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Abstract-Due to the flexible charging and discharging 

capability, energy storage system (ESS) is thought of as a 

promising complement to wind farms (WF) in participating into 

electricity markets. This paper proposes a reserve-based real­

time operation strategy of ESS to make arbitrage and to 

alleviate the wind power deviation from day-ahead contracts. 

Taking into account the operation strategy as well as two-price 

balancing market rules, a day-ahead bidding strategy of WF­

ESS system is put forward and formulated. A modified gradient 

descent algorithm is described to solve the formulations. In the 

case studies, the computational efficiency of the algorithm is 

validated firstly. Moreover, a number of scenarios with/without 

considering the temporal dependence of wind power forecast 

error are designed and employed to compare the proposed 

strategy with other common ones in terms of profit. 

Index Terms-Bidding strategy, electricity markets, energy 

storage system, real-time operation, wind farm 

I. INTRODUCTION 

Recent decades have witnessed the rapid development of 
wind power generation. It has gradually been a general 
consensus that the increasing capacity of wind power 

should be traded in day-ahead markets [1]. Based on the 

limited wind power forecast accuracy, optimal bidding 
strategies of wind farms (WF) in day-ahead electricity 
markets has been widely studied. Reference [1] proposes a 
closed-form optimal day-ahead bidding strategy, Expected 
Utility Maximization (EUM) Strategy. It considers stochastic 
prices and wind generation, and has advantages over the LP 

models on transparency of results, computational efficiency 
and data requirement. In order to extend the application of 
EUM strategy to situations where WFs coordinate with 

conventional generators, a more general loss function is put 
forward in [2] to express the economic loss on the WF 
resulting from the wind power deviation. Authors of [3] 

anchor the bidding amounts within a certain neighborhood of 
deterministic forecast values to account for risk aversion 

while improving the EUM strategy. It can alleviate risky 

bidding in electricity markets, which may result in large 
imbalance and is not welcome by Transmission System 
Operators (TSO). 

The limited accuracy of wind power forecast necessarily 
result in the revenue loss for wind power producers as they 
should buy up-regulation (additional energy sold by other 
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participants) or sell down-regulation (energy bought by other 

participants) in balancing markets to meet the deviation with 
day-ahead contracts. The energy storage system (ESS) can be 

regarded as a suitable complement to the stochastic wind 
power, as it can inject and extract energy flexibly to 
accommodate the imbalance [4-6]. Furthermore, it can make 

arbitrage with the variable prices to increase the overall profit. 

The study of [7] shows that WFs and ESS can get both better 
off through the contract about the imbalance service. The 
storage studied in [8] is employed to cover the contracted 

shortfalls of WF. The concavity of objective functions based 
on the greedy operation strategy of ESS is studied, but the 
arbitrage strategy of storage is overlooked, which will 
influence the day-ahead bidding and further affect the profit. 
Pumped storage plant is studied to utilize the wind spillage 

and arbitrage between different time periods in [9]. However, 
the formulation does not consider the penalty of deviation, 

which is different from the rule of electricity market. 
The first contribution of this paper is illustrating the 

influence of ESS on day-ahead bidding of WF. The 
cooperative mode is that the ESS has charging/discharging 
reserve capacity for each time interval, up to which the ESS 
can compensate for potential imbalance from WF. Based on 
the cooperative strategy and price-taker assumption, a mixed 
integer nonlinear programming model is proposed to 
maximize the expected profit. An additional contribution is 
the proposal of a computational efficient algorithm to solve 
the problem, which is modified from the gradient descent 
algorithm and validated by a case-study with three market 
time units. Furthermore, scenarios with different temporal 
dependences of wind power forecast error are generated to 
compare the proposed strategy with other common ones. 

II. OPTIMAL BIDDING AND OPERATION STRATEGY 

A. Imbalance Management in Electricity Markets 
In most deregulated electricity markets such as the 

Scandinavian Nord Pool, participants should trade in both the 
day-ahead market and balancing market. There are also intra­

day markets (or adjustment markets) between day-ahead and 
balancing stages for transactions of renewable energy 

generation [10]. But as the trading amount in such markets is 
relatively small, it is not considered in this paper. 

In the day-ahead market, power plants bid for their 
generation schedule with 12 to 14 hours prior to actual 

generation [11]. The cleared schedules are subject to 
deviation penalties, which means the participants need to buy 
or sell up/down regulation services for any deviation of actual 
output from schedules in balancing markets. The balancing 



markets can be divided into two categories according to 
whether the balancing price changes with the imbalance sign 

[12]. The deviation is traded at a unique price in the one-price 
balancing market, which is adopted in markets like Dutch 

APX [13]. In two-price markets such as Nord Pool and the 
Iberian one, deviation opposite to the system imbalance is 
traded at day-ahead price while the imbalance of the same 
sign with that of system is traded at the cleared balancing 

price. The model proposed in this paper is based on the 
second one as it is more comprehensive. 

B. Real-time Operation Strategy 
In most literature the ESS is used to compensate the 

imbalance of WF from day-ahead offers, by which the WF­

ESS can be regarded as a conventional generation plant as a 

whole. However, operating ESS in this way may risk 

charging at high prices but discharging at low prices. Besides, 
the imperfect round-trip efficiency of ESS would further 

reduce the potential profit of the system. 
In this paper, a novel operation strategy is proposed. The 

charging or discharging status of each time interval is 
optimized in day-ahead section, which means the ESS only 

works if the real-time imbalance sign of the WF output goes 
with the predetermined working status. Furthermore, it also 
sets constraints on the charging and discharging power, which 
can be thought of as the operational reserve provided by the 
ESS. It means that even if the deviation of WF exceeds the 
reserve capacity, the ESS can charge or discharge at most to 

the predetermined upper bounds, which are often lower than 
the ones determined by the operational constraints. By this 

method the ESS can avoid charging at high-price intervals or 
discharging at low-price periods. 

C. Formulations of Bidding and Operation Strategies 
As mentioned above, the objective of ESS operation is to 

make arbitrage and to balance the output deviation of WF. In 

the formulation, the wind power p in interval t is assumed to 

distribution f (p) . Then the expected profit of all r intervals 

can be written as, 

max ± E [ s, ( B,D , BS,D, BS,c )1 :t,D, :t;'P , :t,d", ] !J.t (I) 
'=1 

where !J.t is the time duration of each interval. B,D is the 

day-ahead bidding of WF-ESS system, and BS,D, BS,c are 

discharging and charging capacity of ESS. As the WF-ESS 
system is assumed to be a price taker, the day-ahead prices 

:t,D and up/down regulation prices :t;'P, :t,d'" are independent 

from its bidding. Consequently the stochastic prices can be 
presented by their expected value, and the expected profit in 

each interval can be expressed as, 

E [ S, ( B,D , BS,D , Bs,c) 1 :t,D , :t,"P , :t,dw ] 
-D D -UP f B/D_BS,D D D =:t, B, +A, (p-B, +BS, )1;(p)dp 

� 
-dw f 

",I; ( D ·  C ) ( ) + A, D C P -B, -BS, 1; p dp 
B, +851 

(2) 

-D -up -dw 
where :t, is the expected day-ahead price, A, , A, are 

expected up/down-regulation prices for interval t respectively 

[I]. The expected profit in interval t consists of three parts. 

The first one is the day-ahead bidding profit, the second part 
is the cost of purchasing up-regUlation service (negative in 

value) and the third part is the profit of selling down­

regulation. Necessarily, 

Os BS,c s u; (wf -Bn Vt E {1,2 ... r} (3) 

OSBS,DSU,D (B,D-wf ) VtE{I,2 ... r} (4) 

where wf, wf are upper and lower bounds of wind power 

output of interval t, and u;, U,D are variables indicating 

charging and discharging status of ESS. There are also some 
operational constraints of ESS, including: 

Os BS,c s u; BSc Vt E {1,2 ... r} (5) 

Os BS,D S U,D BSD Vt E {1,2 ... r} (6) 

u;+u,Dsl U; ,U,DE{ O,I} VtE{I,2 ... r} (7) 
I-I I-I 

E,=Eo+LBS�·'7c·!J.t-LBS�/'7D·!J.t VtE{I,2 ... T} (8) 
j=1 j=1 

Errun S E, S Emax Vt E {1,2 ... r} (9) 

ET = Eo (10) 
where (5) and (6) constrain the charging and discharging 

power, at interval t within the operation range. Simultaneous 
charging and discharging is prevented by (7). The energy 

transition of ESS is expressed in (8) and the residual energy 

should be within allowable range [Emin, Emax] at any time 

interval with (9). In this paper, the energy in ESS is 
constrained to be the same at the beginning and end of the 
day, as shown in (10). 

III. SOLUTION METHOD 

As integration is included in the objective function (2) and 
binary variables are included in (3)-(7), the formulation is a 

mixed integer non-linear model, and cannot be solved directly. 
In this paper, the gradient descent algorithm is modified 
according to the characteristics of the formulation. It should 
be noted that as the problem may be nonconvex, in that case 

the proposed algorithm will only get the nearest local optimal 
solution. However, the computational effort required for this 

algorithm is much lower than evolutionary algorithms, which 
can only theoretically get global optimal solution. The 
computation-friendly characteristic makes it easy to use and 
suitable to integrate into rolling optimization. More 

importantly, the algorithm can obtain the satisfactory solution 
by choosing the proper initial point. 

A. Framework of the Algorithm 
The proposed algorithm consists of following steps: 

Initialization: {BOO BSDO BSCO } = {F-' [):� - ):�w 

J 
0 o} 

t '  t '  t . lip dw" AI - A, 

Step I: execute ESS module => {[ t:..BS,Dk , t:..BS,Ck ]} 



Step 2: execute Bidding module => {M,Dk} 
Step 3: back-tracking method to determine the step: 

Substep 1: r = 1 
Substep2: 

BS,Dk (r) = BS,D(k-l) + (I - (1- r )U,D ) MS,Dk 

BS,Ck (r) = BS,C(k-J) + (1- (1- r )u;) MS,Ck 

BI
Dk (r) = BI

D(k-il + rtilll
Dk => Sk (r) 

Substep3: while Sk (r) < Sk-I , then r = fJr , go to 

Substep2 

Step 4: if ISk (r) -Sk-II � E: , or maximal iteration steps are 

reached, end. Otherwise, go to Step 1 
In the algorithm, the parameter r is the step size, whose 

initial value is 1. The backtracking parameter f3 is the factor 

which shortens the step size. 

B. Linear Approximation o/the Objective 
In (2), when the prices are available through predictions, 

then the objective function is a function of BID, BS,D, BS,c , 
noted as S ( BID, BS,D, BS,C ) . At any interval t, the expected 

profit can be approximated as: 

and 

S ( BID, BS,D , BS,C ) "" S ( B,DO , BS,DO , BS,CO ) 

+ [� � �] .[MD MSD MSc JT 
aBDO ' aBSDO ' aBSco " I' , 

, I I 
(11) 

as 
� = J:� -T" F (B,D -BS,D ) - J::" [ 1-F (B,D + BS,c ) ] aB, 

�= J::'PF(BD -BSD) 
aBs,D " 

�= -J::" [1-F(BD +BSC)] aBS,c " 

where F ( p) is the cumulative distribution function of wind 

power forecast. The first part of (11) is fixed, then the optimal 

solution of (11) can be obtained by solving the rest part. 
Besides, Equation (3) (4) are quadratic if being solved 
directly, but can be converted to linear ones via an iterative 
procedure on the decision variables involved. 

C. ESS Module 
In this module, the decision variables are all about the 

charging and discharging of ESS. Furthermore, the objective 
function only contains the ESS-related parts. The superscript 
k means the variables are of iteration k, where all the 

parameters of iteration (k-l) are constants. The formulation is, 

Max f( as, ABsDk + 
as, ABSCk J (12) '�I aBs,D(k-l) 

, 
aBs,C(k-l) 

, 

(13) 

(14) 

o � BS,C(k-l) + MS,Ck � U;k ( wi; _ BID(k-l) ) 
o � BS,D(k-l) + MS,Dk � U,Dk ( B,D(k-l) -wi; ) 

(-I (-I 

(15) 

(16) 

E,k = E,k-I + I MS,Ck . '7c 
. At -I MS,Dk / '7 D • At (18) 

J�I J�I 
Em," � Elk � Em", (19) 

E; = Eo (20) 

The formulation avoids the quadratic formation as {B,D(k-I)} 
in (15) and (16) are regarded as constants. 

D. Bidding Module 
In this module, the decision variables are only bidding­

related variables, and the objective function only contains the 

day-ahead bidding profit. Formulations of this module are: 

(21) 

(22) 

(23) 

Here the latest information of charging and discharging is 

considered in the bidding block to accelerate the computation. 

IV. CASE STUDIES 

A. Case Design 
In the case studies, only three intervals are designed for the 

sake of simplicity and transparency. The forecasted wind 
power is assumed to obey uniform distribution. As there is no 

limit on the distribution in (11), other distributions can also 
be adapted to the proposed method. The assumption of 
uniform is not very grounded but is the simplest, especially 
when integrated into objective functions. With the uniform 

distribution p � U (w.t;, w.t;) assumption embedded into (2), 

the objective can be expressed as, 
-liP -dw 

-D D A, ( D D )2 A, (- D C )2 (24) S, = AI B, -� B, - BS, + � w.t; - B, - BS, 
2w.t; 2w.t; 

With constraints (3)-(10), a quadratic formulation is built 
up and to be solved by commercial software such as CPLEX, 
and can further be compared with the proposed algorithm in 

accuracy. Main parameters are listed in Table I and Table II. 

Table I basic parameters of the case 

77c 17D Emin[MWh] E,m,[MWh] 
0.9 0.9 1 10 

Eo [MWh] P,,:1X [MW] p,�,[MWl fJ 
5 10 10 0.3 



Table IT basic parameters of the case 

Time interval "AD [ DKK / kWh 1 "Ad" [DKK / kWh 1 
I 0.4 0.2 
2 0.8 0.7 
3 0.6 0.5 

,1,"" [DKK / kWh] wf [MW] Wf[MW] 
0.5 90 0 
1.0 60 0 
0.7 75 0 

B. Numerical Results 
From Table III one can see that with the coordination of 

ESS, the system tends to bid higher amount in the day-ahead 

market. As the price in period 2 is higher, the ESS sets some 
discharging reserve in this period and charging reserve in 
period 1 and 3. The increasing amount of bidding in period 2 
is also much higher than that of period 1 and 3. 

T bl TIT C f b'M a e ompanson 0 I mg resu ts 
Interval I 2 
Bidding without ESS [MW] 60.0 20.0 
Bidding with ESS [MW] 63.7 47.0 
Charging reserve of ESS [MW] 5.6 0 
Discharging reserve of ESS [MW] 0 8.1 

3 
37.5 
48.5 
4.4 
0 
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Fig. 2 Comparison on the converging process and optimality between 
conventional and modified gradient descent algorithms 

50 

In Fig. 1, the fust iteration represents the bidding amount 
of all intervals without considering the storage, as done in [2]. 
With the iteration going up, the bidding fluctuate and 
gradually converge to the optimal solution. The optimal 

objective value is 60.41, and has increased by 4.9% compared 
with that of the strategy without considering ESS. It is 
because that the ESS can perform arbitrage with price 
variance and reduce the deviation penalty of wind power, 

thus enhancing the expected profit. 
As the latest information of charging/discharging reserve, 

tillS,Ck, tillS,Dk , is utilized in the bidding module, the 

converging speed of proposed algorithm is much faster than 

the traditional gradient descent algorithm, which only uses 

the information of BS,C(k-I), BS,D(k-l) in iteration k (replace 

tillS,Ck, tillS,Dk by BS,C(k-I), BS,D(k-l) in (13) and (14)). As 

shown in Fig. 2, it takes the modified gradient descent 

algorithm no more than 6 iterations to reach convergence, 
whose value is 60.41 kDKK. Meanwhile, it takes the 

conventional algorithm about 40 iterations, with the objective 
value of 60.34 kDKK. The numeric results show that the 

proposed algorithm takes advantage over traditional one both 

on converging speed and optimality. 
The Hessian matrix of the objective function is as 

a2s ----, a2s, a2s, 
aB,D2 aB,D aBS,D aB,DaBS,c 

H= a2s, a2s, a2s, 
aBs,D aB,D aBS,D2 aBs,DaBS,c 

a2s, a2s, a2s, 
aBS,caB,D aBS,caBS,D aBs,C2 

(25) 
A/'P - A,dlV /i"P Ad" , , 

wf wf wf 

-A"P , _/i"P , 
0 

wf wf 

Ad", , 
0 

Ad" , 
wf wf 

As the third order leading principal minor of (25) is 
positive, the Hessian matrix of the objective function (2) is 

not negative defmite. It means the problem is nonconvex, and 
CPLEX only gets the upper bound, which is 60.60 kDKK. 
Meanwhile, the answer got from the proposed algorithm is 

60.41 kDKK, which is quite near the upper bound. 

C. Influence of Wind Power Correlation 
In the optimization model, the wind power generation of 

each interval is assumed to obey specific distribution 

independently. However, the wind power generation at 

interval t will partially depend on that of interval (t-l). In 
order to consider the influence of correlation of wind power 
generation, two sets of scenarios are generated to compare. In 
the fust set of scenarios, wind power of each interval is 

generated independently and only obeys the distribution for 

the interval. In the second set of scenarios, the method 



proposed in [14], [15] is applied to generate scenarios, where 
the correlation and distribution are considered simultaneously. 
In the scenario-generation method, information of predictive 

distributions of each time interval, 7(t+klt), and covariance 

matrix L are necessary. The predictive distribution is given 

as uniform distribution and the covariance matrix should be 
estimated with updated data. In this paper we only intend to 

reveal the influence of correlation on profit, so a simplified 

covariance matrix is used in the scenarios generation as 

following, 

- HI (26) (Ji,J - a 
where a indicates the correlation of wind power between 

neighboring intervals and a E (0,1) . 
Consequently, there are two tests according to whether 

temporal dependence of wind power generation between 

intervals is considered in scenarios. For either test, ten cases 
are designed and 10000 scenarios are generated for each case. 
Meanwhile, four bidding and operation strategies listed below 

are simulated and compared. 
� Strategy 1: the WF works alone, and the optimal 

bidding of interval t is f rl (�: -�:I']} . The WF 1 A, -,1, 
does not adjust its output and gets settlement in 
balancing markets [2]. 

� Strategy 2: WF-ESS system bids as Strategy 1, but 
uses the ESS to compensate the imbalance from WF 
as much as possible [6]. 

� Strategy 3: WF-ESS system bids as Strategy 1, but 
sets operation reserve (as Table III) for the charging 
and discharging ofESS [8]. 

� Strategy 4: WF-ESS system adopts the bidding 
strategy proposed in this paper, and sets upper bound 
of charging and discharging for ESS power, as 
Strategy 3. 

60.----------.�----._--�--_r--�----�__. 11'."1 Strategy 1 
59.5 - Strategy 2 

� 59 f------"'----' 

� 58.5 

� 
e 58 

Q.; 

56.5 

56 L-__ � __ -L __ � __ �L-__ � __ -L __ � ____ L-� 
1 4 6 7 8 9 10 

Case Number 
Fig. 3 Test results of uncorrelated scenarios 

The results obtained from the test without considering 
wind power correlation between neighboring time intervals 

are demonstrated in Fig. 3, in form of average profit of 10000 

scenarios for each strategy and case. From Fig. 3 one can 
observe that Strategy 4 gets much higher profit than other 

strategies, and Strategy 2 always has the least profit, even less 

than that of Strategy 1, where the WF works alone. The 

results come from the fact that Strategy 2 ignores the price 
variance, thus transiting wind energy from high-price 

intervals to low-price intervals in some scenarios. Besides, 
the round-trip efficiency of ESS will also influence the 

arbitrage effect. 
Fig. 4 demonstrates the test results of cases considering the 

dependency of wind power generation. As the model and 

strategy proposed in this paper is built without correlation 
considered, Strategy 4 gets similar profit with Strategy 3. It 

means the improvements in profit come mostly from the real­

time operation strategy of ESS. The average profit of Strategy 
4 in test 2 is 56.48 kDKK, a little less than that in test 1, 
where the value is 58.01 kDKK. This comparison on one 

hand means the correlation of wind power forecast error has 
influence on the performance of ESS [16], on the other hand 

implies the ignorance of correlation in strategy brought about 

losses less than 3% ( a = 0.6 ). 
6�--�----'_--�--r---------v----'--�'---' 

59 

55 

"'."1 Strategy I 
-Strategy 2 
----Strategy 3 
-Strategy 4 

54 L-__ � __ � ____ L-__ � __ -L __ �L-__ � __ -L __ � 
1 3 4 6 7 8 9 10 

Case Number 
Fig. 4 Test results of correlated scenarios (a =0.6) 

Once again the balancing strategy of ESS (Strategy 2) 
works worse even than independent-working strategy of WF 

(Strategy 1). However, it should be emphasized that the 
conclusion obtained here relies heavily on the price profile, 
and does not mean Strategy 2 is ineffective for practical 

operation. In fact, due to the simple and clear logic the filter 
strategy has been widely adapted in practice. 

V. CONCLUSION AND DISCUSSION 

This paper puts forward a novel bidding and operation 
strategy for the WF enhanced by the ESS. Meanwhile, a 

modified gradient descent algorithm is proposed to obtain the 

optimal solutions. Compared with the conventional gradient 
descent algorithm, the algorithm put forward in this paper 

converges faster and gets better optimality. Case studies show 
that the strategy can increase the total profit prominently. 
Besides, the proposed bidding and operation strategy is 
proved to have much advantage over other balancing 
strategies in increasing the overall profit. 



As the model is built without considering the correlation of 
wind power between time intervals, the profit improvement 

mostly results from the reserve-based operation strategy. In 
future work the operation strategy of ESS and WF will be 

further improved and the correlation of wind power will be 
considered in the bidding strategy. 
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