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It has recently become possible to record detailed social interactions in large social systems

with high resolution. As we study these datasets, human social interactions display patterns

that emerge at multiple time scales, from minutes to months. On a fundamental level, un-

derstanding of the network dynamics can be used to inform the process of measuring social

networks. The details of measurement are of particular importance when considering dy-

namic processes where minute-to-minute details are important, because collection of physi-

cal proximity interactions with high temporal resolution is difficult and expensive. Here, we

consider the dynamic network of proximity-interactions between approximately 500 individ-

uals participating in the Copenhagen Networks Study. We show that in order to accurately

model spreading processes in the network, the dynamic processes that occur on the order of

minutes are essential and must be included in the analysis.

1 Introduction

Temporal networks provide an important framework for modeling a variety of real systems 1.

Examples of complex systems where dynamics can play a central role include social networks,

energy grids, networks of sexual contacts, and transportation systems 2–8.

Only recently, thanks to technical developments in data collection, it has become possible

to collect high-resolution data about physical and virtual interactions in complex social systems.

Using sociometric badges or smartphones, it is now possible to record interactions happening
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on multiple channels and at multiple timescales, measuring events with minute-by-minute reso-

lution 6, 9–12. With access to such data, we can begin to describe the complexity, structure, and

dynamics of such social systems 13. Accurate measurements and models of social systems are nec-

essary in order to understand how diseases spread 6, 7, what makes teams productive 14, 15, or how

friendships form and disappear 11, 13.

A fully-formed framework for incorporating network dynamics has yet to be established ?, ?, 16–18.

We know, however, that for many practical applications, it is important to get the details right, be-

cause variations in how the time dimension is incorporated can lead to significant differences in the

modeling of dynamical processes unfolding on the network. Understanding spreading in dynamic

networks is of particular interest, as these may represent a wide variety of processes in the system,

including spreading of biological pathogens, information, knowledge, or behaviors.

Recently, there has been a growing interest in how to correctly and efficiently incorporate

time dimension in the modeling of disease spread. Over the last few years, studies have focused

on the mixing matrices capturing important epidemiological features ?, efficient representation of

the spreading networks with coarser temporal representation ?, 16, and the fundamental impact that

temporal features have on the spreading process 17, 18. Here we study how the fidelity of repre-

sentation of network behavior at short timescales—on the order of minutes—influences simulated

spreading in the network. These minute-to-minute dynamics are particularly interesting because

data collection with high temporal resolution tends to be challenging and costly. We consider

the ramifications of reducing temporal resolution and which biases such a reduction introduces in

terms of understanding spreading process in the temporal network of close proximity interactions.

The Dataset Here we analyze close proximity interactions network of participants of the Copen-

hagen Networks Study (CNS) 9. This proximity dataset is based on Bluetooth scans collected using

state-of-the-art smartphones. We define an interaction between users i, j in 5-minute timebin t as

γijt = s, where the signal strength s is reported by the handsets as received signal strength (RSSI).

Since Bluetooth scans are unlikely to result in false positives, we use a symmetrized observations
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matrix (and resulting undirected network), assuming that γijt is present if γjit exists. In this work

we focus on how different sampling scenarios influence the overall results of spreading simula-

tions. Our emphasis is not on investigating who would be infected in a real epidemic outbreak. In

order to be able to measure the impact of subsampling, we need high resolution data as a reference.

Therefore, we only use the data from participants with high data quality: out of 696 freshmen stu-

dents active in February 2014, we select 476 participants with data quality of at least 60% (fraction

of 5- minute bins in which the data is available). We understand that removing participants from the

analysis might affect the network structure in a way that slows down the spreading processes. The

resulting dataset is nevertheless the largest of its kind and, as we show in the following, represents

a dense network.

2 Results

Dynamics of a complex social system The network of close proximity interactions in the CNS

dataset displays dynamics at multiple time scales. We can observe distinct weekly and diurnal

patterns (Figure 1a). Concurrently, at the minute-by-minute resolution, we observe significant

fluctuations in the number of links active within 5-minute windows (Figure 1a inset).

We can quantify the magnitude of network changes by considering the overlap between ac-

tive links in consecutive time slices as a function of the duration of the aggregation time window.

A link (i, j) is considered active if at least one interaction happened on it within the aggregated

time window. We define the overlap as

J =
|L∆T

t ∩ L∆T
t+1|

|L∆T
t ∪ L∆T

t+1|
(1)

where L∆T
t is set of links present in time t, in a time window of size ∆T . The overlap, averaged

over all time-bins in the network, is large at shortest timescales (J(∆T = 5 minutes) = 0.71) but

drops rapidly as the size of the window increases (Figure 1b). For example, J(∆T = 1h) = 0.51,

indicating a substantial turnover even at short timescales.
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Within the 5-minute time-bins, the network is comprised of disjoint cliques, each one corre-

sponding to a gathering of individuals. The changes of the network during short time intervals can

be attributed to people moving between gatherings, as proposed by Sekara et al. 13. As a system,

these are constantly evolving, with members changing associations, and gatherings dissolving and

forming (Figure 2a). These changes lead to the network connectivity that can be observed when

aggregating the interactions into time-bins of longer duration (Figure 2b), even though every single

time slice still consists of disjoint cliques.

Temporal subsampling To study the effect of temporal subsampling—reduction of dynamical in-

formation in the network—on the spreading processes, we consider two sampling schemes. These

schemes are motivated by data collection strategies employed in the real studies, and therefore not

necessarily an effort to devise the best possible temporal compression strategy.

In the first approach, which we call snapshot sampling, we choose a random 5-minute bin

from every N bins and consider this to represent the state of the entire network for these N bins

(Figure 3a). This way, we reduce the temporal resolution by a factor ofN , but in a coherent fashion,

because the network slices we use contain actual observed network states. The ‘snapshot sampling’

is typically the result of data collection methods which use static snapshots of the full population

measured simultaneously. This is the case when physical proximity networks are inferred based

on photographs or synchronized sensors, for example reports from a WiFi system (i.e. a list of

devices connected to a router at the time of taking the snapshot, as in 15), or results of Bluetooth

scans performed by a fixed location device (as in 19, 20). We use random 5-minute bin from every

N bins rather than first bin (or last or middle) to remove the possible bias of choosing always the

same part of the large timebin (for example, always choosing beginning of the hour).

In the second approach, which we refer to as link sampling, we sample the state (interact-

ing/not interacting) of every link (i, j) in the network from a random 5-minute bin within the

sampling interval (Figure 3b). Thus, for every dyad, we choose a random 5-minute bin (out the N

eligible bins) use the dyad’s state (on/off) as representative for this link in the subsampled network.
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a

b

Figure 1: Dynamics of network of close proximity in a complex social system. (a) The network

of proximity interactions displays distinct weekly and daily patterns. The number of active links

can change drastically even within minutes, as show in the inset. (b) Mean overlap of active links

between network slices as a function of aggregation time window. The overlap is high for short

time windows but drops rapidly when longer windows are considered. The violin plot shows the

exact distributions for chosen timebin sizes. The drop in the overlap most significant in the initial

part of the aggregation (inset).
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Figure 2: Dynamics of physical proximity networks in a complex social system.(a) Nodes are

colored based on the component they belong at (randomly chosen) t0 (5-minute timebin). While

preserving the colors we plot the network in t2, t4, t6, t8, corresponding to 10, 20, 30, 40 minutes

later. Nodes that are not present at t0 are marked in black. We can see how nodes move between

gatherings. (b) The constant mixing of the nodes presented in (a) connects the initially separate

components in to a well connected network when aggregating the interactions—even at relatively

short timescales. Largest connected component in the network is highlighted.
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Figure 3: Models for temporal subsampling. (a) Snapshot sampling: when reducing the sampling

resolution N times, for each set of N consecutive 5-minute bins we randomly select one and use

it to represent these N bins. (b) Link sampling: when reducing the sampling resolution N times,

for each dyad in the network during N consecutive 5-minute bins we choose its state (interacting

or not interacting) in a random bin among the N and use the state to represent the dyad’s status

across the N bins.
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This sampling strategy results in a network state which may have never existed at any given point

in time, but which also contains a factor of N less temporal information compared to the original

network. The link sampling corresponds to sampling occurring in multiple places in the popula-

tion in an asynchronous way, a situation which occurs when collecting data using mobile phones

or sociometric badges.

The temporal subsampling in both modes reduces the information about dynamics and re-

sults in a lossy compressed version of the temporal network. The information about the exact

dynamics is lost (Figure 4a), replaced by static representations, with a width corresponding to the

subsampling parameter N . In both subsampling scenarios the probability that a link (i, j) is ac-

tive is directly related to the number n of 5-minute bins in the N -bin interval in which the link

is present and this probability is equal to n/N . This implies that the average number of interac-

tions after subsampling is the same in both snapshot and link sampling. However, due to the high

temporal variability presented in the inset to Figure 1a, we expect that the number of links in the

snapshot sampling will have a higher variation. This is, in fact, the case, as we show in Figure 4b.

As expected, snapshot sampling results in a larger variability in the total number of interactions,

because snapshots with very high or very low number of links may end up being chosen; still, the

variability is within ±20% from the number of interactions for the full network. Performing linear

regression on the mean values of total number of interactions we test for slope different from 0

(H0 : b = 0). The test statistic is t = b/sb on (N − 2) degrees of freedom, and for both snapshot

and link sampling we do not discover any significant trend in the average number of total inter-

actions (p = 0.60 and p = 0.63 respectively). On average, when the number of interactions is

considered, the subsampled networks are equal.

In spite of the fact that the total amount of temporal information and average number of total

interactions are equal, the structure of the snapshot and link networks is quite different. Keeping

track of the size of the largest connected component (LCC) we notice that the coherent network

sampling results in disconnected neighborhoods dominating the network (Figure 4c). As expected,

in link sampling, the network is more connected, with LCC containing up to 50% of the nodes in
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the network.

Spreading results To quantify the effect of temporal subsampling on the modeling of a dynamic

process unfolding on the network, we simulate spreading using a Susceptible-Infected-Recovered

(SIR) model. In the spreading, we explore a variety of values for the transmission parameter β,

including very slow and very fast transmissions (ranging between β = 0.002 and β = 0.05), and

maintain a fixed recovery parameter µ = 4 days. We randomly subsample the network 10 times

for every value of subsampling parameter N and run 100 simulations per condition, with a random

starting time-bin and index patient. We apply circular boundary condition to extend the network

beyond one month. For our purposes, the spreading simulation is used to understand the impact

of sampling on a dynamic processes in the network. We do not attempt to model any particular

disease.

Temporal subsampling, both snapshot and link-based, results in decreased spreading. The

spreading process is slower, with a smaller peak value, and reduced total outbreak size (Figure 5a).

This effect is more pronounced for rapid spreading (large β) and the effect is markedly stronger

for snapshot sampling.

In Figure 5b, we quantify the effect of temporal subsampling on outbreak size. The drop of

the outbreak size with the subsampling parameter N is well explained by linear model (ordinary

least squares regression), with a sub-linear effect for low values of β. Again, the effect is dramat-

ically more pronounced for the snapshot subsampling. Similarly, probability of small outbreaks

(reaching only a small fraction of the network) grows as a function of subsampling (Figure 5d),

with effects much more pronounced for the snapshot sampling. Finally, a reduction of temporal

fidelity drastically increases the time it takes for the spreading process to reach 50% of the network

(Figure 5e).

Link-subsampling vs. full resolution It is interesting to consider why spreading in the link-

subsampled network is not faster than spreading in the full network: the number of connections
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Figure 4: Temporal subsampling of the network. (a) The full dynamics are replaced by static

representation, with the width depending on the subsampling parameter N . Here shown for N =

72, i.e. one sample per 6 hours. (b) Average number of total interactions in the network depending

on the sampling parameter. Shaded areas indicate 10th to 90th percentiles across 100 simulations per

time value. (c) Fraction of nodes contained in the largest connected component for one realization

of the network subsampling (N = 72). Link sampling results in much more connected network.
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in the link-subsampled network is typically higher than in single time slices of the full-resolution

network. To understand why, we consider the structure of the link-subsampled network compared

to the full-resolution network aggregated over the same time window. The difference arises from

the fact that that although the subsampling is performed so that the subsampled and full network

have the same number of interactions (i, j, t) in any given time window (Figure 6a), the way these

interactions are distributed on links (i, j) is very different.

To help guide our thinking about the differences, consider the full-resolution network aggre-

gated over a certain time window. Here, the distribution of the link weights is broad, with many

weak links and a few very strong connections. By contrast, link-subsampling creates a network

where all links have the same weight—because all links are active through the entire window (Fig-

ure 6b). The full-resolution network has many more—but weaker—links active. This has strong

implications for the connectedness of the network. In the link-sampled network, the network is

split into a number of separate components, and an infection is rarely able to infect the entire

network within a single frame. This is not the case in the full network, which has an effectively

much larger connected component within each frame (Figure 6c). The way the full networks grows

connected across time-slices is shown in Figure 2b.

Slow versus fast spreading These dynamics are sensitive to the speed of the disease spread.

When the disease spreading is slower (low β) than the changes in the network, the gradual building

of the connectivity in the full-resolution network does not slow down the spreading: from the slow

disease perspective the network looks well connected. In the case when the disease spread is high

(high β), the lower number of links (i, j) in the link-subsampled network becomes the limiting

factor. When the transmission parameter is large, the the number of links, not the link weights,

is important. The disease is unable to reach the full network, for example gettting ‘stuck’ in a

disconnected component. In both of these cases the full-resolution network facilities spreading,

due to higher number of links.

These findings imply there may exist a third regime of β, where the transmission is faster than
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changes in the full network, ‘waiting’ for connectivity in the full-resolution network to build up,

but slow enough that it does not run out of links in the subsampled network (never fully filling up its

network components). Such regimes can be found in the network for fixed starting conditions (start

time and node). But these cases are are rare, because each instance depends on an interplay between

the structure of the network, size of the sampling window, and starting conditions. Thus, when

averaged over many different starting conditions, the spreading is slower in the link-subsampled

network due to the lack of the high number of weak links (Figure 6d). In the following, we discuss

findings for the averaged case.

As expected, the impact of losing the temporal fidelity is strongest for fast spreading pro-

cesses. With the lack of information about the detailed network dynamics, the disjoint gatherings

produced by snapshot sampling lead to containment of the disease, resulting in smaller and slower

spreading. When the transmission parameter β is high (fast spreading), the disease is more likely

to infect all nodes in the available neighborhoods, with no possibility to propagate to new places.

For slow processes, the loss of temporal fidelity is less significant, as the spreading takes more time

to fill up the isolated gatherings. The containment effect is much smaller in the link subsampling,

as the network is more connected due to different (non-coherent) configuration of the links.

3 Discussion

Above we have investigated how modeling of spreading processes is impacted by reducing the

temporal fidelity of close proximity interaction networks. We found that the network are highly

dynamic, even at at short timescales. Within short time-bins, nodes gather in disjoint cliques,

but with changing affiliation across time. These dynamics create significant interconnectedness

when considering network at longer timescales (hours). When these short term dynamics are

disregarded, either due to data collection process or data compression, spreading processes are

strongly affected—as the temporal fidelity decreases, outbreaks become less frequent and smaller.

Interestingly, subsampling the network in a synchronized way (when the state of the entire
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Figure 5: Results of SIR spreading process. (a) The shape of the spreading curve is less affected

when each dyad is sampled independently, but network sampling leads to a significant underesti-

mation of the outbreak size. The effect is less pronounced for slow spread (see the inset). Solid

lines in (b)-(e) represent snapshot sampling, dashed lines represent link sampling. (b) With fast

spreading epidemics, snapshot sampling results in a smaller expected size of the outbreak, but slow

spreading epidemics are less affected. (c) Subsampling from 5-minute bins down to 120-minute

bins (increasing the sampling interval Ts) does not significantly change the expected results of

spreading simulations. (d) The probability of a non-outbreak (outbreak smaller than 20% of the

network) grows with the temporal subsampling. (e) For fast spreading epidemics, the time needed

to infect half of the population grows linearly with the increasing subsampling rate in the network

sampling scenario, but stays relatively stable when we sample dyads. Difference for low β is not

statistically significant between snapshot and link sampling.
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Figure 6: Link weight heterogeneity in the full-resolution network. (a) Links-subsampled and

full-resolution network aggregated over the same time window have the same number of interac-

tions (i, j, t). Here shown for N = 72 i.e. 6h sampling. (b) The link weights in these views

are distributed very differently, the full-resolution network features a long-tailed distribution with

many weak links, whereas all links in the subsampled network have the same weight equal to sam-

pling window size (72). (c) The higher number of links in the full-resolution network leads to a

greater connectivity, here illustrated by the size of LCC. (d) The difference in the structure impacts

the spreading. For fixed starting conditions (time-bin and seed node), it is possible to find regime

of β where the spreading on link-subsampled network is in fact faster (values above 1 on the plot).

This is however not guaranteed for every starting condition and on average the spreading is slower

in the link-subsampled network due to lower number of links.
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network is sampled at once and repeated) has a much greater impact on the spreading results than

when sampling is performed independently across links. This is because the disjoint gatherings that

appear at shortest timescales inhibit the spreading process, when the minute-to-minute dynamics of

nodes switching membership are lost. When we sample every link from an independently chosen

time-slice the impact is much smaller, effectively approximating these short timescale dynamics.

The results presented here highlight a fundamental property of close proximity networks in

social systems. We show how the dynamics contained within hourly time-bins can be instrumen-

tal for spreading process in the society. Simultaneously, from a methodological perspective, we

illustrate how inclusion of these dynamics is crucial for understanding of the network of close

proximity interactions and dynamical processes unfolding on them.
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