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ABSTRACT

We present the results from coordinated X-ray observations of the ultraluminous X-ray source NGC 5204 X-1
performed by the Nuclear Spectroscopic Telescope Array and XMM-Newton in early 2013. These observations
provide the first detection of NGC 5204 X-1 above 10 keV, extending the broadband coverage to 0.3 20 keV- .
The observations were carried out in two epochs separated by approximately 10 days, and showed little spectral
variation with an observed luminosity of L (4.95 0.11) 10X

39=  ´ erg s−1. The broadband spectrum robustly
confirms the presence of a clear spectral downturn above10 keV seen in some previous observations. This cutoff is
inconsistent with the standard low/hard state seen in Galactic black hole binaries, as would be expected from an
intermediate-mass black hole accreting at significantly sub-Eddington rates given the observed luminosity. The
continuum is apparently dominated by two optically thick thermal-like components, potentially accompanied by a
faint high-energy tail. The broadband spectrum is likely associated with an accretion disk that differs from a
standard Shakura & Sunyaev thin disk.

Key words: black hole physics – X-rays: binaries – X-rays: individual (NGC 5204 X-1)

1. INTRODUCTION

Ultraluminous X-ray Sources (ULXs) are off-nuclear point
sources in nearby galaxies with observed X-ray luminosities of
L 10X

39⩾ erg s−1 exceeding the Eddington limit for a M10 
stellar-mass black hole (assuming isotropy). These high
luminosities could be explained by a population of

M10 102 5-  intermediate-mass black holes (IMBHs) accreting
at sub-Eddington rates (e.g., Miller et al. 2004). Alternatively,
these luminosities could be explained by accretion onto stellar-
remnant black accretors (potentially reaching masses as large
as ∼100 M; Zampieri & Roberts 2009; Belczynski et al. 2010)
if the emission is highly beamed (e.g., King 2009), or if these
sources are able to radiate in excess of their Eddington limit
(e.g., Poutanen et al. 2007). For recent reviews, see Roberts
(2007) or Feng & Soria (2011).

ULX spectra in the soft X-ray band ( 10 keV⩽ ) have been
well-studied using telescopes such as XMM-Newton, Suzaku,
and Chandra. Their spectral shapes appear to deviate
substantially from those of known Galactic black hole binaries.
A spectral turnover at 10 keV⩽ appears in most ULXs with
sufficient signal to noise (Stobbart et al. 2006; Gladstone
et al. 2011), along with a soft excess usually modeled by a low-
temperature 0.3 keV⩽ blackbody disk component (Miller
et al. 2004). This disk component, if produced by a standard
thin disk, could imply the presence of an IMBH accretor.
However, the temperature–luminosity relationship of these
sources does not appear to match the blackbody emission from
standard accretion disks (e.g., Kajava & Poutanen 2009),

although the expected scaling may be partially recovered using
a fixed absorption column between observations (Miller et al.
2013a) or using non-standard disk models (Vierdayanti
et al. 2006). The low disk temperature can also be explained
by a cool, optically thick corona blocking the inner disk from
observation (Gladstone et al. 2009). This corona would
account for the continuum emission as well as the spectral
turnover. Alternate possibilities are that the soft component
originates from a strong outflow (e.g., Poutanen et al. 2007) or
blurred line emission from highly ionized, fast-moving gas
(Gonçalves & Soria 2006).
Until now, it has been difficult to distinguish between the

spectral models due to the limited ∼0.3–10.0 keV bandpass
over which ULXs have been studied. The differences become
clearer with data above 10 keV (e.g., Walton et al. 2011), a
region of the spectrum that requires a focusing telescope with a
broader bandpass. The Nuclear Spectroscopic Telescope Array
(NuSTAR; Harrison et al. 2013), launched in 2012 June, is the
first orbiting telescope with hard X-ray focusing capabilities
over a large 3 79 keV- bandpass. With an effective area similar
to XMM-Newton at ∼6 keV, NuSTAR provides an ideal
complement to the current soft X-ray observatories for
sensitive, broadband studies of ULXs. Indeed, over the past
two years, NuSTAR, XMM-Newton, Chandra, Swift, and
Suzaku have undertaken joint observations of several nearby
ULXs (Bachetti et al. 2013, 2014; Walton et al. 2013a, 2014,
2015a, 2015b; Rana et al. 2015).
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This paper reports the results from observations of the ULX
in NGC 5204, a nearby (d = 4.8 Mpc) Magellanic-type galaxy
(Roberts & Warwick 2000). NGC 5204 X-1 has a typical
X-ray luminosity of L 2 6 10 erg sX

39 1~ - ´ - (Roberts
et al. 2004) and is well-studied below 10 keV (Roberts
et al. 2005, 2006; Vierdayanti et al. 2006). It has been
previously reported as an IMBH candidate with long-term
spectral variability (Feng & Kaaret 2009).

The paper is structured as follows. In Section 2, we describe
the observations and data reduction procedures. In Section 3,
we discuss the spectral analysis performed, and in Section 4 we
discuss the results and summarize our conclusions.

2. OBSERVATIONS

In 2013 April, NuSTAR and XMM-Newton performed two
coordinated observations of NGC 5204, approximately 10 days
apart. The NuSTAR exposures were 96 and 89 ks, respectively,
and the XMM-Newton exposures were 13 and 10 ks (EPIC-pn),
and 16 and 14 ks (EPIC-MOS1/2). Details of the observations
are summarized in Table 1.

2.1. NuSTAR

We reduced the NuSTAR data for each of the two focal plane
modules (FPMA and FPMB) using standard methods with
version 1.1.1 of the NuSTAR Data Analysis Software
(NuSTARDAS) and CALDB version 20130509. We ran the
nupipeline tool to produce filtered event files, using all
default options to remove passages through the South Atlantic
Anomaly and periods of Earth occultation, and to clean the
unfiltered event files with the standard depth correction, which
substantially reduces the internal high-energy background. We
then extracted spectral products with nuproducts, using a
38 radius extraction region around the source, estimating the
background from a 113″ radius region free of other point
sources on the same detector as the target. The NuSTAR data
provide a reliable detection of NGC 5204 X-1 up to ∼20 keV.

2.2. XMM-Newton

The XMM-Newton data reduction was carried out with the
XMM-Newton Science Analysis System (SAS v12.0.1). To
produce calibrated event files, we used the tools epproc and
emproc for the pn and MOS detectors, respectively. We then

filtered out periods of high background according to the
prescription in the SAS manual.11 In evselect, we used the
filters FLAG==0 && PATTERN<4 for EPIC-pn and FLAG==0
&& PATTERN<12 for the EPIC-MOS cameras. Spectra were
extracted with evselect from a 30 radius region around
X-1, and the background was estimated from a blank region of
radius 60 on the same detector, avoiding detector edges, bad
pixels, and other visible sources. We also avoided the detector
column passing through X-1, as recommended in the manual,
to avoid the effects of charge spilling. Ancillary responses and
redistribution matrices were generaged with arfgen and
rmfgen with the ELLBETA PSF correction enabled.

3. SPECTRAL ANALYSIS

3.1. General Procedure

The spectral analysis for this work was conducted using the
Interactive Spectral Interpretation System (ISIS; Houck
et al. 2000). ISIS was chosen over the more widely used
XSPEC (Arnaud et al. 1996) for ease of programmability and
its transparent use of parallelized fitting and error bar searches
while also including all XSPEC models and tables.
We modeled the neutral absorption column using tbnew, a

newer version of tbabs (Wilms et al. 2000), with the
absorption cross-sections of Verner et al. (1996) and appro-
priate solar abundances. Cross-calibration between the various
detectors was addressed using a multiplicative constant fixed to
1 for EPIC-pn and allowed to float otherwise; the calibrations
of XMM-Newton and NuSTAR are known to generally show a
good agreement (Madsen et al. 2015). We performed fitting
using 2c minimization and quote errors as 90% confidence
intervals unless stated otherwise. During our spectral analysis,
all datasets were grouped to a minimum of 30 counts per bin to
facilitate the use of 2c statistics.
Fitting the XMM-Newton and broadband spectra indepen-

dently with a simple power law indicates low variability
between the epochs, summarized in Table 2. The residuals for
these fits behave very similarly in both epochs. For the
remainder of the analysis we have therefore combined the
epochs using the HEASOFT tools addascaspec and
addrmf to maximize source statistics.

Table 1
Summary of X-Ray Data Used in This Analysis

OBSID Detector Exposure (s) Counts

Epoch 1—2013 Apr 19

0693851401 EPIC-pn 13375 9176
EPIC-MOS1 16396 3010
EPIC-MOS2 16458 2846

30002037002 FPMA 95964 1871
FPMB 95799 1907

Epoch 2—2013 Apr 29

0693850701 EPIC-pn 10415 6740
EPIC-MOS1 14036 2129
EPIC-MOS2 14260 2244

30002037004 FPMA 88976 1794
FPMB 88854 1840

Table 2
Parameters From a Power-law Fit of Both Epochs

Parameter Unit Epoch 1 Epoch 2

XMM-Newton

nH 10 cm21 2- 0.47 ± 0.09 0.49 0.09
0.10

-
+

Npl 10−4 3.36 ± 0.12 3.34 ± 0.15

Γ L 2.04 ± 0.04 2.06 ± 0.04
dof2c L 452/383 402/371

XMM+NuSTAR

nH 10 cm21 2- 0.62 ± 0.09 0.65 0.09
0.10

-
+

Npl 10−4 3.54 ± 0.12 3.55 0.15
0.16

-
+

Γ L 2.12 ± 0.04 2.15 ± 0.04
dof2c L 591/451 538/436

11 http://xmm.esac.esa.int/
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3.2. Modeling

We first fit the combined spectrum restricted to the
3.5 10 keV- region of overlap between the XMM-Newton
and NuSTAR using a simple power-law continuum and Galactic
neutral absorption column, fixed at N 1.66 10 cmH

20 2= ´ -

(Kalberla et al. 2005). The result is a fit with
1.18(199 168)2c =n , and significant spectral curvature is

evident when the model is evaluated over the broader
0.3 20 keV- spectral range, as shown in the lower panel of
Figure 1. The 0.3 3 keV- spectral curvature may suggest an
overall neutral absorption in excess of the Galactic column, so
for the remainder of this work, we introduce a second
absorption component intrinsic to NGC 5204. The column of
this second neutral absorption model is allowed to vary.

We fit the broadband 0.3 20 keV- continuum using several
models frequently used to describe ULX spectra. Initially, we
examine six simple models: (1) a simple power law; (2) a
power law with exponential cutoff, XSPEC model cutoffpl;
(3) a blackbody disk model with a radially variable temperature
index, p diskpbb (a “slim disk” model with advection)
(Mineshige et al. 1994); (4) a simple power law with an
additional Shakura & Sunyaev (1973) multicolor blackbody
disk component, diskbb (Mitsuda et al. 1984); (5) a power
law with an exponential cutoff and an additional multicolor
blackbody disk; and (6) the same, replacing the exponential
cutoff with a broken power law, XSPEC model bknpower.
Most models we consider in this work are fit to both the
broadband NuSTAR+XMM-Newton data and to the XMM-
Newton data alone, for comparison, although we limit the
majority of our description of the model fitting to the
broadband spectrum.

Best-fit parameters for each model are summarized in
Table 3. The simple power-law model gives, as seen before,
a poor fit with an “m”-shaped structure to the data/model
residuals below ∼10 keV and downward curvature in the
10 20 keV- energy range. The power law with an exponential
cutoff gives an improved fit with 1072cD = for one fewer
degree of freedom (dof), but the “m” shape is still visible in the

Figure 1. Top panel: unfolded broadband spectrum of NGC 5204 X-1.
EPIC-pn is plotted in blue circles and EPIC-MOS1 and MOS2 are plotted in
red stars and cyan squares, respectively. NuSTAR FPMA and FPMB are shown
in orange triangles and purple diamonds, respectively. Bottom panel: data/
model ratio residuals from an unabsorbed power law evaluated over the
overlapping 3.5 10 keV- band, plotted over the full range. Data were rebinned
to 100 cts/bin (XMM-Newton) and 30 cts/bin (NuSTAR) for presentation
purposes.

Table 3
Best-fit Spectral Parameters for Several Common Simple Empirical Models

Parameter Unit XMM-Newton XMM + NuSTAR

tbnew ×power law

nH 10 cm21 2- 0.49 ± 0.07 0.65 ± 0.06

Npl 10−4 3.50 ± 0.08 3.70 ± 0.08

Γ L 2.05 ± 0.03 2.14 ± 0.02
2c /dof L 716/612 1030/741

tbnew ×cutoffpl

nH 10 cm21 2- 0.49 ± 0.07 0.30 0.07
0.08

-
+

Npl 10−4 3.51 ± 0.08 3.62 0.07
0.08

-
+

Γ L 2.05 ± 0.03 1.84 ± 0.05
Ecut keV 500−392 13.1 198

2.7
-
+

2c /dof L 716/611 923/740

tbnew ×diskpbb

nH 10 cm21 2- 0.49 ± 0.07 0.37 0.06
0.07

-
+

Ndisk 10−6 4.08 1.43
1.13 105

-
+ ´ 83.43 26.72

27.32
-
+

Tin keV 7.22 0.94
0.81

-
+ 3.59 0.21

0.31
-
+

p L 0.494 ± 0.004 0.505 ± 0.004
2c /dof L 705/611 890/740

tbnew×(diskbb+power law)

nH 10 cm21 2- 0.65 0.13
0.15

-
+ 1.07 0.26

0.29
-
+

Ndisk L 9.78 4.89
11.19

-
+ 141.90 119.61

0.32
-
+

Tin keV 0.21 ± 0.03 0.12 0.02
0.03

-
+

Npl 10−4 2.94 0.20
0.19

-
+ 3.74 0.13

0.14
-
+

Γ L 1.89 0.06
0.05

-
+ 2.14 ± 0.02

2c /dof L 663/610 1018/739

tbnew×(diskbb+cutoffpl)

nH 10 cm21 2- 0.28 0.13
0.16

-
+ 0.36 0.13

0.15
-
+

Ndisk L 6.44 2.00
3.38

-
+ 7.80 2.50

4.20
-
+

Tin keV 0.28 ± 0.03 0.25 ± 0.02

Npl 10−4 2.01 0.44
0.41

-
+ 2.36 0.27

0.26
-
+

Γ L 0.68 0.53
0.44

-
+ 1.09 0.18

0.16
-
+

Ecut keV 3.31 0.96
1.78

-
+ 4.77 0.64

0.78
-
+

2c /dof L 633/609 770/738

tbnew×(diskbb+bknpower)

nH 10 cm21 2- 0.49 0.14
0.15

-
+ 0.57 0.13

0.14
-
+

Ndisk L 6.52 2.53
5.00

-
+ 7.76 3.40

37.89
-
+

Tin keV 0.25 ± 0.03 0.23 ± 0.03

Npl 10−4 2.41 0.33
0.29

-
+ 2.68 0.24

0.22
-
+

1G L 1.69 0.13
0.10

-
+ 1.80 0.07

0.06
-
+

Ebreak keV 5.07 0.81
0.72

-
+ 5.81 0.47

0.44
-
+

2G L 2.84 0.45
0.56

-
+ 3.00 0.15

0.16
-
+

2c /dof L 633/608 771/737
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residuals. We also attempted to model the spectrum using just
an absorbed multicolor blackbody disk, which gave a poor fit
with 6.182c =n (4582/741). At high accretion rates, the
expected emission likely deviates substantially from a Shakura
& Sunyaev (1973) thin disk, resulting in a shallower
temperature profile (e.g., Abramowicz et al. 1988), so we tried
the diskpbb model, yielding a radial temperature profile
p 0.505 0.004=  . While the diskpbb is a marked
improvement over the simpler diskbb model, with

1.212c =n (890/740), once again the “m”-shaped residuals
remain, implying the need for two continuum components
below 10 keV. The fits with these single-component models
(excluding the thin disk model, as the fit was very poor) are
compared in Figure 2.

The blackbody disk component introduced in the latter three
of our simple models considerably improves the low energy
excess below 2 keV~ . Adding the disk component to the
power-law model provides an improvement of 122cD = for 2
extra dof, but the residuals for this model still show a downturn
at high energies, so we also consider models including a disk
component and a power law with an exponential cutoff, and a
broken power law. Both exponential cutoff and broken power
laws provide a statistically good fit with 1.042c =n (770/738
and 771/737, respectively). The model including a blackbody
disk and a broken power law is perhaps a slightly better fit,
with the data distributed more evenly about the model at high
energies, although we cannot conclusively reject the cutoff
power law. The fits obtained with these two-component models
are compared in Figure 3.

To explore more physical models, we investigate the
possibility that the continuum is from cool, thin disk photons
Compton up-scattered in a hot corona. We model this
component using the comptt model (Titarchuk 1994).
comptt is an analytic Comptonization model that assumes
the seed photon spectrum follows a Wien law with some

temperature T0. Its use allows the temperature and the optical
depth of the Comptonizing electrons to be fit as independent
parameters. This model is frequently combined with a black-
body disk to represent a standard disk–corona accretion
geometry, with the Compton seed photon temperature linked
to the inner disk temperature. Although we also present fits
with the comptt model alone for completeness, we note that
formally this describes a very extreme scenario in which
essentially the entire X-ray emitting accretion disk is
enshrouded by the corona, which is likely unphysical.
The fit with the comptt model provides a reasonable

statistical fit with 1.122c =n (824/739), but the “m”-shaped
residuals seen previously are again apparent below 10 keV.
Including a blackbody disk component gives a formally
acceptable fit of 1.072c =n (787/738), an improvement of

372cD = for one additional dof, but evidence for an excess
in the data over the model remains at high energies (see
Figure 4 panel 2). This is also seen with similar models in other
NuSTAR ULX observations (e.g., Walton et al. 2013a, 2014,
2015b). We address this excess with the addition of a power-
law tail using the simpl convolution model (Steiner
et al. 2009). This power-law tail gives a fit improvement of

222cD = with two additional dof over the diskbb+comptt
model, providing a statistically good fit with 1.042c =n (765/
736) and resolving the high-energy excess seen previously. In
all of these models, the comptt component is cool and
optically thick, resulting in a quasithermal blackbody-like
spectrum. We note that the assumption of linking the Compton
seed photon temperature to that of the observed disk emission
may not be valid in the case of a central optically thick corona
that obscures the inner disk (e.g., Gladstone et al. 2009).
However, we are unable to constrain these quantities
independently if they are allowed to vary separately, and the
fit remains unchanged, so we keep them linked for conve-
nience. Replacing comptt with a second diskbb component
in this final model results in an equally good fit with 1.042c =n
(766/737). Both models are illustrated in the bottom panels of
Figure 4. A full list of best-fit parameters for these models is
presented in Table 4.

4. DISCUSSION AND CONCLUSIONS

We have presented an analysis of the two coordinated
NuSTAR and XMM-Newton observations of the ULX
NGC 5204 X-1 performed in 2013. The contribution of the
NuSTAR data has allowed us to produce the first broadband
spectrum of this source extending above 10 keV. While NGC
5204 X-1 is a source known previously to display aperiodic
spectral variability on a timescales of several days (e.g.,
Roberts et al. 2006), we found low variability between the two
observing epochs, separated by ∼10 days, and therefore
combined them to maximize count statistics for our spectral
analysis.
Prior work on NGC 5204 X-1 using data from XMM-Newton

suggested that it may be an IMBH of a few hundred solar
masses, described by a cool blackbody disk (kT 0.2~ keV)
and a hard power-law tail ( 2G ~ ; Feng & Kaaret 2009).
Statistical evidence for curvature in the 2–10 keV bandpass has
been seen in some previous observations (e.g., Stobbart
et al. 2006), which has generally been used to argue in favor
of the high/super-Eddington interpretation, but not others (e.g.,
Gladstone et al. 2009). However, the limited bandpass of

Figure 2. Data/model ratios for some of the single-component models
considered here: a simple power law (top), a power law with an exponential
cutoff (middle), and an advection-dominated accretion disk with variable
temperature profile (bottom). The color scheme is the same as Figure 1.
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XMM-Newton meant that even when this curvature was
detected, it was not clear whether or not this represented a
true spectral cutoff (e.g., Caballero-García & Fabian 2010;
Walton et al. 2011). Indeed, the limitations of a narrow
bandpass are highlighted by the results presented here,
comparing the model fits to just the XMM-Newton data to
those to the combined NuSTAR and XMM-Newton dataset. Far
more models provide an acceptable fit to the XMM-Newton data
alone than to the broadband spectrum.

The NuSTAR data presented here robustly demonstrate that
the spectrum of NGC 5204 X-1 displays significant curvature
above ∼3 keV, and is not power-law-like. This is similar to the
results obtained in other NuSTAR ULX observations (e.g.,
Bachetti et al. 2013; Walton et al. 2013a, 2014, 2015a, 2015b;
Rana et al. 2015). Flux calculations further demonstrate that the
proportion contribution of the hard X-ray emission from NGC
5204 X-1 is relatively small, with only ∼10% of the
0.3–20.0 keV flux emitted above 10 keV (see Table 5). The
∼5–6 keV break argues against the presence of a M103~ 

Figure 3. Data/model ratios for the simple two-component continuum models
considered here: a simple power law (top), a power law with an exponential
cutoff (middle), and a broken power law (bottom), each combined with a
Shakura & Sunyaev (1973) thin disk model. The color scheme is the same as
Figure 1.

Figure 4. Data/model ratios for the semi-physical models considered: a single-
component Comptonized continuum (top), a thin disk with an additional
Comptonization continuum, the same model with an additional high-energy
power-law tail, and the two-disk model with a high-energy power-law tail
(bottom). As before, the color scheme is the same as Figure 1.

Table 4
Best-fit Spectral Parameters for Several More Physical Models

Parameter Unit XMM-Newton XMM + NuSTAR

tbnew ×comptt

nH 10 cm21 2- 0.00 0.08+ 0.00 0.06+

Ncomp 10−4 3.50 0.35
1.05

-
+ 4.37 0.32

0.34
-
+

T0 keV 0.118 0.007
0.005

-
+ 0.116 0.006

0.005
-
+

kT KeVb 3.25 0.73
496.75

-
+ 2.63 0.15

0.18
-
+

pt L 5.26 5.25
0.87

-
+ 6.01 ± 0.27

2c /dof L 680/610 824/739

tbnew×(diskbb+comptt)a

nH 10 cm21 2- 0.29 0.13
0.15

-
+ 0.36 0.15

0.18
-
+

Ndisk L 13.04 5.36
9.38

-
+ 24.29 8.85

16.40
-
+

Tin keV 0.23 0.03
0.04

-
+ 0.19 ± 0.02

Ncomp 10−4 2.89 0.35
0.40

-
+ 2.87 0.30

0.35
-
+

kT keV 1.70 0.21
0.30

-
+ 2.26 0.14

0.17
-
+

pt L 9.33 1.37
1.77

-
+ 7.07 0.46

0.50
-
+

2c /dof L 633/609 787/738

tbnew×(diskbb+simpl*comptt)c

nH 10 cm21 2- K 0.30 0.13
0.15

-
+

Ndisk L K 9.86 4.74
37.73

-
+

Tin keV K 0.26 ± 0.05

Ncomp 10−4 K 3.14 0.40
0.90

-
+

kT keV K 1.30 0.44
0.52

-
+

pt L K 10.32 2.19
4.29

-
+

Γ d L K 3.18 2.08
0.73

-
+

fscat
d L K 0.61 0.54

0.39
-
+

2c /dof L K 765/736

tbnew×(diskbb+simpl*diskbb)

nH 10 cm21 2- K 0.25 0.11
0.12

-
+

Ndisk1 L K 5.78 1.51
2.05

-
+

Tin1 keV K 0.29 ± 0.02

Ndisk2 10−2 K 2.24 1.46
0.95

-
+

Tin2 keV K 1.15 0.11
0.45

-
+

Γ L K 3.21 0.73
0.31

-
+

fscat
d L K 1.0 0.70-

2c /dof L K 766/737

Notes.
a The Comptonization input photon temperature has been set to the inner disk
temperature.
b Upper confidence bound at hard limit of kT = 500 for XMM-Newton data.
c Lower confidence bound at hard limit of 1.1G = .
d Upper confidence bound at hard limit of f 1scat = .
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IMBH accreting in the “low/hard state,” assuming such black
holes would display similar accretion states to Galactic
binaries, which would be expected appear power-law-like in
the observed bandpass (Remillard & McClintock 2006). Using
the best-fit diskbb+simpl*comptt model, we calculate
the observed 0.3 20 keV- luminosity to be 4.95 1039´ erg s−1,
(see Table 5); the flux below 10 keV during this epoch is
similar to that observed previously (Roberts et al. 2004). We
conclude that NGC 5204 X-1 is therefore likely a high-
Eddington accretor with a more modest black hole mass.

The broadband spectrum in this case is best fit by a three-
component model, with two quasithermal components and a
weak power-law-like excess at high energies (Figure 5). We
model the first component using a cool, Shakura & Sunyaev
(1973) thin disk (T 0.25in ~ keV). The hotter components can
be modeled as a cool, optically thick Comptonization model
(kT 1.3~ keV; τ ∼ 10), dramatically different from the hot,
optically thin coronae observed from sub-Eddington black
holes (e.g., Gierliński et al. 1999; Miller et al. 2013b;
Brenneman et al. 2014; Natalucci et al. 2014; Tomsick et al.
2014), or a second multicolor blackbody disk (T 1.15in ~
keV). Although poorly constrained, in both cases the best-fit
photon index of the high-energy power-law tail is steep
( 3G ~ ), similar to the value of the photon index obsesrved in
the steep power-law state ( 2.5G ~ ; Remillard & McClin-
tock 2006). In XSPEC syntax, the spectrum is best described
by an absorbed diskbb+simpl*comptt or diskbb
+simpl*diskbb model.

In the context of high/su300 per-Eddington accretion, a
number of physical scenarios have been proposed for the
emission components observed from ULXs below 10 keV. One
such model invokes an optically thick Comptonizing corona
that produces the 3–10 keV continuum and obscures the inner
portion of the accretion disk, allowing a cool disk temperature
to be observed without requiring an IMBH (Gladstone
et al. 2009). Our NuSTAR observations likely do not favor
this physical interpretation, as this model in turn seems to
require a further Comptonizing region to explain the spectrum
above 10 keV, which appears to have some similarity with the
optically thin Comptonization traditionally observed from
Galactic binaries at high luminosities, calling into question
the initial interpretation of the 3–10 keV continuum as the
corona. Furthermore, we note that Miller et al. (2014) argue
that the parameters typically obtained with comptt fits to
ULXs would imply very large size-scales for these coronae,
and that it is difficult to envision a physical scenario that would
result in such a large, uniformly heated region.
Alternately, Middleton et al. (2011) have argued that the

cool “disk” component could actually arise in a wind from a
super-Eddington accretion disk, and that the hotter quasither-
mal model represents the spectrum of the inner disk itself.
While we still lack unambiguous evidence of such winds
through absorption lines (Walton et al. 2012, 2013b), this
could be an effect of our viewing angle which may not
intercept the winds if the they have a roughly equatorial
geometry (e.g., Middleton et al. 2015). In addition, Dexter &
Quataert (2012) have recently suggested that black hole binary
accretion disks may exhibit significant inhomogeneities,
resulting in the simultaneous presence of hot and cool regions
within the same disk, and by extension an unusual disk
spectrum. Such “patchy” disk scenarios could arise as a natural
signature of photon-bubble instabilities (Gammie 1998) pro-
posed to transport flux in a super-Eddington disk (Miller
et al. 2014). Although there are differences in the detailed
physics, both of these models associate the hotter thermal
component with emission from the accretion disk, and the
highest energy emission with optically thin Comptonization,
and are consistent with our broadband observations. With
current data, it is difficult to unambiguously associate model
components with precise physical processes, particularly with

Table 5
Observed Fluxes for NGC 5204 X-1

Bandpass Flux (erg s cm1 2- - ) Luminosity (erg s 1- )a

0.3–10.0 keV (1.62 0.03) 10 12 ´ - (4.47 0.08) 1039 ´
10.0–20.0 keV (1.74 ) 100.18

0.19 13´-
+ - (4.80 ) 100.51

0.53 38´-
+

0.3–20.0 keV (1.79 0.04) 10 12 ´ - (4.95 0.11) 1039 ´

Note.
a Observed luminosities (i.e., without any correction for neutral absorption
applied) calculated for a distance of 4.8 Mpc (Roberts & Warwick 2000), using
the diskbb+simpl*diskbb model.

Figure 5. Left panel: the contribution of various spectral components for the diskbb+simpl*comptt model. The full model is given in black with the diskbb
component shown in red and the comptt component (before modification by simpl) shown in blue. Right panel: same as the left panel but for the diskbb
+simpl*diskbb model. The full model is again given in black with the first diskbb component shown in red and the second in blue.
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regard to the soft thermal component; we cannot currently
distinguish between a disk or a wind origin here. Performing
broadband X-ray observations of NGC 5204 X-1 at different
flux levels to probe spectral variability and examine how the
different components evolve may be the key to distinguishing
between these different models.
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NASA. We thank the NuSTAROperations, Software, and
Calibration teams for support with the execution and analysis
of these observations. This research has made use of the
NuSTARData Analysis Software (NUSTARDAS), jointly
developed by the ASI Science Data Center (ASDC, Italy)
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