

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 21, 2017

Typing and Compositionality for Security Protocols: A Generalization to the Geometric
Fragment (Extended Version)

Almousa, Omar; Mödersheim, Sebastian Alexander; Modesti, Paolo ; Viganò, Luca

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Almousa, O., Mödersheim, S. A., Modesti, P., & Viganò, L. (2015). Typing and Compositionality for Security
Protocols: A Generalization to the Geometric Fragment (Extended Version). Kgs. Lyngby: Technical University
of Denmark (DTU). (DTU Compute-Technical Report-2015; No. 3).

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Online Research Database In Technology

https://core.ac.uk/display/43252531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/typing-and-compositionality-for-security-protocols-a-generalization-to-the-geometric-fragment-extended-version(98ed2365-ce08-4d31-b822-1bac05a17211).html

Typing and Compositionality
for Security Protocols:

A Generalization to the Geometric Fragment
(Extended Version)

DTU Compute Technical Report-2015-03

Omar Almousa1, Sebastian Mödersheim1, Paolo Modesti2, and Luca Viganò3

1 DTU Compute, Lyngby, Denmark
2 School of Computing Science, Newcastle University, UK
3 Department of Informatics, King’s College London, UK

Abstract. We integrate, and improve upon, prior relative soundness
results of two kinds. The first kind are typing results showing that if
any security protocol that fulfils a number of sufficient conditions has
an attack then it has a well-typed attack. The second kind considers the
parallel composition of protocols, showing that when running two proto-
cols in parallel allows for an attack, then at least one of the protocols has
an attack in isolation. The most important generalization over previous
work is the support for all security properties of the geometric fragment.

1 Introduction

Context and motivation Relative soundness results have proved helpful in
the automated verification of security protocols as they allow for the reduction
of a complex verification problem into a simpler one, if the protocol in question
satisfies sufficient conditions. These conditions are of a syntactic nature, i.e., can
be established without an exploration of the state space of the protocol.

A first kind of such results are typing results [11, 4, 16, 2]. In this paper, we
consider a typed model, a restriction of the standard protocol model in which
honest agents do not accept any ill-typed messages. This may seem unreason-
able at first sight, since in the real-world agents have no way to tell the type of
a random bitstring, let alone distinguish it from the result of a cryptographic
operation; yet in the model, they “magically” accept only well-typed messages.
The relative soundness of such a typed model means that if the protocol has
an attack, then it also has a well-typed attack. This does not mean that the
intruder cannot send ill-typed messages, but rather that this does not give him
any advantage as he could perform a “similar” attack with only well-typed mes-
sages. Thus, if we are able to verify that a protocol is secure in the typed model,
then it is secure also in an untyped model. Typically, the conditions sufficient
to achieve such a result are that all composed message patterns of the protocol

have a different (intended) type that can somehow be distinguished, e.g., by a
tag. The restriction to a typed model in some cases yields a decidable verification
problem, allows for the application of more tools and often significantly reduces
verification time in practice [4, 3].

A similar kind of relative soundness results appears in compositional reason-
ing. We consider in this paper the parallel composition of protocols, i.e., running
two protocols over the same communication medium, and these protocols may
use, e.g., the same long-term public keys. (In the case of disjoint cryptographic
material, compositional reasoning is relatively straightforward.) The composi-
tionality result means to show that if two protocols satisfy their security goals in
isolation, then their parallel composition is secure, provided the protocols meet
certain sufficient conditions. Thus, it suffices to verify the protocols in isolation.
The sufficient conditions in this case are similar to the typing result: every com-
posed message can be uniquely attributed to one of the two protocols, which
again may be achieved, e.g., by tags.

Contributions Our contributions are twofold. First, we unify and thereby
simplify existing typing and compositionality results: we recast them as an in-
stance of the same basic principle and of the same proof technique. In brief, this
technique is to reduce the search for attacks to solving constraint reduction in
a symbolic model. For protocols that satisfy the respective sufficient conditions,
constraint reduction will never make an ill-typed substitution, where for compo-
sitionality “ill-typed” means to unify messages from two different protocols.

Second, this systematic approach also allows us to significantly generalize
existing results to a larger set of protocols and security properties. For what
concerns protocols, our soundness results do not require a particular fixed tagging
scheme like most previous works, but use more liberal requirements that are
satisfied by many existing real-world protocols like TLS.

While many existing results are limited to simple secrecy goals, we prove our
results for the entire geometric fragment suggested by Guttman [9]. We even
augment this fragment with the ability to directly refer to the intruder knowl-
edge in the antecedent of goals; while this does not increase expressiveness, it is
very convenient in specifications. In fact, handling the geometric fragment also
constitutes a slight generalization of existing constraint-reduction approaches.

Organization In § 2 and § 3, we introduce a symbolic protocol model based
on strands and properties in the geometric fragment. In § 4, we reduce verification
of the security properties to solving constraints. In § 5 and § 6, we give our typing
and parallel compositionality results. In § 7, we introduce a tool that checks if
protocols are parallel-composable and report about first experimental results. In
§ 8, we conclude and discuss related work. Proof sketches are in the appendix.

2 Messages, Formats and the Intruder Model

2.1 Messages

Let Σ be a finite set of operators (also referred to as function symbols); as a
concrete example, Table 1 shows a Σ that is representative for a wide range

2

of security protocols. Further, let C be a countable set of constants and V a
countable set of variables, such that Σ, V and C are pairwise disjoint. We write
TΣ∪C(V) for the set of terms built with these constants, variables and opera-
tors, and TΣ∪C for the set of ground terms. We call a term t atomic (and write
atomic(t)) if t ∈ V ∪ C, and composed otherwise. We use also other standard
notions such as subterm, denoted by v, and substitution, denoted by σ.

The set of constants C is partitioned into three countable and pairwise disjoint
subsets: (i) the set CPi of short-term constants for each protocol Pi, denoting
the constants that honest agents freshly generate in Pi; (ii) the set Cpriv of long-
term secret constants; and (iii) the set Cpub of long-term public constants. This
partitioning will be useful for compositional reasoning: roughly speaking, we will
allow the intruder to obtain all public constants, and define that it is an attack
if the intruder finds out any of the secret constants.

2.2 Formats

We use in this paper a notion of formats that is crucial to make our typing and
compositionality results applicable to real-world protocols like TLS. Here, we
break with the formal-methods tradition of representing clear-text structures of
data by a pair operator (·, ·). For instance, a typical specification may contain
expressions like (A,NA) and (NB , (KB ,A)). This representation neglects the
details of a protocol implementation that may employ various mechanisms to
enable a receiver to decompose a message in a unique way (e.g., field-lengths
or XML-tags). The abstraction has the disadvantage that it may easily lead to
false positives and false negatives. For example, the two messages above have a
unifier A 7→ NB and NA 7→ (KB ,NA), meaning that a message meant as (A,NA)
may accidentally be parsed as (NB , (KB ,A)), which could lead to a “type-flaw”
attack. This attack may, however, be completely unrealistic in reality.

To handle this, previous typing results have used particular tagging schemes,
e.g., requiring that each message field starts with a tag identifying the type of
that field. Similarly, compositionality results have often required that each en-
crypted message of a protocol starts with a tag identifying the protocol that this
message was meant for. Besides the fact that this does not really solve the prob-
lem of false positives and false negatives due to the abstraction, practically no
existing protocol uses exactly this schema. Moreover, it is completely unrealistic
to think that a widely used protocol like TLS would be changed just to make
it compatible with the assumptions of an academic paper — the only chance to
have it changed is to point out a vulnerability that can be fixed by the change.

Formats are a means to have a faithful yet abstract model. We define formats
as functions from data-packets to concrete strings. For example, a format from
TLS is client hello(time, random, session id, cipher suites, comp meth-

ods) = byte(1)·off3(byte(3) ·byte(3)·time·random·off1(session id)· off2(cipher suites)·
off1(comp methods)), where byte(n) means one concrete byte of value n, offk(m)
means that m is a message of variable length followed by a field of k bytes, and
· represents string concatenation.

3

Description Operator Analysis rule

Symmetric encryption scrypt(·, ·) Ana(scrypt(k,m)) = ({k}, {m})
Asymmetric encryption crypt(·, ·) Ana(crypt(pub(t),m)) = ({t}, {m})
Signature sign(·, ·) Ana(sign(t,m)) = (∅, {m})
Formats, e.g., f1 f1(t1, · · · , tn) Ana(f1(t1, · · · , tn)) = (∅, {t1, · · · , tn})
One-way functions, e.g., hash hash(·) Ana(hash(t)) = (∅, ∅)
Public key of a given private key pub(·) Ana(pub(t)) = (∅, ∅)
All other terms Ana(t) = (∅, ∅)

Table 1. Example Operators Σ

In the abstract model, we are going to use only abstract terms like the part
in bold in the above example. It is shown in [17] that under certain conditions
on formats this abstraction introduces neither false positives nor false negatives.
The conditions are essentially that formats must be parsed in an unambiguous
way and must be pairwise disjoint; then every attack on the concrete bytestring
model can be simulated in the model based on abstract format symbols (in the
free algebra). Both in typing and compositionality, these conditions allow us to
apply our results to real world protocols no matter what formatting scheme they
actually use (e.g., a TLS message cannot be accidentally be parsed as an EAC
message). In fact, these reasonable conditions are satisfied by many protocols
in practice, and whenever they are violated, typically we have a good chance to
find actual vulnerabilities.

We will model formats as transparent in the sense that if the intruder learns
f(t1, . . . , tn), then he also obtains the ti.

2.3 Intruder knowledge and deduction rules

We specify how the intruder can compose and decompose messages in the style
of the Dolev-Yao intruder model.

Definition 1. An intruder knowledge M is a finite set of ground terms t ∈
TΣ∪C. Let Ana(t) = (K,T) be a function that returns for every term t a pair
(K,T) of finite sets of subterms of t. We define ` to be the least relation between
a knowledge M and a term t that satisfies the following intruder deduction rules:

M ` t
(Axiom),
t ∈M M ` c

(Public),
c ∈ Cpub

M ` t1 · · · M ` tn
M ` f (t1, · · · , tn)

(Compose),
f ∈ Σn

M ` t M ` k1 · · · M ` kn
M ` ti

(Decompose), Ana(t) = (K,T),
K = {k1, · · · , kn}, ti ∈ T

The rules (Axiom) and (Public) formalize that the intruder can derive any
term t ∈M that is in his knowledge and every long-term public constant c ∈ Cpub,
respectively, and the (Compose) rule formalizes that he can compose known

4

terms with any operator in Σ (where n denotes the arity of f). Table 1 provides
an example Σ for standard cryptographic operators, along with the Ana function
defined for each of them, which are available to all agents, including the intruder.

For message decomposition, we namely rely on analysis rules for terms in the
form of Ana(t) = (K,T), which intuitively says that if the intruder knows the
keys in set K, then he can analyze the term t and obtain the set of messages
T . We require that all elements of K and T are subterms of t (without any
restriction, the relation ` would be undecidable). Consider, e.g., the analysis rule
for symmetric encryption given in Table 1: Ana(scrypt(k,m)) = ({k}, {m}) says
that given a term scrypt(k,m) one needs the key {k} to derive {m}. By default,
atomic terms cannot be analyzed, i.e., Ana(t) = (∅, ∅). The generic (Decompose)
deduction rule then formalizes that for any term with an Ana rule, if the intruder
can derive the keys in K, he can also derive all the subterms of t in T .

3 Protocol Semantics

We define the following notions. A protocol consists of a set of operational strands
(an extension of the strands of [10]) and a set of goal predicates that the protocol
is supposed to achieve. The semantics of a protocol is an infinite-state transition
system over symbolic states and security means that all reachable states satisfy
the goal predicates. A symbolic state (S;M ;E;φ) consists of a set S of opera-
tional strands (representing the honest agents), the intruder knowledge M , a set
E of events that have occurred, and a symbolic constraint φ on the free variables
occurring in the state. We first define constraints, then operational strands, the
transition relation on symbolic states, and finally the goal predicates.

3.1 Symbolic Constraints

The syntax of symbolic constraints is

φ := M ` t | φσ | ¬∃x̄. φσ | φ ∧ φ | φ ∨ φ | ∃x̄. φ︸ ︷︷ ︸
?

with φσ := s
.
= t | φσ ∧ φσ

where s, t range over terms in TΣ∪C(V), M is a finite set of terms (not necessarily
ground) and x̄ is a list of variables. The sublanguage φσ defines equations on
messages, and we can existentially quantify variables in them, e.g., consider a φ
of the form ∃x. y .

= f(x). We refer to equations also as substitutions since the
application of the standard most general unifier on a conjunction of equations
results in a set of substitutions. The constraints can contain such substitutions in
positive and negative form (excluding all instances of a particular substitution).

M ` t is an intruder constraint : the intruder must be able to derive term t
from knowledge M . Note that we have no negation at this level, i.e., we cannot
write negated intruder constraints. A base constraint is a constraint built accord-
ing to this grammar without the two cases marked ?, i.e., disjunction φ∨ φ and
existential quantification ∃x̄. φ, which may only occur in negative substitutions.

For ease of writing, we define the semantics of the constraint language as
standard for each construct (rather than following strictly the grammar of φ).

5

Definition 2. Given an interpretation I, which maps each variable in V to a
ground term in TΣ, and a symbolic constraint φ, the model relation I |= φ is:

I |= M ` t iff I(M) ` I(t) I |= s
.
= t iff I(s) = I(t) I |= ¬φ iff not I |= φ

I |= φ1 ∧ φ2 iff I |= φ1 and I |= φ2 I |= φ1 ∨ φ2 iff I |= φ1 or I |= φ2

I |= ∃x.φ iff there is a term t ∈ TΣ such that I[x 7→ t] |= φ

We say that I is a model of φ iff I |= φ, and that φ is satisfiable iff it has
a model. Two constraints are equivalent, denoted by ≡, iff they have the same
models. We define as standard the variables, denoted by var(·), and the free
variables, denoted by fv(·), of terms, sets of terms, equations, and constraints.
A constraint φ is closed, in symbols closed(φ), iff fv(φ) = ∅.

Every constraint φ can be quite straightforwardly transformed into an equiv-
alent constraint of the form

φ ≡ ∃x̄. φ1 ∨ . . . ∨ φn ,

where the φi are base constraints. Unless noted otherwise, in the following we
will assume that constraints are in this form.

Definition 3. A constraint is well-formed if each of its base constraints φi
satisfies the following condition: we can order the conjuncts of φi such that
φi = M1 ` t1 ∧ . . . ∧Mn ` tn ∧ φ′i, where φ′i contains no further ` constraints
and such that Mj ⊆Mj+1 (for 1 ≤ j < n) and fv(Mj) ⊆ fv(t1) ∪ . . . ∪ fv(tj−1).

Intuitively, this condition expresses that the intruder knowledge grows mono-
tonically and all variables that occur in an intruder knowledge occur in a term
that the intruder sent earlier in the protocol execution. We will ensure that all
constraints that we deal with are well-formed.

3.2 Operational Strands

In the original definition of [19], a strand denotes a part of a concrete protocol
execution, namely, a sequence of ground messages that an agent sends and re-
ceives. We introduce here an extension that we call operational strands, where
terms may contain variables, there may be positive and negative equations on
messages, and agents may create events over which we can formulate the goals:

S := send(t).S | receive(t).S | event(t).S | (∃x̄. φσ).S | (¬∃x̄.φσ).S | 0

where φσ is as defined above; we will omit the parentheses when there is no
risk of confusing the dots. fv and closed extend to operational strands as ex-
pected, with the exception of the receiving step, which can bind variables: we set
fv(receive(t).S) = fv(S)\ fv(t). According to the semantics that we define below,
in receive(x).receive(f (x)).send(x).0 the variable x is bound actually in the first
receive, i.e., the strand is equivalent to receive(x).receive(y).(y

.
= f (x)).send(x).0 .

6

A symbolic state (S;M ;E;φ) consists of a (finite or countable) set4 S of
closed operational strands, a finite set M of terms representing the intruder
knowledge, a finite set E of events, and a formula φ. fv(·) and closed extend to
symbolic states again as expected. We ensure that fv(S)∪ fv(M)∪ fv(E) ⊆ fv(φ)
for all reachable states (S;M ;E;φ), and that φ is well-formed. This is so since
in the transition system shown shortly, the operational strands of the initial
state are closed and the transition relation only adds new variables in the case
of receive(t), but in this case φ is updated with M ` t.

A protocol specification (S0, G) (or simply protocol) consists of a set S0 of
closed operational strands and a set G of goal predicates (defined below). For
simplicity, we assume that the bound variables of any two different strands in S0
are disjoint (which can be achieved by α-renaming). The strands in S0 induce
an infinite-state transition system with initial state (S0; ∅; ∅;>) and a transition
relation ⇒ defined as the least relation closed under six transition rules:

T1 ({send(t).S} ∪ S;M ;E;φ)⇒ ({S} ∪ S;M ∪ {t};E;φ)
T2 ({receive(t).S} ∪ S;M ;E;φ)⇒ ({S} ∪ S;M ;E;φ ∧M ` t)
T3 ({event(t).S} ∪ S;M ;E;φ)⇒ ({S} ∪ S;M ;E ∪ event(t);φ)
T4 ({φ′.S} ∪ S;M ;E;φ)⇒ ({S} ∪ S;M ;E;φ ∧ φ′)
T5 ({0} ∪ S;M ;E;φ)⇒ (S;M ;E;φ)
T6 (S;M ;E;φ)⇒ (S;M ;E ∪ {lts(c)};φ) for every c ∈ Cpriv

The rule T1 formalizes that sent messages are added to the intruder knowl-
edge M . T2 formalizes that an honest agent receives a message of the form t,
and that the intruder must be able to create that message from his current
knowledge, expressed by the new constraint M ` t; this indirectly binds the free
variables of the rest of the strand in the sense that they are now governed by
the constraints of the state. (In a non-symbolic model, one would at this point
instead need to consider all ground instances of t that the intruder can generate.)
T3 formalizes that we add events to the set E. T4 simply adds the constraint
φ′ to the constraint φ. T5 says that if a strand reaches {0}, then we remove it.
Finally, for every secret constant c in Cpriv, T6 adds the event lts(c) to the set
E indicating that c is a long-term secret. (We define later as a goal that the
intruder never obtains any c for which lts(c) ∈ E.) We cannot have this in the
initial set E as we need it to be finite; this construction is later crucial in the
parallel composition proof as we can at any time blame a protocol (in isolation)
that leaks a secret constant. We discuss below that in practice this semantic rule
does not cause trouble to the verification of the individual protocols.

3.3 Goal Predicates in the Geometric Fragment

We express goals by state formulas in the geometric fragment [9]. Here, we also
allow to directly talk about the intruder knowledge, but in a restricted manner so
that we obtain constraints of the form φ. Security then means: every reachable

4 Some approaches instead use multi-sets as we may have several identical strands, but
since one can always make a strand unique, using sets is without loss of generality.

7

state in the transition system induced by S0 satisfies each state formula, and
thus an attack is a reachable state where at least one goal does not hold.

The constraints φ we have defined above are interpreted only with respect to
an interpretation of the free variables, whereas the state formulas are evaluated
with respect to a symbolic state, including the current intruder knowledge and
events that have occurred (as before, we define the semantics for each construct).

Definition 4. State formulas Ψ in the geometric fragment are defined as:

Ψ := ∀x̄. (ψ =⇒ ψ0) with

{
ψ := ik(t) | event(t) | t .= t′ | ψ ∧ ψ′ | ψ ∨ ψ′ | ∃x̄.ψ
ψ0 := event(t) | t .= t′ | ψ0 ∧ ψ′0 | ψ0 ∨ ψ′0 | ∃x̄.ψ0

where ik(t) denotes that the intruder knows the term t. fv(·) and closed extend
to state formulas as expected. Given a state formula Ψ , an interpretation I, and
a state S = (S;M ;E;φ), we define I,M,E |=S Ψ as:

I,M,E |=S event(t) iff I(event(t)) ∈ I(E)
I,M,E |=S ik(t) iff I(M) ` I(t)
I,M,E |=S s

.
= t iff I(s) = I(t)

I,M,E |=S Ψ ∧ Ψ ′ iff I,M,E |=S Ψ and I,M,E |=S Ψ ′

I,M,E |=S Ψ ∨ Ψ ′ iff I,M,E |=S Ψ or I,M,E |=S Ψ ′

I,M,E |=S ¬Ψ iff not I,M,E |=S Ψ
I,M,E |=S ∃x. Ψ iff there exists t ∈ TΣ and I[x 7→ t] |=S Ψ

Definition 5. A protocol P = (S0, {Ψ0, · · · , Ψn}), where the Ψi are closed state
formulas, has an attack against goal Ψi iff there exist a reachable state S =
(S;M ;E;φ) in the transition system induced by S0 and an interpretation I such
that I,M,E |=S ¬Ψi and I |= φ. We also call S an attack state in this case.

Note that in this definition the interpretation I does not matter in I,M,E |=S

¬Ψi because Ψi is closed.

Example 1. If a protocol generates the event5 secret(xA, xB , xm) to denote that
the message xm is supposed to be a secret between agents xA and xB , and—
optionally—the event release(xm) to denote that xm is no longer a secret, then
we can formalize secrecy via the state formula ∀xAxBxm.(secret(xA, xB , xm) ∧
ik(xm) =⇒ xA = i ∨ xB = i ∨ release(xm)), where i denotes the intruder.
The release event can be used to model declassification of secrets as needed to
verify perfect forward secrecy (when other data should remain secret even un-
der the release of temporary secrets). We note that previous compositionality
approaches do not support such goals. A typical formulation of non-injective
agreement [13] uses the two events commit(xA, xB , xm), which represents that
xA intends to send message xm to xB), and running(xA, xB , xm, xC), which rep-
resents that xB believes to have received xm from xA, with xC a unique identi-
fier: ∀xAxBxmxC . (running(xA, xB , xm, xC) =⇒ commit(xA, xB , xm) ∨ xA =
i ∨ xB = i), and injective agreement would additionally require: ∀xAxBxm
xCx

′
C . running(xA,xB ,xm,xC) ∧ running(xA, xB ,xm,x

′
C) =⇒ xA = i ∨ xB =

i ∨ xC = x′C . �

5 Strictly speaking, we should write event(secret(xA, xB , xm)) but, for readability, here
and below we will omit the outer event(·) when it is clear from context.

8

4 Constraint Solving

We first show how to translate every state formula Ψ in the geometric fragment
for a given symbolic state S = (S;M ;E;φ) into a constraint φ′ (in the fragment
defined in Section 3.1) so that the models of φ∧φ′ represent exactly all concrete
instances of S that violate Ψ . Then, we extend a rule-based procedure to solve
φ-style constraints (getting them into an equivalent simple form). This procedure
provides the basis for our typing and parallel composition results.

4.1 From geometric fragment to symbolic constraints

Consider a reachable symbolic state (S;M ;E;φ) and a goal formula Ψ . As men-
tioned earlier, we require that Ψ is closed. Let us further assume that the bound
variables of Ψ are disjoint from the variables (bound or free) of S, M , E, and
φ. We now define a translation function trM,E(Ψ) = φ′ where φ′ represents the
negation of Ψ with respect to intruder knowledge M and events E. The negation
is actually manifested in the first line of the definition:

trM,E(∀x̄. ψ ⇒ ψ0) = ∃x̄. tr ′M,E(ψ) ∧ tr ′M,E(¬ψ0)
tr ′M,E(ik(t)) = M ` t
tr ′M,E(event(t)) =

∨
event(s)∈E s

.
= t

tr ′M,E(s
.
= t) = s

.
= t

tr ′M,E(ψ1 ∨ ψ2) = tr ′M,E(ψ1) ∨ tr ′M,E(ψ2)
tr ′M,E(ψ1 ∧ ψ2) = tr ′M,E(ψ1) ∧ tr ′M,E(ψ2)
tr ′M,E(∃x̄.ψ) = ∃x̄.tr ′M,E(ψ)
tr ′M,E(¬event(t)) =

∧
event(s)∈E ¬s

.
= t

tr ′M,E(¬s .
= t) = ¬s .

= t
tr ′M,E(¬(∃x̄.ψ1 ∨ ψ2)) = tr ′M,E(¬∃x̄.ψ1) ∧ tr ′M,E(¬∃x̄.ψ2)
tr ′M,E(¬¬φ) = tr ′M,E(φ)
tr ′M,E(¬∃x̄.event(t1) ∧ · · · ∧ event(tn) ∧ u1

.
= v1 ∧ · · ·um

.
= vm) =∧

event(s1)∈E...event(sn)∈E ¬∃x̄. (s1
.
= t1 ∧ · · · ∧ tn

.
= sn ∧ u1

.
= v1 ∧ · · ·um

.
= vm)

Theorem 1 Let S = (S;M ;E;φ) be a symbolic state and Ψ a formula in the
geometric fragment such that fv(Ψ) = ∅ and var(Ψ)∩var(φ) = ∅. For all I |= φ,
we have I,M,E|=S¬Ψ iff I |= trM,E(Ψ). Moreover, if φ is well-formed, then
so is φ ∧ trM,E(Ψ).

4.2 Constraint Reduction

As mentioned before, we can transform any well-formed constraint into the form
φ ≡ ∃x̄.φ0 ∨ . . .∨φn, where φi are base constraints, i.e., without disjunction and
existential quantification (except in negative substitutions). We now discuss how
to find the solutions of such well-formed base constraints. Solving intruder con-
straints has been studied quite extensively, e.g., in [14, 18, 5, 16], where the main
application of constraints was for efficient protocol verification for a bounded
number of sessions of honest agents. Here, we use constraints rather as a proof
argument for the shape of attacks. Our result is of course not restricted to a

9

bounded number of sessions as we do not rely on an exploration of reachable
symbolic states (that are indeed infinite) but rather make an argument about
the constraints in each of these states.

We consider constraint reduction rules of the form
φ′

φ
(name), cond express-

ing that φ′ entails φ (if the side condition cond holds). However, we will usually
read the rule backwards, i.e., as: one way to solve φ is φ′.

Definition 6. The satisfiability calculus for the symbolic intruder comprises
the following constraint reduction rules:

eq(σ) ∧ σ(φ)

M ` t ∧ φ
(Unify), s, t /∈ V, s ∈M,

σ ∈ mgu(s
.
= t)

eq(σ) ∧ σ(φ)

s
.
= t ∧ φ

(Equation), σ ∈ mgu(s
.
= t),

s /∈ V or s ∈ fv(t) ∪ fv(φ)

φ

M ` c ∧ φ (PubConsts), c ∈ Cpub
M ` t1, · · · ,M ` tn
M ` f (t1, · · · , tn)

(Compose), f ∈ Σn

∧
k∈KM ` k ∧ (M ` t ∧ φ)T�M

M ` t ∧ φ

(Decompose), s ∈M, Ana(s) = (K,T), T 6⊆M,
and (Decompose) has not been applied with

the same M and s before

where (M ′ ` t)T�M is M ′ ∪ T ` t if M ⊆ M ′ and M ′ ` t otherwise, (·)T�M
extends as expected, eq(σ) = x1

.
= t1∧. . .∧xn

.
= tn is the constraint corresponding

to a substitution σ = [x1 7→ t1, . . . , xn 7→ tn], and mgu(s
.
= t) is the standard

most general unifier for the pair of terms t and s (in the free-algebra).

Recall that the mgu, if it exists, is unique modulo renaming (mgu extends
as expected). Let us now explain the rules. (Unify) expresses that one way to
generate a term t from knowledge M is to use any term s ∈ M that can be
unified with t, but one commits in this case to the unifier σ; this is done by
applying σ to the rest of the constraint and recording its equations. (Unify)
cannot be applied when s or t are variables; intuitively: when t is a variable, the
solution is an arbitrary term, so we consider this a solved state (until elsewhere
a substitution is required that substitutes t); when s is variable, then it is a
subterm of a message that the intruder created earlier. If the earlier constraint
is already solved (i.e., a variable) then s is something the intruder could generate
from an earlier knowledge and thus redundant.

(Equation), which similarly allows us to solve an equation, can be applied if s
or t are variables, provided the conditions are satisfied, but later we will have to
prevent vacuous application of this rule to its previous result, i.e., the equations
eq(σ). (PubConsts) says that the intruder can generate all public constants.

(Compose) expresses that one way to generate a composed term f(t1, . . . , tn)
is to generate the subterms t1, . . . , tn (because then f can be applied to them).
(Decompose) expresses that we can attempt decryption of any term in the in-
truder knowledge according to the Ana function. Recall that Table 1 provides
examples of Ana, and note that for variables or constants Table 1 will yield (∅, ∅),
i.e., there is nothing to analyze. However, if there is a set T of messages that can
potentially be obtained if we can derive the keys K, and T is not yet a subset
of the knowledge M anyway, then one way to proceed is to add M ` k for each

10

k ∈ K to the constraint store, i.e., committing to finding the keys, and under
this assumption we may add T to M and in fact to any knowledge M ′ that is a
superset of M . Also for this rule we must prevent vacuous repeated application,
such as applying analysis directly to the newly generated M ` k constraints.

The reduction of constraints deals with conjuncts of the form M ` t and
s
.
= t. However, we also have to handle negative substitutions, i.e., conjuncts of

the form ¬∃x̄.φσ. We show that we can easily check them for satisfiability.

Definition 7. A constraint φ is simple, written simple(φ), iff φ = φ1 ∧ . . .∧φn
such that for each φi (1 ≤ i ≤ n):

– if φi = M ` t, then t ∈ V;
– if φi = s

.
= t, then s ∈ V and s does not appear elsewhere in φ;

– if φi = ¬∃x̄.φσ, then mgu(θ(φσ)) = ∅ for θ = [ȳ 7→ c̄] where ȳ are the free
variables of φi and c̄ fresh constants that do not appear in φ.

Theorem 2 If simple(φ), then φ is satisfiable.

Theorem 3 (Adaption of [18, 16]) The satisfiability calculus for the symbolic
intruder is sound, complete, and terminating on well-formed constraints.

5 Typed Model

In our typed model, the set of all possible types for terms is denoted by TΣ∪Ta ,
where Ta is a finite set of atomic types, e.g., Ta = {Number ,Agent ,PublicKey ,
PrivateKey ,SymmetricKey}. We call all other types composed types. Each atomic
term (each element of V ∪ C) is given a type; constants are given an atomic type
and variables are given either an atomic or a composed type (any element of
TΣ∪Ta). We write t : τ to denote that a term t has the type τ . Based on the
type information of atomic terms, we define the typing function Γ as follows:

Definition 8. Given Γ (·) : V → TΣ∪Ta
for variables and Γ (·) : C → Ta for

constants, we extend Γ to map all terms to a type, i.e., Γ (·) : TΣ∪C(V)→ TΣ∪Ta
,

as follows: Γ (t) = f (Γ (t1), · · · , Γ (tn)) if t = f (t1, · · · , tn) and f ∈ Σn. We say
that a substitution σ is well-typed iff Γ (x) = Γ (σ(x)) for all x ∈ dom(σ).

For example, if Γ (k) = PrivateKey and Γ (x) = Number then Γ (crypt(pub(k),
x)) = crypt(pub(PrivateKey),Number).

As we require that all constants be typed, we further partition C into disjoint
countable subsets according to different types in Ta. This models the intruder’s
ability to access infinite reservoirs of public fresh constants. For example, for
protocols P1, P2 and Ta = {β1, . . . , βn}, we have the disjoint subsets Cβi

pub, C
βi

priv,

Cβi

P1
and Cβi

P2
, where i ∈ {1, . . . , n} and, e.g., Cβi

pub contains all Cpub elements

of type βi. Cβi

P1
and Cβi

P2
are short-term constants, whereas Cβi

pub and Cβi

priv are

long-term, and we consider it an attack if the intruder learns any of Cβi

priv.
By an easy induction on the structure of terms, we have:

11

Lemma 1 If a substitution σ is well-typed, then Γ (t) = Γ (σ(t)) for all terms
t ∈ TΣ∪C(V).

According to this typed model, I is a well-typed interpretation iff Γ (x) =
Γ (I(x)) for all x ∈ V. Moreover, we require for the typed model that Γ (s) = Γ (t)
for each s

.
= t. This is a restriction only on the strands of the honest agents (as

they are supposed to act honestly), not on the intruder: he can send ill-typed
messages freely. We later show that sending ill-typed messages does not help the
intruder in introducing new attacks in protocols that satisfy certain conditions.

5.1 Message Patterns

In order to prevent the intruder from using messages of a protocol to attack
a second protocol, we need to guarantee the disjointness of the messages be-
tween both protocols. Thus, we use formats to wrap raw data, as discussed in
§ 2.2. In particular, all submessages of all operators (except formats and pub-
lic key operator) must be “wrapped” with a format, e.g., scrypt(k, fa(Na)) and
scrypt(k, fb(Nb)) should be used instead of scrypt(k,Na) and scrypt(k1,Nb).

We define the set of protocol message patterns, where we need to ensure that
each pair of terms has disjoint variables: we thus define a well-typed α-renaming
α(t) that replaces the variables in t with completely new variable names.

Definition 9. The message pattern of a message t is MP(t) = {α(t)}. We
extend MP to strands, goals and protocols as follows. The set MP(S) of message
patterns of a strand S and the set MP(Ψ) of message patterns of a goal Ψ are
defined as follows:

MP(send(t).S) = MP(t) ∪MP(S)
MP(event(t).S) = MP(t) ∪MP(S)
MP(receive(t).S) = MP(t) ∪MP(S)
MP(s

.
= t.S) = MP(σ(S)),

for σ ∈ mgu(s
.
= t)

MP(s
.
= t.S) = ∅ if mgu(s

.
= t) = ∅

MP((¬∃x̄.φσ).S) = MP(φσ) ∪MP(S)
MP(0) = ∅

MP(∀x.ψ ⇒ ψ0) = MP(ψ) ∪MP(ψ0)
MP(ik(t)) = MP(t)
MP(event(t)) = MP(t)
MP(ψ1 ∨ ψ2) = MP(ψ1) ∪MP(ψ2)
MP(ψ1 ∧ ψ2) = MP(ψ1) ∪MP(ψ2)
MP(s

.
= t) = MP(s) ∪MP(t)

MP(¬φ) = MP(φ)

The set of message patterns of a protocol P = ({S1, · · · ,Sm}; {Ψ0, · · · , Ψn}) is
MP(P) =

⋃
m
i=1MP(Si) ∪

⋃
n
i=1MP(Ψi), and the set of sub-message patterns of

a protocol P is SMP(P) = {α(s) | t ∈ MP(P) ∧ s v t ∧ ¬atomic(s)} \ {u | u =
pub(v) for some term v}. SMP applies to messages, strands, goals as expected.

Example 2. If S = receive(scrypt(k, (f1(x, y)))).send(scrypt(k, y)), then SMP(S) =
{scrypt(k, f1(x1, y1)), scrypt(k, y2), f1(x3, y3)}. �

Definition 10. A protocol P = (S0, G) is type-flaw-resistant iff the following
conditions hold:

– MP(P) and V are disjoint, i.e., MP(P) ∩ V = ∅ (which ensures that none
of the messages of P is sent as raw data).

12

– If two non-atomic sub-terms are unifiable, then they have the same type, i.e.,
for all t1, t2 ∈ SMP(P), if σ(t1) = σ(t2) for some σ, then Γ (t1) = Γ (t2).

– For any equation s
.
= t that occurs in strands or goals of P (also under a

negation), Γ (s) = Γ (t).
– For any variable x that occurs in equations or events of G, Γ (x) ∈ Ta.
– For any variable x that occurs in inequalities or events of strands, Γ (x) ∈ Ta.

Intuitively, the second condition means that we cannot unify two terms unless
their types match. Note that this match is a restriction on honest agents only,
the intruder is still able to send ill-typed messages.

Example 3. Example 2 included a potential type-flaw vulnerability as scrypt(k,
f1(x1, y1)) and scrypt(k, y2) have the unifier [y2 7→ f1(x1, y1)]. Here y1 and y2
must have the same type since they have been obtained by a well-typed variable
renaming in the construction of SMP . Thus, the two messages have different
types. The problem is that the second message encrypts raw data without any
information on who it is meant for and it may thus be mistaken for the first
message. Let us thus change the second message to scrypt(k, f2(y2)). Then SMP
also includes f2(y4) for a further variable y4, and now no two different elements
of SMP have a unifier. f2 is not necessarily inserting a tag: if the type of y in the
implementation is a fixed-length type, this is already sufficient for distinction. �

Theorem 4 If a type-flaw-resistant protocol P has an attack, then P has a
well-typed attack.

Note that this theorem does not exclude that type-flaw attacks are possible,
but rather says that for every type-flaw attack there is also a (similar) well-typed
attack, so it is safe to verify the protocol only in the typed model.

6 Parallel Composition

In this section, we consider the parallel composition of protocols, which we often
abbreviate simply to “composition”. We define the set of operational strands for
the composition of a pair of protocols as the union of the sets of the operational
strands of the two protocols; this allows all possible transitions in the composi-
tion. The goals for the composition are also the union of the goals of the pair,
since any attack on any of them is an attack on the whole composition (i.e., the
composition must achieve the goals of the pair).

Definition 11. The parallel composition P1 ‖ P2 of P1 = (SP1
0 ;ΨP1

0) and P2 =
(SP2

0 ;ΨP2
0) is P1 ‖ P2 = (SP1

0 ∪ SP2
0 ; ΨP1

0 ∪ Ψ
P2
0).

Our parallel composition result relies on the following key idea. Similar to
the typing result, we look at the constraints produced by an attack trace against
P1 ‖ P2, violating a goal of P1, and show that we can obtain an attack against P1

alone, or a violation of a long-term secret by P2. Again, the core of this proof is
the observation that the unification steps of the symbolic intruder never produce

13

an “ill-typed” substitution in the sense that a P1-variable is never instantiated
with a P2 message and vice versa. For that to work, we have a similar condition as
before, namely that the non-atomic subterms of the two protocols (the SMPs) are
disjoint, i.e., each non-atomic message uniquely says to which protocol it belongs.
This is more liberal than the requirements in previous parallel compositionality
results in that we do not require a particular tagging scheme: any way to make
the protocol messages distinguishable is allowed. Further, we carefully set up the
use of constants in the protocol as explained at the beginning of § 5, namely that
all constants used in the protocol are: long-term public values that the intruder
initially knows; long-term secret values that, if the intruder obtains them, count
as a secrecy violation in both protocols; or short-term values of P1 or of P2.

The only limitation of our model is that long-term secrets cannot be “de-
classified”: we require that all constants of type private key are either part of
the long-term secrets or long-term public constants. Moreover, the intruder can
obtain all public keys, i.e., pub(c) for every c of type private key. This does not
prevent honest agents from creating fresh key-pairs (the private key shall be
chosen from the long-term constants as well) but it dictates that each private
key is either a perpetual secret (it is an attack if the intruder obtains it) or it is
public right from the start (as all public keys are). This only excludes protocols
in which a private key is a secret at first and later revealed to the intruder, or
where some public keys are initially kept secret.

Definition 12. Two protocols P1 and P2 are parallel-composable iff the follow-
ing conditions hold:

(1) P1 and P2 are SMP -disjoint, i.e., for every s ∈ SMP(P1) and t ∈ SMP(P2),
either s and t have no unifier (mgu(s

.
= t) = ∅) or s = pub(s0) and t =

pub(t0) for some s0, t0 of type private key.
(2) All constants of type private key that occur in MP(P1)∪MP(P2) are part of

the long-term constants in Cpub ∪ Cpriv.
(3) All constants that occur in MP(Pi) are in Cpub ∪ Cpriv ∪ CPi , i.e., are either

long term or belong to the short-term constants of the respective protocol.
(4) For every c ∈ CPrivateKey

Pi
, Pi also contains the strand send(pub(c)).0.

(5) For each secret constant c ∈ Cβi

priv, for each type βi, each Pi contains the
strands event(ltsβi,Pi

(c)).0 and the goal ∀x : βi. ik(x) =⇒ ¬ltsβi,Pi
(x).

(6) Both P1 and P2 are type-flaw resistant.

Some remarks on the conditions: (1) is the core of the compositionality result,
as it helps to avoid confusion between messages of the two protocols; (2) ensures
that every private key is either initially known to the intruder or is part of
the long-term secrets (and thus prevents “declassification” of private keys as we
discussed above). (3) means that the two protocols will draw from disjoint sets
of constants for their short-term values. (4) ensures that public keys are known
to the intruder. Note that typically the goals on long-term secrets, like private
keys and shared symmetric keys, are very easy to prove as they are normally not
transmitted. The fact that we do not put all public keys into the knowledge of the
intruder in the initial state is because the intruder knowledge must be a finite set

14

of terms for the constraint reduction to work. Putting it into strands means they
are available at any time, but the intruder knowledge in every reachable state
(and thus constraint) is finite. Similarly, for the goals on long-term secrets: the
set of events in every reachable state is still finite, but for every leaked secret, we
can in one transition reach the corresponding predicate that triggers the secrecy
violation goal. (5) ensures that when either protocol Pi leaks any constant of

Cβi

priv, it is a violation of its secrecy goals. (6) ensures that for both protocols, we
cannot unify terms unless their types match.

Theorem 5 If two protocols P1 and P2 are parallel-composable and both P1 and
P2 are secure in isolation in the typed model, then P1 ‖ P2 is secure (also in the
untyped model).

We can then apply this theorem successively to any number of protocols that
satisfy the conditions, in order to prove that they are all parallel composable.

This compositionality result entails an interesting observation about parallel
composition with insecure protocols: unless one of the protocols leaks a long-term
secret, the intruder never needs to use one protocol to attack another protocol.
This means actually: even if a protocol is flawed, it does not endanger the security
of the other protocols as long as it at least manages not to leak the long-term
secrets. For instance, the Needham-Schroeder Public Key protocol has a well-
known attack, but the intruder can never obtain the private keys of any honest
agent. Thus, another protocol relying on the same public-key infrastructure is
completely unaffected. This is a crucial point because it permits us to even allow
for security statements in presence of flawed protocols:

Corollary 1. Consider two protocols P1 and P2 that are parallel-composable
(and thus satisfy all the conditions in Definition 12). If P1 is secure in isolation
and P2, even though it may have an attack in isolation, does not leak a long-term
secret, then all goals of P1 hold also in P1 ‖ P2.

7 Tool support

We have developed the Automated Protocol Composition Checker APCC (avail-
able at http://www2.compute.dtu.dk/~samo/APCC.zip), a tool that verifies
the two main syntactic conditions of our results: it checks both if a given proto-
col is type-flaw-resistant and if the protocols in a given set are pairwise parallel-
composable. In our preliminary experiments, we considered a suite that includes
widely used protocols like TLS, Kerberos (PKINIT and Basic) and protocols
defined by the ISO/IEC 9798 standard, along with well-known academic proto-
cols (variants of Needham-Schroeder-Lowe, Denning-Sacco, etc.). Although we
worked with abstract and simplified models, we were able to verify that TLS
and Kerberos are parallel-composable. In contrast, since some protocols of the
ISO/IEC 9798 standard share common formats, they are not SMP -disjoint.

Another result is that many academic protocols are not pairwise parallel-
composable. This was largely expected because they do not have a standardized

15

implementation, and thus the format of messages at the wire level is not part of
the specification. In fact, in these protocols there are several terms that may be
confused with terms of other protocols, whereas a concrete implementation may
avoid this by choosing carefully disjoint messages formats that can prevent the
unification. Hence, our tool APCC can also support developers in the integration
of new protocols (or new implementations of them) in an existing system.

8 Conclusions and Related Work

This paper unifies research on the soundness of typed models (e.g., [11, 4, 16,
2]) and on parallel protocol composition (e.g., [10, 8, 6, 7, 1]) by using a proof
technique that has been employed in both areas: attack reduction based on a
symbolic constraint systems. For typing, the idea is that the constraint solving
never needs to apply ill-typed substitutions if the protocol satisfies some sufficient
conditions; hence, for every attack there exists a well-typed variant and it is thus
without loss of generality to restrict the model to well-typed execution. For the
parallel composition of P1 and P2 that again satisfy some sufficient conditions,
the constraint solving never needs to use a message that the intruder learned
from P1 to construct a message of P2; thus, the attack will work in P1 alone
or in P2 alone, and from verifying them in isolation, we can conclude that their
composition is secure.

We also make several generalizations over previous results. First, we are not
limited to a fixed set of properties like secrecy [4, ?]. Instead, we consider the
entire geometric fragment proposed by Guttman [9] that we believe is the most
expressive language that can work with the given constraint-solving argument
that is at the core of handling typing and compositionality results uniformly.
Other expressive property languages have been considered, e.g., PS-LTL for typ-
ing results [2]; an in-depth comparison of the various existing property languages
and their relative expressiveness is yet outstanding. Another common limitation
is to rely on a fixed public key infrastructure, e.g., [?,2, 6]. Our approach in con-
trast allows for the exchange of public keys (including freshly generated ones).
Moreover, early works on typing and parallel composition used a fixed tagging
scheme, whereas we use the more general notion of non-unifiable subterms for
messages that have different meaning. Using the notion of formats, our results
are applicable to existing real-world protocols like TLS with their actual formats.

Our work considered so far protocols only in the initial term algebra without
any algebraic properties. There are some promising results for such properties
(e.g., [12, 7, 15]) that we would like to combine with our approach. The same
holds for other types of protocol composition, e.g., the sequential composition
considered in [7], where one protocol establishes a key that is used by another
protocol as input.

References

1. S. Andova, C. J. F. Cremers, K. Gjøsteen, S. Mauw, S. F. Mjølsnes, and
S. Radomirovic. A framework for compositional verification of security protocols.

16

Inform. Comput., 206(2-4):425–459, 2008.
2. M. Arapinis and M. Duflot. Bounding messages for free in security protocols -

extension to various security properties. Inform. Comput., 239:182–215, 2014.
3. A. Armando and L. Compagna. SATMC: A SAT-based Model Checker for Security

Protocols. Logics in Artificial Intelligence, pp. 730–733, 2004.
4. B. Blanchet and A. Podelski. Verification of cryptographic protocols: tagging en-

forces termination. Theor. Comput. Sci., 333(1-2):67–90, 2005.
5. H. Comon-Lundh, S. Delaune, and J. K. Millen. Constraint solving techniques and

enriching the model with equational theories. In Formal Models and Techniques
for Analyzing Security Protocols, pp. 35–61. IOS Press, 2011.

6. V. Cortier and S. Delaune. Safely composing security protocols. Form. Method.
Syst. Des., 34:1–36, 2009.

7. Ştefan Ciobâcă and V. Cortier. Protocol composition for arbitrary primitives. In
CSF, pp. 322–336. IEEE, 2010.

8. J. D. Guttman. Cryptographic Protocol Composition via the Authentication Tests.
In FOSSACS’09, pp. 303–317. Springer, 2009.

9. J. D. Guttman. Establishing and preserving protocol security goals. Journal of
Computer Security, 22(2):203–267, 2014.

10. J. D. Guttman and F. J. Thayer. Protocol independence through disjoint encryp-
tion. In CSFW, pp. 24–34. IEEE, 2000.

11. J. Heather, G. Lowe, and S. Schneider. How to prevent type flaw attacks on security
protocols. Journal of Computer Security, 11(2):217–244, 2003.

12. R. Küsters and T. Truderung. Using ProVerif to Analyze Protocols with Diffie-
Hellman Exponentiation. In CSF, pp. 157–171. IEEE, 2009.

13. G. Lowe. A hierarchy of authentication specifications. In CSFW, pp. 31–44, 1997.
14. J. K. Millen and V. Shmatikov. Constraint solving for bounded-process crypto-

graphic protocol analysis. In CCS, pp. 166–175. ACM, 2001.
15. S. Mödersheim. Diffie-Hellman without Difficulty. In FAST, pp. 214–229, 2011.
16. S. Mödersheim. Deciding Security for a Fragment of ASLan. In ESORICS, pp. 127–

144. Springer, 2012.
17. S. Mödersheim and G. Katsoris. A sound abstraction of the parsing problem. In

CSF, pp. 259–273. IEEE, 2014.
18. M. Rusinowitch and M. Turuani. Protocol insecurity with a finite number of

sessions and composed keys is NP-complete. Theor. Comput. Sci., 299, 2003.
19. F. J. Thayer, J. C. Herzog, and J. D. Guttman. Strand spaces: Proving security

protocols correct. Journal of Computer Security, 7(1):191–230, 1999.

17

A Appendix: proofs of the technical results

Theorem 1 Let S = (S;M ;E;φ) be a symbolic state and Ψ a formula in the
geometric fragment such that fv(Ψ) = ∅ and var(Ψ)∩var(φ) = ∅. For all I |= φ,
we have I,M,E|=S¬Ψ iff I |= trM,E(Ψ). Moreover, if φ is well-formed, then
so is φ ∧ trM,E(Ψ).

Proof. We first prove, by induction, a corresponding property for the function
tr ′ that is called by the tr function. For that assume we have I, M , E, φ, and
ψ such that I |= φ, var(φ) ∩ var(ψ) = ∅, fv(φ) ⊆ fv(tr ′M,E(ψ)) ⊆ fv(φ) ∪ fv(ψ),
fv(φ) = var(M) ∪ var(E). Also we have that E = {event(s1), · · · , event(sn)}
since E is a finite set. We prove I,M,E |=S ψ iff I |= tr ′M,E(ψ) by induction
on the structure of tr ′M,E(·):

– I,M,E |=S ik(t) iff I(M) ` I(t) iff I |= M ` t = tr ′M,E(ik(t)).
– I,M,E |=S event(t) iff I(event(t)) ∈ I(E) iff I(t) ∈ {I(s1), · · · , I(sn))}

iff I(t) = I(s1) ∨ · · · ∨ I(t) = I(sn) iff I |= t
.
= s1 ∨ · · · ∨ t

.
= sn iff

I |=
∨

event(s)∈E s
.
= t = tr ′M,E(event(t)).

– I,M,E |=S ψ1 ∨ ψ2 iff I,M,E |=S ψ1 or I,M,E |=S ψ2 iff I |= ψ1 or
I |= ψ2 by induction iff I |= tr ′M,E(ψ1) ∨ tr ′M,E(ψ2) = tr ′M,E(ψ1 ∨ ψ2).

– The other cases follow similarly.

Based on this, we prove I,M,E|=¬Ψ iff I |= trM,E(Ψ). Let Ψ = ∀x̄.ψ =⇒ ψ0.
Then, I |= trM,E(Ψ) = ∃x̄. tr ′M,E(ψ) ∧ tr ′M,E(¬ψ0) iff

– exist t̄ such that I[x̄ 7→ t̄] |= tr ′M,E(ψ) and I[x̄ 7→ t̄] |= tr ′M,E(¬ψ0) iff
– exist t̄ such that I[x̄ 7→ t̄],M,E |=S ψ and I[x̄ 7→ t̄],M,E |=S ¬ψ0 iff
– exist t̄ such that I[x̄ 7→ t̄],M,E |=S ψ ∧ ¬ψ0 iff
– I,M,E |=S ∃x̄.ψ ∧ ¬ψ0 iff
– I,M,E|=S¬∀x̄.ψ =⇒ ψ0 = ¬Ψ .

The well-formedness follows from the fact that in each state, the knowledge M is
a superset of every M ′ that occur in a deduction constraint M ′ ` t in φ. Further,
M can only contain variables that occur in some t for which M ′ ` t occurs in φ.
Thus, trM,E(Ψ) ∧ φ is well-formed, if φ is. �

Theorem 2 If simple(φ), then φ is satisfiable.

Proof. From simple(φ), by the definition of simple (Definition 7), it follows that
φ is a conjunction of intruder deduction constraints of the form M ` x with
x ∈ V, equations x

.
= t where x ∈ V and where x does not occur elsewhere in

φ, and inequalities. Let ȳ be all variables that occur freely in intruder deduction
constraints and inequalities, and let θ = [ȳ 7→ c̄] for new constants c̄ ∈ Cpub (that
do not occur in φ and are pairwise different). We show that θ(φ) is satisfiable.

All intruder deduction constraints are satisfiable since the constants are in
Cpub and the intruder can access those constants by the rule (Public) as in
Definition 1.

The equations are obviously satisfiable: all equations in φ have the form
vi

.
= ui, with variables v̄ that do not occur elsewhere in φ, which implies that

18

dom(θ) ∩ v̄ = ∅, and thus that θ(vi
.
= ui) = vi

.
= θ(ui). All these equations are

therefore satisfiable by instantiating every vi ∈ v̄ with the term ui.
It remains to show that the inequalities are satisfiable under θ. Let φ0 =

¬∃x̄. φσ with φσ =
∧
si

.
= ti be any inequality. θ(φ0) is closed, i.e., fv(θ(φ0)) = ∅.

This implies that fv(φσ) = {x̄}, and since φ is simple, we have mgu(θ(φσ)) = ∅.
Then, φσ is not satisfiable, i.e., there do not exist x̄ such that φσ holds. Thus,
φ0 holds. �

The completeness of the symbolic intruder constraint reduction is similar
to existing results on symbolic intruder constraints; what is particular is our
generalization to constraints with quantified inequalities. To that end, we first
show:

Lemma 2 Let φ = ¬∃x̄.φσ where φσ =
∧
si

.
= ti, and let θ = [ȳ 7→ c̄] where

ȳ = fv(φ) and c̄ are fresh public constants that do not occur in φ. Then φ is
satisfiable iff θ(φ) is satisfiable. Moreover, φ is satisfiable iff mgu(θ(φσ)) = ∅.

Proof. If φ is unsatisfiable, then also θ(φ) is unsatisfiable. For the other direction,
we show that the following two formulas are a contradiction:

∃ȳ.∀x̄.
n∨
i=1

si 6= ti (1)

∃x̄.
n∧
i=1

θ(si) = θ(ti) (2)

By (2), we can find a substitution ξ = [x̄ 7→ ū] where ū are ground terms
such that

∧n
i=1 ξ(θ(si)) = ξ(θ(ti)). Since θ and ξ are substitutions with disjoint

domain and grounding, we have θ(ξ(·)) = ξ(θ(·)), and thus we obtain

n∧
i=1

θ(ξ(si)) = θ(ξ(ti)) (3)

By (1), choosing a particular value for the x̄, we obtain:

∃ȳ.
n∨
i=1

ξ(si) 6= ξ(ti) (4)

Then we can find an i ∈ {1, ..., n} such that ∃ȳ. ξ(si) 6= ξ(ti). Thus, taking
s := ξ(si) and t := ξ(ti), we have:

∃ȳ. s 6= t (5)

θ(s) = θ(t) (6)

To show that (5) and (6) yield a contradiction, we consider all possible cases of
s and t:

– If s and t are atomic, then, since θ replaces all of variables ȳ with fresh
constants, θ(s) = θ(t) implies s = t, contradicting (5).

19

– If s is atomic and t is not, then, since θ(s) is a constant, θ(s) 6= θ(t), contra-
dicting (6).

– If both s and t are not atomic, then s = f(s1, . . . , sn) and t = f(t1, . . . , tn)
(otherwise θ(s) = θ(t) cannot hold). Thus, we can reduce this case to one
pair si and ti of corresponding subterms.

Now, since θ(φ) is closed, i.e., fv(φσ) = x̄, we can decide the satisfiability of φ
with the mgu-algorithm. �

Theorem 3 (Adaption of [18, 16]) The satisfiability calculus for the symbolic
intruder is sound, complete, and terminating on well-formed constraints.

Proof. Let us write φ φ′ if
φ′

φ
is an instance of a reduction rule, i.e., represent-

ing one solution step. Soundness is easy since for each rule
φ′

φ
, from a satisfying

interpretation of an instance σ(φ′) of φ′, we can derive an interpretation that
satisfies σ(φ).

The hard part is completeness, i.e., when I |= φ, then either φ is already
simple or we can apply some rule, obtaining φ φ′ for some φ′ with I |= φ′.
Thus, we show that every solution I of a constraint is preserved by at least one
applicable reduction rule until we obtain a simple constraint (that we already
know is satisfiable by Theorem 2). Consider a satisfiable non-simple constraint φ,
and a satisfying interpretation I. Since I satisfies φ, for every intruder deduction
M ` t in φ, there exists a proof I(M) ` I(t) using the intruder deduction rules
of Definition 1. This proof has a tree shape with I(M) ` I(t) at the root and
axioms as leaves for members of I(M). We label each M ` t with such a proof
for I(M) ` I(t).

We now proceed from the first (in the order induced by the well-formedness
of φ) intruder constraint M ` t where t /∈ V (i.e., not yet simple) and show:
depending on the form of the derivation tree, we can pick a rule so that we
can label all new deduction constraints in the resulting constraint φ′ again with
matching proof trees, i.e., so that they support still the solution. In particular,
we will apply the (Unify) rule only with substitutions of which I is an instance.

If φ contains a non-simple equation, i.e., s
.
= t where neither s nor t is a

variable that does not occur in φ, then we can apply the (Equation) rule to
simplify it, because φ is satisfiable under I. Thus, I(s) = I(t) and so there is
a σ ∈ mgu(s

.
= t), with I(x) = I(σ(x)) for all x ∈ V. Therefore, the resulting

constraint (replacing s
.
= t by eq(σ) and applying σ to the rest of the constraint)

still has I as a model.
If all equations are simple, then for φ to be non-simple, there must be at least

one conjunct Mi ` ti where ti /∈ V. Consider the smallest such i (in the order of
the well-formedness of φ, thus fv(Mi) ⊆ {t1, . . . , ti−1} ⊆ V). Moreover, consider
the ground derivation of I(Mi) ` I(ti), which exists because φ is satisfiable. We
distinguish the different cases at the root of this proof tree:

– If it is a leaf, then I(ti) ∈ I(Mi), thus ti has a unifier with some term
s ∈Mi. Now, ti cannot be a variable because otherwise this conjunct would

20

already be simple). If s is a variable, then s = tj for some j < i, and we
can thus proceed by following the proof tree of tj instead. If neither ti nor
s are variables, then the (Unify) rule is applicable, and again the unifier σ
supports I, and so does the resulting constraint.

– If it is an application of the (Public) rule, then ti ∈ Cpub and so the public
constant rule of the constraint reduction is applicable.

– If it is an application of the (Compose) rule, then so is the corresponding rule
of the constraint reduction, producing a new conjunctionM ` t′1∧. . .∧M ` t′l
of deduction constraints for the immediate subterm t′j of ti; we can label these
tj with the respective subtrees of the derivation tree of ti, so the resulting
constraint still supports the interpretation I.

– If the node is an application of the (Decompose) rule, then consider the
ground term t that is being decomposed in the derivation proof for I(ti).
We first consider different cases depending on how t is derived:

• If it is a composition step, then the intruder composed the term and
then decomposed it subsequently. Since decomposition can only yield
subterms of the composed term, one of the subtrees proves that the
intruder can already derive I(ti) and we can thus simplify the proof
tree. We thus assume in the following that the proof tree contains no
composition followed by a decomposition.

• It cannot be an application of the (Public) rule, since that cannot have
an analyzable subterm.

• If t is obtained by a decomposition step itself, then we regress to the
respective term being decomposed, and we do so until we hit a term
that is not obtained by decomposition. By the previous cases, this cannot
be a composition step or public-constant step either, so all remains is
following case:

• The derivation of t is a leaf, i.e., there is a t′ ∈ M such that I(t′) = t.
We now show that in this case we can perform the decomposition step.

Since decomposition is performed on t in the derivation of I(ti), we have that
Ana(t) = (K,T) for some sets of ground terms K and T , where I(M) ` k
for every k ∈ K and I(ti) ∈ T .

We have two further cases, namely whether t′ (the term in M whose instance
is t) is a variable or not. If t′ is a variable, then again t′ = tj for some j < i
and we can just replace the subtree for the derivation of I(t′) with the
derivation of I(tj).

Finally, if t′ is not a variable, then Ana(t′) = (K ′, T ′) for some sets K ′ and
T ′ with I(K ′) = K and I(P ′) = T . Unless T ′ ⊆ M (which is for instance
the case if the decomposition step has already been applied previously, so we
can simply replace the decomposition step with a leaf node), we can apply
the decomposition rule of the constraint reduction and label the newly added
conjuncts Mi ` k′ for every k′ ∈ K ′ with the respective derivation of I(k′) of
the previous proof tree. Thus, the resulting constraint (also extending all Mj

that are supersets of Mi with the terms from P ′) supports the interpretation
I.

21

For termination, it is standard to define a weight (n,m, l) for a constraint φ,
where

– n is the number of free variables in φ;
– m is the number of unanalyzed subterms in the intruder knowledges of con-

straints, i.e., let M∗i be the set of all terms in Mi and their subterms to
which analysis has not yet been applied, and let m = Σi|M∗i |, where |M∗i |
is the number of unanalyzed terms in the set M∗i and Σi|M∗i | is the sum for
all Mi in a constraint;

– l = size(φ), where

size(φ ∧ φ′) = size(φ) + size(φ′) size(M ` t) = size(t)
size(s

.
= t) = size(s) + size(t) size(c) = size(x) = 1

size(¬∃.φσ) = 0 size(f(t1, . . . , tn)) = size(t1) + . . .+ size(tn) + 1

We order the components of this weight lexicographically, i.e., (n,m, l) > (n′,m′, l′)
iff n > n′ or (n = n′ and (m > m′ or (m = m′ and l > l′))). Obviously, > has
no infinite descending chain. Now, for every derivation step φ φ′

– either φ′ has a smaller number of variables than φ ((Unify) or (Equation)
with a substitution σ 6= identity), thus the n component is smaller,

– or we apply (Decompose), marking the analyzed term (also in supersets of
the respective knowledge) and thus decrease the m component,

– or we apply any of the other rules without unification, so that the l compo-
nent decreases.

So, every step reduces the weight and termination then follows quite straight-
forwardly. �

Lemma 3 Let φ be a simple constraint where Γ (s) = Γ (t) holds for all equations
s
.
= t, and if the equation is under a negation (i.e., part of an inequality) then

neither s nor t contain variables of composed types. Then, φ has a well-typed
model, i.e., a well-typed interpretation IT with IT |= φ.

Proof. For this proof, we first show that we can find a well-typed solution for
all inequalities (with values in Cpub that the intruder can generate). Consider
an inequalty φ = ¬∃x̄.φσ. Consider also a substitution θ of all free variables of
φ (which are of atomic types) with constants of Cpub with corresponding types.
Since φ is simple, the equations of θ(φσ) cannot have a unifier. We have thus
found a well-typed model for all the free variables of φσ. It is straightforward
to extend this to a well-typed model of the entire constraint; since all positive
equations must be well-typed, and the intruder has an access to infinite reservoirs
of fresh constants of all atomic types. �

Theorem 4 If a type-flaw-resistant protocol P has an attack, then P has a
well-typed attack.

Proof. The key idea is to consider a satisfiable constraint Φ = φ∧ trM,E(Ψ) that
represents an attack against P , i.e., where φ is the constraint of a reachable state

22

of P and trM,E(Ψ) is the translation of the violated goal Ψ in that state. We have
to show that the constraint has also a well-typed solution. By Theorem 3 and
since Φ is satisfiable, we can use the symbolic intruder reduction rules to obtain a
simple constraint Φ′, i.e., Φ ∗ Φ′. The point is now that for a type-flaw resistant
protocol, all substitutions in this reduction must be well-typed. To prove that
we have to show that if P = (S0, {Ψ0, · · · , Ψn}) is a type-flaw-resistant protocol
and there exist a state (S;M ;E;φ) such that (S0; ∅; ∅,>) ⇒∗ (S;M ;E, φ) and
an interpretation I such that I,M,E |=S ¬Ψi and I |= φ, then there exists a
well-typed interpretation IT such that IT ,M,E |=S ¬Ψi and IT |= φ. Recall
that, by Theorem 1, I,M,E|=S¬Ψi iff I |= trM,E(Ψi), and IT ,M,E |=S ¬Ψi
iff IT |= trM,E(Ψi).

Note that φ is initially>, which is well-typed by default, and since P is a type-
flaw-resistant protocol, we have that: (1) all equations and events in the initial
set of strands S0 are well-typed, (2) the type of each variable in the inequalities
of the strands is atomic, and (3) ⇒ does not introduce any negations (so an
equality becomes an inequality or vice versa). Then, we have that all equations
in φ are well-typed, and variables in inequalities have atomic types.

Recall that Ψi = ∀x̄.ψ =⇒ ψ0. We show now that trM,E does not change these
properties that originally hold in Ψi, i.e., trM,E(Ψi) has the same properties that
Ψi has by the definition of type-flaw-resistant protocol.

We show this by cases on tr′M,E , since tr(·) passes Ψi to tr′M,E(·) with a
negation on the ψ0; that is fine since all equations (positive and negative) in Ψi
must be well-typed, and all variables that occur in such equations must have
atomic types. Now we prove that tr′M,E preserves the above properties:

– tr′M,E(event(t)) =
∨

event(s)∈E s
.
= t: all events in E originate from the initial

set of strands S0, and by P being a type-flaw-resistant protocol, all events
in S0 are well-typed, and thus s

.
= t is well-typed.

– tr′M,E(¬event(t)) =
∧

event(s)∈E ¬s
.
= t: we can conclude reasoning similarly

to the previous cases where we already discussed the negation in trM,E .
– tr′M,E(s

.
= t) = s

.
= t: immediate.

– tr′M,E(∃x̄.ψ) = ∃x̄.tr′M,E(ψ): immediate.
– tr′M,E(¬s .

= t) = ¬s .
= t: immediate.

– tr′M,E(¬∃x̄. event(t1) ∧ · · · ∧ event(tn) ∧ u1
.
= v1 ∧ · · · ∧ um

.
= vm) =∧

event(s1)∈E...event(sn)∈E ¬∃x̄.(s1
.
= t1 ∧ · · · ∧ tn

.
= sn ∧ u1

.
= v1 ∧ · · · ∧ um

.
=

vm): follows by reduction to previous cases.
– tr′M,E(ψ1 ∨ψ2) = tr′M,E(ψ1)∨ tr ′M,E(ψ2) and the rest of the cases: follow by

reduction to previous cases.

We need to prove that for a type-flaw-resistant protocol, if there is an inter-
pretation I |= Φ, then there is a well-typed IT |= Φ. By Theorem 3 and since Φ
is satisfiable, we can use the symbolic intruder reduction rules to obtain a simple
constraint Φ′, i.e., Φ ∗ Φ′.

Next we prove that all substitutions made in the reduction steps made until
we reach a Φ′ are well-typed substitutions. We prove this as follows.

Note that by definition of type-flaw-resistant protocols (Definition 10), all
equations must be well-typed, and whenever a variable occurs in an equation in

23

Ψ its type must be atomic; this also applies to inequalities in the strands of the
type-flaw-resistant protocols. Moreover, all terms that can occur in a constraint
are subterms of instances of terms in SMP(P), i.e., when t occurs in Φ then
t v ϑ(t′) for some substitution ϑ and t′ ∈ SMP(P). We need to prove that all
reductions made to Φ towards Φ′ preserved the above properties. We prove that
tr′M,E preserves the above properties as well. For this, we consider the two cases
that involve substitutions in the constraint reduction rules, namely (Unify) and
(Equation). For the (Unify) rule, we proceed by cases of s and t:

– If both s and t are atomic, then s and t cannot be variables, so the above
property is preserved trivially, simply because they must be the same con-
stant.

– If both are composed, then σ(s) = σ(t) and there exist u, v ∈ SMP(P) and
ϑ1, ϑ2 such that ϑ1(u) = s and ϑ2(v) = t. Then, σ(ϑ1(u)) = σ(ϑ2(v)) and
Γ (u) = Γ (v) = Γ (s) = Γ (t) as the protocol is type-flaw-resistant, and so σ
is well-typed.

– If t is variable, then it is simple and we proved earlier that if it has an
ill-typed solution, then it also has a well-typed one.

For the (Equation) rule, we conclude immediately from the fact that P is type-
flaw-resistant; since all equations are well-typed, all unifications must be well-
typed.

So far we have arrived at a simple(Φ′) where Γ (s) = Γ (t) holds for all equa-
tions s

.
= t, and if the equation is under a negation (i.e., part of an inequality),

then neither s nor t contain variables of composed types. By Lemma 3, we con-
clude the existence of well-typed solution for such Φ′. �

Theorem 5 If two protocols P1 and P2 are parallel-composable and both P1 and
P2 are secure in isolation in the typed model, then P1 ‖ P2 is secure (also in the
untyped model).

Proof. Consider an attack against P1 ‖ P2 violating a goal Ψ of P1. We show
that the given attack works also on P1 in isolation, or one of the Pi in isolation
leaks one of the long-term secret constants. We use a similar argument as in
Theorem 4: let φ be a constraint that represents the attack against P1 ‖ P2;
we show how to extract a satisfiable constraint that represents either an attack
against P1 or P2 in isolation, and that this attack works in the typed model.

First observe that composability of P1 and P2 implies that they are both
type-flaw resistant. Thus, there is no unifier between two messages of SMP(P1)
unless they have the same type, and the same holds for SMP(P2). Since also
there are no unifiers between a message from SMP(P1) and a message from
SMP(P2), we can derive that also P1 ‖ P2 is type-flaw resistant. By Theorem 4,
if there is an attack against P1 ‖ P2, then there must also be a well-typed attack
against P1 ‖ P2. We can thus without loss of generality assume that the given
constraints that represent an attack against P1 ‖ P2 have a well-typed solution.
This allows us first to get rid of all variables of composed types: we substitute
each variable of a composed type f (τ1, . . . , τn) by the expression f (x1, . . . , xn)

24

where the xi are new variables of types τi, and repeat this process until we
have only variables of atomic types. Since the given constraint has a well-typed
solution, so has the transformed one. Let I be such a well-typed solution.

As a second step, we substitute every variable x of type private key with
I(x).6 Thus we have no variables of type private key anymore, and for every
pub(t), t is a public or secret long-term constant of type private key.

The next step in the proof is to introduce a label for each term and subterm
that occurs in a M ` t constraint in φ, namely whether the corresponding
term “belongs” to P1 or to P2. Recall that in M ` t, t represents a message
that the intruder sent to an honest agent (or was required to construct for
violating a goal), and M represents messages he has received from honest agents.
By construction, all these terms are thus instances of either an MP(P1) or an
MP(P2) term and can be labeled as such, with the exception of pub(t) terms in
an intruder knowledge M which would be available in both. Let us thus label
all occurrences of pub(t) with label ?. For each term, we give the same label
to all its subterms. Note that throughout the constraint, all occurrences of a
variable thus receives the same labeling and we can thus speak of P1-variables
and P2-variables. Similarly, all fresh constants CP1 will be labeled P1 and all
fresh constants of CP2 will be labeled P2. However the public and private long-
term constants may occur both with a P1 and with a P2 label; let us thus label
them with ? instead. In this way, all terms and their subterms have a consistent
labeling in the sense that all occurrences of the term will bear the same label.
Also by construction, in all equations s

.
= t, both s and t are labeled P1 or both

P2.

As shown already in the proof of Theorem 4, during constraint reduction we
obtain only terms that are instances of SMP(P1) or SMP(P2) or that are atomic.
What we now show is that for one of the Pi all those constraints M ` t where
t is labeled Pi can be solved using only messages in M that are also labeled Pi
or ? (and are not a long-term secret constant). This means that the constraint
M ` t can still be solved when removing from M all messages labeled for the
other protocol, so that we have an attack that works in the respective Pi alone.

To that end, as in the proof of Theorem 4, we proceed along the well-
formedness order of the constraint, solving the first non-simple one in a way
that supports the given solution I, and show that during this constraint reduc-
tion we never need to use a P2 message to solve a P1 constraint or vice versa.
In particular, we will never perform a unification between a P1-labeled and a
P2-labeled message.

Whenever applying the (Equation) rule on an equation s
.
= t, it is impossible

that s is labeled P1 and t is labeled P2 (or vice versa) by construction, so also
the resulting unifier produces equations with this property.

6 The reader may wonder why we would not do this actually for all variables. In fact,
we cannot, because in general the solution I may be exploiting that messages from
P1 can be used for P2. Only for private keys, we know that they are either long-term
secrets or long-term public values, either (supposedly) secret in both protocols or
available in both.

25

More critical is the (Unify) rule, solving M ` t by unifying t with some term
s ∈ M . Suppose t is labeled P1 or ?; s may be labeled P1, P2 or ?. We show
that there is a solution without using a P2 message. Since (Unify) requires that
s, t /∈ V, they either are both the same constant or they are both composed. We
distinguish the following cases:

– If both are the same constant c, then we have any of the following sub-cases:
• c ∈ Cpub: then the constraint can rather be solved using the (PubConsts)

rule instead (and thus there is no need to use any message from P2).
• c ∈ Cpriv: then M contains a long-term secret constant. Let Pi be the

protocol from which c was learned. Since all previous constraints (in the
well-formedness order) are already simple, those that are labeled Pi form
a valid trace of Pi alone that leaks c and thus can be extended to an
attack against Pi (disregarding all further constraints).

• c ∈ CP1 or c ∈ CP2 , then by construction they are both labeled P1 or
both labeled P2, so (Unify) does not destroy our invariant.

– If both are composed, then we further distinguish two cases:
• s = t = pub(c): we have that pub(c) is available in both protocols by

parallel-composability, i.e., in order to solve this in a P1 constraint with-
out using P2, we can augment the attack trace with an initial step where
the intruder learns pub(c) from the respective strand of P1.

• In all other cases, we can use again that all non-atomic messages are
instances of terms in SMP(P1) or SMP(P2) and that the protocols are
SMP-disjoint, so if s and t have a unifier, they must belong to the same
SMP(Pi).

Finally, consider analysis steps (decomposition rule): in this case, when analyzing
a message m ∈M , we obtain constraints of the form M ` k for some subterm k
of m. Moreover, we add then some subterm p to M in the analyzed constraint.
Here, k and p must have the same label as m or be labeled ?. It follows that to
analyze a P1-labeled message, we will never need to construct a P2-labeled key
(or vice versa).

In conclusion, we thus never need P1 messages to solve a P2 constraint or
vice versa, with the exception of leaked long-term secret constants. In this case,
however, we have already found an attack in an initial part of the constraint
(in which all P1 constraints can be solved without P2 and vice versa). Thus, we
obtain in all cases a sequence of constraints for the individual protocols, and one
of them is an attack.

26

