 h. 

Uniaxial Tensile Tests: For each of the fabricated architectures, a test specimen consisting of 

12 (longitudinal) by 8 (transversal) unit cells (5 mm x 5 mm) was printed. At both ends, a 15 

mm grid is printed to allow mounting the sample for mechanical testing. For the tensile tests, 

the attachment grid at both ends is friction fastened between two pieces of purpose cut 6mm 

acrylic plate, the latter held together using bolts and nuts. Each sample is tested in a vertical 

setup. The top end is attached to the z-stage of the Aerotech positioning system using screws. 

The bottom end is attached between two steel blocks held in place by gravity. The initial 

sample length (distance between acrylic plates of opposite ends) is measured using a digital 

caliper. The sample is strained at 2% increments between 0 and 20%. Each step is monitored 

using a digital SLR camera (22.3 M Pixels Canon 5D Mark III with a Canon US Macro 100 

mm objective) synchronized with the setup. 

Image Analysis: Each photo from the strain test is converted to a contour plot using the 

MATLAB Image Processing Toolbox. Distances, measured in pixels between corresponding 

features, are tracked between images for all nominal strain values for each sample. Numerical 

simulations of the entire tensile test specimen revealed that boundary effects, such as 

constraints on both ends of the specimen, only cause minor deviations (less than 5%) when 

evaluating the Poisson’s ratio using the four unit cells located in the center of the specimen. 

Hence, experimental strain values used for computing the Poisson’s ratio were determined as 
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an average over the four unit cells within the 2 x 2 array located in the center of each 

specimen. 
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Figure 1. Topology optimized microstructures for auxetic materials via (a) linear and (b) 
geometrical nonlinear modeling. (c) Strain-dependent behavior of Poisson’s ratio for large 
deformations for these respective materials. 
 
 
 
 
 
 

 
Figure 2. 3D printing method and constraints. (a) Optical image of the fabrication of PDMS-
based architectures using direct ink writing. (b) Print path (indicated by superposed solid lines 
with triangle markers) for these structures for negative and zero Poisson’s ratio. (c) Print path 
for positive Poisson’s ratio. For segments with overlapping print paths (indicated by arrow), 
the features are correspondingly wider. Scale bars in (b) and (c) are 5 mm.  
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Figure 3. Topology and shape optimized architectures. (a) Designed and (b) printed unit 
cells for a programmable range of Poisson’s ratio values. (c) 3x3 unit cells of the 
corresponding PDMS-based architectures. (d) Deformation pattern of the 2x2 central unit 
cells corresponding to given longitudinal nominal strain values for ν = -0.8 (in (g) for ν = 0.8). 
(e) Experimental setup for tensile tests. (f) Comparison between experimental (points) and 
numerically predicted (dashed lines) results. Unit cell size for all architectures in (a-g) is 5 
mm.  
 
 
 

 
 
Figure 4. Generic parameterization of engineered architectures. Visual comparison of the 
unit cell layout for (a) positive and (b) negative or zero Poisson’s ratio. (c) Average absolute 
error for parameterized designs for any given Poisson’s ratio. The red square points indicate 
the nine optimized reference structures. 
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Topology Optimized Architectures with Programmable Poisson’s Ratio over Large 

Deformations 

Anders Clausen, Fengwen Wang, Jakob S. Jensen, Ole Sigmund* and Jennifer A. Lewis* 

 

Topology optimization 

Topology optimization can efficiently be employed to design structural materials with a 

programmable Poisson’s ratio values. A design domain defining the unit cell is discretized 

using a number of elements, defining both the design mesh and the finite element mesh used 

to model the periodic microstructure. The material occupation in each element, e, is controlled 

by a design variable, 𝝆𝒆, which can take values between 0 and 1. By iteratively changing the 

design variables based on gradient information, the microstructural layout can be optimized to 

achieve the prescribed Poisson’s ratio. Exact topology optimization formulation and 

procedures are described in detail in a recent study. [25]  

To ensure scalable fabrication of the architectures, we first imposed geometric 

constraints like minimum[26,27] and a maximum[28] length scale on the topology optimization 

problem, leading to beam-like layouts with only minor variations in feature size. Inspired by 

these architectures, we formulated a shape optimization step by parameterizing the previously 

optimized microstructures using a set of superellipses to ensure completely uniform member 

sizes. In this second optimization step, any finite element, e, is defined as solid (𝜌𝑒 = 1) or 

void (𝜌𝑒 = 0), depending on whether its center (𝑥𝑒 ,𝑦𝑒) is located within one of the 

superellipses or not. Thereby, the material occupation of a given element, e, can be described 

by 

𝜌𝑒 = max�𝑆𝑖(𝑥𝑒 ,𝑦𝑒)� , 𝑖 = 1. .𝑁 ,       (S1) 
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where 𝑆𝑖 indicates whether element e is inside the ith superellipse, controlled by the ith and 

(i+1)th design points as illustrated in Supplementary Fig. 1a. 𝑆𝑖(𝑥𝑒 ,𝑦𝑒) = 1 indicates that 

element e is within the ith superellipse, and 𝑆𝑖(𝑥𝑒 ,𝑦𝑒) = 0 indicates that the element is 

outside. Mathematically, 𝑆𝑖 is given as 

𝑆𝑖(𝑥𝑒 ,𝑦𝑒) = 1 − 1

1+𝑒
�−𝛽��𝐴

𝑎𝑖
�
100

+�𝐵
𝑏𝑖
�
100

−1��

 ,      (S2) 

where 𝛽 is chosen as 50, and the parameters A and B are calculated by 

𝐴 = �𝑥𝑒 − (𝑥𝑖 + 𝑥𝑖+1)/2� cos𝛼 + �𝑦𝑒 − (𝑦𝑖 + 𝑦𝑖+1)/2� sin𝛼    (S3) 

and  

𝐵 = −�𝑥𝑒 − (𝑥𝑖 + 𝑥𝑖+1)/2� sin𝛼 + �𝑦𝑒 − (𝑦𝑖 + 𝑦𝑖+1)/2� cos𝛼   (S4) 

Here, 𝛼 is the angle of the line connecting the ith and (i+1)th design points. It is calculated by  

𝛼 = tan−1 �𝑦
𝑖+1−𝑦𝑖

𝑥𝑖+1−𝑥𝑖
�         (S5) 

The semi-diameter 𝑎𝑖 is fixed to be half of the desired feature size and the semidiameter 𝑏𝑖 is 

defined by half of the distance between the two design points. Based on this design 

parameterization, materials with pre-defined Poisson’s ratio are fine-tuned by changing the 

locations of design points, using a gradient-based optimization algorithm.  

The unit cell size of all optimized superellipse-based designs is 5.0 mm. Designs with 

a negative or zero Poisson’s ratio have constant feature size of 300 µm, or a1
i = 150 µm. For 

comparison, a design with positive Poisson’s ratio (𝜈 = 0.4) is shown in Supplementary Fig. 

1b. The connecting features located along diagonals are represented by superellipses with an 

increased semi-diameter (a2
i = 275 µm) to reflect the two passages of the nozzle in the 

fabrication process as illustrated in Fig. 2c in the main article. The semi-diameter a2
i was 

determined experimentally based on the print parameters giving the value a1
i . The reason that 

a2
i  is not exactly the double value of a1

i (we found that a2
i  < 2a1

i ) is that at the second 
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passage of the nozzle, the PDMS is extruded into the already printed material from the first 

passage, giving rise to a small viscous resistance and thereby a lower extrusion rate.  

Generic parameterization of microstructural architectures 

 Nine reference architectures with equally dispersed Poisson’s ratio values between  

-0.8 and 0.8 are created using the combined topology and shape optimization approach.  The 

microstructural configuration for a material with any prescribed Poisson’s ratio within this 

range can be obtained by interpolating the design points from the reference architectures. 

Specifically, we use the Matlab cubic spline interpolation function “csapi” to obtain the 

interpolation functions. 

The microstructural configuration for a material with any Poisson’s ratio within the 

range [-0.8, 0] is interpolated using the five reference architectures with Poisson’s ratio 

smaller than or equal to zero. Supplementary Fig. 2 illustrates the cubic spline interpolation of 

the y-coordinate of a single design point. Similarly, the microstructural architecture for a 

material with a Poisson’s ratio within the range [0.2, 0.8] is interpolated using the four 

reference architectures with positive Poisson’s ratio. Configurations for the intermediate range 

[0, 0.2] are interpolated using the two reference architectures with Poisson’s ratios of 0 and 

0.2. 
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Figure S1. (a) Illustration of the design parameterization based on superellipses used in the 
shape optimization. (b) Illustration of the superellipse-based design parameterization for 
reference architecture with positive Poisson’s ratio (𝜈 = 0.4).  
 
 
 

 
Figure S2. Representative example of the y-coordinate interpolation of a single design point 
as a function of Poisson’s ratio.  
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