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Filamentous fungi serve a very important role in Nature where they break down organic matter, 

releasing nutrients that can be used by other organisms. Fungi and other microorganisms also 

produce a wide array of bioactive compounds, the secondary metabolites( SMs), used for such 

diverse roles as signaling, defense, or pigmentation. Compounds from microorganisms have a dual 

impact on human society: they have been used as drugs, or as inspiration for the development of 

drugs for centuries. However, fungal infection of crops and the subsequent contamination by 

mycotoxins, continue to pose a threat to human health. Because of this, methods for detection and 

analysis of these compounds are vital. Estimates suggest that there are around 1.5 million different 

fungal species on Earth, dwarfing the number of plants estimated to 300,000, meaning that there 

potentially are many more interesting compounds are still to be discovered.  

The main analytical technique used to investigate production of products from these diverse 

organisms is liquid-chromatography coupled to mass spectrometry (LC-MS). With the development 

of new and improved analytical instrumentation for chemical analysis, the time needed to perform a 

single analytical run has decreased, while the amount of information obtained from each of these 

analytical runs has increased drastically. Consequently, the limiting step in chemical analysis of a 

microorganism is no longer the analytical run itself, but rather analysis of the resulting data. Classical 

methods for manual interpretation of one single data file at a time are not sufficient to cope with this 

influx of data. Hence, there is a need for development of new methods for data analysis to extract 

valuable information in the data, and also speeding up the data analysis itself. 

A prime goal of my PhD study was to develop methods that allow for high-throughput analysis of 

metabolite extracts from filamentous fungi and other microorganisms, and to reduce the time spent 

on manual interpretation of LC-MS data. This lead to development of a method that utilizes 

compound libraries to screen the recorded LC-MS data and annotate known compounds, a process 

we have named aggressive dereplication. By overlaying automatically generated extracted-ion 

chromatograms from detected compounds on the base peak chromatogram, all major potentially 

novel peaks can be visualized, allowing for fast dereplication of samples. This was further developed 

to include the use of recorded MS/MS data, allowing for greater confidence in matched compounds. 

Another goal of the present study has been to develop methods that allow for faster coupling of SMs 

to their biosynthetic genes, as coupling of genes to metabolites is of large commercial interest for 

production of the bioactive compounds of the future. One part of my study focused on identification 

and elucidation of the biosynthesis of a nonribosomal peptide (NRP) nidulanin A from Aspergillus 

nidulans. Although the study was successful several analogs were not structure elucidated due to 

very low production titers. Instead a novel approach was developed for probing the biosynthesis of 

NRPs using stable isotope labeled (SIL) amino acids and subsequent analysis by MS/MS. Recorded 

MS/MS data were analyzed using molecular networking, coupling together compounds that exhibit 

similar MS/MS spectra. The combination of stable isotope labeling and molecular networking proved 

very effective for detection of structurally related NRPs. Labeling alone aided in determining the 

cyclic-peptide sequence, and may be used to provide information on biosynthesis of bioactive 

compounds. 
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In another study, the combined approach of targeted analysis methods and SIL precursors was used 

to elucidate the biosynthesis of yanuthone D in A. niger, and to determine compounds 

biosynthesized from the same precursor. Further studies on the biosynthesis of polyketides were 

conducted using feeding studies with SIL precursor in order to determine advantages and 

disadvantages of the approach. This led to determination of the biosynthetic origin of several 

compounds in Fusarium including antibiotic Y, and tentative identification of an intermediate in its 

biosynthetic pathway. Last, benzoic acid was identified as the precursor to asperrubrol in A. niger. 

Finally, I have developed an integrated approach to evaluate the biosynthetic richness in bacteria and 

mine the associated chemical diversity. Here, 13 strains related to the marine bacterial species 

Pseudoalteromonas luteoviolacea were investigated in an untargeted metabolomics experiment and 

the results were correlated to whole-genome sequences of the strains. We found that 30 % of all 

chemical features and 24 % of the biosynthetic genes were unique to a single strain, while only 2 % of 

the features and 7 % of the genes were shared between all. The list of chemical features, originally 

comprising 2,000 features, was reduced to 50 discriminating features using a genetic algorithm 

combined with support vector machine evaluation. These features were efficiently dereplicated by 

molecular networking, which lead to tentative identification of several known antibacterial 

compounds, some of which had not previously been described from this organism. By combining 

metabolomics and genomics data, it was possible to link metabolites to chemical pathways at a very 

early stage in the discovery process. 

Based on these results, the data analysis methods and methodologies developed during these 

studies have shown to be very effective and applicable to metabolite analysis of a wide range of 

microorganisms, and not restricted to fungi. The developed methods have revealed new insights into 

microbial SMs, and it is clear that even more discoveries can be made using these methods.  
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Filamentøse svampe udfylder en meget vigtig rolle i naturen hvor de nedbryder organisk materiale 

og derved frigiver næringsstoffer, som kan udnyttes af andre organismer. Svampe og andre 

mikroorganismer producerer derudover en bred vifte af bioaktive stoffer, de såkaldte sekundære 

metabolitter. Disse udfylder forskellige rolle såsom signalering, forsvar eller pigmentering. Produkter 

fra mikroorganismer har en todelt indflydelse på det menneskelige samfund: de er blevet benyttet 

som lægemidler eller som inspiration til udviklingen af lægemidler i århundreder. Samtidigt udgør 

svampeinfektioner i afgrøder, og den efterfølgende kontaminering med mykotoxiner, en fortsat 

trussel mod menneskers helbred. På grund af dette er metoder til at detektere og analysere disse 

stoffer vitale. Det er blevet skønnet at der eksisterer omkring 1,5 millioner forskellige svampe arter 

på Jorden, hvilket langt overstiger det skønnede antal af planter på 300.000, og dette betyder at der 

potentielt stadig findes mange uopdagede biologisk interessante stoffer. 

Den primære analyseteknik der benyttes til at undersøge produktionen af stoffer fra disse forskellige 

organismer er væskekromatografi kombineret med massespektrometri (LC-MS). Med udviklingen af 

nye og forbedrede analyseinstrumenter til kemisk analyse er selve analysetiden blevet reduceret 

mens mængden af information, der opnås fra hver af disse analytiske undersøgelser, er steget 

drastisk. Som en konsekvens af dette er det begrænsende trin i analysen af mikroorganismer ikke 

længere selve den kemiske analyse, men i stedet analyse af data. Klassiske metoder, hvor datafiler 

analyseres enkeltvis og manuelt, er ikke længere tilstrækkelige til at håndtere de stigende mængder 

data. Der er derfor nødvendigt at udvikle nye metoder til at udvinde værdifuld information fra data, 

samt at øge hastigheden hvormed data analyseres.  

Et af hovedmålene med mit PhD studium var at udvikle metoder der tillader analyse af store 

mængder data fra metabolit-ekstrakter fra filamentøse svampe og andre mikroorganismer, samt at 

reducere den tid der bruges på manuel tolkning af LC-MS data. Dette ledte til udvikling af en metode, 

kaldet aggressiv dereplikering, der benytter sig af metabolit-biblioteker til at screene LC-MS, for 

derved at annotere kendte stoffer. Ved at overlejre base peak kromatogrammer kunne potentielt 

nye toppe derved visualiseres, hvilket tillod hurtig dereplikering af data. Metoden blev yderligere 

udviklet til at benytte tandem MS data (MS/MS), hvilket øgede tilliden til identifikationen af fundne 

stoffer. 

Et andet mål med mit studie har været at udvikle metoder der gør det muligt at koble sekundære 

metabolitter til de biosyntetiske gener der er ansvarlige for deres produktion. Denne kobling af 

metabolitter til gener er af stor kommerciel interesse med henblik på fremtidig produktion af 

bioaktive stoffer. En del af mit studie var fokuseret på identifikation samt udredning af biosyntesen 

af det ikke-ribosomale peptid (NRP) nidulanin A fra Aspergillus nidulans. Flere analoger til nidulanin A 

blev også fundet, men disse kunne ikke strukturopklares da blev produceret i meget små mængder. I 

stedet blev en ny fremgangsmåde udviklet til at undersøge NRPer ved hjælp af stabile 

isotopmærkede (SIL) aminosyrer og efterfølgende MS/MS analyse. Optagne MS/MS spektre blev 

analyseret ved at danne et molekylært netværk, som grupperede stoffer der udviste samme MS/MS 

spektre. Kombinationen af SIL og molekylære netværk viste sig at være meget effektivt til detektion 

af strukturelt relaterede NRPer. Ved at udnytte mærkning alene var det muligt at bestemme 
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sekvensen af det cykliske peptid, og metoden kan benyttes til at undersøge biosyntesen af andre 

bioaktive stoffer. 

I et andet studie blev målrettet analyse kombineret med SIL udgangsstoffer brugt til at bestemme 

biosyntesen af stoffet yanuthone D, som produceres af A. niger. Metoden blev ydermere anvendt til 

at identificere andre stoffer, som bliver biosyntetiseret fra samme udgangsstof. Yderligere studier af 

polyketider blev foretaget, igen med brug af SIL udgangsstoffer for at undersøge fordele og ulemper 

ved fremgangsmåden. Disse studier ledte til bestemmelse af det biosyntetiske ophav af flere stoffer 

fra Fusarium, blandt andet antibiotic Y, samt til en tentativ identifikation af et intermediat i antibiotic 

Ys biosyntese. Ydermere blev benzoesyre bestemt til at være udgangsstoffet for stoffet asperrubrol i 

A. niger. 

Afslutningsvist blev en fremgangsmåde udviklet til at evaluere det biosyntetiske potentiale i bakterier 

samt undersøge den kemiske diversitet. Til dette studie blev 13 forskellige stammer, relateret til den 

marine bakterie Pseudoalteromonas luteoviolacea, undersøgt i et ikke-målrettet (untargeted) 

metabolomics eksperiment, hvorefter de kemiske data blev korrelerede med fuld-genom sekvenser 

fra stammerne. Vi fandt derved at 30 % af de kemiske egenskaber samt 24 % af de biosyntetiske 

gener var unikke for den enkelte stamme, mens kun 2 % af kemiske detaljer (features) samt 7 % af 

generne var fælles mellem alle stammerne. Den oprindelige liste af 2.000 kemiske features blev 

reduceret til 50 særligt beskrivende kemiske detaljer ved hjælp af en genetisk algoritme som blev 

evalueret ved hjælp af en support vector machine. Disse kemiske detaljer blev effektivt dereplikeret 

ved brug af et molekylært netværk, og ledte til identifikation af flere kendte antibakterielle stoffer, 

flere af hvilke ikke tidligere var bestemt fra denne organisme. Ved at kombinere metabolomics samt 

genom-data var det da muligt at koble metabolitter til deres biosyntese på et meget tidligt tidspunkt 

i opdagelsesprocessen. 

På basis af de opnåede resultater, må det konkluderes af de udviklede metoder og metodikker er 

meget effektive samt anvendelige til analyse af metabolitter fra en bred vifte af mikroorganismer. De 

udviklede metoder har ledt til ny indsigt i mikrobielle sekundære metabolitter, og det står klart at 

stadig flere opdagelser kan gøres ved brug af disse metoder.   
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One of the primary aims of this thesis was to develop methods for high-throughput analysis of metabolite 

extracts from filamentous fungi and other microorganisms using liquid chromatography-mass spectrometry 

(LC-MS) for investigation of secondary metabolites (SMs), with a particular focus on reducing the amount of 

manual inspection of the resulting data. The second aim was to investigate the biosynthesis of selected 

SMs, and couple these to the biosynthetic genes responsible for their production. At present, only few 

fungal biosynthetic synthases have been linked to a product. Increasing the pool of links between synthase 

genes and their products will aid in future computational prediction of products from newly sequenced 

fungi. This knowledge will aid in identification of potential mycotoxins in food and feed, or could be used 

for identifying potential new drug candidates. Increasing the pool of links between synthase genes and 

their products will also aid in identification of conserved characteristics that are important for the specific 

activities displayed by the synthases. This knowledge may be used to engineer novel synthases that 

produce a compound of interest e.g. a drug candidate precursor with or without specific pharmacophores, 

or biologically active structural motifs. This also applies to elucidation of the specific biosynthetic steps 

involved in biosynthesis of a given compound, as many different reactions take place in order to synthesize 

fungal SMs from a given precursor. These reactions are catalyzed by tailoring enzymes, which are most 

often very substrate specific. Most tailoring enzymes can only be predicted by their overall activity e.g. 

oxidation, dehydration etc., however, enzymes within the same class can catalyze a multitude of different 

reactions, using different substrates. Increasing the pool of links between enzymes and substrates can lead 

to a more accurate prediction of activity, based on the enzyme secondary structure alone. This knowledge 

is invaluable for de novo design of novel drugs using a given precursor. 

The work performed in this thesis has focused on three specific themes; targeted analysis, untargeted 

analysis, and isotopic labeling for the study of biosyntheses. Publications resulting from this work have 

been categorized according to the themes covered as illustrated in Figure 1. 
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The results section has also been divided into these three sections; describing and discussing the results 

obtained through the use of these methods: 

In section 2.1, cases for targeted analysis will be outlined, and the two methods developed for targeted 

analysis will be described and compared. Both methods were based on the use of compound libraries for 

fast screening of LC-MS data to identify compounds of interest. 

Section 2.2 presents the methodologies developed for investigation of fungal metabolite biosynthesis using 

stable isotope labeled precursors, including investigation of PK- and NRP-derived metabolites. Data from 

these experiments were investigated using both targeted and untargeted analysis. 

In section 2.3, an untargeted approach, developed for investigation of the chemical diversity of marine 

bacteria is presented. The developed metabolomics analysis was used to prioritize strains for further 

targeted investigation of metabolites. 

Subsequently, perspectives on the development within the field of research and analysis methods are 

presented, and finally the overall results obtained in my study are summarized.  

 

 

Filamentous fungi play an important role in Nature where they decompose organic matter releasing 

nutrients for themselves and for other organisms. Fungi are also hugely important in Nature because of the 

compounds that they produce, especially those referred to as secondary metabolites (SM). There is not one 
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conclusive definition of a SM, however, one definition is that “a SM is a metabolite that is not essential for 

growth of the organism”, in contrast to the primary metabolites. Still, as SMs seem to fulfill a multitude of 

different roles including signaling and regulation, defense against predators (Kempken and Rohlfs 2010), 

and protection against UV radiation, the definition of a SM could be expanded to “not being essential for 

growth in an ideal and uncontested environment” (Demain and Fang 2000). With such a broad spectrum of 

activities, it comes as no surprise that many pharmaceuticals are derived or partially derived from fungal 

SMs, including the famous antibacterial penicillins (Cragg and Newman 2013). In fact, in 1995 around 22% 

of the then known antibiotics could be produced by filamentous fungi (Adrio and Demain 2003). Other 

important compounds produced by fungi are the immunosuppressive agents cyclosporine (Borel et al. 

1994) and mycophenolic acid, the cholesterol lowering statins (Endo 1985), as well as industrially important 

chemicals such as citric and maleic acid (Bennett and Klich 2003). 

Unfortunately, not all compounds produced by fungi are beneficial to human health or industry. Numerous 

toxic compounds, also referred to as mycotoxins, are produced as well. Among some of the most well-

known mycotoxins are the aflatoxins (Nesbitt et al. 1962) - the most carcinogenic compounds known, the 

ochratoxins (van der Merwe et al. 1965), trichothescenes (Bennett and Klich 2003; Frisvad et al. 2009), 

zearalenones (Christensen et al. 1965; Urry et al. 1966), and fumonisins (Bezuidenhout 1988). Fungi can 

also infect crops, leading to mycotoxins in the produce. This may result in adverse health effects in animals 

and humans because of the mycotoxins produced by the fungi, and further lead to severe economic loss in 

both the agricultural, feed, and food industry. Because of fungi’s ability to produce beneficial as well as very 

toxic compounds, detection and identification of known compounds, as well as characterization of new 

compounds, is very important.  

 

 

SMs are categorized based on their biosynthetic origin, where the major classes are the polyketides (PKs) 

(Hertweck 2009), nonribosomal peptides (NRPs) (Finking and Marahiel 2004), and terpenoids (Keller et al. 

2005). They are all produced by synthases/synthetases encoded by genes that are often part of complex 

biosynthetic gene clusters, and many examples of mixed biosynthetic pathways of two or even all three are 

known. Examples of some of the different classes of fungal metabolites are shown in Figure 2, illustrating 

the diversity of fungal SMs.  
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Several of the compounds in Figure 2 were investigated and will be presented in the results section of this 

thesis. During my studies I have primarily worked with compounds of PK and NRP origin, as well as hybrids 

such as the meroterpenoids. The focus has been on identifying biosynthetically related compounds, and 

development of methods for investigation of biosynthesis using LC-MS. As such, I have not focused on 

elucidation of the biosynthetic mechanisms involved in production of metabolites.  

Coupling of biosynthetic genes to metabolite products has traditionally been a very labor intensive process. 

Currently, the process requires full genome sequenced organisms, and specially prepared fungal or 

bacterial strains that allow for easy gene deletion and up-regulation. In my studies, I have worked on 

development of methods for investigation of biosynthesis of fungal metabolites using stable isotope 

labeled precursors. In order to explain some of the reasoning behind the applied methods, a short 

introduction to the biosynthesis of fungal metabolites is given below. 
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PKs represent a very diverse class of compounds that fulfill a multitude of roles for the producer organism. 

Although very diverse in structure, PKs are biosynthesized from the same precursors or starter units, such 

as acetyl coenzyme A (CoA) or malonyl-CoA (Simpson and Cox 2012).  

PKs are biosynthesized by large enzyme complexes called polyketide synthases (PKS), for which several 

different types exist (Hertweck 2009). These are made up of several different types of catalytic domains 

comprising a minimum of three domains: the acyltransferase (AT), β-ketoacyl CoA synthase (KS), and acyl 

carriers protein (ACP) domains (Keller et al. 2005). In short, the AT domain is responsible for selecting and 

providing an extender unit (building block), and the KS domain is responsible for catalyzing the Claisen-like 

condensation reaction that joins the extender unit and the growing PK chain. Lastly, the ACP domain is 

responsible for covalent attachment of the PK chain, and maneuvering between catalytic domains, while 

building the PK chain.  

In fungi, the PKSs are usually of a configuration called type I iterative PKSs. The term iterative refers to the 

way the biosynthesis is carried out: repeating cycles of extension re-using the same catalytic domains, while 

type I refers to a linear arrangement of catalytic domains unlike having domains present in a complex of 

discrete enzymes (type II). Because of the iterative nature of the PKS, it is difficult to predict the product of 

a such, as the number of reduction reactions, the identity of the extender unit, the methylation pattern, 

and possible cyclization can result in very different products (Walsh and Fischbach 2010). 

Further modification of the PK products often takes place in many different post-PKS synthesis steps. 

Products can undergo cyclizations, carbon bond cleavages, and rearrangement reactions resulting in the 

formation of carba- and heterocycles. Tailoring reactions such as glycosylation, alkylations, acyl transfers, 

and hydroxylations can also take place, providing an immense diversity of products (Hertweck 2009). In my 

studies I have worked extensively with the PKs for investigation of biosyntheses. This includes 

investigations into the biosynthesis of yanuthone D from a 6-methyl salicylic acid (6-MSA) precursor (Paper 

3) described in in section 2.2.2, as well as investigation of the PK YWA1 and the biosynthesis of compounds 

derived thereof (Paper 4), as described in chapter 2.2.3. 

 

 

Another large group of compounds found in microorganisms are the NRPs. These are biosynthesized from 

amino acids (AAs) by multidomain, multimodular enzymes called nonribosomal peptide synthases (NRPSs). 

Unlike the fungal PKSs, the NRPS are not iterative i.e. the catalytic domains of the NRPS are not re-used. 

Instead, the NRPS contains several so-called modules, and each of the modules in the NRPS contains all the 

domains that allow for recognition, activation, and binding of a specific AA. The AA is then covalently bound 

to the NRPS as a thioester, after which peptide bonds are formed between the selected AAs. Other catalytic 

functions may be present in the NRPS, including epimerases, that catalyze conversion from L-to D-forms of 

AAs (Finking and Marahiel 2004; Keller et al. 2005). 

Advances in bioinformatics have made it possible to predict the products encoded by NRPSs in 

microorganisms, however, these prediction tools are not yet perfect and can at best be used as guidelines 

for a specific trend: in fungi, they may be used to suggest possible AAs present in the final product, 
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however, the predictions are tentative and can in some cases only be used to predict that one AA should be 

aromatic etc. (Challis et al. 2000). The biosynthesis of the NPRs nidulanin A and the related fungisporin 

were investigated (Paper 6) (section 2.2.4) and illustrate that we are not yet able to predict all products of 

NRPSs.  

 

 

Hybrid metabolites are metabolites of mixed biosynthetic origin. Examples of hybrid metabolites are the 

meroterpenoids - hybrid metabolites comprising terpenoid part as well as a non-terpenoid part (Geris and 

Simpson 2009). In this study the meroterpenoids are exemplified by the yanuthones (Paper 3) and 

asperrubrol (Paper 4). Another example of a hybrid metabolite is nidulanin A (Paper 5), which is a cyclic 

tetrapeptide of NRP origin, as well as a prenyl-group biosynthesized as part of the terpenoid pathway. 

 

 

The work described in this thesis has been conducted using ultra high pressure liquid chromatography 

diode array detection quadrupole time-of-flight (UHPLC-DAD-QTOF) hyphenated instruments. These are 

very versatile instruments allowing for a wide range of different experiments. More importantly TOF-type 

instruments allow for full-scan acquisition of data. This means that instrument is able to record all ions in a 

wide mass-range in a single analytical run. Data recorded using an LC-MS system is therefore two-

dimensional, as seen in Figure 3. 

 

 



7 
 

By using a hyphenated technique like LC-MS, it is possible to analyze complex samples, as compounds can 

be separated based on their chemical properties in the LC system before entering the MS system. Because 

of this, hyphenation with LC not only leads to simplified mass spectra, by reducing or eliminating co-eluting 

compounds, it also provides information on the chemical properties of the compound. Based on the 

stationary and mobile phases used in the LC, the RT a compound can be correlated to the logD providing 

additional information about the compound (K. F. Nielsen et al. 2011).  

For the types of chemical analysis performed for this thesis, full-scan instruments are a requirement for 

effective analysis. Several types of instruments can be used to perform full-scan acquisition of data. 

Although quadrupole based MS systems such as triple quadrupoles MS are technically able to perform full-

scan acquisition of data, the mass accuracy and isotopic pattern recorded is insufficient for use in 

dereplication. Another option is the Fourier transform ion cyclotron resonance (FT-ICR) systems that offer 

unprecedented mass accuracy and determination of isotopic pattern. It is possible to interface LC and FT-

ICR, however the low scan speed of the FT-ICR makes it unsuitable for the narrow peaks obtained from 

UHPLC analysis. FT-ICRs are therefore often used for analysis of few very complex samples as opposed to 

larger screening regiments. Other disadvantages of the instrument are the very high price and the 

complexity of operation (Brown et al. 2005; J. Zhang et al. 2005). 

The best suited instrument types for interfacing with LC for analysis of complex samples are thus the TOF 

(Mamyrin 2001) and orbitrap (Strife 2011; Zubarev and Makarov 2013) based MS-systems, and these are 

also the most widely used instruments fulfilling the mentioned criteria. I will not give a detailed description 

of the different instrument types in the present thesis, however, one of the key differences between the 

instruments is the ability of some orbitrap instruments, those fitted with ion-traps, to be used for tandem 

MSn (MS to the power of n), where the TOF based instruments can only do MS/MS (MS2). A comparison of 

some of the key specifications of the two instrument types is given in Table 1. 

 

 

The two instrument types can be used for many types of analysis. One type is targeted analysis, which can 

refer to several different analytical techniques. In this thesis the term is used to describe a method where a 

specific compound is being analyzed. However, the analysis is performed using a standardized method, and 

not methods optimized for the specific compounds. Here, the term thus refers to the retrospective analysis 

of recorded data to determine if a specific compound is present. In my studies, targeted analysis has been 
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used for investigation of compounds from a specific biosynthetic pathway, by making it very easy to 

investigate any changes in intensities or isotopic patterns.  

Several studies comparing the performance TOF- and orbitrap based instruments have been published. For 

metabolomics, the performance of the two instrument types was found to be comparable, and both 

instrument types were found to be well suited for use in metabolomics (Glauser et al. 2012). Many new 

types of hybrid TOF-based instruments have been developed in the last decade, enabling new forms of 

analysis. One of these is the TripleTOF, consisting of a hybrid quadrupole TOF platform working at a very 

high signal acquisition rate, with the speed and sensitivity of a TOF and quantification capabilities of a QqQ-

based system (Andrews et al. 2011; Jones et al. 2013). Another hybrid instrument is the ion mobility TOF 

system, where ions are separated based on their flight time through a gas chamber, thereby separating 

ions based on their cross-section in addition to their accurate mass, allowing for separation in an 

orthogonal dimension (Kanu et al. 2008; Sysoev et al. 2013; Wolfender et al. 2014). 

 

 

All experiments performed in my studies were performed using QTOF instruments. Because of the addition 

of the quadrupole, QTOF instruments can be used to perform several different MS/MS or tandem MS 

experiments.  

Traditionally, MS/MS was performed by making a method, for which a specific ion was selected for study. 

This is referred to as targeted MS/MS, and is illustrated in Figure 4. In this experiment the Q is used to 

select ions with a specific m/z-ratio. These ions are then transferred to the collision cell, where the ions are 

fragmented, followed by detection. The result of this is a list of fragment ions formed by the targeted ion, 

as well as their abundances. Using targeted MS/MS, rather than single MS, a better selectivity can be 

achieved, and by matching the formed fragments against a database, the identity of compounds can be 

determined with higher certainty (Paper 2) (de Hoffmann and Stroobant 2007; Ding et al. 2013; Vaclavik et 

al. 2014).  

This type of analysis is typically performed to quantify compounds, and is routinely employed using QqQ-

instruments for screening of drugs, food, and feed for toxins, pesticides etc., as QqQ instruments have the 

highest selectivity (Kaufmann 2011). Advances in electronics and software had also made it possible to 

analyze samples using so-called data-dependent acquisition. In this mode MS/MS spectra of compounds 

are recorded at different fragmentation energies, based on the compound’s m/z-ratio. In theory this makes 

it possible to record MS/MS spectra of all compounds in a sample, if they are chromatographically resolved 

to a degree that allows scanning of all concurrently eluting compounds, without making specific methods 

for each compound to be analyzed. This can be performed using both QTOF, orbitrap instruments and Q-

Exactive instruments (Konishi et al. 2007; Lehner et al. 2011).  
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Other ways of recording MS/MS data include the MSAll or MSE methods where all ions entering the mass 

spectrometer are fragmented, and the resulting fragments are then detected. This can be used to reveal 

structural information about both known and unknown compounds (Figure 4) (Bijlsma et al. 2011). By 

building libraries of known fragments, these can be used to predict the structures of unknown compounds 

by matching known losses against the libraries, aiding identification of compounds (Hufsky et al. 2014a; 

Wolf et al. 2010). Several different methods relying on different informatics procedures have been 

developed for this prediction of MS/MS spectra and chemical structures (Hufsky et al. 2014b). 

A relatively new method for acquisition of MS/MS data is sequential windowed acquisition of all theoretical 

mass spectra (SWATH), which can be performed using TripleTOF instruments (Collins et al. 2013; Röst et al. 

2014; X. Zhu et al. 2014). This technique is a compromise between the targeted MS/MS and MSAll, where a 

narrower window of ions is passed into the collision cell compared to MSAll (Figure 4). This allows for 

recording of more specific mass spectra while still allowing for recording data for all compounds.  

During my studies, I have used MS/MS data acquisition for several of the studies I was involved in. Firstly, a 

method for dereplication of metabolites based on MS/MS data was developed (chapter 2.1) (Paper 2). 

Other examples include the yanuthone D study (chapter 2.2.2) (Paper 3) where MS/MS spectra were 

recorded of the different yanuthones for aiding in linking them to a biosynthetic pathway. In the study of 

nidulanin A (chapter 2.2.4) (Papers 5 and 6) it was used to link biosynthetic analogs but also to elucidate 

the structure of the compounds. Finally, it was used for dereplication of compounds from marine bacteria 

(chapter 2.3) (Paper 7). 
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The term untargeted analysis refers to studies where there is no explicit target. Although in chemistry the 

term is often equated to metabolomics, in principle it may refer to any analysis form that is not based on 

measurement of a specific target. Several methods for untargeted analysis of samples can be used 

depending on the object of the analysis. For the work performed in this thesis, the object of analyses has 

most often been to find new compounds, or to find compounds that were only present in a subset of 

samples (America and Cordewener 2008). Traditionally, samples have been investigated using comparative 

analysis, where the BPCs of two samples have been compared against each other to identify any 

differences, as seen in Figure 5.  

 

 

As this method requires manual investigation of data files it is extremely labor-intensive and unfeasible to 

use for analysis of large datasets.  

Principal component analysis (PCA) is traditionally the method of choice to group microorganisms on the 

basis of their production of small molecules as it provides a nice visual representation of the variance 

between LC-MS profiles (Figure 5) (Forner et al. 2013; Hou et al. 2012). While PCA can be good for a first 

exploratory step in the data analysis, it can become problematic with data of high dimensionality like 

metabolomics data as the use of noisy variables may disturb separation between samples (Boccard et al. 

2010).  

A relatively new method for data analysis is mass spectral molecular networking developed by Dorrestein 

and coworkers (Watrous et al. 2012). It builds on an algorithm (Liu et al. 2009; Ng et al. 2009) capable of 

comparing characteristic fragmentation patterns and thus highlighting molecular families with the same 

structural features and thus potentially same biosynthetic origin. This enables the study and comparison of 

a high number of samples, at the same time aiding in dereplication and tentative structural identification (J. 

Y. Yang et al. 2013). Mass spectral networking was used for two of the projects I worked on as part of this 

thesis. In one project, it was combined with isotopic labeling in a novel procedure for detection of 
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biosynthetic analogs and subsequent identification of these, as described in section 2.2.4 (Paper 6). In 

another study it was used for detection of biosynthetic analogs of marine bacterial metabolites, as 

described further in section 2.3 (Paper 7). 

 

 

It is no easy task to define the term metabolomics. Jeremy Nicholson, Chair in Biological Chemistry at 

Imperial College, London, UK has said that: “Metabolomics has about 20 published definitions, conflicting 

but all analytical, all about measuring some stuff in some other stuff” (Hunter 2009). The term is mostly 

used to refer to the experimental designs based on the detection and quantification of global metabolite 

levels without prior identification of the metabolites. As such, metabolomics is focused on the study of the 

metabolism of both endogenous and exogenous metabolites in biological systems (Dunn 2008). 

Metabolites also serve as direct signatures or markers of biochemical activity. Genes and proteins can on 

the other hand be subject to epigenetic regulation and post-translation modifications, respectively. 

Metabolites are therefore easier to correlate with phenotypes (Patti et al. 2012). Metabolomics therefore 

allow for study of organisms for a wide variety of experiments, such as finding new compounds and 

optimizing industrial biotechnology process, helping to further our understanding of biology (Hendriks et al. 

2011).  

 

 

One of the main challenges in metabolomics is the complexity of the samples being analyzed. As the 

samples contain many different compounds, with different physical-chemical properties, we need a very 

versatile method for extraction and analysis. One such method is LC-MS. Again, the TOF-based instruments 

are well suited because of their high dynamic range, allowing for analysis of extracts containing compounds 

in very different concentrations, or for analysis of compounds with very different ionization efficiencies. 

The workflow used in metabolomics is often divided into several stages, including filtering, feature 

detection, alignment, and normalization (Hendriks et al. 2011; Katajamaa and Oresic 2007). I will only 

describe the feature extraction and alignment in detail, since these are the areas I focused on in my studies. 

For metabolomics analysis, all compounds present in a sample first need to be extracted from the data file. 

Each compound is referred to as a chemical feature. To be able to compare chemical features extracted 

from different samples, all chemical features need to be matched across all samples so that the same 

compound, found in two different samples, is recognized as the same chemical feature. This can be done in 

different ways depending on the algorithm used, but a simplified view is that extracted ion chromatograms 

(EICs) are extracted at a fixed interval across the analyzed mass range. Many feature extraction algorithms 

now allow for concatenation of ions into a single chemical feature. In this way pseudo molecular ions 

corresponding to the same compounds are combined into one chemical feature, which is a great 

advantage, as it reduces the complexity of the data without any loss of information, as seen in Figure 6. 

 



12 
 

 

 

Each extracted chemical feature will therefore be a unique combination of ion m/z value and RT, as 

illustrated in Figure 3. In practice, many more factors are used for determination of a chemical feature. By 

taking into account the isotopic pattern, it can be assessed whether an ion corresponds to a compound or if 

it is merely noise. The chromatographic behavior of a compound can also be taking into consideration by 

examining if the intensity of the EIC displays a clear maximum and peak shape like a true compound would. 

Further complication can be caused by concentration dependent adduct-formation, as described in Paper 1 

(Figure S3). Analysis showed that different concentrations of the metabolite roridin A, lead to very different 

adduct patterns, and compounds exhibiting this behavior might cause problems when extracted as a 

chemical feature. 

Extracted chemical features then have to be matched across all analyzed samples. Although this sounds 

very simple, in practice this can be very difficult, as long sample sequences can lead to changes in the LC-

MS system through the sequence e.g. build-up of impurities in the column leading to degraded 

chromatographic separation, or deposition of impurities in the LC-MS interface leading to lower ionization 

efficiency and thus lower detected intensities. The complex nature of samples often means that the 

compounds present in the samples are impacted differently by this, leading to non-linear shifts in RT and 

intensity. In general LC-MS exhibits poorer reproducibility of retention time (RT) and mass spectra 

compared to gas chromatography (GC)-MS (Lee et al. 2013). Because of this many different algorithms for 

alignment of data exist for GC-MS data. However, because LC-MS can be used to analyze such a wide 

variety of analytes, a lot of research has been performed to develop methods for feature extraction, 

alignment etc. allowing for LC-MS based metabolomics to become a very widely used analysis method 

(Moco et al. 2006).  

As mentioned above, the shifts in RT and loss in intensity throughout an analysis sequence can lead to 

various undesirable situations, as illustrated in Figure 7. The schematics illustrate situations requiring 

alignment and use of quality control samples for the analysis for untargeted analysis. A) Reference sample. 

B) In this situation the RT for all compounds has been shifted up. This can be alleviated by a linear 

alignment of RT across samples. C) In this situation the RT has been shifted only for certain compounds. The 

data can be treated with a non-linear warping function to align compounds across samples. D) The 

detected intensity one compound is lower than expected. This can be corrected by using quality control 
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samples with known concentrations of compounds. E) The detected intensity of compounds in the sample 

is lower than expected. To correct for this, the quality control sample must contain compounds exhibiting 

the same behavior as the compound in question, for instance a sample containing a mix of fractions from 

several different samples (Hendriks et al. 2011). F) Finally, peak broadening leading to overlapping peaks. 

This is one of the most difficult situations to correct for. The problem can be alleviated by using a detector 

that can be used to deconvolute signals, that is extract spectra for a specific compound from a spectrum of 

a mixture of several compounds signals, or by using a mass analyzer such as a TOF (Katajamaa and Oresic 

2007; Patti 2011; W. Zhang et al. 2014).  
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One way to reduce the problem of data alignment is to use binning: by summing m/z data across preset 

time windows, the alignment error will be confined to the edges of the bins. Subsequent analysis can then 

reveal the data points responsible for deviation in the alignment (Nordström et al. 2006).  

Many different software packages have been developed for feature extraction and subsequent feature 

alignment (Sugimoto et al. 2012). Some of the most well-known are: Metalign (Lommen 2009), MZmine 

(Katajamaa et al. 2006; Pluskal et al. 2010), and XCMS (Gowda et al. 2014; Huang et al. 2014; Tautenhahn, 

Patti, et al. 2012). Most instrument vendors have developed their own proprietary analysis software that 

utilize their own feature extraction algorithms, such as Agilent Technologies’ Molecular feature extractor, 

and Bruker Daltonics’ Find molecular feature algorithms.  

Because of the complexity of the task of extracting chemical features and then aligning them, several 

methods and protocols for optimization of the data processing step in LC-MS based metabolomics have 

been published (Eliasson et al. 2012; Zheng et al. 2013). In spite of this, some prior knowledge about the 

dataset and the compounds present in the samples can be almost mandatory for successful design of 

metabolomics experiments. This is in spite of the fact that metabolomics is often referred to as an 

“unbiased” method of analysis, while in reality one could argue that even the choice of a specific feature 

extraction algorithm imposes a bias on the analysis (Fiehn 2002; Kluger et al. 2014). A study by Lange et al. 

comparing the most widely used feature extraction algorithms, showed that significantly different results 

were obtained from analysis of the same dataset when using different feature extraction algorithms (Lange 

et al. 2008). This demonstrates the complexity of the feature extraction step and highlights the need for 

more standardized operations and benchmarks for evaluation of metabolomics data analysis. 

The type of metabolomics workflow described here was used for the study of metabolites from marine 

bacteria as described in chapter 2.3 (Paper 7). In this study, many of the subjects discussed here, such as 

feature extraction, alignment and data analysis are discussed from a practical point of view. 
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As outlined in the section 1.4 and 1.5, targeted and untargeted metabolomics analysis are distinctly 

different methods of analysis. The methods require different experimental setups, different methods of 

data analysis, and are often used in the examination of very different hypothesizes. 

One of the main advantages of a targeted analysis is the possibility of using samples acquired at different 

time points. As described in section 1.5, proper metabolomics analysis requires the alignment of chemical 

features for successful analysis. By combining samples analyzed in different sample batches, alignment 

becomes almost impossible, even with the use of high quality control samples. The type of targeted 

analysis methods described in this thesis allows for comparison of data obtained from different analytical 

runs, allowing one to compare samples that have been run months apart. This makes the method very well 

suited for biosynthesis studies, where sample can be retroactively screened for a compound of interest. 

Because of this, the two methods are complementary and can be used for finding answers to different 

hypotheses. A comparison of targeted and untargeted analysis methodologies is given in Table 2. 
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In natural product chemistry, the main focus is on discovery and identification of new compounds. Samples 

extracted from microorganisms contain a wealth of compounds, but some of these compounds could have 

been identified previously. Because of this, one of the most important steps in the analysis of samples from 

natural extracts is “dereplication”, or tentative identification of compounds in the samples. The term 

dereplication was first used in the CRC Handbook of antibiotic Compounds that was published in 1980, and 

was used to describe the process of recognizing and eliminating the active substances already studied in 

the early stage of the screening process (Ito and Masubuchi 2014). By determining which compounds that 

are potentially novel as quick and as early as possible, resources can be focused on identification and 

profiling of the possible new compounds rather than squandering resources on already known compounds.  

Several methods and protocols for dereplication have been developed throughout the years utilizing 

different types of instruments and detectors. Several reviews on the topic of dereplication of microbial 

compounds have been published, thoroughly describing commonly used protocols and instrumental setups 

(Callahan and Elliott 2013; Eugster et al. 2011; Ito and Masubuchi 2014; Wolfender et al. 2003, 2010, 2014). 

I have therefore chosen only to briefly introduce the most common methods, and to present some of the 

most recently developed methods for dereplication, focusing on automated methods. 

One of the most commonly employed methods of dereplication is by analysis using liquid chromatography 

– diode array detector – mass spectrometry (LC-DAD-MS) systems. Using this hyphenated analysis method, 

analytes can be evaluated on several different parameters: the RT, the nature of UV/Vis absorption, and 

the mass spectrum.  
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LC-DAD based dereplication using UV-VIS, is very powerful for identification of compounds with distinct 

chromophores, but can only be used to deconvolute spectra if compounds are chromatographically 

resolved, and can of course only be used for analysis of compounds containing chromophores. Currently, 

UV-Vis data is used for dereplication by manual extracting the absorption spectrum for a compound of 

interest and then comparing the spectrum to a reference. Several methods for automation of this workflow 

have been suggested by development of algorithms that allow for automatic comparison of spectra to 

databases(Larsen and Hansen 2007), but currently LC-DAD is mostly applied in a hyphenated manner along 

with MS. 

Recently, a new data analysis package has been developed for the open-source statistical computational 

environment R (R Core Team 2014) for analysis of LC-DAD data, called Alsace (Wehrens et al. 2014). The 

software allows for automated extraction and analysis of LC-DAD allowing for faster analysis of data. Data 

obtained from the LC-DAD analysis may also be combined with LC-MS data, and could be used to more 

easily combine data from the two detector types, and for alignment of data, which was discussed in section 

1.5.1. 
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LC-MS based dereplication relies on ionization of the compounds of interest followed by measurement of 

the accurate mass and isotopic pattern of the formed ions (Forner et al. 2013; K. F. Nielsen and Smedsgaard 

2003; K. F. Nielsen et al. 2011; Z.-J. Zhu et al. 2013) (Paper 1 and 2). The accurate mass of these ions can be 

used to determine the elemental composition of the compounds, but can result in ambiguous 

determination even at less than 1 ppm error (Kind and Fiehn 2006). To achieve unambiguous determination 

of the elemental composition, accurate detection of the isotope pattern of the compounds is required as 

well (Kind and Fiehn 2007; K. F. Nielsen et al. 2011). Using MS, detected signals can also be deconvoluted, 

making the method very well suited for extracts that contain many different compounds. This method is 

well suited for use in database searches, because the accurate mass or calculated elemental composition is 

easy to use a search queries. This is vital, as analysis using screening libraries allow for much faster analysis 

of data. The application of LC-MS dereplication and the use compound libraries is described in further detail 

in Papers 1 and 2. 

Recently, several methods for MS/MS based dereplication have been developed. The aim of these methods 

has been to offer increased confidence in matches against libraries, as well as to allow for different 

methods of data analysis. One way of utilizing the MS/MS data is to match the acquired data against a 

database containing recorded spectra (El-Elimat et al. 2013; Horai et al. 2010; Smith et al. 2005). The 

application of MS/MS based dereplication using compound libraries is described in further detail in Paper 2.  

During my studies I have worked on the development of two methods for dereplication of extracts from 

microbial samples, described in Papers 1 and 2. The two methods are both based on matching libraries of 

known compounds against those detected in samples utilizing MS and MS/MS data, respectively, and are 

further discussed and compared in chapter 2.1. Both of the developed methods rely on libraries for 

searching of spectral data, and as such, the libraries are essential for the success of dereplication, as further 

explored in section 1.7.1. 

As mentioned in section 1.4.2, molecular networking using MS/MS data can also be used for dereplication 

by grouping compounds that exhibit similar fragmentation spectra. In this way compounds that share 

structural similarities may be grouped together with analogs with e.g. different substitution patterns. By 

using spectra obtained from standards or other already identified compounds, analogs of these can thus be 

detected (J. Y. Yang et al. 2013).  

As neither NMR based or activity based dereplication were used in my studies, the reader is encouraged to 

consult either the before mentioned reviews or Halabalaki (Halabalaki et al. 2014) for more information on 

NMR consult Lang and coworkers (Lang et al. 2006), and López-Pérez (López-Pérez et al. 2007) for 

information of activity based dereplication. 

 

 

Databases are essential in biological sciences, as they allow for collection of information and knowledge 

that can then be leveraged for different types of analyses. In fact comprehensive databases are essential 

for successful dereplication, as described in chapter 1.7. 
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In my studies, I have mostly worked with compound databases, which contain information such as name, 

structure, elemental composition and MSn data. The databases that I have primarily worked with are listed 

in Table 3. 
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The Global natural products social molecular networking (GnPS) database is special case, as it also acts as a 

data repository (Bouslimani et al. 2014). This means that it contains both spectra from known standards, as 

well as spectra from unknown compounds. Care must therefore be taken if the database is used for 

dereplication purposes. 

As part of the development of the high-resolution MS/MS (HRMS/MS) library (Paper 2), a database 

containing MS/MS data for 277 mycotoxins and fungal SMs metabolites was made publically available.  

Although I have mainly used Antibase for my studies, I frequently used other databases from Table 3 to 

investigate signals from unknown compounds. However, choosing the right database to search can be 

difficult. This is because the amount of data generated in biology is ever increasing, and with this increase 

in data, the number of databases containing information has also increased dramatically. In 2010 the 

number of database publications indexed in PubMed reached more than 1100, and it was estimated by 

Bolser et al. that this number might top 2000 publications in 2015 (Bolser et al. 2012). This number covers 

databases in the whole field of biology including databases containing genome data such as GenBank 

(Benson et al. 2011), metabolic pathways (Frolkis et al. 2010), and compounds (Laatsch 2012). Whilst it is 

an unmitigated success that so much information is being made available, the sheer number of segregated 

databases presents new challenges. With so many new databases being published, it is an daunting task to 

keep track of which databases are available and which areas of research they cover, and the segregated 

nature complicates the integration of available data (Searls 2005). Because so many different databases 

exist, it can be quite challenging to determine which ones are most relevant for a given project, and as well 

as to assess the quality of data in the database. To alleviate this, several meta-databases, or databases 

containing information about other databases, have been launched, including MetaBase (Bolser et al. 2012; 
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“MetaBase” 2014) and The Bioinformatics Links Directory (Chen et al. 2007). These meta-databases allow 

for the discovery of relevant databases for a given project. 

Unfortunately, not many databases containing microbial products exist, and those that do exist contain no 

MS/MS data. A possible solution to this problem could be to encourage more sharing of data between 

research groups, and to agree on standards of reporting in the field. This will be further discussed in section 

3.2.  
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During my thesis I have worked on the development of two different targeted screening methods: 

aggressive dereplication and HRMS/MS dereplication (Papers 1 and 2). Both methods were developed as 

means to speed up the traditional manually performed dereplication process, by quickly determining which 

of the detected compounds in a sample that were already known, and instead allowing researchers to 

focus their attention on the tentatively unknown compounds. The principle behind the two methods is the 

same: first, an extract of an organism of interest is analyzed using an LC-MS system. Compounds are then 

matched to entries in the library. If any compound from the library is detected in the sample, the peak in 

the chromatogram that corresponds to the compound is colored. By simply looking at the chromatogram, it 

is then possible to see which peaks correspond to known compounds, and which peaks might correspond 

to unknown compounds. The tentatively unknown compounds may then be further investigated manually 

or by other means.  
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The method entitled aggressive derepliction (Paper 1) was developed first and was based on the creation of 

a HRMS library for screening samples based on UHPLC-DAD-QTOF data acquisition. The library used for the 

screening could be created using different sources, dependent on the organism that was to be analyzed. In 

the case of an extract from Aspergillus nidulans, a library consisting of all known metabolites from that 

fungus could thus be used. This library could be compiled using commercially available databases such as 

Antibase (Laatsch 2012), and could be supplemented by including other compounds of interest such as 

tentatively identified compounds, and even known impurities such as plasticizers. One of the advantages of 

the method was that it was very effective for quickly determining how many metabolites were known for 

given organism. Some of the well investigated species, such as A. niger, exhibited very few unidentified 

peaks, while an extract of Penicillium melanoconidium showed almost no identified peaks, thus allowing 

one to focus the dereplication efforts on the extract from Penicillium. A disadvantage of the method was 

that, unless the RT of a compound was known, it was not possible to distinguish between structural isomers 

with the same elemental composition. Because of this a more specific targeted analysis method was 

needed. 

To address the need for specificity a new automated dereplication procedure was developed. The method 

entitled HRMS/MS dereplication (Paper 2) was based on creation of a HRMS/MS library for screening 

samples by UHPLC-DAD-QTOF based data analysis, but this time requiring data acquired in AutoMS/MS 

mode. The spectral library was prepared by analyzing compound standards at three different collision 

energies (10, 20, and 40 eV). By using different fragmentation energies, the chance of acquiring an MS/MS 

spectrum of sufficient quality for spectral matching increased. The confidence of a hit i.e. identification of 

an unknown compound, using this method, was much improved over the aggressive dereplication method, 

and the method could even distinguish between some structural isomers. However, as each standard must 

be analyzed using the LC-MS system, creation of the library itself was initially very labor intensive, while 

subsequent use of the method required no extra work.  

The methods were compared (Paper 2) by applying both methods to data files obtained from analysis of a 

range of different marine fungi, and the advantages and disadvantages of the two methods have been 

summarized in in Table 4. 
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The two methods are currently used in a complementary manner. The aggressive dereplication method will 

be superior for well described organisms, where appropriate libraries can easily be assembled. This means 

that the method is most effective if some information about the sample or organism being analyzed is 

already known. For instance, if an extract of A. niger is to be analyzed, a library containing compounds 

previously detected form A. niger will be ideal. A library containing all compounds isolated from the 

Aspergillus genera could also be used. However, because of the inability to distinguish between isomers 

without RT, the libraries can reach a size where the number of false positives makes the method less 

effective.  

The limiting factor of the HRMS/MS dereplication method is the small size of the library. As the size of the 

library increases by addition of new compound data, the effectiveness of the method will increase as well. 

Because of the increased confidence of hits over the aggressive dereplication method, the whole library 

could potentially be leveraged for every search, instead of having to use a curated library to reduce the 

number of false positives. Because of this, the method can be used with good effect when screening 

extracts from organisms of unknown taxonomy. 

Both of the described methods have the potential of becoming more useful in the future. The development 

of more advanced instrumentation, better predictions models for compound RTs in LC, and better 

prediction of MS/MS spectra will allow for a higher degree of confidence in tentative identification of the 

dereplicated compounds. This will be further explored in section 3.1. 
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One main goal of this study was to link fungal SMs to genes, however, it can be hard to determine which 

genes are involved in the biosynthesis of fungal metabolites. As described in section 1.3, this is because it is 

still not possible to computationally predict the end products from iterative PK synthases, and thus easily 

link genes to the corresponding metabolite(s) (Hertweck 2009; Walsh and Fischbach 2010). For NRPs the 

situation is simpler as prediction tools can in some, but not all, cases be used to predict the product (Challis 

et al. 2000). In the case of nidulanin A, described in section 2.2.4 (Papers 5 and 6), it was not possible to 

predict the correct AA sequence.  

The traditional workflow for establishing biosynthetic pathways has been to work backwards from the 

compound of interest, by proposing a possible biosynthetic route using the same principles as those used 

for retro synthesis in classical organic chemistry: relying on the knowledge of possible enzyme catalyzed 

reactions. To further investigate the biosynthetic route, and to determine if a suggested route is correct 

further investigation is needed. In most cases, the next step would be to perform targeted gene deletions in 

the organism, followed by chemical analysis and isolation of compounds of interest, to determine the effect 

of the gene deletion. By deleting a biosynthetic gene, the production of enzymes encoded by that gene is 

stopped, and the enzyme is no longer present to catalyze formation of the compound. If several genes are 

involved in biosynthesis of a specific compound, deletion of one gene can lead to accumulation of an 

intermediate towards the compound of interest. An example of this is shown in Paper 3, where 

investigation of yanuthone D was performed. In one case, a strain of A. niger was prepared where the yanH 

gene had been deleted, and the corresponding YanH enzyme was therefore not produced. A comparison of 

the chemical profiles of an reference strain A. niger and the yanHΔ deletion strain showed that several new 

peaks appeared, while other peaks disappeared, as illustrated in Figure 10, where the BPC of the reference 

strain A. niger is compared to that from the yanHΔ deletion strain.  

 

 

Δ
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Yanuthone D was produced by the reference strain A. niger (Figure 10), while the yanHΔ deletion strain did 

not produce it. Inspection of the BPCs did however show several new peaks compared to the intact strain, 

here identified as 7-deacetooxyyanuthone A and yanuthone F. These compounds were isolated, structure 

elucidated, and were found to be biosynthetic intermediates to yanuthone D, with YanH being responsible 

for conversion of 7-deacetoxyyanuthone to other intermediates, as described in Paper 3. By deleting the 

gene, higher amounts of 7-deacetoxyyanuthone accumulated instead of the end product, yanuthone D. To 

complete the elucidation of the biosynthesis more gene deletions were constructed by deleting the 

putative biosynthetic genes individually, until the whole biosynthesis of yanuthone D was characterized. 

Although very effective for elucidation of biosynthetic pathways, the individual deletion of genes is very 

labor-intensive.  

 

 

Another method for biosynthetic pathway elucidation is the use of stable isotope labeling (SIL). 

Biosynthesis studies by isotope labeling using radioactive labeled substrates is a well-known procedure that 

has been used since the 1950’s (Hanahan and Al-Wakil 1952). The first experiments were carried out with 

radioactive isotopes using sensitive radiation detectors (Griffith 2004; Townsend and Christensen 1983). 

However, during the last 10 years advances in GC-MS and LC-MS instrumentation has made it possible to 

use stable isotope labelled nitrogen, carbon, and sulfur substrates for both kinetic, flux, and metabolite 

identification as the new mass analyzers are able to provide adequate sensitivity and resolution without the 

risks associated with working with radioactive material (Tang et al. 2012). One popular method is 13C 

biosynthetic pathway elucidation, where a known precursor to a compound of interest is added to the 

cultivation media of an organism, and the resulting mass spectrum of the compound is then compared to 

the predicted 13C labeling pattern (Simpson 1998; Steyn et al. 1984; Tang et al. 2012). In a study by 

Grunwald et al. the use of radioactive labeling and stable isotope labeling was compared for elucidation of 

metabolic products, showing that the two methods performed very similarly, though quantitative results 

were better for the radioactive labeling (Grunwald et al. 2013). However, stable isotope labeling has the 

great advantage of not requiring the use of potentially hazardous radioactive material. 

SIL precursors are ideal for analysis by LC-MS. As the isotopes have the same chemical properties, they will 

have the same RT when analyzed using LC, but the compounds will have a different monoisotopic mass 

when analyzed using the MS, as shown in Figure 11.  



28 
 

 

Δ Δ

 

SIL have been used in several studies of the aflatoxin pathway (Townsend and Christensen 1983), the 

asticolorin pathway (Steyn et al. 1984), and recently the yanuthone pathway (Paper 3) (Petersen et al. 

2014).  

The choice of using LC-MS for determination of labeling also influences the choice of SIL used for 

experiments. Some of the earliest 13C labeling studies were carried out using doubly labeled acetate[1,2-
13C2], which could then be used to trace the incorporation of intact acetate units into a wide range of 

metabolites. Samples would then be analyzed using NMR, as the two adjacent 13C-atoms exhibit 

characteristic signals (Simpson 1998). For LC-MS, however, the use of precursors labeled with only 13C is not 

optimal. To be able to determine that a compound has been labeled, one would have to observe an ion 

corresponding to the labeled compound. If one were to use a SIL containing only two labeled atoms, this 

ion might overlap with the A + 2 isotope of the unlabeled form of the compound complicating investigation 

of the labeled ion. Although this would lead to a change in intensity of that signal, it might not be possible 

to conclusively determine incorporation of a single acetate unit, if the degree of incorporation is very low. 

In my studies I have worked on developing new protocols for the use of SIL precursors for investigation of 

the biosynthetic pathways using LC-MS. Different methods were developed for compounds of different 

biosynthetic origin, depending on whether they were PK or NRP derived. 

 

 

Stable isotope labeling was used to investigate the biosynthesis of several different PKs and PK-like 

compounds. Initially, a method was developed for characterization of the yanuthone D biosynthesis. The 

compound yanuthone D was first isolated from A. niger, and described by Bugni and co-workers (Bugni et 

al. 2000). The yanuthone family of meroterpenoid derived compounds were described in detail in Paper 3 
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and by Petersen and coworkers (Petersen et al. 2014). The complete study on the biosynthesis of 

yanuthone D and the use of stable isotope labeling is found in Paper 3. 

As described in section 1.3.1, PKs are biosynthesized from a small number of different starter units. 

Because these are used for biosynthesis of a wide range of compounds, they can be unsuitable for 

investigation biosyntheses of specific compounds or for investigation of specific pathways. Instead one can 

use a more specific precursor, thereby targeting the biosynthesis of specific compound, ideally only leading 

to incorporation into compounds from the same biosynthetic pathway. By combining this with the 

developed targeted analysis methods, it was possible to quickly investigate compounds suspected of being 

biosynthesized from the SIL precursor, by creating a library containing all possible compounds of interest.  

Based on initial genetic experiments, it was hypothesized that yanuthone D was biosynthesized from 6-MSA 

(Figure 13). Labeling experiments using 13C-labeled 6-MSA were therefore performed to investigate if it was 

possible to add the labeled precursor to the growth medium of the fungus, and for the fungus to take up 

and incorporate the precursor into the biosynthesis of yanuthone D. As labeled 6-MSA was not 

commercially available, it was produced in-house by fermentation of a genetically modified heterologous 

producer strain. The labeling experiment was performed by inoculating A. niger on solid growth medium, 

and then adding the labeled precursor in solution. After cultivation plugs of the fungi were excised, 

extracted, and analyzed using LC-MS, as described in Figure 12.  

 

 

Δ

 

Analysis by LC-MS showed that the fungus successfully took up the 13C-labeled 6-MSA, and by examining 

the mass spectra, it was possible to detect a shift in mass for compounds incorporating 6-MSA. Using a 

combination of gene deletions and labeling with a SIL precursor, it was possible to elucidate the 

biosynthesis of yanuthone D, as shown in Figure 13. In the figure, the labeled carbon atoms originating 

from 6-MSA are marked in red.  
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Analysis using LC-MS showed that the incorporation degree of the labeled precursor into yanuthone D was 

around 18 %. Incorporation of 6-MSA was also high enough for labeled compounds to be spotted by a 

cursory look at the mass spectra, which accelerated the determination of which compounds were 

biosynthesized from 6-MSA. 
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Interestingly, analysis of samples fed with SIL 6-MSA showed that one yanuthone, yanuthone X1 (Figure 14), 

did not exhibit any sign of incorporating the precursor, indicating that this compound is not biosynthesized 

from 6-MSA.  

 

 

 

Further experiments proved that, although structurally very similar to the other yanuthones, yanuthone X1 

was not biosynthesized from 6-MSA but instead from a still unknown precursor, highlighting the strength of 

the labeling method for quickly investigating biosynthesis. When the yanuthones were first discovered, 

Bugni and co-workers speculated that the yanuthones were biosynthesized from shikimate, a product of 

the shikimic acid pathway (Bugni et al. 2000). Further studies into the yanuthones have revealed a second 

yanuthone, yanuthone X2, that is not biosynthesized from 6-MSA (Petersen et al. 2014). It would therefore 

be very interesting to conduct further labeling studies, this time using predicted precursors from the 

shikimic acid pathway to investigate these class II yanuthones of unknown biosynthetic origin. 

 

 

Based on the successful labeling of yanuthone D, I decided to further explore the applications of SIL 

precursors for the investigation of PK biosynthetic pathways, and to further developed methods for its use. 

This study is described in detail in Paper 4.  

Initial feeding was carried out in seven different fungi: P. griseofulvum, P. paneum, P. carneum, A. clavatus, 

B. nivea; or terreic acid: A. hortai, and A. floccosus. These were attempted labeled using both SIL 13C8-6-

MSA, for labeling of patulin and terreic acid, respectively, using the same experimental setup as described 

in Figure 12. Again, the data analysis was performed using a library of compounds for targeted analysis. A 

library was created containing all compounds, and predicted precursors of these, believed to be 

biosynthesized from 6-MSA. In theory, screening of samples should therefore quickly reveal any 

compounds showing any signs of incorporation. Structures of the compounds described in the text are 

shown in Figure 15. 
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Unfortunately, LC-MS analysis showed no signs of incorporating 6-MSA into patulin or terreic acid for any of 

the tested fungi. Results from the labeling experiments are summarized in Table 5. It was surprising that no 

incorporation was detected for patulin or terreic acid, as 6-MSA is a known precursor to both compounds 

(Guo et al. 2014; Tanenbaum and Bassett 1959), and thus we hypothesized that this could be caused by the 

fungus degrading the 6-MSA, as chemical analysis showed that 6-MSA was expended from the medium. 

Another explanation could be that the enzymatic activities involved in biosynthesis are linked in a manner 

that does not allow entry of an “external” precursor. A recent paper by Guo and coworkers (Guo et al. 

2014) showed that (2Z,4E)-2-methyl-2,4-hexadienedioic was a shunt product in the terreic acid pathway, 

and we subsequently detected a peak corresponding to the correct accurate masse in an extract from A. 

floccosus. Investigation of the mass spectrum also revealed the presence of an ion corresponding to one 

with 13C7 incorporated. For the work performed here, the degree of labeling was defined as:  

 

 

 

For (2Z, 4E)-2-methyl-2,4-hexadienedioic the degree of labeling was thus 76 % in A. floccosus fed after 3 

days. Interestingly (2Z,4E)-2-methyl-2,4-hexadienedioic was also found in the extracts from the patulin 

producers, where it was also labelled, indicating that it is also a shunt product in the patulin biosynthesis. 

This strongly indicates that it is a result of detoxification reaction in the cytoplasm, and that patulin and 

terreic acid are produced in compartments, as is the case for aflatoxin production in A. parasiticus (Chanda 

et al. 2009). This would make sense as patulin is an antifungal compound. The need for a detoxification 

process also seems to be important as (2Z,4E)-2-methyl-2,4-hexadienedioic was detected in amounts 

corresponding to 10-20 % of the amount of patulin produced, as determined using by analysis UV/Vis peak 

areas, measured using the DAD at 280 nm. In order to investigate the hypothesis that production was 

taking place in a compartmentalized fashion, the genome sequence from the terreic acid gene cluster (Guo 
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et al. 2014) was analyzed in order to predict any membrane bound proteins, using a range of different 

prediction tools. However, no conclusive results were obtained.  

 

 

 

 

In another labeling experiment fully 13C-labled YWA1, produced in-house by fermentation of a genetically 

modified producer strain was used. This precursor was tested for labeling of compounds in four different 

strains of Fusarium using the same experimental setup as described in Figure 12. Addition of the labeling 

solution resulted in the labeling of several different compounds as seen in Table 5. However, for many of 

the compounds, the degree of incorporation was lower than what was observed in the yanuthone study. 

Because of this, it was harder to determine if a compound had been labeled purely by visual inspection of 

the data.  

Compared to other published studies, the incorporation degrees obtained in this study range from typical 

to very high. In a study of the mycotoxin terretonin by McIntyre et al. incorporation of several different 

differentially labeled precursors was investigated (McIntyre et al. 1989). Incorporation was reported to 

range from 0.3-2.5 % depending on the precursor or cultivation conditions usedA study by Yoshizaws et al. 

investigated the incorporation of acetate in the biosynthesis of dehydrocurvalarin and found that these 
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were incorporated at around 2 % (Yoshizawa et al. 1990). Finally, Yue et al. reported incorporation of 6 % 

for an investigation of macrolide biosynthesis (Yue et al. 1987). 

As a consequence of the detected determined incorporation rates, a targeted approach was used to screen 

for compounds that were predicted to be labeled, based on structures and theoretical biosynthetic 

intermediates. Using this approach four different compounds were found to be labeled, and thus 

biosynthetically derived from YWA1, see Figure 16.  

 

 

One of these compounds was antibiotic Y (avenacein Y). This was first isolated form F. avenaceum in 1986 

and its biosynthetic origin is unknown (Goliński et al. 1986), however, it displays several structural features 

in common with YWA1 and rubrofusarin. Based on the mass spectrum obtained for antibiotic Y, shown in 

Figure 17, it is indeed biosynthesized from YWA1 with incorporation of around 2.2 %. 
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EICs corresponding to unlabeled antibiotic Y and antibiotic Y with 13C14 incorporated (Figure 17B) exhibited 

similar peak shapes and RT, confirming that the labeled YWA1 precursor is incorporated into Antibiotic Y. 

The unlabeled form was present in high enough amounts to saturate the detector, leading to a non-linear 

response curve. To calculate the degree of incorporation, the intensity of the [M+H]+ + 1 ion, which was not 

saturated, was used. Using the predicted abundance of the isotopes, the degree of incorporation of the 

labeled Antibiotic Y was calculated to be 0.4 %. 

Results from the labeling experiments demonstrate that SIL precursors can be very effective for 

investigation of biosynthetic pathways. A comparison of incorporation for the different PK precursors 

showed that the incorporation degree varied widely between organisms and compounds. Based on this, it 

would be interesting to further investigate the uptake of precursors by fungi. One explanation for the 

variation in incorporation degrees could be that the enzymatic activities involved in biosynthesis are linked 

in a manner that does not allow entry of an “external” precursor. One such linkage could be formation of a 

protein complex consisting of several discrete enzymes, which are dependent on each other for proper 

conformation, like the so-called metabolon model, which has been proposed for the tricarboxylic acid cycle 

(Meyer et al. 2011; Vélot et al. 1997). 

Alternatively, biosynthesis of the toxic compounds is compartmentalized in specialized organelles, into 

which an external precursor is not transported, as suggested for patulin or terreic acid. As the feeding 

experiments with patulin and terreic acid showed, formation of shunt products acting as sinks for the SIL 

precursor could also explain the missing labeling of the desired end products. A reason for the low degrees 

of labeling observed in both the experiments performed in this study, as well as studies performed by 

others, could be due to unknown shunt products being labeled instead of the investigated one, as was the 

case for patulin and terreic acid. 

As a next step it would be interesting to perform quantitative analysis to accurately determine how much 

of the added SIL precursor is taken up by the organism, and further, how much is incorporated into any 

other compounds.   
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One of the first projects I worked on during my studies was investigation of metabolites from A. nidulans. 

This work resulted in discovery and identification of the metabolite nidulanin A, see Figure 18. Nidulanin A 

is a cyclic tetrapeptide consisting of one L-phenylalanine (Phe) residue, one L-valine (Val) and one D-Val 

residues, one L-kynurenine residue, and one isoprene unit. In the original study (Paper 5), nidulanin A 

proved difficult to isolate in the quantities needed for structure elucidation by NMR, and thus two putative 

analogs containing one and two additional oxygen atoms, respectively, produced in lower quantities were 

not isolated and fully characterized. Because of this, it was investigated whether the structure of any of the 

new analogs could be determined only using LC-MS. 

 

 

To do this it was decided to use SIL amino acids (SILAAs), as fungi are known to be able to take up AAs from 

their environment (Helmstaedt et al. 2007). This property has previously been exploited to study 

incorporation of labelled AAs into proteins from filamentous fungi using LC-MS (Collier et al. 2008; 

Georgianna et al. 2008). SILAAs might therefore be a suitable route for introducing NRP precursors into 

fungi to probe the NRP pathway like nidulanin A. This study is described in detail in Paper 6. 

By utilizing information about the structure of nidulanin A, feeding studies were performed using SILAAs. In 

the experiment, A. nidulans was cultivated in liquid media, and several different concentrations of AAs 

were tested to determine the optimum for incorporation using LC-MS (Figure 19A). Samples were then 

analyzed using LC-MS/MS to provide structural information, as well as to perform molecular network 

analysis (Figure 19B). 
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For the experiments, five different AAs (Table 6) were used and a majority of those used were fully 13C-

labled. It was not possible procure kynurenine. Instead, anthranilic acid was used, as it is a precursor to 

kynurenine. Addition of SILAAs to A. nidulans resulted in the incorporation into nidulanin A, as seen in 

Figure 20.  
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Results from the feeding experiments could be used to determine which AAs nidulanin A was composed of, 

as well as provide information about the reported oxygenated analogs first described in Paper 5. By using 

labeled tyrosine (Tyr) it was possible to detect incorporation of the oxygenated analogue, confirming that 

the oxygenated form did indeed contain a Tyr residue. However, it was not possible to determine the 

structure of the analog containing two extra oxygen atoms. 

Analysis of the MS/MS spectra obtained from nidulanin A could be used to determine the sequence of AAs 

present in the cyclic tetrapeptide, by utilizing the information provided by the labeling. Using this, the 

MS/MS spectrum of nidulanin A could be assigned. Fragmentation spectra of the labeled forms of nidulanin 

A, as well as a list of assigned fragments are shown in Paper 6. The fragmentation spectrum of unlabeled 

nidulanin A, as well as the most characteristic fragments allowing for determination of the AA sequence is 

shown in Figure 21. 
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Samples from the labeling experiments were then analyzed using LC-MS/MS to obtain fragmentation data 

of the metabolites, and the data could be used to perform the molecular network generation. MS/MS 

spectra that exhibit the same fragment ions or the same neutral losses will be connected in the network 

with the thickness of the line indicates a better match or higher similarity of spectra. The mass spectrum 

from a given compound, a node, will then be clustered together with compounds having similar MS/MS 

spectra. Biosynthetically similar compounds might therefore be grouped using the generated molecular 

networks, aiding in characterization of the biosynthesis. A molecular network was generated using the 

samples labeled with AAs, and the sub-network containing the node corresponding to nidulanin A is 

depicted in Figure 22. 
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Investigation of the sub-network containing nidulanin A revealed several nodes corresponding to labeled 

forms of nidulanin A, but it also identified nodes corresponding to unknown compounds. Utilizing both the 

LC-MS data as well as the LC-MS/MS data, it was possible to tentatively identify several of the compounds 

corresponding to nodes in the sub-network, as seen in Table 7.  
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Compared to the PK labeling study, the incorporation degrees were much higher when using SILAAs as 

precursors for labeling compounds in fungi. Because of this, it was possible to use the labeling in a much 

more exploratory manner. By combining the labeling procedure with the molecular network, it was 

possible to find new compounds, while the MS/MS data obtained could be used to determine the order in 

which the AAs were coupled in the cyclic tetrapeptide nidulanin A, and could be used to tentatively 

determine the structures of the metabolites. This proved instrumental in the analysis of the compounds, as 

they were produced in minute amounts precluding structure elucidation by NMR.  

The molecular network revealed the presence of the compound fungisporin (Miyao 1955) as well as two 

analogs of this. Using information from the labeling experiments, it was hypothesized that these two 

analogs (fungisporin B) and (fungisporin C), corresponded to the exchange of one and two Phe residues for 

Tyr, respectively, which was confirmed using the labeling studies. The production of fungisporin has 

recently been linked to a specific NRPS, HcpA, in P. chrysogenum by Ali and coworkers (Ali et al. 2014). In 

that study 10 different cyclic tetrapeptides were found to be produced by the NRPS, including fungisporin 

and an analogue containing a Tyr instead of a Phe residue. By utilizing the labeling information it was 

possible to determine the peptide sequence of fungisporin C to be cyclo-(Phe-Phe-Tyr-Tyr).  
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Analysis of an A. nidulans deletion strain demonstrated that nidulanin A and fungisporin, as well as their 

respective analogs, were encoded by the same NRPS, thus highlighting the strength of the molecular 

networking method in correlating compounds with structural similarities.  

Interestingly, an entry for fungisporin exists in Antibase (Laatsch 2012), however both the structure and 

molecular formula are wrong. Fungisporin’s entry in Antibase references the Dictionary of antibiotics and 

related substances (Bycroft 1988), which contains a different structure than the one published by Miyao 

(Miyao 1955). The reason for this seems to be that the structure corresponds to a formulation prepared as 

a salt containing several fungisporin units. This highlights a very important point about these databases: 

that the curation procedures and quality controls are unknown. The fact that fungisporin has not previously 

been reported from A. nidulans, despite all the research in the organism, maybe also indicates that a lot of 

research groups use the same standard libraries for dereplication. This topic will be further discussed in 

chapter 3.2. 

To put the results of the labeling study into perspective, an estimate of the total amount of AAs present in 

the fungus compared to the amount of added SILAA was made. Based on the parameters reported by 

Stephanopoulos et al. (Stephanopoulos et al. 1998) for P. chrysogenum, it was possible to give a rough 

estimate on the amount of the specific AAs produced by A. nidulans in the performed labeling experiments, 

summarized in Table 8. Unfortunately, the total dry weight of the fungus cultivated in each well was not 

measured. For the following calculations it was therefore estimated to be 0.10 g.  

 

 

Based on the concentration of the AAs used in the labeling experiment, the amount of AA added to each 

well, containing 1.6 ml medium, could then be calculated, as seen in Table 9.  

 

Several caveats apply to the proposed estimates. Firstly, the dry weight of the fungus has not been 

experimentally determined but rather estimated. Secondly, the typical compositions have been determined 

from P. chrysogenum and not A. nidulans which was used in the experiment. Finally, the specific AA 
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composition of the proteins has been determined in mole %, and not mass % as assumed for these 

calculations. Based on these calculations, it is observed that the amount of SILAA added to the organism at 

the highest concentrations, at least for Phe and Tyr, are 100 times higher than the amount of AA produced 

by the fungus. As shown in Figure 23, addition of high levels of SILAA caused distorted mass spectra, as the 

SILAAs enter the central carbon metabolism and are catabolized instead of being incorporated directly into 

any metabolites. At lower concentrations, the AA appeared to be preferentially incorporated into nidulanin 

A and not catabolized in the same degree. Labeling using Val resulted in incorporation to such a high 

degree that no unlabeled nidulanin was detected at (c1), in spite of nidulanin containing two Val residues.  

 

 

 

Based on the labeling results obtained in this experiment, it would be interesting to further investigate the 

labeling patterns as a function of concentration of the different labeled SILAAs. Nidulanin A exhibited a 

higher degree of labeling with two Val residues than one residue, something also observed for the 

fungisporins as described in Paper 6, further suggesting that the amounts of SILAAs used were very high. 

Potentially, it would be possible to use lower concentrations of SILAAs, while still obtaining the same 

results.  

The combination of stable isotope labeling and molecular network generation was shown to be very 

effective for detection of structurally related NRPs, while labeling was effective for determination of the 

peptide sequence, and could be used to provide information on biosynthesis of compounds. The fact that 

these compounds have not been reported before, also highlight the ability of the combined approach to 

extract spectral features from compounds that might otherwise be overlooked. This was the case for 

fungisporin and its two different analogs that had not previously been reported from A. nidulans. This 

illustrated the strength of the untargeted molecular networking generation in extracting structurally 

related but unknown compounds, and coupling these to known compounds and aiding in dereplication.  
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Dereplication based methods, as the ones presented in section 2.1, were methodologies employing 

information from previously assembled libraries for analysis of samples. In cases where little or no 

information about an organism is available, other methods of data analysis must therefore be used. This 

was also the case for the study of biosynthetic potential of the marine bacterium Pseudoalteromonas 

luteoviolacea. For the study 13 different strains were isolated from around the globe, and the goal was to 

examine the biosynthetic potential of all these strains. Some information about produced metabolites was 

available, however, besides determining whether any of these metabolites were produced, the goal was to 

determine how all produced metabolites varied between the 13 strains.  

In order to accurately assess the functional biosynthetic potential of the organisms, a method for 

combining both LC-MS based metabolomics, machine learning algorithms for data mining, mass spectral 

molecular networking, and genomics was developed and used to evaluate the biosynthetic richness of 

these marine bacteria. The study is described in detail in Paper 7. The combination of machine learning 

principles for analysis of chemical data, and the integration between LC-MS based metabolomics and 

genomics have not previously been used, and thus the developed combined method represents a whole 

new approach for the profiling the biosynthetic potential of a group of organism. 

In this section, I will briefly present and discuss the results stemming directly from the untargeted analysis 

performed. In this study 13 different strains related to P. luteoviolacea were analyzed for their genomic 

potential and ability to produce SMs. Results from this analysis could then be used to determine which 

strains should be further investigated, effectively prioritizing the most chemically prolific species. An 

overview of the experimental work performed, as well as the data analysis, is shown in Figure 24. 
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For my part the focus was on the chemical analysis of the extracts, which was performed using UHPLC-DAD-

QTOF analysis. To obtain a global, unbiased view of the metabolites produced, molecular features were 

detected using the LC-MS in an untargeted metabolomics experiment, as described in section 1.5. As the 

workflow developed was intended as an “exploratory” tool, only two replicates of the strains were 

analyzed. Feature detection and extraction was performed using the Agilent Technologies’ MassHunter 

with the MFE algorithm. 

Molecular features were detected and extracted in positive and negative ionization modes, and the feature 

lists were then merged to obtain a list of all chemical features detected across all samples. Features 

obtained from the positive and negative analysis were merged in a separate experiment followed by 

normalization of the data. However, as the intensity of the signals detected in negative ionization mode are 

generally lower, this means that features only detected in ESI- will have lower influence on the model. This 

problem was alleviated by normalization of the data before analysis. This is in contrast to other studies (Dai 

et al. 2014; Honoré et al. 2013), where feature extraction was performed in both positive and negative 

ionization modes, but without merging, requiring the work on two different features sets for further 

analysis. 

This resulted in a table of chemical features detected from across all 13 strains, resulting in a feature table 

containing all detected compounds and their intensities for all strains. The whole dataset contained 7,190 

extracted features from all strains, which is of course, too many features to investigate manually. Instead, 

the list of chemical features was investigated using a genetic algorithm (GA) combined with support vector 

machine (SVM). In the hybrid GA/SVM method applied in this study, GA works as a wrapper to select 

features to be evaluated in the SVM classifier, in that way reducing dimensionality and further improving 

the SVM performance (Li et al. 2014). The feature selection process is illustrated in simplified form in Figure 

25. 
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A simplified explanation of the process is that case two different samples, red and blue, are analyzed using 

LC-MS, and the resulting features are extracted, illustrated by the colored circles. To find the differences 

between the groups, the most descriptive features need to be found. By using the GA, a number of features 

are evaluated, those with the black outline, to determine their descriptive power. This results in solution 1, 

which is successful in separating the two samples, that is, separate the red and blue circles. Solution 1 is 

then used to model a new solution by a process called cross-over, mimicking genetics, producing solution 2. 

This is done by using some of the same features, or circles, selected in solution 1, but randomly exchanging 

some of the features for others. Solution 2 is even better as the distance between the two samples, as 

determined via the support vectors, is larger. By repeating this procedure, the features that separate the 

different samples the best can then be determined. These features are thus the ones with the highest 

descriptive power. 

The intrinsic nature of the GA makes it highly suitable for discovery purposes as it favors diversity in how 

the subset of features is selected , while SVM reduces the dimensionality of data in focusing on the minimal 

number of features that maximize the difference between the samples (Lin et al. 2011, 2012). There are 

only few examples on the use of support vector machine as classifier in untargeted SM profiling (Boccard et 

al. 2010; Mahadevan et al. 2008). In these cases, SVM was found to be superior to other multivariate 

analysis tools, because of its efficiency in reducing the dimensionality of data, resulting in its ability to 

reduce the dataset the most without leading to errors in prediction of groupings. A classifier based on this 

GA/SVM combination was used as a feature selection method in order to filter the most important features 

from the complex data set, starting with the 500 most intense ions and reducing it to the 50 most 

significant features to distinguish all 13 strains.  

Features were dereplicated using molecular networking as well as database searches. Of the 50 descriptive 

features, only 15 could be tentatively assigned to known compound classes, including the four antibiotic 

classes identified in this species, underlining the utility of GA/SVM to prioritize not only strains but also 

compounds before the rate-limiting step of structural identification. Based on the list of descriptive 

chemical features, a matrix, or chemical barcode, could be created for each of the analyzed strains. For 

each of the 50 descriptive features, the strain would be assigned a 1, if it produced the compound, or a 0 if 

it did not. This could also be represented as a black and white line resembling a barcode. 

For each strain, genomic DNA had also been extracted and sequenced. Biosynthetic pathways were 

predicted using the Antibiotics & secondary metabolite analysis shell (antiSMASH) (Medema et al. 2011) 

prediction tool, and these were then grouped into operational biosynthetic units (OBUs). This experiment 

was carried out using bacteria, which employ a different mechanism of PK biosynthesis. As discussed in 

section 1.3.1, fungi synthesize PKs using type 1 iterative PKSs, while bacteria use PKSs type 1 modular (non-

iterative) PKSs, which allow for better computational prediction of products (Hertweck 2009). For each 

strain a genetic barcode was created, analogs to the chemical barcode, but in this case indicating whether 

the predicted pathway was present in the strain’s genome. Then by integrating data from the 

metabolomics and genomics experiments, it was possible to use data from one experiment to “interrogate” 

the other data. In that way information about a unique pathway in one strain could be used to search the 

chemical data for compounds unique to that strain. 

Using this approach, we found that 30 % of all chemical features and 24 % of the biosynthetic genes were 

unique to a single strain, while only 2 % of the features and 7 % of the biosynthetic genes were shared 
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between all. Features were dereplicated by MS/MS networking to identify molecular families of the same 

biosynthetic origin, and the associated pathways were probed by their pattern of conservation. 

Interestingly, most of the discriminating features were related to antibacterial compounds, including the 

thiomarinols that were reported from P. luteoviolacea here for the first time. Also, we could identify the 

biosynthetic cluster responsible for production of the antibiotic indolmycin based on the pattern of 

conservation, a cluster that could not be predicted by antiSMASH. 

In conclusion, the workflow illustrates the strength of the untargeted approach, as the chemical potential 

of all strains could be investigated via comparison of detected chemical features. By comparing the 

distribution of these, it was possible to both reduce the list of chemical features dramatically, and to select 

the most descriptive features. The reduced dataset was then manually investigated and dereplicated 

leading to the tentative identification of several antibiotics, several of which had not previously been 

identified from the organism. 

The combination of metabolomics and genomic data identifies obvious hotspots for chemical diversity 

among the 13 strains, which permit intelligent strain selection for more detailed chemical analyses. By 

randomly picking a single strain, worst case, only 38 % of the 500 most intense chemical features, and thus 

most relevant from a drug discovery perspective, are covered. However, if maximizing strain orthogonality 

by using the data generated to select the two strains with the highest number of unique genes, pathways, 

and chemical features, 82 % of the diversity can be covered, dramatically reducing the amount of data to 

analyze further. 

Although the methodology developed here, and the results obtained from the analysis, were very 

encouraging, the study also served to highlight several complications regarding the experimental setup and 

analysis of data from this metabolomics based experiment. As a supposed “unbiased” form of analysis, 

there seem to be many sources of potential bias in metabolomics type studies. In section 11, it was 

described how the use of different feature extraction algorithms could significantly influence the results 

obtained from analyses (Lange et al. 2008). Taking a step back, the experimental procedures and 

generation of LC-MS data used for the analysis, will have a large impact on which compounds can be 

analyzed. While parameters such as extraction method and the stationary and mobile phases used in the LC 

clearly will have a huge influence – the impact of other settings might not be so clear. In Paper 1, a Bruker 

maXis QTOF system was used for screening of fungal extracts. This MS system contains a so-called ion-

cooler which can be used to focus the ion beam. In this paper it was described how the ion-cooler settings 

influence the transfer efficiency of ions, favoring the transfer of ions in a specific m/z-range, while 

adversely affecting the transfer of ions in all other ranges. Thankfully, many researchers in the field has 

advocated for the standardization of reporting standards in the field, something that can help to identify 

these sources of bias (Sansone et al. 2007; Sumner et al. 2007). 

As previously mentioned, this experiment was carried out using bacteria, which biosynthesize PKs using 

modular (non-iterative) PKSs, making it somewhat possible to predict the biosynthetic units and their 

products. To enable this in fungi, there is still a need to develop a better understanding of fungal 

biosynthesis to enable utilization of the tools that have been developed, as well as the new opportunities 

that developments in chemical analysis and metabolomics have provided. Although the field of 

metabolomics has evolved tremendously over the last decade, there are still many challenges regarding 
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treatment and interpretation of obtained data. In spite of this, the results of this study show the 

importance and applicability of combining genomics and metabolomics, as well as the potential of its use. 
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Improved instrumentation naturally leads to development of more advanced experimental techniques that 

can be used to gain even greater insights into the field of microbial SMs. However, as I have realized over 

the course of my study, advances in experimental procedures alone are not enough. Because of the 

important role of analysis of the acquired data, new methods for data analysis are just as important for the 

continued advancement of the field.  

 

 

In the field of metabolomics, databases of metabolites such as METLIN (Cho et al. 2014; Smith et al. 2005; 

Tautenhahn, Cho, et al. 2012) are continuously expanded upon, as more and more metabolites are being 

analyzed. This leads to a wealth of available MS/MS spectra that can be used for tentative identification of 

metabolites from other experiments. This information would be very valuable in standard metabolomics 

where full-scan instruments are used for untargeted analysis. Ideally, this means that the full-scan 

instrument operates in a way that allows for recording of both MS and MS/MS spectra of the metabolites. 

The MS/MS spectra could either be recorded at defined fragmentation voltages, or by modulating the 

fragmentation voltage based on other parameters such as the m/z-ratio of the precursor ion or the RT.  

Acquisition of both MS and MS/MS metabolomics data would allow for directly matching against MS/MS 

libraries, distinguishing isomers and for determination of characteristic neutral loss fragments such as 

acylations, sulfanation, and prenylations. Recently, a method attempting to achieve this was published by 

Dai and coworkers (Dai et al. 2014) using a linear ion trap quadrupole (LTQ)-orbitrap system. The object of 

their study was to investigate the metabolite profile from human urine using an untargeted analysis, where 

the metabolites are expected to be heavily modified by acylation, sulfation, glucurinidation, and 

glucosidation. In their experiment they performed 18 different analytical runs varying the in-source 

collision-induced dissociation (ISCID) fragmentation voltage from 5 to 45 V in 5 V increments in both 

positive and negative ionization mode. Data from the different analytical runs were converted to peak 

tables and aligned. Using an in-house built data program, ions exhibiting the same RT and neutral ions were 

annotated as ion pairs of parent ions and fragment ions of modified metabolites, combined, and matched 

to produce a list containing specific metabolites with neutral losses. At present, the method developed by 

Dai et al. is an important first step and proof of concept for the general idea of performing metabolomics 

using MS/MS signals. However, there are a number of steps that need to be improved upon for more 

widespread adoption. One of the main disadvantages of the method is that it currently requires 18 

analytical runs per sample, which is unfeasible in most cases. This could potentially be alleviated by 

development of new and improved instruments as well as other advances.  

 One of the limiting factors in this procedure is the electronics of the mass spectrometer. With 

better digitizers the scan speed can be improved without a loss in mass accuracy and resolution. As 

famously predicted by Moore’s law (Moore 1965), the rate of transistors in an integrated electronic 
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circuit doubles approximately every second year, something that will greatly benefit the 

development of mass spectrometers. 

 Improved electronics for the collision cell can make it possible to cycle through different 

fragmentation energies more rapidly, allowing for acquisition of data at multiple fragmentation 

energies during a single analytical run without losing sensitivity. 

By reducing the number of different fragmentation energies used, the number of analytical runs needed 

would be reduced. This could also be achieved by employing a method where the fragmentation energy is 

varied as described in section 1.4.1. These methods work by modulating the fragmentation energy based 

on a parameter such as the m/z of the ions of interest. As mentioned earlier, the development of better 

methods for determination of fragmentation energies for the compounds and better algorithms for 

matching of MS/MS spectra to databases, the performance of these might be improved to a point where it 

will be feasible to use them for this type of analysis. Compared to normal full-scan MS analysis in 

metabolomics, this combined metabolomics MS/MS analysis approach has a number of advantages:  

 As already mentioned, ordinary metabolomics analysis can be performed, and features of interest 

can be directly identified using MS/MS libraries.  

 The obtained MS/MS data can be directly used in other forms of analysis e.g. molecular 

networking. In the case described in Paper 7 this would have reduced the number of times the 

samples would have to be analyzed using the LC-MS system. 

 By coupling data from the MS/MS experiments, information such as certain neutral losses, or 

information regarding the structural similarities of features could be directly coupled to the 

statistical analysis performed in the metabolomics part of the experiment. This means that up- or 

down-regulated features could quickly be examined to determine if they share structural 

similarities or modifications. 

Further development on this type of analysis could be the use of MSn, which would require instruments 

such as orbitraps, ions traps, or new hybrid instruments. 

 

 

To be able to better use the LC-MS data and to aid the interpretation of this better prediction tools need to 

be developed. For targeted analysis methods, such as the ones described in 2.1, the development of 

improved methods for prediction and modelling of compound RTs would allow for increased confidence in 

tentative identification of compounds (Miller et al. 2013; Moschet et al. 2013; Stanstrup et al. 2013). With 

increased use of MS/MS for identification of compounds, there is also a need for the development of more 

advanced methods for prediction of compound structures from MS/MS data and vice versa. This is 

especially important in the field of natural product discovery where standards of compounds of interest are 

likely not available. Several different methods and approaches have been developed, but such prediction 

remain far from trivial in many cases (Bandu et al. 2004; Bonn et al. 2010; Hufsky et al. 2012, 2014b; Ridder 

et al. 2012; Wang et al. 2014; Wolf et al. 2010).  
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In the future, more and more projects will be based on systems biology approaches where the combination 

of heterogeneous data analysis will be imperative as the integration of genomics, transcriptomics, 

proteomics, and metabolomics will reveal information not attainable by analysis of any single type of data. 

A method for combining metabolomics and genomics data is described in Paper 7, demonstrating how 

metabolomics information could be coupled to genetic data revealing information about the biosynthetic 

genes responsible for the production of a specific metabolite. Other methods for combining metabolomics 

and transcriptomics data for the investigation of pathway enrichment have been published, demonstrating 

how correlation between the datasets can reveal new information (Eichner et al. 2014; Kaever et al. 2014). 

With the development of more advanced methods for analyzing combined data, the systems biology 

approach of holistic data analysis will become even more powerful, helping us to identify and explain 

changes and correlations in multi-’omics data. 

 

 

Sharing of data is more common in the other biological fields such as genomics, but we have seen a 

development towards more sharing of data in metabolomics as well. MetaboLights (Haug et al. 2013) 

allows for the sharing of data from metabolomics experiments. Libraries such as METLIN containing 

primarily human metabolites, as well as MassBank (Horai et al. 2010) are being made available online. In 

the GnPS project, described in section 1.7.1, all submitted data are, except under special circumstances, 

released publicly. This means that we are in the midst of a data revolution requiring the development of 

new analysis. The development in genetics will therefore probably be mirrored, possibly leading to the 

advent of new meta-metabolomics studies. But this also means that we have an opportunity to influence 

the best practices of these data repositories. This means that we should push for better documentation of 

data as well as standardized reporting formats (Griss et al. 2014). To be able to compare data obtained 

from different research groups all using their own methods and instruments, new methods for quality 

control also need to be established (X. Yang et al. 2014).  

Biosynthetic pathways of compounds are often published as detailed figures with a wealth of annotations. 

However, these figures are hidden away as image files in different publications, making it hard to gain an 

overview of the available data and information. An example of this is the biosynthesis of emericellin in A. 

nidulans. The complete biosynthesis has been elucidated and published in steps by several different 

research groups, but is split out over multiple publications (Chiang et al. 2010; M. M. L. Nielsen et al. 2011). 

This is a common occurrence as the characterization and identification of biosynthetic routes is extremely 

work intensive, and is often a joint undertaking performed by several different research groups. However, 

with more and more pathways being described, it is becoming a Sisyphean task to keep track of published 

pathways and corrections in the current form. One solution could be to require that all biosynthetic be 

deposited in a publically accessible databank such as WikiPathways (Kelder et al. 2012; “WikiPathways” 

n.d.), which would facilitate faster data analysis as the pathways could be mined and used in data analysis 

software such as Agilent MPP (Agilent Techologies n.d.) or other integrated ‘omics software workflows, and 

allow for easier dissemination of new information such as intermediates and enzyme reactions. 
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In the GnPS project large amounts of MS/MS data is being uploaded and released to the public. In its 

present state, not much metadata is provided for the sample, which of course is to encourage researchers 

to share their data, as it reduces the risk of other research groups “poaching” each other’s results. 

However, this means that we are missing out on a wealth of data related to the samples. In the GNPS 

project we are able to find compounds that have similar MS/MS spectra. Unfortunately we do not have 

access to any of the instrumental parameters from the experiment. Imagine if we were to have access to 

this information or metadata. They would allow us to perform a large range of meta-experiments. By 

mining the meta-data parameters from the LC method such as RT of compounds, separation type (RP, 

HILIC, etc.), and mobile phase could be used to develop better methods for RT prediction. Likewise, MS 

parameters could be mined to better predict fragmentation spectra. 

 

 

The topic of required reporting standards is an often discussed topic in the field of chemistry and especially 

in the more specialized fields such as analytical chemistry, metabolomics, and natural products. Analytical 

chemistry is highly codified, stemming from its use in highly regulated industries such as pharmaceuticals 

and food and feed production. Because of this, reporting of experimental parameters such as limit of 

detection, limit of quantification, integration parameters, signal-to-noise, and detailed instrument settings 

are a prerequisite for publication of research.  

In natural product chemistry the requirements for reportings on new compounds has naturally evolved 

over time with the development of new techniques and instruments. For newly described compounds, the 

accurate mass, UV-spectrum, optical rotation, and 1H-NMR and 13C-NMR spectra are often reported. The 

form in which these data are reported can, however, vary quite dramatically between publications. 

Examples of mass spectra reported from the Journal of Natural Products (Figure 26A-C), can be depicted in 

a way that does not allow the reader to identify the pseudomolecular ion, investigate the isotopic pattern 

of the compound, or observe any possible adducts.  
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In natural products chemistry, new compounds are routinely analyzed using MS to obtain the molecular 

formula of the compound, often only reporting the measured m/z value and the calculated mass error. 

Errors in assignment of the ions of interest caused by water loss or adduct formation are thus hard to 

address, both in review of the article and after is has been published, a problem further complicated by the 

fact that in natural product chemistry it is still not standard to publish MS/MS spectra of newly described 

compounds. With more advanced screening techniques such as the ones described in this thesis (Papers 1 

and 2), this type of information is essential for initial dereplication efforts and for expanding the databases. 

More advanced experiments such as MSn-type analysis are even more complex, but are still routinely 

reported in the form of a table of fragment ions. Instead, if the data was made available in standardized 

formats, it would be possible for other research groups to analyze the data and add it to a public database. 

In the Journal of Natural Products’ Author Guidelines(“Author guidelines for submission to the Journal of 

Natural Products” n.d.), an example of the reporting of NMR spectroscopic data is shown (Figure 26D). This 

tabulated form is clear and concise for the reader, but by not including the NMR-spectra themselves it is 
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not possible to actually review the data and analyze the data for oneself. Even in cases where spectra are 

published as well, it can be very difficult to actually interpret the data from a low-quality image, as it is not 

unusual to see scanned versions of printed spectra complete with hand drawn annotations. NMR spectra 

obtained from analysis of complex compounds can be very hard to assign without the use of specialized 

software, thereby necessitating access to the original data file obtained from the experiments. Access to 

the data file would again also allow for use of the data for training of structure elucidation purposes.  

 

 

Open-access journals have been defined as being available online “without financial, legal, or technical 

barriers other than those inseparable from gaining access to the internet itself” (Suber 2012). In practice 

this means that the individual scientific articles can be downloaded free-of-charge from the internet either 

at the same time as the article itself is published or after an embargo period. In the case where an embargo 

is imposed, so called green open access, the publishers are able to recoup any costs associated with the 

article by charging for access during the embargo period or for subscriptions to the journal. Scientific 

articles that are made open-access immediately are referred to as gold open-access, and often charge the 

authors a fee to cover expense related to publishing. In turn this means that the cost associated with 

accessing a scientific article is shifted from the reader to the writer. However, several scientific funding 

programs now provide earmarked funds for this purpose, exemplified by the EU Seventh Framework 

Programme (“Open Access in FP7” 2014). 

However, there are still major problems with the availability of raw experimental data as well as databases. 

Databases of SMs such as Antibase (Laatsch 2012) and MarinLit (“MarinLit” n.d.), are commercially 

available but are very expensive to acquire. The Dictionary of Natural Products(Press n.d.) hosts a free 

version containing a subset of the compounds available in the paid version and only allows for single 

compound look-up, requiring the paid version for batch look-up . Most of them require a subscription or 

release updated versions annually making them a recurring cost. The databases are the de facto standards 

in the field of natural product chemistry, and are therefore essential for any researcher working in the field. 

Even though the vast majority of the compounds in Antibase have been culled from published literature, 

the database does contain several unpublished compounds, such as the compound methyl pyrrole-2-

carboxylate isolated from a marine Actinomyces. Because of this there is a great incentive to keep using 

these databases, thus perpetuating the cycle and increasing the power of the publishers. There is no readily 

apparent solution to the issue of these closed databases. Closed databases also make it hard for the 

community to share information about errors in the database. As discussed in section 2.2.4, Antibase 

contains an erroneous entry for the compound fungisporin among others. However, because of the closed 

nature of the databases, there is no way to disseminate information about errors. These errors can be 

reported by to the creators of the database, but would probably not be corrected until a new paid version 

is released.  

Unlike scientific articles, it may be advantageous for a group of researchers not to publish their in-house 

databases, as it can give them an advantage over their competitors, for instance when performing 

dereplication of samples. One way to encourage researchers to publish these databases could be to 

establish funding specifically for database creation, or to require funded projects to publish data from 

experiments in specific open-source formats. 
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The focus of this thesis has been on investigation of SMs from microorganisms through development of 

new methods for analysis of LC-MS data as well as new experimental approaches for investigation of the 

biosynthesis of these metabolites. The methods developed, and the results obtained through their use are 

described in chapter 3, divided into the subjects: targeted analysis, biosynthesis studies using stable isotope 

labeling, and untargeted analysis.  

For targeted analysis, two methods were described, both based on screening of extracts from 

microorganisms using prepared libraries of known metabolites using LC-MS and LC-MS/MS data, 

respectively. Approaches for the study of biosynthesis of fungal metabolites using SIL compounds were 

described. Lastly, a metabolomics approach was developed to assess the biosynthetic potential of a 

collection of marine bacteria. Several of the developed data analysis methods and experimental 

approaches were applied in combination, leveraging the developed screening methods to speed up data 

analysis. 

Isotopic labeling for investigation of biosyntheses proved very effective as a means to investigate 

compounds of both known and unknown origin using LC-MS. Investigation of the PK yanuthone D lead to 

characterization of its biosynthesis, including the biosynthetic genes responsible for its production, and 

identification of several new analogs. The experimental approach developed was further generalized and 

used to successfully investigate PK biosynthesis in a range of different fungal genera. 

An approach combining SILAAs and molecular networking for the detection and structure elucidation of 

NRPs was developed and demonstrated using extracts from filamentous fungi. Results from the study 

resulted in the identification of several new NRPs, for which the biosynthesis could be linked to a single 

NRPS. This NRPS had previously been shown to produce other NRPs, demonstrating the usefulness of the 

combined approach in both detecting and identifying compounds.  

Finally, a metabolomics based approach was developed to characterize the biosynthetic potential of marine 

bacteria. The developed methodologies could be used to select organism for further studies, by prioritizing 

strains based on their expressed metabolites, but also by coupling these metabolites to their biosynthetic 

genes. 

Based on these results, the data analysis methods and methodologies developed during these studies have 

proven very effective and applicable to a wide range of microorganisms, not only restricted to fungi. The 

developed methods have revealed new insights into microbial SMs, and it is clear that further discoveries 

still wait. 
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Abstract In natural-product drug discovery, finding new
compounds is the main task, and thus fast dereplication of
known compounds is essential. This is usually performed by
manual liquid chromatography-ultraviolet (LC-UV) or visible
light-mass spectroscopy (Vis-MS) interpretation of detected
peaks, often assisted by automated identification of previously
identified compounds. We used a 15 min high-performance
liquid chromatography–diode array detection (UHPLC–
DAD)–high-resolution MS method (electrospray ionization
(ESI)+ or ESI−), followed by 10–60 s of automated data
analysis for up to 3000 relevant elemental compositions. By
overlaying automatically generated extracted-ion chromato-
grams from detected compounds on the base peak chromato-
gram, all major potentially novel peaks could be visualized.
Peaks corresponding to compounds available as reference
standards, previously identified compounds, and major con-
taminants from solvents, media, filters etc. were labeled to
differentiate these from compounds only identified by elemen-
tal composition. This enabled fast manual evaluation of both
known peaks and potential novel-compound peaks, by man-
ual verification of: the adduct pattern, UV–Vis, retention time
compared with log D, co-identified biosynthetic related com-
pounds, and elution order. System performance, including
adduct patterns, in-source fragmentation, and ion-cooler bias,

was investigated on reference standards, and the overall meth-
od was used on extracts of Aspergillus carbonarius and Pen-
icillium melanoconidium, revealing new nitrogen-containing
biomarkers for both species.

Keywords Metabolomics . Mycotoxin . NRPS . LC–MS .

UPLC . Polyketide . Nonribosomal peptide

Introduction

Fungi are an immense source of diverse natural products that
can be used as drugs, food and feed additives, and industrial
chemicals [1, 2]. Unfortunately fungi also have a negative
side, producing mycotoxins which include some of the most
immunotoxic, estrogenic, cytotoxic, and carcinogenic com-
pounds known [3, 4].

Fast and accurate dereplication of previously described
compounds is an essential and resource-saving aspect of
working with natural products [1, 5–9]. The alternative, iso-
lation and subsequent NMR-based structure elucidation, is
time consuming and costly [7], and is thus primarily used in
important cases, e.g. for compounds with known bioactivity.

Currently, dereplication is mainly performed by liquid
chromatography–mass spectrometry (LC–MS) analysis of ex-
tracts, followed by a search of all ions of interest performed by
entering the monoisotopic mass into appropriate databases.
For microbial compounds, the most comprehensive database
is AntiBase (Wiley-VCH, Weinheim, Germany) the 2012
version of which contains 41,000 recorded compounds. In
dereplication, obtaining an elemental composition is the most
efficient first step because it reduces the number of hits from a
database search 3–10-fold compared with searching for a
nominal mass [9–11]. For compounds below 400–600 Da,
high-resolution MS (HRMS) instruments can often provide
the elemental composition unambiguously if they have < 0.5–
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1.5 ppm mass accuracy. In addition, time of flight (TOF)-
based mass spectrometers can now provide an accurate iso-
tope pattern, enabling an even higher degree of certainty for
identification of elemental compositions [9, 12, 13].

An important extra detector is the UV–Vis diode array
detection (DAD) detector, which provides information on
the conjugated double-bond systems found in most secondary
metabolites. This can be used to confirm or reject candidates
from a database search [14, 15]. Finally, log D-based calcula-
tions can be used to predict the chromatographic elution order
of compounds of interest [9].

Dereplication of peaks in extracts from genera, including
Aspergillus, Penicillium, and Fusarium, which are known to
produce many different compounds often results in many hits
(1724, 1726, and 611 compounds, respectively, listed in
AntiBase). Because of this, identifying compounds on the
basis of UV–Vis, chromatographic retention, elution order,
and comparison to biosynthetically related compounds is a
slow (0.5–3 h per extract) and tedious task.

A solution could be to useMS–MS libraries [16] to identify
compounds automatically. This is the preferred strategy in
forensic science and toxicology, for which subjects commer-
cial compound libraries are available [17]. However, no
natural-product MS–MS libraries are currently available, be-
cause including an MS–MS spectrum for future dereplication
is unfortunately not a prerequisite for publishing new struc-
tures. Because of this, only a few percent of described com-
pounds from fungi are commercially available, and therefore
only small in-house databases are available [9, 18, 19].

Another complication is that the compound adduct pattern
and possible fragmentations need to be correctly interpreted,
because unnoticed loss of water or addition of sodium or
ammonium ions will invalidate a subsequent database search.
Unambiguous determination of the accurate mass of fungal
metabolites on the basis of adduct formation, dimers, and
mutably charged ions can be challenging [9], but software
including ACDs intelliXtract [19] and some instrument ven-
dor software packages have algorithms for this.

To reduce the analysis time for known fungal compounds
in complex extracts, we decided to test the TargetAnalysis
software from Bruker Daltonics (similar software available
from Waters, Thermo, Agilent, and Advanced Chemical De-
velopments). The program was originally developed for pes-
ticide [20] and forensic analysis [21]. TargetAnalysis can
screen an extract for 3000 compounds, on the basis of mass
accuracy, isotope fit, and retention time (RT), within 10–60 s,
depending on how small peaks are integrated. The screening
software was interfaced with our internal compound database,
containing approximately 7100 compounds [9], via an in-
house-built Excel application that generated automatic search
lists for TargetAnalysis, and made it possible to search for the
most likely adduct and/or fragment ions and to only include
taxonomically relevant compounds if wanted.

Using this approach, we are able to rapidly screen extracts
from several different fungi, and to annotate chromatographic
peaks corresponding to known compounds. The approach
makes it possible to easily identify chromatographic peaks
that do not correspond to known compounds, thereby en-
abling one to quickly ascertain which compounds might be
novel.

Materials and methods

Chemicals

Solvents were LC–MS grade, and all other chemicals were
analytical grade. All were from Sigma-Aldrich (Steinheim,
Germany) unless otherwise stated. Water was purified using
a Milli-Q system (Millipore, Bedford, MA). ESI–TOF tune
mix was purchased fromAgilent Technologies (Torrance, CA,
USA).

Reference standards of mycotoxins and microbial metabo-
lites (approximately 1500, 95 % of fungal origin) had been
collected over the last 30 years [9, 22, 23], either from com-
mercial sources, as gifts from other research groups, or from
our own projects. Approximately one-third of the standards
were purchased from Sigma-Aldrich, Axxora (Bingham, UK),
Cayman (Ann Arbor, MI), TebuBio (Le-Perray-en-Yvelines,
France), Biopure (Tulln, Austria), Calbiochem, (San Diego,
CA), and ICN (Irvine, CA). Standards were maintained dry at
−20 °C, and were compared with original UV–VIS data,
accurate mass, and relative RT from previous studies [22].

Culture extracts in the examples originated from three-
point cultures on solid media, incubated for seven days in
darkness at 25 °C, and extracted using a (3:2:1) (ethyl
acetate:dichloromethane:methanol) mixture [24]. Penicillium
melanoconidium IBT 30549 (IBT culture collection, author’s
address) was grown on CYA, and A. carbonarius IBT 31236
(ITEM5010) was grown on YES [24].

UHPLC–DAD–QTOFMS

A UHPCL–DAD–QTOF method was set up for screening,
with typical injection volumes of 0.1–2 μl extract. Separation
was performed on a Dionex Ultimate 3000 UHPLC system
(Thermo Scientific, Dionex, Sunnyvale, California, USA)
equipped with a 100×2.1 mm, 2.6 μm, Kinetex C18 column,
held at a temperature of 40 °C, and using a linear gradient
system composed of A: 20mmol L−1 formic acid in water, and
B: 20 mmol L−1 formic acid in acetonitrile. The flow was
0.4 ml min−1, 90%A graduating to 100%B in 10min, 100%
B 10–13 min, and 90 % A 13.1–15 min.

Time-of-flight detection was performed using a maXis 3G
QTOF orthogonal mass spectrometer (Bruker Daltonics, Bre-
men, Germany) operated at a resolving power of ~50000 full
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width at half maximum (FWHM). The instrument was
equipped with an orthogonal electrospray ionization source,
and mass spectra were recorded in the range m/z 100–1000 as
centroid spectra, with five scans per second. For calibration,
1 μl 10 mmol L−1 sodium formate was injected at the begin-
ning of each chromatographic run, using the divert valve (0.3–
0.4 min). Data files were calibrated post-run on the average
spectrum from this time segment, using the Bruker HPC
(high-precision calibration) algorithm.

For ESI+ the capillary voltage was maintained at 4200
V, the gas flow to the nebulizer was set to 2.4 bar, the
drying temperature was 220 °C, and the drying gas flow
was 12.0 L min−1. Transfer optics (ion-funnel energies,
quadrupole energy) were tuned on HT-2 toxin to minimize
fragmentation. For ESI− the settings were the same, ex-
cept that the capillary voltage was maintained at −2500 V.
Unless otherwise stated, ion-cooler settings were: transfer
time 50 μs, radio frequency (RF) 55 V peak-to-peak
(Vpp), and pre-pulse storage time 5 μs. After changing
the polarity, the mass spectrometer needed to equilibrate
the power supply temperature for 1 h to provide stable
mass accuracy.

Construction of the compound database

The databasewas constructed in ACDChemfolder (Advanced
Chemistry Development, Toronto, Canada) from:

1. reference standards (~1500) [9];
2. tentatively identified compounds (~500) [25–27];
3. compound peaks appearing in blank samples; and
4. all compounds in AntiBase2012 listed as coming

f rom: Asperg i l lus, Fusar ium, Tr ichoderma,
Penicillium, Chaetomium, Stachybotrys, Alternaria,
and Cladosporium.

A detailed description of the database construction can be
found in the Electronic Supplementary Material,
Section “Introduction”.

For each compound, the known or suspected major adducts
were registered as: [M+H]+, [M+Na]+, [M+NH4]

+, [M+K]+,
[M+H+CH3CN]

+, [M+Na+CH3CN]
+, [M+H−H2O]

+, [M+
H−2H2O]

+, [M+H−H2]
+ (sterols), [M+H−HCOOH]+, [M+

H−CH3COOH]
+, [M+2H]2+, [M+Na+H]2+ or [M+2Na]2+

or “No ionization” in ESI+, and in ESI−: [M−H]−, [M−H+
HCOOH]−, and [M+Cl]−.

Creating search lists for targetanalysis

A Microsoft Excel application was created for sorting the
Chemfolder database into a taxonomically relevant search-
list for TargetAnalysis (elemental composition and charge
state of desired adduct, and name of compound).

For labeling peaks in Bruker DataAnalysis 4.0 (DA), com-
pounds that were available as reference standards were labeled
“S-x” in front of the name. A description of the database
creation procedure can be found in the Electronic Supplementary
Material, Section “Introduction”.

Automated screening of fungal samples

TargetAnalysis 1.2 (Bruker Daltonics, Bremen, Germany),
was used to process data-files, with the following typical
settings:

A) retention time (if known) as ± 1.2 min as broad, 0.8 min
as medium, and 0.3 min as narrow range;

B) SigmaFit; 1000 (broad) (isotope fit not used), 40
(medium), and 20 (narrow); and

C) mass accuracy of the peak assessed at 4 ppm (broad),
2.5 ppm (medium), and 1.5 ppm (narrow).

Area cut-off was set to 3000 counts as default, but was
often adjusted for very concentrated or dilute samples.

The software DataAnalysis (DA) from Bruker Daltonics
was used for manual comparison of all extracted-ion chro-
matograms (EIC) generated by TargetAnalysis to the base
peak chromatograms (BPC), to identify non-detected major
peaks.

Results and discussion

The database

The database used for screening comprised 7100 compounds,
of which 1500 were available reference standards and 500
were tentatively identified compounds. The database was
handled in ACD Chemfolder, using a custom interface shown
in Fig. S1, Electronic Supplementary Material. The database
also contained legacy data from older HPLC–DAD [22],
HPLC–DAD–TOFMS [9, 23], and pKa data [9] if available.
Records from AntiBase needed proofreading, because we
found that approximately 2–3% of the structures had incorrect
elemental compositions. We also estimate that approximately
5 % of structures published annually are not indexed.

Because TargetAnalysis could not extract both targeted and
untargeted data and combine them, the fastest workflow was
to overlay all the identified compounds from TargetAnalysis
on the BPC chromatograms. All major non-identified peaks
could then easily be observed visually (as shown in Fig. 1),
dereplicated, and added to the database as a tentatively iden-
tified [9, 25] or unknown compound. Subsequently it was
clear that the signals from compounds originating from filters,
media blanks etc. were most efficiently handled by including
them in the database, so that they would be annotated and
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labeled by TargetAnalysis. This led to labeling peaks with the
reference standard number (Fig. 1), indicating whether a com-
pound was available as a reference standard for subsequent
reanalysis.

The results from the analysis of an extract from A. niger are
depicted in Fig. 1, illustrating the major disadvantage of the
method. It can be seen that several compounds have been
annotated to the same chromatographic peak, because numer-
ous compounds in the search list had the same elemental
composition and unknown RT. This is the major reason for
not including, e.g., all 41,000 compounds fromAntiBase2012
in the search list, because it contains up to 130 compounds
with the same elemental composition [9]. For each experiment
it is therefore important to use a search list from which highly
unlikely compounds, for example metabolites from other or-
ganisms, are restricted. If no compounds are found, reanalysis

can be conducted using a list of all elemental compositions in
the database of choice.

Handling adducts and in-source fragmentation

Early analytical work (results not shown), using atmospheric-
pressure chemical ionization (APCI)+, APCI−, ESI+ and ESI−

ionization for analysis of extracts from A. niger and
A. nidulans, did not reveal superior ionization by APCI over
ESI for any compound. Thus APCI was not further pursued,
although there must be some apolar and/or semi-volatile com-
pounds that are better ionized by APCI.

Adduct formation on the maXis 3G ion-source was sur-
prisingly different from that observed on our 10-years-older
Waters Micromass LCT (z-spray source) [9], even though
exactly the same eluents were used. In ESI+ mode we

Citric acid

S848-Pyranopyrrol A

Unknown A carbonarious no 6

TMC-256C1
S793-TMC-256A1

Unknown A carbonarious no 4

Asperxanthone
Rubrofusarin B
Flavasperone

S133-Dihydrofusarubin A
S710-Altenusin
Fonsecin

Fonsecin B

HCOONa infused
for mass calibration

Chloramphenicol
(internal standard)

Unknown A carbonarious no 2

S115-Ochratoxin A

Unknown A carbonarious no 3

Fonsecinone B
Aurasperone C

Nigerasperone B
Aurasperone B

1 2 3 4 5 6 7 8 9 10 Time [min]

Unidentified peak for
manual inspection

Tensyuic acid A
Tensyuic acid F

Graphical representation of results

Antibase

In house 
database Data formatted using

excel application
Export of compound
entries for analysis

Use formatted data 
for TargetAnalysis

Table containing screening results

Fig. 1 Example of workflow for screening of fungal extracts, in this case
an extract from Aspergillus niger. The database maintained at our center
contains 7100 records, comprising reference standards and their associ-
ated MS and UV data. For a specific analysis it is possible to export

relevant entries from the database and, via an in-house-built Excel appli-
cation, convert these to a format that can be imported into TargetAnalysis.
Analysis via TargetAnalysis then yields both a graphical interpretation of
the results and a table of the data
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observed many compounds using the maXis, e.g. chloram-
phenicol and several anthraquinones, which were not previ-
ously detected by the LCTsystem using ESI+. It remains to be
investigated whether this was caused by the grounded needle
(and thus a potential of −42000 V over the source), the ion-
funnel, or other changes in the source. Ammonium adducts
were also far less abundant on the maXis, and formation
seemed to be efficiently suppressed by the drying gas, leading
to spectra with abundant [M+H]+ and [M+Na]+, because
most compounds with high affinity for ammonium also have
a high affinity for sodium [9].

An interesting phenomenon observed with ESI+ was that in
the end of the gradient, when the acetonitrile content was close
to 100 %, ionization seemed to favor formation of [2M+Na]+

ions. For such analytes as the variecoxanthones and
emericellin (Fig. S2, Electronic Supplementary Material) the
[2M+Na]+ ion (m/z 839.3766) had a 5–10-fold-higher inten-
sity than [M+H]+. This was presumably caused by the high
acetonitrile content, which would have facilitated fast evapo-
ration, and acidic compounds may thus hold the residual Na+

by ion exchange before evaporation from the droplet.
Macrocyclic trichothecenes in extracts from Baccharis

megapotamica [28] revealed that the adduct pattern was
concentration-dependent, with the highest intensity [M+
Na]+ occurring at low concentrations of the analyte (Fig. S3,
Electronic Supplementary Material). This is probably the re-
sult of limited Na+, and thus [M+H]+ is most abundant when
Na+ is depleted. On full-scan instruments this phenomenon
can be regarded as adduct displacement, whereas it will be
observed as ion suppression on MS–MS instruments if only
one of [M+H]+ or [M+Na]+ is measured. For MS–MS char-
acterization of compounds that favor sodium adducts, we have
in several applications used ammonium formate as buffer to
depress sodium adduct formation. In one example we also
changed the sodium formate calibration solution to a polyeth-
ylene glycol mixture, and switched the glass water-solvent
bottle to plastic.

Ergosterol and related steroles were, surprisingly, detected
as [M+H−H2]

+ ions, whereas, e.g., cholesterol was detected
as [M+H−H2O]

+.
ESI− ionized acidic compounds (carboxylic acids, enoles

and phenols) well, because of easy disassociation of H+, and
also proved superior to ESI+ unless the target compounds also
contained amine or amide functionalities. Compounds with-
out acidic protons, that were observed as [M+HCOO]− on
both Waters LCT z-spray source instrumentation [9] and an
Agilent 6550 QTOF, were often not detected at all using the
maXis system.

Ion-source fragmentation was unavoidable for very fragile
molecules, but was mainly observed as water loss for com-
pounds that formed sodium adducts: jumping from [M+Na]+

to [M+H−H2O]
+, with m/z 39.9925, and occasionally also to

[M+H−2H2O]
+, with m/z 58.0031. Thus the sodium adducts

could be an advantage when screening fragile compounds.
Cases where [M+H]+ was not observed were much more
predominant on the maXis than on the Waters LCT (z-spray
source). In-source fragmentation could be minimized by low-
ering the potential of the quadrupole and between the funnels,
but could not be abolished because this would lead to >10 %
loss of sensitivity. We therefore included [M+H−H2O]

+ and
[M+H−2H2O]

+ in the database of compounds losing H2O
during ESI+ (often an alcohol group with α-carbon was avail-
able for elimination via double-bond formation) [9].

The screening process was also performed, using similar
samples, on an Agilent 1290 UHPLC–6550 QTOF system,
using Agilent Masshunter’s Find By Formula option. This
function could handle different adducts and simple losses,
for example water loss, theoretically ensuring that no com-
pounds were overlooked. This, however, also resulted in
many more false positives, because all peaks are believed to
correspond to, e.g., an [M+H−H2O]

+ ion, even if the peaks
also fit the [M+H]+ of another compound. ACD’s MS Work-
book Suite intelliXtract function (v. 12) was also tested. The
software could assign the whole adduct, multimer and frag-
ment pattern for a peak, but required the presence of a [M+
H]+ or [M−H]− ion. This software was approximately 50–100
times more time-consuming than Brukers TargetAnalysis for a
list of 3000 compounds, but does work for smaller databases
[19].

Molecules with masses above 1000 Da, which include
many NRPs (e.g. lipopeptides and peptaibols), all produced
doubly and often also triply charged ions, thus appearing in
the scan window of m/z 100–1000. The only two exceptions
were special cyclic peptides, for example cereulide and
valinomycin, which are very strong K+-ionophores and there-
fore only produced [M+Na]+ and [M+K]+ ions [29].

The adduct formation behavior of some compounds can
however be hard to predict. This was observed for an extract
of Phoma levellei [30] (incorrectly identified asCladosporium
uredinicola), for which the ESI− spectrum of 3-Hydroxy-2,5-
dimethylphenyl 3-[(2,4-Dihydroxy-3,6-dimethyl-
benzoyl)oxy]-6-hydroxy-2,4-dimethylbenzoate (Fig. 2) indi-
cated the presence of several co-eluting compounds.
Deconvolution of the ions revealed that ions labeled A–D
came from the same compound. Ion C corresponded to [M−
H]−, A and B were fragments, and D was a composite ion of
[M−H]− and one fragment-ion A.

Ion-cooler bias

The maXis 3G is equipped with a hexapole ion-cooler, which
collects the ions, reduces their kinetic energy, and ejects them
into the orthogonal accelerator in the TOF mass analyzer. Our
results reveal that the ion cooler settings have a significant
effect on the intensities of the ions in the measured mass range
(Fig. S4, Electronic Supplementary Material).
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Three variables were important:

1. the ion-cooler radio frequency (RF), which sets the volt-
age for the ion-cooler;

2. the transfer time, which is the time window wherein ions
are transmitted into the TOF; and

3. the pre-pulse storage time, which will apply a low mass
limit and is a delay between the transfer time and the TOF
pulser. Higher values favored the transfer of higher m/z
ions, but also discriminated low m/z ions.

Figure S4 (Electronic Supplementary Material) shows se-
lected results from analysis using seven different transfer
times. The results revealed that the ion-cooler “window” for
lowmass compounds is narrow, and the settings used to obtain
an optimum signal for lower m/z ions resulted in low intensi-
ties of higher m/z ions, and vice versa. For analytes with m/z
lower than 100 (data not shown), the optimum settings exces-
sively discriminated the signal intensity of higher m/z values.
At an ion cooler RF value of 30 Vpp, the signal of m/z 91 was
highly suppressed at all transfer times.

Our in-house database contained 7100 compounds with a
[M+H]+ in the range m/z 100–1000. Of these, 14 % will have
a [M+H]+<226m/z and will reach only 30 % of their maximum
intensity using standard screening settings. For ions smaller than
m/z 130 the signal suppression will be extensive, but luckily less
than 1 % of the compounds in our in-house database and
AntiBase have masses this low [9]. If a target compound was
in themass range belowm/z130, the optimum ion-cooler settings
resulted in an intensity of less than 10 % for compounds with an
m/z>226, and of only 5% of the signal from compounds with an
m/z>600. It is important to be aware of this signal discrimination
in some mass ranges under different ion-cooler settings.

Effect of detector overload on isotope pattern and mass
accuracy

Because fungal extracts contain many different compounds
with varying concentrations and ionization efficiencies,

screening of extracts routinely resulted in analysis of
compounds with intensities higher than 2–3×106 counts,
which overloaded the detector of the maXis QTOF (this
problem was much more severe on older TOF instru-
ments [9]). This caused an m/z shift to higher values,
which in the worst case resulted in an increase of up to
3–4 ppm. This also led to a distorted isotopic pattern,
where the A+1, A+2 isotopomers were too intense rel-
ative to the A isotopomer. To avoid false negative results
in TargetAnalysis, it was thus crucial to set a wide range
(5 ppm) on the isotope fit and mass accuracy. However,
these high-intensity peaks could be easily spotted by the
peak height in the results table, after which data for the
chromatographic peak could be examined from scans
where the detector was not overloaded. The isotope fit
was highly dependent on a weekly detector tuning, and
the medium and narrow-range settings had to be in-
creased twofold when the detector had not been tuned
within the week.

Aggressive dereplication reveals new metabolites from highly
toxic spoilage fungus Aspergillus carbonarius

A. carbonarius is a physiologically very well investigated
species because of its contamination of grapes, and the sub-
sequent contamination of wine and raisins, with ochratoxin A
[31]. However, other compounds from the fungus have
attracted little attention. As well as this toxin, it is capable of
producing carbonarones and pestalamideA (former tensidol B)
[32], pyranonigrins, carbonarins, organic acids, and
aurasperones [26].

Extracts from A. carbonarius cultivated on YES agar were
screened for 3000 compounds:

1. compounds from Aspergillus (with an emphasis on
Aspergillus section Nigri compounds ) and Penicillium;

2. all standards available in our collection; and
3. all unidentified peaks registered in our database.

With a high area cut-off of 10,000 counts, 66 peaks were
integrated (Table 1); however, 16 of these compounds were
from peaks assigned to several compounds (up to five) and
thus only 45 true peaks were annotated. The major peaks in
the sample are displayed in Fig. 3.

Citric acid was detected as the sodium adduct and as two
peaks because of poor retention on the column, which oc-
curred because the LC–MS method is not well suited to such
polar compounds. Kojic acid was incorrectly identified as
another compound with the same elemental composition,
because neither the RT nor the characteristic UV spectrum
matched a reference standard.

Three interesting nitrogen-containing biomarkers for this
species, with elemental compositions C11H11NO5 and

a

b

c

d

Fig. 2 ESI− spectrum of 3-Hydroxy-2,5-dimethylphenyl 3-[(2,4-Dihy-
droxy-3,6-dimethylbenzoyl)oxy]-6-hydroxy-2,4-dimethylbenzoate,
showing M−H]− (C) and fragment ions aand b. d is a composite of ions a
and c
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Table 1 Results from the aggressive dereplication of an extract of Aspergillus carbonarius grown on YES agar

Peak Class Comment Compound name Molecular
formula

Err
(ppm)

mSigma Area
(arbitrary units)

RT
measured
(min)

RT
expected
(min)

A +++ OK double peak caused
by injection

Citric acid C6H7NaO7 0.1 8 351577 0.609 0.61

B +++ OK double peak caused
by injection

Citric acid C6H7NaO7 0.1 3 256614 0.719 0.72

C +++ BL-UK Cla no 60 pos. blank C10H13N5O4 0.9 7 22958 0.722 0.72

D + Wrong, UVand RT do
not fit

S96-Kojic acid C6H6O4 0.9 9 14965 0.791 1.2

E +++ BL-UK Cla no 72 pos. blank C10H16N2O2 0.2 11 15379 1.807 1.75

F +++ BL-UK Cla no 95 pos. blank C7H14N2O3 1.2 6 15141 2.243 2.1

G +++ OK S848-Pyranonigrin A C10H9N1O5 0.9 19 5428853 2.475 2.36

H +++ UK in A. ni 2 C10H9N1O4 0.4 17 24641 2.756 2.906

I +++ Interesting new biomarker UK A car no 6 C11H11N1O5 0.6 17 5203919 2.756 2.751

J +++ UK in A. ni 19 C18H37NaO10 0.2 10 13945 2.892 2.844

K +++ BL-UK Cla no 11 pos. blank C11H18N2O2 1.3 10 29484 2.912 3.09

L +++ UK in A. ni 2 C10H9N1O4 1.2 1 90082 2.962 2.906

M +++ BL-UK Cla no 12 pos. blank C11H18N2O2 0.2 5 44764 3.14 3.09

N +++ Interesting new biomarker UK A car no 4 C18H21N1O2 0.1 16 350827 3.295 3.288

O +++ UK in A. ni 16 C22H45NaO12 0.6 18 13611 3.299 3.25

P + No confused by the A
isomer

Tensyuic acid A C11H16O6 0.2 7 96858 3.344 0

P + Presumably OK Tensyuic acid F C11H16O6 0.2 7 96858 3.344 0

Q ++ UK A car no 4 C18H21N1O2 0.1 15 48785 3.592 3.288

Q ++ UK A car no 1 C18H21N1O2 0.1 15 48785 3.592 3.923

R +++ UK in A. ni 5 C21H44O11 0.3 14 10039 3.63 3.581

S + OK but may be the C
isomer

Pyranonigrin B C11H11N1O6 0.5 9 55596 3.76 0

S + OK but may be the B isomer Pyranonigrin C C11H11N1O6 0.5 9 55596 3.76 0

T +++ UK in A. ni 7 C23H47NaO12 0.4 37 17040 3.767 3.72

U ++ UK A car no 4 C18H21N1O2 0.7 15 5265217 3.944 3.288

U +++ UK A car no 1 C18H21N1O2 0.7 15 5265217 3.944 3.923

V + Pyranonigrin D C11H9N1O5 0.2 9 17070 3.946 0

W +++ Internal standard Chloramphenicol IS C11H12Cl2N2O5 0.2 31 326301 4.219 4.12

X +++ No confused by Fonsecin S133-Dihydrofusarubin A C15H14O6 1.1 25 6829770 4.47 4.75

X ++ Wrong, UVand RT do
not fit

S710-Altenusin C15H14O6 1.1 25 6829770 4.47 4.908

X +++ OK Fonsecin C15H14O6 1.1 25 6829770 4.47 4.45

Y + OK but one must be a
new isomer

Tensyuic acid B C12H18O6 1.1 24 21361 4.554 0

Z + OK but one must be a
new isomer

Tensyuic acid B C12H18O6 1 22 10189 4.681 0

AA +++ OK S133-Dihydrofusarubin A C15H14O6 1 46 10340 5.031 4.75

AA +++ Wrong, UVand RT do
not fit

S710-Altenusin C15H14O6 1 46 10340 5.031 4.908

AB ++ No confused by
Dihydrofusarubin A

Fonsecin C15H14O6 1 46 10340 5.031 4.45

AC ++ Aurasperone C C31H28O12 0.5 37 15414 5.249 5.94

AD +++ No confused by TMC-256A1 TMC-256C1 C15H12O5 0.6 18 349791 5.437 5.67

AD +++ OK S793-TMC-256A1 C15H12O5 0.6 18 349791 5.437 5.37

AE ++ Aurasperone C C31H28O12 0.4 41 19423 5.494 5.94

AF +++ OK TMC-256C1 C15H12O5 0.3 7 65429 5.641 5.67

AF +++ No confused by TMC-256C1 S793-TMC-256A1 C15H12O5 0.3 7 65429 5.641 5.37
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C18H21NO2 (two isomers), were detected (unknown 1, 4, and
6), and these were not detected for other black Aspergilli
(results not shown). Ochratoxin A, which was produced in
very high amounts, is an interesting case because its precur-
sors, ochratoxin α and B, were not detected even in trace
amounts, indicating that the biosynthetic enzymes are very
efficient.

Several closely eluting same-elemental-composition
groups were observed and needed manual verification. For
example, the rationale for identifying peak AA, as seen in
Table 1, was:

1. Altenusin C15H14O6 was from Alternaria and thus taxo-
nomically unlikely. RT was within the limits where a
reference standard should be co-analyzed in the sequence
for verification. Inspection of the UV–Vis data led to easy
elimination, and so did the presence of a perfectly co-
eluting [M+Na]+ ion with M=C15H16O7.

2. Fonsecin could be eliminated by the same arguments.
3. Finally, dihydrofusarubin A was identified as the correct

compound, on the basis of its perfectly matching UV–Vis
spectrum and its [M+H−H2O]

+ and [M+Na]+ ions.
However, dihydrofusarubin Awas only detected because

Table 1 (continued)

Peak Class Comment Compound name Molecular
formula

Err
(ppm)

mSigma Area
(arbitrary units)

RT
measured
(min)

RT
expected
(min)

AG +++ Fonsecin B C16H16O6 0.8 30 1055089 5.729 5.66

AH + Wrong water-loss ion of
C isomer

Niasperone C C31H26O11 1 9 76397 6.08 0

AH +++ Wrong water-loss ion of
C isomer

Aurasperone F C31H26O11 1 9 76397 6.08 6.303

AH +++ Aurasperone C C31H28O12 1.1 23 3247597 6.081 5.94

AI ++ UK in A. ni 23 C15H33N17O6 0.2 62 39935 6.344 6.23

AJ ++ UK in A. ni 20 C28H36N4O5 0.9 25 49747 6.397 6.043

AK + OK but may be a different
isomer

Niasperone C C31H26O11 0.8 11 115620 6.434 0

AK +++ OK but may be a different
isomer

Aurasperone F C31H26O11 0.8 11 115620 6.434 6.303

AL +++ Wrong water-loss ion of B
isomer

Aurasperone E C32H28O11 0.9 23 186091 6.728 6.62

AL ++ Wrong water loss ion of B
isomer

Aurasperone E-isomer C32H28O11 0.9 23 186091 6.728 7.104

AL ++ Wrong water loss ion of B
isomer

Fonsecinone B C32H28O11 0.9 23 186091 6.728 7.472

AL + OK but may be a different
isomer

Niasperone B C32H30O12 1.3 22 6659679 6.728 0

AL +++ OK but may be a different
isomer

Aurasperone B C32H30O12 1.3 22 6659679 6.728 6.605

AM +++ OK S115-Ochratoxin A C20H18Cl1N1O6 0.7 50 693721 6.75 6.62

AN + OK but may be a different
isomer

Niasperone C C31H26O11 1.5 9 62334 6.779 0

AN ++ OK but may be a different
isomer

Aurasperone F C31H26O11 1.5 9 62334 6.779 6.303

AO ++ No rubrofusarin Flavasperone C16H14O5 0.7 20 146028 6.923 7.2

AO +++ OK Rubrofusarin B C16H14O5 0.7 20 146028 6.923 7.029

AP +++ OK Flavasperone C16H14O5 0.6 14 4285585 7.145 7.2

AP ++ No flavasperone Rubrofusarin B C16H14O5 0.6 14 4285585 7.145 7.029

AQ ++ OK but may be a different
isomer

Aurasperone E C32H28O11 0.2 35 300587 7.221 6.62

AQ +++ OK but may be a different
isomer

Aurasperone E-isomer C32H28O11 0.2 35 300587 7.221 7.104

AQ +++ OK but may be a different
isomer

Fonsecinone B C32H28O11 0.2 35 300587 7.221 7.472

AR +++ OK but may be a different
isomer

Fonsecinone B C32H28O11 0.7 15 156648 7.588 7.472

AS +++ S598-Linoleic acid C18H32O2 0.6 11 104992 10.23 10.17

mSigma, fit of isotope pattern (see text for more details); RT, retention time
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it was registered in the database in the form [M+H−
H2O]

+.

The AL peak (Table 1) must be niasperone B or
aurasperone B, but could not be differentiated without a
reference standard. In that case, water-loss ions led to the peak
being wrongly assigned to aurasperone E and one of its
isomers, and to fonsecinone B.

The pair flavasperone and rubrofusarin B should both be
produced when the dimeric naphtho-γ-pyrones are produced,
and a log D calculation revealed that rubrofusarin B should
elute first.

Differentiating the tensyuic acids was more ambiguous,
because the reported elution pattern from reversed phase is
F, A, B, C, D, and E [33], with F and B having the same
elemental composition, and A and B almost co-eluting. Man-
ual inspection of the screening results was therefore necessary
to attempt to distinguish between the isomers. This revealed
that the first-eluting tensyuic acid was most probably the F
isomer (1.3 min to the B isomer). However, the B isomer
could not be unambiguously assigned as one of the two peaks
Y or Z, because only one compound with C12H18O6 is
described.

In conclusion, the method very quickly identified
suspected compounds from A. carbonarius. Besides this, a
novel group of nitrogen-containing compounds, and tensyuic
acids and numerous other compounds from related species,

were detected. This indicated that, from a toxicological per-
spective, more compounds needed to be considered. A prob-
lem is that many of the closely related niasperones,
aurasperones, and fonsecinones have identical elemental
compositions and UV–Vis spectra and are very difficult to
differentiate. To enable differentiation, we are currently
considering an MS–HRMS library approach, as done for
a toxic substance library [17]. However, TargetAnalysis
does not presently have the capability to handle MS–
HRMS data or pseudo-MS–MS data including MS-E,
MS-All and/or All-Ions [21]. A further example of aggres-
sive dereplication applied to Penicillium melanoconidium
can be found in Electronic Supplementary Material
Section “Materials and methods” and Tables S1 and S2.
Here, several families of compounds not previously seen in
the species were detected (Fig. S5, Electronic Supplementary
Material). This included the highly toxic verrucosidins,
and a presumed novel dideoxyverrucosidin. Chrysogine,
a compound often detected in cereal-infecting Fusaria,
was also detected, indicating that this may be an impor-
tant virulence factor. The example shows how the ag-
gressive dereplication procedure was used to detect
known compounds not previously detected from the fun-
gus. The results illustrate that all major peaks in the
chromatogram were overlaid with an EIC, proving the
effectiveness of the procedure and also indicating that it
is a chemically very well characterized species.

S96-Kojic acid

S819-Galiellalactone

Citric acid

S848-Pyranopyrrol A

Unknown
A. carbonarius no 6

Tensyuic
acid B

S793-TMC-256A1
TMC-256C1

S598-Linoleic acid

Unknown
A. carbonarius no 4
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A. carbonarius no 1
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Asperxanthone

Rubrofusarin BS133-Dihydrofusarubin A
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Fonsecin

Fonsecin B
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A. niger 12

S115-Ochratoxin A

Unknown
A. carbonarius no 3

Unknown
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Aurasperone C
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Nigerasperone B

Unknown
A. carbonarius no 7
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Fig. 3 Analyzed fungal extract from A. carbonarius cultivated on YES media. The chromatogram is overlaid with EIC from detected compounds,
facilitating easy dereplication. The chromatogram has been scaled to better illustrate the smaller peaks
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Conclusion

Screening fungal secondary metabolites on the basis of ele-
mental composition and lists restricted to the same genus and
related fungi was proved to be an efficient way to quickly
investigate fungal extracts. By overlaying detected peaks and
BPC chromatograms, the approach gives a visual overview of
a sample and indicates whether it is a previously
uninvestigated species by establishing how many peaks are
unlabeled. This approach can also be used on other vendor
instrumentations using analogous software packages, for ex-
ample: TargetLynx (Waters), TraceFinder (Thermo),
MassHunter Find By Formula (Agilent), and ACD
intelliXtract (Advanced Chemical Developments).

Labeling of co-identified biosynthetic related compounds
could also be directly identified from the peak, making it
possible to quickly assess the elution order of such compounds.

However, adduct formation and simple fragmentations are
still important challenges to address when working with
analytes that do not only form [M+H]+ or [M−H]−. Using a
database approach and learning from the spectrometric behav-
ior of reference standards can minimize problems with false-
negative results. More efficient adduct-analysis software will
further improve this setup [9, 21].

A further improvement to be introduced is use of MS–MS
[17, 19, 34] and/or pseudo-MS–MS (MS-All, MS-E, All Ions)
[21] to obtain compound-specific fragment ions for confirma-
tion of reference standards, reducing the need to run many
thousands of reference standards on a daily basis. The addition
of qualifier and/or fragment ions from libraries and literature
data will help to minimize the number of wrongly annotated
ions with the same elemental composition, which is the main
disadvantage of this method.
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Section 1. Construction of compound database 

The database was constructed in ACD Chemfolder (Advanced Chemistry Development, Toronto, Canada) 

from: i) our in-house collection of reference standards (~1500 compounds) [1]; ii) compounds tentatively 

identified during the last 30 years (~500 compounds) [2-5]; iii) compound-peaks appearing in blank samples; 

iv) putative biosynthetic intermediates mainly from A. niger and A. nidulans and PKS pathways; and v) all 

compounds in AntiBase2012 which were listed as coming from: Aspergillus, Fusarium, Trichoderma, 

Penicilium, Chaetomium, Stachybotrys, Alternaria and Cladosporium, as well as their teleomorphic genera. 

Records of compounds reported from studies where the fungal culture was considered incorrectly identified 

were corrected, before addition to the compound database. When obtained from our own data or the 

literature, the full UV/VIS spectrum was linked to the record. 

Many compounds were further registered to sub-genus level / species group level based on taxonomic data 

and chemotaxonomic studies [4-10]. In Aspergillus these were: A. niger complex; A. nidulans complex; and 

A. fumigatus complex. In Fusarium these were: Arthrosporiella (F. incarnatum); Discolor (F. graminearum); 

Elegans (F. oxysporum); Eupionnotes (F. merismoides); Gibbosum (F. equiseti); Lateritium (F. lateritium); 

Liseola (F. verticillioides); Martiella (F. solani); Roseum (F. avenaceum); and Sporotrichiella (F. poae).  

From our work on metabolite profiling genera such as Aspergillus, Fusarium, Penicillium, Alternaria and 

Cladosporium, approximately 400 unknown compounds were added to the database as “unknowns” and 

registered via their elemental composition and from which species the compounds were detected. 

For each compound the known or suspected major adducts, based on analysis of reference standards, were 

listed as: [M+H]+, [M+Na]+, [M+NH4]+, [M+K]+, [M+H+CH3CN]+, [M+Na+CH3CN]+, [M+H-H2O]+, 

[M+H-2H2O]+, [M+H-H2]+(sterols), [M+H-HCOOH]+, [M+H-CH3COOH]+, [M+2H]2+, [M+Na+H]2+ or 

[M+2Na]2+ or “No ionization” in ESI+, and in ESI-: [M-H]-, [M-H+HCOOH]-, and [M+Cl]-. 
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Creating search lists for Target Analysis (TA) 

A Microsoft Excel application was created so the whole Chemfolder data-base (without structures) could be 

copied into one of the Excel sheets, and then sorted to include one or more genera, subspecies, known 

impurities, or all compounds with unknown retention time (RT). These data were transferred to a data 

search-list for TA containing: RT (if known), elemental composition and charge state of desired adduct, and 

name of compound. 

For labelling of peaks in Bruker DataAnalysis 4.0 (DA) (Bruker Daltonics, Bremen, Germany), compounds 

that were available as reference standards were labelled “S-x“ in front of the name where x is the reference 

standard number in our database. Compounds observed in sample blanks, were labelled “Bl-“ in front of the 

name. Finally, compounds not tentatively identified were labelled as “Unknown”-”producing species”-

number in the species, e.g. “Unknown-Aspergillus nidulans No. 3”. 

Automated screening of fungal samples 

TA 1.2 (Bruker Daltonics, Bremen, Germany), was used to process data-files with the following typical 

parameters: A) retention time (if known) as ± 1.2 min (broad range), 0.8 min (medium range) and 0.3 min 

(narrow range); B) SigmaFit; broad 1000 (isotope fit not used), 40 as medium, and 20 as narrow range; and 

C) mass accuracy of the peak assessed at 4 ppm (broad range), 2.5 ppm (medium range), and 1.5 ppm 

(narrow range). Area cut off was set to 3000 counts as default, but was often adjusted in case of very 

concentrated or dilute samples. 

The Software DA was used for manual comparison of all the extracted-ion-chromatograms (EIC), generated 

by TA, to the BPC chromatograms in order to identify non-detected major peaks. 
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Section 2. Aggressive dereplication (AD) of a Penicillium melanoconidium extract detects nearly all 

known compounds 

P. melanoconidium has formerly been reported to produce penitrem A, sclerotigenin, roquefortine C, 

meleagrin, oxaline, penicillic acid, verrucosidin and xanthomegnin, based on HPLC-DAD [40]. 

The extract was examined by the AD method searching for a subset of ~1700 Penicillium compounds and 

additional 700 compounds, and was found to produce a large number of secondary metabolites, see the 

figure (Fig. S5, Tables S1 and S2).  

Previously detected metabolites along with additional families of secondary metabolites are listed in the 

Table S1 and the full search results list can be seen in the Table S2. Twenty five secondary metabolites could 

be assigned with a high degree of confidence. Chrysogine, 6-oxopiperidine-2-carboxylic acid, and 8-

(methoxycarbonyl)-1-hydroxy-9-oxo-9H-xanthene-3-carboxylic acid were detected for the first time in P. 

melanoconidium, but been found in related Penicillium species [41;42]. Eight members of the roquefortine 

biosynthetic family (end products oxalines) were found, and also further confirmed by UV spectra and 

retention times. Concerning the penitrems, taxonomic and biosynthetic considerations, in connection with 

polarity and literature data, were used to verify the presence of penitrem A-F. Furthermore the UV spectrum 

and RT was the same for the authentic standard of penitrem A. Isomeric compounds of penitrem A such as 

pennigritrem and the acid hydrolysis products thomitrem A [43] could be excluded based on UV spectra 

different from that of penitrem A or because they were minor compounds (pennigritrem) as compared to the 

main product penitrem A [44;45]. PF1101A and B had the penitrem A UV spectrum which is different from 

the shearinine and janthitrems [46] and penitrems  molecules were therefore much more likely candidates. 

Biosynthetic and taxonomic considerations also dictate that it must be the penitrems that are produced by P. 

melanoconidium.  

The polyketides penicillic acid and verrucosidins were also found in P. melanoconidium. Verrucosidin had 

the same molecular formula as atranone A (C24H32O6) [12], but the UV spectrum easily verified the right 

one. The finding of normethylverrucosidin and deoxyverrucosidin [47] also confirms that the verrucosidin 
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biosynthetic family was produced by P. melanoconidium, which is likely as the closely related P. polonicum 

and P. aurantiogriseum also produce these [40]. A metabolite with the formula C24H32O4 was annotated as 6-

farnesyl-5,7-dihydroxcy-4-methylphthalide. However this metabolite has a mycophenolic acid chromophore, 

which has never been found in P. melanoconidium. The formula could be hypothesized to be a 

“dideoxyverrucosidin”, but this has to be confirmed.  

Primary metabolites were few, and included: choline-O-sulfate, linoleic acid, phenylalanine and 1,2-

dilininoyl-n-glycero-3-phosphocholine, which could be annotated based on reference standards. In 

conclusion several new families of compounds were which are highly toxic, especially the verrucosidins, but 

also chrysogine a compound often detected in cereal infecting fungi, e.g. Fusarium. Such information is 

valuable for future comparative genomics for revealing biosynthetic pathways. 
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Fig. S1. Compound registration in the compound database 
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Fig. S2. Chemical structures of compounds mentioned in the text. The structures are shown in alphabetical 
order in columns from left to right. Only one example for each biosynthetic family is depicted 
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Fig. S3. ESI+ spectrum of roridin A in crude extracts of Baccharis megapotamica spiked with (A) 375, (B) 
94 and (C) 1.4 mg/kg roridin A 
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Fig. S4. Transfer efficiency (%) of selected ions from m/z 118-922 (relative to maximum) 
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Fig. S5. Analyzed fungal extract from Penicillium melanoconidium (IBT 30549) cultivated on CYA media. The  
chromatogram is overlaid with EICs from detected compounds facilitating easy dereplication. The 
chromatogram has been scaled to better illustrate the presence of smaller peaks 
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Table S1. UHPLC-HRMS detection of secondary metabolites produced by Penicillium melanoconidium IBT 
30549 grown on CYA agar for 7 days at 25°C in darkness 

Biosynthetic family Name of metabolite Formula Retention time (min.) 
Chrysogines Chrysogine C10H10N2O2 2.337 

Sclerotigenins Sclerotigenin C16H11N3O2 3.876 

Roquefortines 

Roquefortine C C22H23N5O2 4.738 
Roquefortine F C23H25N5O3 5.038 

E-3-H-Imidazol-4-yl-
methylene-6-1H-indole-

3-yl-methyl-2,5-
piperazinedione 

C17H15N5O2 1.038 

Glandicolin A C22H21N5O3 4.092 
Glandicolin B C22H21N5O4 4.008 

Meleagrin C23H23N5O4 4.291 
Epi-Meleagrin) C23H23N5O4 4.456 
Epi-Neoxaline C23H25N5O4 4.028 

Oxaline C24H25N5O4 4.560 

Penitrems 

Penitrem A C37H44ClNO6 8.563 
Penitrem B C37H45NO5 8.217 
Penitrem C C37H44ClNO4 9.876 
Penitrem D C37H45NO4 7.980 
Penitrem E C37H45NO6 6.613 
Penitrem F C37H44ClNO5 10.065 

Thomitrem A C37H44ClNO6 8.226 
PF1101A C37H47NO4 6.391 

(PF1101A-isomer) C37H47NO4 8.194 
PF1101B C37H47NO6 6.309 

Penicillic acids Penicillic acid C8H10O4 2.795 

Verrucosidins [61] 

Verrucosidin C24H32O6 7.752 
Normethylverrucosidin C23H30O6 7.245 

Deoxyverrucosidin C24H32O5 8.197 
Dideoxyverrucosidin C24H32O4 9.494 

Unknown 

8-(Methoxycarbonyl)-1-
hydroxy-9-oxo-9H-

xanthene-3-carboxylic 
acid 

C16H10O7 2.118 

Unknown Toluquinol C7H8O2 2.794 

Primary metabolites 

Cholin-O-sulfate C5H13NO4S 0.561 
Phenylalanine C9H11NO2 0.757 

1,2-dilininoyl-n-glycero-
3-phosphocholine C44H80NO8P 10.237 

Linoleic acid C18H32O2 10.265 
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Table S2. Table S2 – AD of extract of P. melanoconidium grown on CYA agar (crude results) 

Pea
k 

Cla
ss Comment Compound Name Mol.Formula 

Err 
pp
m 

mSig
ma Area 

RT 
meassure
d 

RT 
expecte
d 

A +++ 
 

 Unknown A nidulans no 37 Diana C6H13NaO6 0.9 9 240479 0.54 0.64 
B +++ 

 
 BL-UK Cla no 32 possible blank C7H13NO2 0.4 19 19325 0.558 0.57 

C + 
 

 CholineOsulfate 
C5H13NO4S
1 0.1 25 12403 0.561 0.00 

D +++ 
 

 BL-UK Cla no 60  possible blank 
C10H13N5O
4 0.4 32 14268 0.577 0.72 

E + 
 

 S510-LPhenylalanin C9H11NO2 2.4 2 53072 0.757   
E ++ 

 
 BL-UK Cla no 54  possible blank C9H11NO2 2.4 2 53072 0.757 0.85 

F + 

Detected for the first 
time in P. 
melanoconidium  6Oxopiperidine2carboxylic acid C6H9NO3 1.2 12 16102 0.834   

G + 
 

 
E31HImidazol4ylmethylen61Hindol3ylmethyl2.5
piperazindiol 

C17H15N5O
2 1 50 17266 1.038   

G + 
 

 
E31HImidazol4ylmethylene61Hindole3ylmethyl2
.5piperazinediol 

C17H15N5O
2 1 50 17266 1.038   

H +++ 
 

 BL-UK Cla no 95  possible blank C7H14N2O3 1.6 17 11833 2.084 2.10 
H +++ 

 
 BL-UK Cla no 94 possible blank C7H14N2O3 1.6 17 11833 2.084 1.91 

I + 

Detected for the first 
time in P. 
melanoconidium 

 
8Methoxycarbonyl1hydroxy9oxo9Hxanthene3car
boxylic acid  C16H10O7 1.7 32 19042 2.118   

J +++ 

Detected for the first 
time in P. 
melanoconidium  S320-Chrysogine 

C10H10N2O
2 1.5 28 10415 2.337 2.56 

K + 
No, confused with 
toloquinol  2.3Dihydroxy toluene C7H8O2 2.3 3 32022 2.794   

K + 
 

 S297-Hydroquinone. methyl 6CI.8CI C7H8O2 2.3 3 32022 2.794   
K + 

 
 2Acetyl5methylfuran C7H8O2 2.3 3 32022 2.794   

K + 
 

 S502-3.5dihydrotoluen C7H8O2 2.3 3 32022 2.794   
L + 

 
 S124-Penicillic acid C8H10O4 2.2 15 660761 2.795   

M + 
 

 8betaHydroxy7oxocurvularin C16H18O7 1.2 11 51254 2.796   
M + 

 
 11aHydroxy12oxocurvularin C16H18O7 1.2 11 51254 2.796   

M + 
 

 S103-6Methylsalicylic acid C8H8O3 0.6 15 484020 2.796   
M + 

 
 S601-3hydroxy4methylbenzoic acid C8H8O3 0.6 15 484020 2.796   

M + 
 

 S621-2hydroxy3methoxybenzaldehyde C8H8O3 0.6 15 484020 2.796   
M + 

 
 S620-3hydroxy4methoxybenzaldehyde C8H8O3 0.6 15 484020 2.796   

M + 
 

 S570-pHydroxybenzoic acid methyl ester C8H8O3 0.6 15 484020 2.796   
M + 

 
 S616-12.6dihydroxyphenylethanone C8H8O3 0.6 15 484020 2.796   

M + 
 

 S499-3Methylsalicylic acid C8H8O3 0.6 15 484020 2.796   

N +++ 
 

 BL-UK Cla no 11 possible blank 
C11H18N2O
2 0.1 21 12754 2.957 2.85 

N +++ 
 

 BL-UK Cla no 12 possible blank 
C11H18N2O
2 0.1 21 12754 2.957 3.09 

O +++ 
 

 S407-Sclerotigenin 
C16H11N3O
2 0.4 10 18700 3.876 3.88 

P + 
 

 Sorbicillactone B C21H25NO8 2.2 6 124492 4.008   

P +++ 
 

 Glandicolin B 
C22H21N5O
4 0.9 20 123717 4.008 4.01 

Q +++ 
 

 S831-Neoxaline 
C23H25N5O
4 0.5 18 86551 4.028 4.28 

Q + 
 

 epiNeoxaline 
C23H25N5O
4 0.5 18 86551 4.028   

R +++ Internal standard  Chloramphenicol IS 
C11H12Cl2N
2O5 0.2 26 129956 4.078 4.12 

S +++ 
 

 Glandicolin A 
C22H21N5O
3 0.1 4 14081 4.092 4.09 

T +++ 
 

 S253-Meleagrin C23H23N5O 1 24 1E+07 4.291 4.29 
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4 

U +++ 
 

 S253-Meleagrin 
C23H23N5O
4 0 24 319359 4.456 4.29 

V ++ 
 

 UK Cla no 61 C20H32O11 1.1 54 
209231

0 4.56 5.33 

V +++ 
 

 S235-Oxaline 
C24H25N5O
4 1.3 7 

756032
9 4.56 4.56 

V + 
 

 S470-Oxaline 
C24H25N5O
4 1.3 7 

756032
9 4.56   

X + 
 

 S340-PF3 
C22H23N5O
2 0.4 7 59076 4.738   

X +++ 
 

 S139-Roquefortine C 
C22H23N5O
2 0.4 7 59076 4.738 4.97 

X + 
 

 S338-PF1 
C22H23N5O
2 0.4 7 59076 4.738   

Y ++ 
 

 Fusarium solani unknown 15 
C22H29N1O
7 3.2 11 21556 5.038 5.52 

Y +++ 
 

 Roquefortine F 
C23H25N5O
3 0 17 21760 5.038 5.04 

Z ++ 
 

 Unknown in A. niger 20 
C28H36N4O
5 2.4 23 10745 6.273 6.04 

AA + 
 

 PF1101B C37H47NO6 1.6 50 12191 6.309   

AA + 

No, confused with 
penitrem-like 
compound  Shearinine J C37H47NO6 1.6 50 12191 6.309   

AB + 

No, confused with 
penitrem-like 
compound  Shearinine K C37H47NO4 1 19 19716 6.391   

AB + 
 

 PF1101A C37H47NO4 1 19 19716 6.391   

AB + 

No, confused with 
penitrem-like 
compound  Janthitrem C C37H47NO4 1 19 19716 6.391   

AC + 
 

 Thomitrem E C37H45NO6 1.9 59 10690 6.613   
AC + 

 
 S387-Penitremone A C37H45NO6 1.9 59 10690 6.613   

AC + 

No, confused with 
penitrem-like 
compound  Shearinine D C37H45NO6 1.9 59 10690 6.613   

AC ++ 
 

 Penitrem E C37H45NO6 1.9 59 10690 6.613 6.61 
AD +++ 

 
 Normethylverrucosidine C23H30O6 0.6 12 21959 7.245 7.25 

AD + 
 

 S37-Citreoviridin C23H30O6 0.6 12 21959 7.245   
AD + 

 
 S325-Citreoviridin C23H30O6 0.6 12 21959 7.245   

AE + 
 

 IsocitreohybridoneB C29H38O8 2.5 22 44729 7.383   
AE + 

 
 Citreohybridone B C29H38O8 2.5 22 44729 7.383   

AF +++ 
 

 Unknown in A. niger 21 C27H40O8 1.9 29 20444 7.384 7.49 

AG +++ 
 

 Unknown A carbonarius no 9 
C29H41N7O
2 0.9 16 14010 7.608 7.69 

AH ++ 
No, confused with 
verrucosidin  S452-AtranoneA C24H32O6 0.5 34 439654 7.752 7.23 

AH +++ 
 

 S245-Verrucosidin C24H32O6 0.5 34 439654 7.752 7.75 
AI ++ 

 
 Fusarium solani unknown 11 C18H31NaO4 0.4 21 17273 7.904 7.29 

AI ++ 
 

 Fusarium solani unknown 10 C18H31NaO4 0.4 21 17273 7.904 7.16 
AJ +++ 

 
 Penitrem D C37H45NO4 1.1 14 19122 7.98 7.98 

AK + 

No, confused with 
penitrem-like 
compound  Shearinine K C37H47NO4 1.4 20 18744 8.194   

AK + 
 

 PF1101A C37H47NO4 1.4 20 18744 8.194   

AK + 

No, confused with 
penitrem-like 
compound  Janthitrem C C37H47NO4 1.4 20 18744 8.194   

AL + 
 

 Macrophorin analog C24H32O5 1 8 38721 8.197   
AL +++ 

 
 Deoxyverrucosidin C24H32O5 1 8 38721 8.197 8.20 

AM +++ 
 

 Penitrem B C37H45NO5 1.9 36 15171 8.217 8.22 
AM + 

 
 Shearinine F C37H45NO5 1.9 36 15171 8.217   

AM + 
 

 Penitremone C C37H45NO5 1.9 36 15171 8.217   
AM + 

 
 ShearinineA C37H45NO5 1.9 36 15171 8.217   
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AN + 
No, confused with 
penitrem A  Pennigritrem 

C37H44ClN1
O6 2 26 12720 8.226   

AN + 
No, confused with 
penitrem A  Thomitrem A 

C37H44ClN1
O6 2 26 12720 8.226   

AN ++ 
No, confused with 
penitrem A  S126-Penitrem A 

C37H44ClN1
O6 2 26 12720 8.226 8.56 

AO + 
 

 Pennigritrem 
C37H44ClN1
O6 2.1 42 172731 8.563   

AO + 
 

 Thomitrem A 
C37H44ClN1
O6 2.1 42 172731 8.563   

AO ++ 
 

 S126-Penitrem A 
C37H44ClN1
O6 2.1 42 172731 8.563 8.56 

AP ++ 
 

 Unknown in A. niger 18 C16H21NaO4 3.4 14 31776 8.794 8.85 
AQ +++ 

 
 Unknown in A. niger 24 C28H42 1.8 23 18486 9.179 8.93 

AR + 
 

 6-Farnesyl-5,7-dihydroxy-4-methylphthalide C24H32O4 2.9 49 10051 9.494   

AS +++ 
 

 Penitrem C 
C37H44ClNO
4 0.1 33 11419 9.876 9.88 

AT +++ 
 

 Penitrem F 
C37H44ClNO
5 1.6 25 53231 10.07 10.07 

AU ++ 
 

 Unknown A nidulans no 36 Diana C19H37NaO4 1.3 37 12976 10.13 9.67 

AV +++ 
 

S730-1,2-Dilinoleoyl-sn-glycero-3-phosphocholine  
C44H80NO8
P 0.2 17 24565 10.24 10.24 

AX +++ 
 

 S598-Linoleic acid C18H32O2 1.5 7 38041 10.27 10.17 
AY +++ 

 
 Unknown in A. niger 12 C21H41NaO4 0.5 9 35385 11.04 11.04 

AZ +++ 
 

 Fusarium solani unknown 2 C24H37NaO4 0.1 10 62599 11.73 11.67 
AA
A +++ 

 
 BL-UK Cla no 83  possible blank C22H43NO 0.5 10 28484 11.82 11.84 

AA
B ++    Fusarium unknown 19 

C27H21N2Na
O9 1.5 82 470182 13.57 13.49 

mSigma: Fit of isotope pattern, see text for more. RT Retention time (min). 
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Abstract: In drug discovery, reliable and fast dereplication of known compounds  

is essential for identification of novel bioactive compounds. Here, we show an  

integrated approach using ultra-high performance liquid chromatography-diode array  

detection-quadrupole time of flight mass spectrometry (UHPLC-DAD-QTOFMS) providing 

both accurate mass full-scan mass spectrometry (MS) and tandem high resolution MS 

(MS/HRMS) data. The methodology was demonstrated on compounds from bioactive 

marine-derived strains of Aspergillus, Penicillium, and Emericellopsis, including small 

polyketides, non-ribosomal peptides, terpenes, and meroterpenoids. The MS/HRMS data 

were then searched against an in-house MS/HRMS library of ~1300 compounds for 

unambiguous identification. The full scan MS data was used for dereplication of compounds 

not in the MS/HRMS library, combined with ultraviolet/visual (UV/Vis) and MS/HRMS 

data for faster exclusion of database search results. This led to the identification of four 

novel isomers of the known anticancer compound, asperphenamate. Except for very low 

intensity peaks, no false negatives were found using the MS/HRMS approach, which 

proved to be robust against poor data quality caused by system overload or loss of  

lock-mass. Only for small polyketides, like patulin, were both retention time and UV/Vis 

spectra necessary for unambiguous identification. For the ophiobolin family with many 

structurally similar analogues partly co-eluting, the peaks could be assigned correctly by 

combining MS/HRMS data and m/z of the [M + Na]
+
 ions.  

OPEN ACCESS 
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1. Introduction 

Due to the cosmopolitan occurrence of many bioactive compounds, most natural product extracts 

contain compounds that have previously been characterized, despite intelligent selection of new 

organisms. This is of particular importance in primary screens where the target is usually non-selective, 

which inevitably leads to a high rediscovery rate of generally toxic compounds [1,2].  

Microorganisms from the marine environment are a promising source of new bioactive compounds 

based on new chemical scaffolds [3–5], with the majority of known compounds originating from 

bacterial species such as Salinospora [6], Pseudoalteromonas [7,8], and Vibrio [9]. However, the subject 

of marine fungi is of much debate as most marine isolates have been found in mangrove and intertidal 

zones [4,10,11], rather than in true marine habitats; thus, no strict definition of ―true marine fungi‖ 

currently exists [12]. Nonetheless, marine-derived fungal strains have yielded a plethora of biologically 

active compounds [5,13], with isolates of Penicillium and Aspergillus as the most common sources. 

These have mainly been isolated from substrates such as driftwood [14] and macroalgae [15], but also in 

deep-sediments [3,16,17]. Aspergillus sydowii is probably the most well-known example, identified as 

the cause of sea fan disease [18], but also the source of bioactive compounds [19]. It remains obscure 

whether these represent true marine isolates or just opportunistic strains that have adapted to the 

marine conditions [12]. From a drug discovery perspective, this might be of less importance, if the 

opportunistic strains produce different bioactive compounds than their terrestrial counterparts.  

Several approaches to the dereplication process exist; for fast screening of extracts the aggressive 

dereplication approach can be very efficient [20]. This approach is based on accurate mass, isotopic 

patterns, and preferably selective adducts used for large batch searches of possible metabolites  

(up to 3000 compounds), e.g., based on all compounds described by a single genus. Yet, it returns false 

positives that need to be sorted away. The approach is currently not suited for organisms with limited 

taxonomic information. False positives can be circumvented by adding tandem MS with accurate mass 

determination of fragment ions (MS/HRMS) which can be automatically co-acquired using  

auto-MS/HRMS experiments (data-dependent acquisition of MS/HRMS spectra) [21]. This can now 

be achieved on both time-of-fight (TOFMS) and fourier transform (FTMS) mass spectrometers as well 

as Orbitrap and Q-Exactive instruments [22–25]. To achieve high quality MS/MS spectra, Agilent 

Technologies have chosen to acquire spectra at three different fragmentation energies, 10, 20 and  

40 eV, as this often provides significant higher quality than e.g., a ramped spectrum from 10 to 40 eV [26]. 

The acquired MS/HRMS data can then be matches with the possible candidates using in silico 

fragmentation tools that can sort out poor matches [27,28]. 

For fast tentative identification of natural products, an automatic MS/HRMS spectral library search 

would be very efficient, if suitable natural products libraries existed. However, Massbank [29] and 

Metlin metabolomics library [30] (~10,000 compounds with spectra) only contain few microbial 

natural products. The current status will persist until it is required to publish MS/MS data with novel 

structures, for which there are now public depositories such as MetLin, Massbank and/or Global 
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Natural Products Social Molecular Networking (GnPS) [31] in the making at time of writing). 

Nevertheless, a major barrier is that MS/MS spectra of small molecules are inconsistent between 

instruments, in particular between ion-trap and collision cell-based instruments [32]. Also, compared 

to fragmentation of linear peptides [33] and lipids [34], fragmentation of natural products are much 

less predictable, since they often contain more condensed and highly complex ring systems: In 

consequence in silico predictors cannot predict a fragmentation spectrum, but to some extent, verify 

some fragments from a structure in a spectrum [27,28]. 

For smaller natural products libraries, different algorithms have been used to search MS/MS spectra 

for the tentative identification (absolute identification always requires a nuclear magnetic resonance 

(NMR) validated reference standard). Fredenhagen et al. [35] searched low resolution MS/MS data 

with the National Institute of Standards and Technology (NIST) algorithm developed for full scan EI
+
 

spectra and the Mass Frontier software for MS
n
 spectra and found the latter to be superior.  

El-Elimat et al. [2] used ACD-IntelliXtract that also includes accurate mass of the fragments, but does 

not use the parent ion data as search entry. A comprehensive review on algorithms can be found in 

Hufsky et al. [28]. Recently, a networking MS/MS strategy has been published from the Dorrestein/ 

Bandeira labs [36,37], where MS/MS spectra are compared pairwise to yield clusters of structurally 

related compounds. However, back integration/deconvolution of raw data to find corresponding full 

scan data and linking MS/MS spectra of adducts belonging to the same molecular feature as well as 

retention time still needs to be done manually and is thus very time consuming.  

In this current study, we demonstrate the use of our MS/HRMS library search to dereplicate known 

compounds in bioactive extracts from marine-derived Aspergillus, Penicillium, and Emericellopsis 

strains. Extracts were selected from a screening conducted as a part of the PharmaSea project [38].  

Ultra-high performance liquid chromatography-diode array detection-quadrupole time of flight 

mass spectrometry (UHPLC-DAD-HRMS) with auto- tandem high resolution mass spectrometry 

(MS/HRMS) analysis was used to screen the extracts and subsequently, MS/HRMS data was matched 

against a newly constructed library of 1300 compounds (10, 20, and 40 eV spectra) using the Agilent 

search algorithm. This algorithm is an integral part of the Agilent MassHunter software, which can 

subtract background and merge spectra over a chromatographic peak into a single spectrum prior to 

automatic search against the library. To assess the limitations and inherent bias of the library, we 

compare the results with the aggressive dereplication approach [20] based on accurate mass, isotope 

pattern, and lists of taxonomically relevant compounds. Specificity is tested on a number of small polar 

analytes, showing the importance of including retention time and appropriate search parameters for 

compounds with less characteristic spectra. Finally, comparison with UV/Vis detection was done for a 

number of poorly ionizing compounds showing the value of this additional cheap detector.  

2. Results and Discussion 

Figure 1 illustrates the overall screening concept used in this study, where UHPLC-DAD-QTOF 

data are analyzed in three different ways: (i) MS/HRMS data searched directly in MS/HRMS library; 

(ii) aggressive dereplication of the full scan HRMS data using search lists of known compounds;  

(iii) UV/Vis detection for poorly ionizing compounds. Finally, an unbiased peak-picking algorithm 

was used to highlight completely novel compounds. For dereplication of previously described 
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compounds and novel isomers, all four approaches were combined as illustrated in the examples of 

Penicillium bialowiezense (Section 2.2.1) and Aspergillus insuetus (Section 2.2.2). Specificity 

problems with MS/HRMS searching are illustrated for patulin and compounds with the same elemental 

composition (Section 2.1.5). 

Figure 1. Overview of the screening setup where ultra-high performance liquid 

chromatography (UHPLC) with three detection methods is used. (A) ultraviolet/visual 

(UV/Vis) for poorly ionizing compounds; (C,D) full scan high resolution mass 

spectrometry (HRMS) screening; (B,F) MS/HRMS identification using the MS/HRMS 

library (G). Elemental compositions from compounds known from literature and previous 

studies were searched for in the full scan data (E,D). 
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2.1. Data Acquisition and Library Creation  

2.1.1. Chromatographic Separation 

The gradient was developed to provide the highest peak capacity in extracts from Aspergillus niger 

and A. nidulans with emphasis on not losing polar alkaloids (e.g., pyranonigrins and nigragillins) and small 

organic acids. This led to the use of the more polar phenyl-hexyl Poroshell column (compared to C18) as 

well as a low start of the gradient (10% acetonitrile). This retains highly polar compounds such as 

patulin and type B trichothecenes slightly better than C18. However, the long column required a longer 

gradient and equilibration time leading to half the productivity, but better opportunities for more 

MS/MS experiments. The high temperature of 60 °C was needed in order to keep the back pressure 

below the limit of the 2.7 µm Poroshell column. The method yielded an excellent peak distribution and 

narrow peak width compared to other methods [2], which allowed for higher quality spectra of most 

compounds in an extract. Injection volume had to be kept low (1 µL) to avoid peak broadening of 

polar peaks as samples were dissolved in methanol. However, in some projects less had to be injected (as 

little as 0.1 µL) as strongly ionizing compounds in high concentration resulted in broad peaks due to 

peak broadening in the ion-source which was further enhanced by the limited linearity of the time of 

flight (TOF) detector. 

2.1.2. Mass Accuracy and Isotopic Ratio 

Currently, time of flight mass spectrometry (TOFMS) and fourier transform mass spectrometry 

(FTMS) instruments provide similar mass accuracy when using a lock mass, but the TOFMS 

instruments still have problems with detector overload [39,40] as illustrated in Figure 2, where the mass 

accuracy and isotope ratio is compared between overloaded and non-overloaded parts of a 

chromatographic peak. As high intensity peaks are unavoidable, MassHunter was set to handle this by 

using only non-overloaded MS scans from the front and end of the chromatographic peaks during the 

peak picking and integration, similar to other TOFMS manufacturers like Waters. Currently, this 

cannot be handled by any third-party software like ACD-IntelliXtract or open source software like 

XCMS and MZmine. 

On the up-side, quadruple time of flight mass spectrometry (QTOFMS) instruments have a much 

higher scan frequency of both full scan and MS/HRMS scans without losing resolution as is the case 

on the FTMS instruments (resolution proportional to scan time). When not using overloaded ion 

clusters (Figure 2) our data provided isotopic ratios <±2% relative to the theoretical distribution as also 

observed elsewhere [20] while for Orbitrap data it might be as much as ±35% [24]. Since an accurate 

isotope ratio is the most efficient way to differentiate candidate elemental compositions within the 

instrument accuracy [41], the QTOFMS instruments are superior to the FTMS instruments in  

this point. 

In some samples, high intensity peaks suppressed the lock mass ions in certain scans, resulting in up 

to 100 ppm mass error in cases where the instrument had not been tuned and calibrated for several 

days. Since MassHunter cannot automatically find scans with intact lock mass in other places in the 

data file, one needs to be aware of this problem to manually correct it if needed. Here, the MS/HRMS 
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library still identified the correct compounds, underlining how this approach is very robust against 

mass errors from over-loaded peaks. 

Figure 2. Ultra high performance liquid chromatography-electrospray ionization  

extracted ion chromatograms (UHPLC-ESI
+
 EIC) of asperazine [M + H]

+
 in an extract 

from Aspergillus tubingensis, showing the excellent mass accuracy until saturation in the 

peak apex. (A) EIC at ±0.01 Da; (B) EIC at ±0.001 Da; (C) spectrum at peak apex; and  

(D) spectrum at a non-saturated part of the peak. The vertical lines between C and D 

indicate the theoretical isotopic abundance of the A + 1 and A + 2 isotopomers. 

 

2.1.3. Precursor Selection 

A major challenge when using liquid chromatography-mass spectrometry (LC-MS)/MS libraries is 

the reproducibility of fragmentation patterns between different instruments and different instrument 

manufactures [42]. A major goal for the establishment of this library was to minimize variability due to 

changes in mobile phase composition and ion-source settings. This was done by including not only 

MS/HRMS from [M + H]
+
, but also from the other predominant pseudo molecular ions such as  

[M + Na]
+
 and [M + NH4]

+
 (for intensities >50% of [M + H]

+
). Likewise, were MS/HRMS spectra of 

[M + H − (H2O)n]
+
, [M + H − HCOOH]

+
, and [M + H − CH3COOH]

+
 ions included when the full scan 

signal(s) were more intense than [M + H]
+
, similar to Fredenshagen et al. [35]. When fragmentation of 

[M + Na]
+
 only resulted in the loss of Na

+
 to give the neutral molecule, the search algorithm gave false 

positives from any ion at the right m/z. MS/HRMS data from the stable [M + Na]
+
 was therefore only 

included when resulting in specific fragments (~50% of the cases). Still, m/z of [M + Na]
+
 is important 

for correct mass assignment of fragile molecules, where [M + H]
+
 is not present due to spontaneous 

losses. Furthermore, in cases where in-source fragmentation of Compound A coincidentally results in 

production of Compound B also present in the library, the m/z of [M + Na]
+
 can assist in correct 

assignment, as demonstrated.  

In the negative ionization mode, [M − H]
−
 is most often the dominant ion detected [43] while the 

formation of [M − HCOO]
−
 (if formate is used as a buffer) seems to be very interface dependent [20], 

but very important for molecules not containing any acidic protons, and it was included when more 

than 50% of [M − H]
−
 occurred. This resulted in the detection of highly active compounds like Type A 

and C trichothecenes, patulin, and aphidicolins not detected in other studies [2,35]. 

Part of the library (277 compounds) is available in PCDL format for download from the homepage 

of the Technical University of Denmark [44]. 
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2.1.4. Fragmentation 

In order to compensate for the high variation in energy needed to fragment natural products, the 

library was based on three distinct fragmentation energies (10, 20, and 40 eV) unlike existing 

microbial MS/MS libraries that are based on a single, fixed energy [2,35]. The high energy of 40 eV is 

needed to fragment larger, more stable molecules, while 10 and 20 eV are more gentle settings for 

smaller, more fragile molecules. This combination of energies also meant that the forensic science [26] 

and the Metlin libraries [35] which are also available for the MassHunter could be directly used.  

The latter, in particular, contains many lipids, prostaglandins, intracellular primary metabolites, small 

aromatics, amino acids, vitamins, etc., which are also produced by fungi. The only cases where 

insufficient fragmentation was observed for all three energies were fusigen, SMTP-7 and 8, where only low 

intensity losses of formate and one other ion were observed in ESI
+
. Thus, projects analyzing compounds 

with masses above 1000 Da should include additional fragmentation energies of e.g., 60–80 eV, as large 

single charged molecules are less disposed to fragment on the collisions with N2. This is mainly due to 

simple energy kinetics (Ekin = ½ × m/z × v
2
) where the ion-velocity in the collision cell is proportional 

to the square root of the mass. 

Small (<200 Da) aromatic acids, pyrones, and lactones will statistically have less specific 

fragmentation reactions, which is observed in practice as loss of H2O, HCOOH, and CO2 [43]. Combined 

with an increase in the number of natural products with the same mass with decreasing mass (down to  

220 Da) there is a double bias towards poor specificity of MS/MS of low mass compounds [43]. 

2.1.5. Library Scoring 

Searching MS/HRMS spectra against the MS/HRMS library in MassHunter allows for three types 

of scorings: (i) using the parent mass and forward scoring that matches peaks in the unknown spectrum 

against the library spectrum; (ii) using parent mass and reverse scoring that matches peaks in the 

library spectrum against the unknown spectrum [28]; (iii) using reverse scoring but not the parent mass, 

called similarity, for finding compounds sharing fragment ions but having different molecular masses.  

The pitfalls of scoring can be illustrated with patulin, a bioactive ―nuisance‖ compound that is 

widely distributed in fungi that cause interference in many types of bioassays [45–47]. Patulin was 

identified in ESI
−
 in marine-derived strains of Penicillium antarcticum (Figure 3). Patulin shares the 

same elemental composition (C7H6O4) with six other compounds included in the library (Table 1), 

which all to a certain extent exhibited similar fragmentation patterns under the same CID condition. 

Using reverse and forward scoring, all library spectra belonging to compounds with the same 

elemental composition are in the matching pool. For reverse scoring there is an increased risk of wrong 

compound identification compared to forward scoring as the search algorithm in this case only looks 

for peaks present in the library spectra, disregarding peaks present in the unknown spectrum that are 

not present in the library spectra. 

As seen in Figure 3, patulin and 2,3-dihydroxybenzoic acid had a similar ratio of the m/z 109.0287 

fragment ion corresponding to the loss of CO2 (CID 10 eV). 2,3-dihydroxybenzoic acid does not show 

any additional peaks in the 10 eV spectrum while patulin produces several. Reverse scoring only 

matched the two shared peaks in the unknown spectrum, resulting in 2,3-dihydroxybenzoic acid as the 
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best match, while forward scoring, where all peaks in the spectrum are matched with the library 

spectrum, yielded patulin as the best match (Figure 3). The identification was verified by an authentic 

standard of patulin matching full scan MS, MS/HRMS, retention time and the UV spectrum where the 

slow slope from 200 to 240 nm prior to the main absorption at 276 nm. Deconvolution of all ions in 

the patulin full scan spectrum showed that it was not a false positive detection due to two or more  

co-eluting compounds. 

Figure 3. UV/Vis spectrum (A) and MS/HRMS spectrum at 10 eV (ESI
−
); (D) of unknown 

peak identified as patulin, compared to the patulin reference standard (B,E); and  

2,3-dihydroxybenzoic acid (C,F). Identity was confirmed by correct retention time. 

 

Table 1. Comparison of MS/HRMS spectra of all C7H6O4 compounds in the MS/HRMS 

database against each other using forward and reverse scoring. 

Name RT (min) Compound 
Forward/Reverse Scoring (%) 

1 2 3 4 5 6 7 

Patulin 3.15 1 100 28/50 20/62 27/65 29/90 28/87 25/52 

2,3-dihydroxybenzoic acid 3.85 2 28/32 100 60/68 63/71 97/90 76/86 0/0 

2,4-dihydroxybenzoic acid 3.74 3 20/29 60/86 100 86/86 55/78 88/88 6/14 

2,6-dihydroxybenzoic acid 3.87 4 21/29 63/86 86/98 100 58/79 80/92 6/14 

3,4-dihydroxybenzoic acid 2.80 5 29/33 97/97 55/61 58/64 100 78/87 0/0 

3,5-dihydroxybenzoic acid 2.63 6 29/33 97/97 55/61 58/64 78/87 100 0/0 

Terreic acid 3.99 7 25/44 0/0 6/39 6/38 0/0 0/0 100 

Inevitably, an unknown spectrum will contain more noise from co-eluting compounds compared to 

the library spectrum, another reason why reverse scoring is also valuable. This underlines the 

importance of using both forward and reverse scoring when evaluating matches from library searches 

0

4

8

12

16

m/z
50 60 70 80 90 100 110 120 130 140 150 160

0

20

60

100 109.0299

153.0196

0

20

60

80

81.0344

109.029153.0390

153.0183

125.0236

0

20

60

100 81.0350
109.0302

53.0394

153.0216
69.0350

0

1

2

3

4

Wavelength (nm)

200 240 280 320 360

0

2

4

6

A
b

so
rb

an
c
e 

(1
0

2
 m

A
U

) 

Unknown

Patulin

2,3-Dihydroxybenzoic acid

Unknown

Patulin

2,3-Dihydroxybenzoic acid

A
b

u
n
d

an
c
e 

(%
)

A

B

C

D

E

F



Mar. Drugs 2014, 12 3689 

 

in order to get the correct identification, thus multiple search types are recommended (e.g., using a 

minimal score of 50% for forward and 70% for reverse). It is further demonstrated that there is a need 

for orthogonal data like UV/Vis for dereplication of certain compound classes. 

2.2. Dereplication of Marine-Derived Fungi 

Fifteen marine-derived strains from different species belonging to Penicillium, Aspergillus, and 

Emericellopsis were fractionated and screened for their anti-microbial [48], anti-inflammatory [49], 

central nervous system (CNS) [50], and anticancer activity (unpublished assay based on glioblastoma 

stem cells), that resulted in 35 active fractions to be evaluated for their chemistry. Here, we present 

three of those as cases to illustrate the advantages and challenges using a MS/HRMS library for 

screening and dereplicating active fractions during a screening campaign. Analyzing the data file for 

MS/HRMS data, including peak picking, integration, and the final matching against 1300 compounds 

took 30–60 s on a standard laptop, thus providing a fast and easy first examination of active fractions.  

2.2.1. Active Components from a Marine-Derived Penicillium bialowiezense Strain 

The extract of a Penicillium bialowiezense strain (IBT 28294) from a North Sea water sample 

displayed activity in a CNS assay [51] and anticancer assay (unpublished assay). P. bialowiezense is 

closely related to P. brevicompactum, and they are morphologically, genetically, and chemically very 

difficult to differentiate [52]. They are cosmopolitan species found across an amazing number of 

habitats such as seaweed, humid indoor environments, soil, and various vegetables and fruits [52,53]. 

Thus the marine-derived isolate used in this study is likely an opportunist in the marine environment, 

making the exclusion of known compounds even more important. 

The crude extract analyzed in both positive and negative ionization mode can be seen in Figure 4 

with the tentative identification of all major peaks: mycophenolic acid, mycophenolic acid derivate 

(F13459), asperphenamates, andrastin A, quinolactacin A, citreohybridonol, and raistrick phenols [54], 

all of which have previously been reported from terrestrial fungi [55]. 

The active fractions were found to contain mycophenolic acid (Figures 4 and 5), which is the active 

compound in the prodrug CellCept
®

 (Mycophenalate mofetil) used as immunosuppressant in transplant 

medicine [56]. Several other activities have been reported including antiviral, antitumor [57], and  

CNS [56,58], in line with the activity observed in this study. The extracted MS/HRMS spectra (Figure 5A) 

in ESI
+
 were compared to the mycophenolic acid standard in the MS/HRMS library (Figure 5B) with 

high scores (>90%) using both reverse and forward searching based on the accuracy of the parent ion 

(−0.31 ppm for [M + H]
+
 321.1328) and specific and abundant fragment ions at m/z 207.0649 

[C11H11O4]
+
 and 159.0436 [C10H7O2]

+
. 

In addition, with ESI
+
 reverse and forward scoring, a second compound was detected as 

mycophenolic acid itself but at a wrong retention time and not producing a [M + Na]
+
 ion (Figure 5D), 

indicating that it was a fragment from a larger molecule. HRMS of the [M + H]
+
 at m/z 529.1722 

(Figure 5D) was used to tentatively identify the compound as a mycophenolic acid derivate F13459 

previously isolated as a racemate from Penicillium sp. [59,60].  
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Figure 4. Base peak chromatograms (BPC) of the crude extract of P. bialowiezense in both 

positive (A) and negative (B) ESI modes. Peaks of compounds identified by MS/HRMS 

using forward scoring are colored. 

 

The identity was verified by MS/HRMS fragmentation of m/z 529.1722 into the same ions observed 

from MS/HRMS of [M + H]
+
 for mycophenolic acid (Figure 5E). F13459 might act as a natural 

prodrug that by hydrolysis loses the isocoumarin portion, leaving the active compound, mycophenolic 

acid (Figure 5E). The lost portion corresponds to the lactol form of the raistrick phenol,  

2,4-dihydroxy-6-(1-hydroxyacetonyl) benzoic acid(Figure 5E) that was also detected in the  

extract (Figure 4). 
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Figure 5. MS/HRMS spectra (m/z 321) for mycophenolic acid in the active fraction  

(A) compared to library spectra (B) at 10, 20 and 40 eV; (C) full scan spectrum of 

mycophenolic acid showing a [M + Na]
+
 ion at m/z 343; (D) full scan spectrum of F13459 

showing a [M + Na]
+
 ion at m/z 551; (E) MS/HRMS at 20 eV for [M + H]

+
 of F13459 

including structure of the compound. 

 

In the fraction displaying anticancer activity (unpublished assay), the library analysis led to the 

tentative identification of the fungal anticancer metabolite, asperphenamate (Figure 6F) [61]. A group 

of peaks eluting close to asperphenamate shared their major fragment ions as found using similarity 

searching (parent ion not used), which showed the presence of four novel asperphenamate analogues 

with the tentative structures I to IV (Figure 6). Unambiguous structure verification of course requires 

isolation and elucidation using nuclear magnetic resonance (NMR) spectroscopy. 

Asperhenamate and three of the analogues (I, III, and IV) shared dominant fragment ions at  

m/z 238.1230 and 256.1339 (Figure 6B,C), corresponding to [C16H18NO2]
+
 and [C16H16NO]

+
 formed 

from the right side of the molecule by cleavage of the ester-bond followed by water loss. The most 

abundant asperphenamate analogue (III) had a [M + H]
+
 with m/z 523.2211, corresponding to an 

addition of an oxygen atom. This indicated replacement of the phenylalanine by a tyrosine in the 
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asperphenamate skeleton, corroborated by the fragment ions at m/z 268.0975 [C16H14NO3]
+
 and 

240.1014 [C15H14NO2]
+
 (Figure 6III) as opposed to 252.1062 [C16H14NO2]

+
 and 224.1070 [C15H14NO]

+
 

in asperhenamate (Figure 6F). These fragments matched the left side of the molecule formed from the 

ester cleavage followed by the loss of CO. The fragment 105.0334 [C7H5O]
+
 corresponding to the 

benzoyl part was present in both asperphenamate and the analogues, and the lack of an ion at  

m/z 121.0287 also supported the presence of the tyrosine (Figure 6III). 

Figure 6. BPC chromatogram of the crude P. bialowiezense extract (A); EIC from 

MS/HRMS showing fragment ions (B) m/z 256.1333 and (C) 238.123; EIC full scan 

showing (D) m/z 508.2232 ± 0.005 and (E) 523.2211 ± 0.005; (F) MS/HRMS spectrum  

at 20 eV of asperphenemate. (I) to (IV) show the tentatively assigned isomers of 

asperphenamate and their positions in the chromatogram. 

 

The other analogue IV with the same accurate mass as III had a similar fragmentation pattern with 

addition of the most prominent fragment ion 40 eV at m/z 121.0287 [C7H5O2]
+
. This fragment could 

match the presence of an extra oxygen atom in the benzoyl part instead of the phenylalanine part. The 

last two analogues (I and II) had [M + H]
+
 m/z 508.2232 with similar fragmentation patterns to 

asperphenamate. Analogue II had m/z 239.1176 [C15H17N2O2]
+
 and m/z 257.1283 [C15H15N2O]

+
 as 

major fragment ions not present in the asperphenamate MS/HRMS spectrum (Figure 6F), showing a 

replacement of a CH with an N atom, presumably in the phenylalanine moiety to the right of the ester 

bond, as a fragment ion corresponding to change in the benzoyl part was not observed. For Analogue I, 

the two ions differentiating it from asperphenemate were m/z 253.0964 [C15H13N2O2]
+
 and 225.1010 

[C14H13N2O]
+
 (Figure 6I), which also corresponded to the replacement of a CH with a nitrogen atom, 
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in this case to the left of the ester bond (Figure 6I) and, as in the example with II, showed a lack of 

extra fragments. 

As the MS/HRMS library only covers about 5% of the compounds reported from fungi in 

AntiMarine (2012), though with a higher coverage of Pencilllium and Aspergillus compounds (~20%), 

we compared the MS/HRMS-based results with those obtained with: (i) aggressive dereplication based 

on extracted ion chromatograms and isotope patterns, using a search list of all metabolites known from 

Penicillium [20]; and (ii) an unbiased approach based on the Agilent Molecular Feature Extraction 

(MFE) algorithm which finds all chromatographic peaks and collects adduct, dimeric, and trimeric ions 

into one feature [62]. The peaks and matching candidates that were identified by the aggressive 

dereplication approach were evaluated by manually assessing the fragmentation pattern and by using 

the MassHunter Molecular Structure Correlator program which uses a systematic bond disconnection 

approach [27]. Likewise, the retention time was compared to the calculated LogD [43], and if possible 

the UV/Vis data evaluated. This further identified the known compounds chrysogesides B (Figure 7), 

C, D and E (characteristic loss of glucose and other specific fragments) [63] and three preaustinoids 

(fragmentations not very specific). Xanthoepocin (Figure 7) [64] was identified and verified from the very 

specific UV/Vis spectrum and MS/HRMS fragmentations. In full scan positive mode only [M + Na]
+
 and 

[M + H − H2O]
+
 were observed. 

Figure 7. Structures of preaustinoid A, xanthoepocin, and chrysogeside B. 

 

The aggressive dereplication approach also identified fellutamides and breviones which are 

expected from the species [55]; this could, however, not be supported by the MS/HRMS. Most false 

positive results originated from fragments or adducts of other compounds in the extract. Examples of 

these were: (i) the loss of acetate from the andrastin A in ESI
+
 matching andibenin B; (ii) quinolactacin 

A producing [2M + Na]
+
 and [2M + H]

+
 ions matching the [M + Na]

+
 and [M + H]

+
 of fellutanine D, 

respectively. Close inspection of adduct pattern and retention times, however, showed that  

andibenin B and fellutanine D were false positives. This underlines the importance of the MS/HRMS 

dimension for improved confidence in dereplication. False positives are eliminated and compounds 

that are missed because they are not part of the library can still be verified based on the MS/HRMS 

data. The unbiased minimum free energy (MFE) algorithm did, as expected, find many more peaks 

(50%–100%) than the two targeted approaches (data not shown); however, all major peaks in the 

chromatograms were detected by the targeted approaches, and all major biological activities could be 

accounted for by compounds in the MS/HRMS library. 
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2.2.2. Ophiobolins from a Marine-Derived Aspergillus insuetus 

The extract of a Aspergillus insuetus strain (IBT 28443) derived from a sea water sample collected 

near Greenland was found to have activity in an anticancer assay (unpublished assay). The most potent 

fractions were found to be enriched in compounds belonging to the ophiobolin family. They are fungal 

sesterterpenoids with more than 35 known, closely related analogues [1,65]. Of these analogues, eight 

were available as standards and included in the library. The ophiobolins are known to exhibit a broad 

spectrum of bioactivities including antifungal and anticancer [1,65]. 

The analysis of a potent fraction is seen in Figure 8A, depicting MS/HRMS library-identified 

ophiobolins. The identification of four ophiobolins, namely 6-epi-ophiobolin K, ophiobolin H, 

ophiobolin K, and ophiobolin C, was further corroborated by matching HRMS, retention time, and 

UV/Vis. Several unidentified ophiobolin analogues seemed to be present in the fraction based on the 

HRMS and MS/HRMS data. 

To illustrate the value of the MS/HRMS library approach, the MassHunter scoring and matching 

results for the two epimers, 6-epi-ophiobolin K and ophiobolin K (reference standards included in the 

LC-MS sequence) were compared to demonstrate if compounds varying at only one stereocenter 

would be unambiguously assigned by the library search. Both reverse and especially forward scoring 

showed that the epimers could be differentiated based on the intensity for the fragment ions as 

illustrated for 10 eV in Figure 8 B and C. The forward score for the MS/HRMS of the [M + H]
+
 ion for 

the 6-epi-ophiobolin K peak was 71% 6-epi-ophiobolin K and 52% ophiobolin K, while it was 71% 

ophiobolin K and 58% 6-epi-ophiobolin K for the ophiobolin K peak. 

For closely related analogues like the ophiobolins, the number of scans and the integration by auto 

MS/MS highly influence the outcome from the algorithm. This can be seen in Figure 8 for the series of 

overlapping peaks (between 12.8 and 13.0 min). From the EIC of the MS/HRMS scans of the  

m/z 367.2642 ion (Figure 8D) four peaks at 12.60, 12.78, 12.87, and 12.94 integrated as one peak and 

the average spectrum was matched to ophiobolin K (forward 81%) as the best match which is 

incorrect, while the likely correct match ophiobolin G (forward 53%) was the second best match. The 

reason for the incorrect match was both (i) poor peak integration mixing spectra from several 

compounds, and (ii) that the water loss ion of ophiobolin K was included in the library as it loses water 

in the ion source. Looking at the structures of ophiobolins K and G, it is apparent that ophiobolin K 

reacts into ophiobolin G losing water and forming a double bond. The subsequent MS/HRMS spectra 

of [M + H]
+
 ophiobolin G and [M + H − H2O]

+
 ophiobolin K will thus be identical. 

This underlines the difficulty of differentiation of isomers based on library matches. Fortunately 

investigating the [M + Na]
+
 ions (EIC shown in Figure 8E) solves the problem and shows the likely 

ophiobolin G and 6-epi- ophiobolin G peaks at 12.81 and 12.93 min, respectively. Thus it would 

strengthen the validity of a compound identification if the matches from the different adducts could be 

combined and forced to include e.g., the match of the [M + Na]
+
 ion. 
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Figure 8. (A) Active fraction enriched with compounds from the ophiobolin family in 

positive ESI mode. More than one color shading of the same peak is either due to different 

EIC and ECC for same match but different adducts or for other matches that had scored 

less; (B) MS/HRMS acquired spectra (10 eV) for library match of 6-epi-ophiobolin K and 

ophiobolin K; (C) MS/HRMS library spectra (10 eV) of 6-epi-ophiobolin K and ophiobolin K; 

(D) The EIC for the parent m/z 367.2642 with ophiobolin K as the best library match;  

(E) The EIC for the parent m/z 389.2470 with ophiobolin G as the library match. The diamond 

markers indicate number of scans across the peak. 

 

2.2.3. Helvolic Acid as the Anti-Microbial Compound in a Marine-Derived Emericellopsis sp. 

Emericellopsis sp. strain (IBT 28361), a possibly new species, was isolated from a sea water  

sample collected off the coast of the Danish island Fanoe. Emericellopsis include both terrestrial and 
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marine species with E. maritima being associated with the seaweed Fucus (Phaeophyceae) [66].  

A potent fraction of the crude extract displayed antibacterial activity against methicillin-resistant 

Staphylococcus aureus (MRSA) [67]. 

Emericellopsis has not been extensively studied for its chemical potential and thus is it likely that it 

is not well represented by the compounds in the MS/HRMS library. This was the reason for the very 

few peaks identified by the MS/HRMS approach compared to the previous cases. Nonetheless, the 

known antibacterial nortriterpenoid, helvolic acid was identified by MS/HRMS (Figure 9) [68,69] 

consistent with the biological activity of the fraction. In full scan, ESI
+
 identification was not based on 

the [M + H]
+
 but rather the accuracy of the fragment at m/z 509.2902 [C31H41O6]

+
 which was the most 

abundant peak in the spectrum (Figure 9A). This fragment corresponds to the loss of an O-acetyl group 

that can be easily lost from the structure of helvolic acid which was verified by the presence of the  

[M + Na]
+
 at m/z 591.2921 ion also showing that it was not a deacetyl-helvolic acid. As for the 

ophiobolins, automated use of both the MS/HRMS spectrum and [M + Na]
+
 from full scan would 

increase validity of spectral matches. Helvolic acid has formerly been found in related fungal species 

such as Emericellopsis terricola [70] and Sarocladium oryzae [71]. 

Figure 9. (A) The structure of helvolic acid and the ESI
+
 MS spectrum; (B) MS/HRMS 

spectrum at 20 eV from ESI
+
 of helvolic acid and (C) the corresponding library spectrum 

(parent ion m/z 509). 
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aggressive dereplication matched the anti-protozoal compound, antiamebin I [72], which was 

originally not included in the MS/HRMS library. However, this compound could be verified later from 

a reference standard added to the MS/HRMS library. Using the MFE, a series of another five 

peptaibiotics in the same mass range as antiamebin was detected. These were not detected by the 

aggressive dereplication approach, as they were not indexed in AntiMarin 2012. However, searching 

the monoisotopic masses in The Comprehensive Peptaibiotics Database [73] tentatively identified 

them as different antiamebins (XIII, XIV, XV, III/IV/IX/VII/VIII, and XVI). 

3. Experimental Section 

3.1. Strains and Cultivation 

All fungal strains used were from the IBT culture collection at the Department of Systems Biology, 

DTU. The strains described here were Penicillium antarticum (IBT 20733 and IBT 27985),  

Penicillium bialowiezense (IBT 28294), Aspergillus insuetus (IBT 28443) and Emericellopsis sp.  

(IBT 28361). The marine-derived fungi were cultivated on Czapek yeast extract agar (CYA) and Yeast 

extract sucrose agar (YES) media for 9 days in the dark at 25 °C [43]. 

3.2. Sample Preparation 

Eight plates in total (four CYA and four YES) were extracted with 150 mL ethyl acetate containing 

1% formic acid. The crude extracts were fractionated on a reversed phase C18 flash column (Sepra ZT, 

Isolute, 10 g) using an Isolera One automated flash system (Biotage, Uppsala, Sweden). The gradient 

used was 15%–100% acetonitrile buffered with 20 mM formic acid over 28 min (12 mL/min). 

Fractions were automatically collected based on UV signal (210 nm and 254 nm). A total of 126 crude, 

fractions, and blanks were submitted for bioassays antifungal (A. fumigatus, C. albicans) [74,75],  

and antibacterial MRSA [67], anticancer (unpublished assay), CNS in zebra fish larvae [51], and  

anti-inflammatory activity [49]. 

3.3. Standard Metabolites 

Secondary metabolite standards have been collected over the past 30 years, either from commercial 

sources, as gifts from other research groups, or purified from our own projects [43,76], hence their 

quantity and purity varies (micro- to milligram quantity, ≥50% purity). The collection contains 

approximately 1600 standards with 95% of them being of fungal origin (5% of bacterial origin). 

Commercial sources of purchased standards include Sigma-Aldrich (Steinheim, Germany), Axxora 

(Bingham, UK), Cayman (Ann Arbor, MI, USA), TebuBio (Le-Perray-en-Yvelines, France), Biopure 

(Tulln, Austria), Calbiochem (San Diego, CA, USA), ICN (Irvine, CA, USA), Bachem GmbH (Weil 

am Rhein, Germany), and AnalytiCon Discovery GmbH (Potsdam, Germany). All standards were kept dry 

at −20 °C and, unless stated otherwise, were dissolved in 140 µL acetonitrile prior to analysis. If not 

soluble in pure acetonitrile, 50% acetonitrile in MilliQ water was used. Prepared standard solutions 

were also preserved on −20 °C. 
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3.4. UHPLC-DAD-QTOFMS Analysis 

Ultra-high performance liquid chromatography-diode array detection-quadruple time of flight mass 

spectrometry (UHPLC-DAD-QTOFMS) was performed on an Agilent Infinity 1290 UHPLC system 

(Agilent Technologies, Santa Clara, CA, USA) equipped with a diode array detector. Separation was 

obtained on an Agilent Poroshell 120 phenyl-hexyl column (2.1 × 150 mm, 2.7 µm) with a linear 

gradient consisting of water (A) and acetonitrile (B) both buffered with 20 mM formic acid, starting  

at 10% B and increased to 100% in 15 min where it was held for 2 min, returned to 10% in 0.1 min and 

keeping it for 3 min (0.35 mL/min, 60 °C). Injection volume, depending on sample concentration, 

typically varied between 0.1 and 1 µL. To avoid carry-over, the auto-sampler was operated in the  

flow-through-needle mode and further coupled to an Agilent Flex Cube which was used to back flush 

the needle seat for 15 s. at a flow of 4 mL/min with each of: (i) isopropanol: 0.2% ammonium 

hydroxide in water (1:1 v/v); (ii) acetonitrile with 2% formic acid; (iii) water with 2% formic acid. 

MS detection was done on an Agilent 6550 iFunnel QTOF MS equipped with Agilent Dual Jet 

Stream electrospray ion source with the drying gas temperature of 160 °C and gas flow of 13 L/min 

and sheath gas temperature of 300 °C and flow of 16 L/min. Capillary voltage was set to 4000 V and 

nozzle voltage to 500 V. Ion-source parameters were the same for ESI
+
 and ESI

−
 mode. Mass spectra 

were recorded as centroid data for m/z 85–1700 in MS mode and m/z 30–1700 in MS/MS mode, with an 

acquisition rate of 10 spectra/s. Automated data-dependent acquisition MS/HRMS (auto-MS/HRMS) 

analysis was commonly done for ions detected in the full scan above 50,000 counts (may be adjusted 

for low/high concentration samples) with a cycle time of 0.5 s, the quadrupole isolation width in 

narrow (m/z ±0.65), using fixed CID energies of 10, 20, and 40 eV and maximum three selected 

precursor ions per cycle. A narrow exclusion time of 0.04 min was used to get MS/MS of less 

abundant ions when compounds co-eluted. 

Lock mass solution in 95% acetonitrile was infused in the second sprayer using an extra LC pump 

at a flow of 10–50 µL/min, the solution contained 1 µM tributyle amine (Sigma-Aldrich), 10 µM 

Hexakis(2,2,3,3-tetrafluoropropoxy)phosphazene (Apollo Scientific Ltd., Cheshire, UK), and 1 µM 

trifluoroacetic acid (Sigma-Aldrich) as lock masses. The [M + H]
+
 ions of first two (m/z 186.2216 and 

922.0098 respectively) were used in positive mode, while [M + HCOO]
−
 and [M − H]

−
 of the latter 

two were used in negative mode (m/z 966.0007 and 112.9856).  

3.5. Library Setup and Auto-MS/MS Data Analysis 

The MS/HRMS library was constructed from our internal ChemFolder library (Advanced Chemical 

Developments, Toronto, ON, Canada) of 7400 compounds of which 1600 were available as reference 

standards [20]. For reference standards and tentatively identified compounds, name, structure, and 

CAS no. were transferred to the Agilent Masshunter PCDL manager 4.00 (Service release 1), and 

linked to the retention time and MS/HRMS spectra of 10, 20, and 40 eV, either by manually pasting 

from MassHunter or imported via a cef file. All major pseudomolecular ions ([M + H]
+
, [M + Na]

+
,  

[M + NH4]
+
, [M − H]

−
, [M + HCOO]

−
), and simple fragment ions (mainly [M + H − (H2O)n]

+
,  

[M + H − CH3COOH]
+
, [M – H − CO2]

−
) which provided characteristic MS/MS spectra were included.  
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Data files were processed by the Find by Auto MS/MS function in Masshunter, usually without any 

intensity threshold but often with a limit to the 200 largest peaks, mass match tolerance m/z 0.05. 

Unless otherwise stated the MS/HRMS library was searched using precursor and product ion 

expansion of 50 ppm + 2 mDa as well as minimal reverse and forward scores of 50 each. 

3.6. Aggressive Dereplication and Molecular Feature Extraction 

For analysis of compounds described in the literature and not necessarily available as reference 

standards, Aggressive dereplication (Klitgaard et al. 2014 [20]) was performed on the ESI
+
 and ESI

−
 

full scan data using the Find by Formulae function in Agilent Masshunter Qualitative analysis B06.00 

software. The following adducts and common fragments were included: ESI
+
, [M + H]

+
 and [M + Na]

+
; 

ESI
−
, [M − H]

−
, [M + HCOO]

−
. All ions analyzed were treated as being singularly charged. The area 

cut-off was set to 10,000, and the mass spectrum was recorded below 10% of the height of the peak to 

avoid detector overload. A minimum score of 70 was used to ensure that only compounds with fitting 

isotope patterns were annotated.  

The search lists were constructed from the AntiMarin2012 which was converted into an sdf-database 

and then imported into ChemFolder and from here to Excel (Klitgaard et al. 2014 [20]) where it was 

formatted to the Agilent search list format. All this work was made on an AntiMarin-licensed computer. 

The MFE screening was performed in the Agilent Masshunter Qualitative analysis B06.00.  

The following adducts and common fragments were included: ESI
+
, [M + H]

+
 and [M + Na]

+
; ESI

−
, 

[M − H]
−
, [M + HCOO]

−
. All ions analyzed were treated as being singly charged. The area cut-off was 

set to 10,000, and the mass spectrum was recorded below 10% of the height of the peak to avoid 

detector overload. A minimum quality score of 99 was used to ensure that only compounds with fitting 

mass, isotope patterns, and peak shape were annotated. 

4. Conclusions  

In this work we demonstrate that MS/HRMS search in a library is a robust and reliable way of 

tentatively identifying known bioactive compounds on a single instrument. With spectra 

reproducibility across Agilent instruments [26,77] the library should be directly usable on these, while 

others instruments presumably need adjustment against collision energies (e.g., 10 eV on the Agilent 

may correspond to 15 eV on a Bruker QTOF). Furthermore MS/HRMS aided the tentative 

identification of novel isomers, e.g., to be used in bioactivity optimization. Many highly bioactive 

compounds are found across the fungal kingdom, and even when exploring specialized marine 

environments where it is likely to find novel bioactive compounds it is of outmost importance to 

identify known nuisance compounds in the first screen. To aid drug discovery dereplication we thus 

suggest that it is required to deposition MS/MS spectra of all novel published compounds in 

Massbank, MetLin and/or GNPS [31], although for all mentioned an easy interface for depositing 

spectra is needed.  

Aggressive dereplication of full scan data supplemented by auto MS/HRMS to strengthen the 

correct match and elimination of false positives proved efficient and could in many cases be 

strengthened even further by UV/Vis data.  
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Both described strategies can handle extracts produced months in-between which is a problem for 

the unbiased peak picking and adduct pattern algorithms which in general requires samples to be run 

within a sequence and with replicated and blank samples to handle variations in chromatographic 

separation, mass spectra, sample preparation, and growth media. Nonetheless, an unbiased peak 

picking strategy was the only way to detect a series of non-data based compounds as demonstrated in 

the last case, proving the need to integrate many data-analysis strategies and tools to obtain 

comprehensive compound coverage. 
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SUMMARY

Secondary metabolites in filamentous fungi consti-
tute a rich source of bioactive molecules. We have
deduced the genetic and biosynthetic pathway of
the antibiotic yanuthone D from Aspergillus niger.
Our analyses show that yanuthone D is a meroterpe-
noid derived from the polyketide 6-methylsalicylic
acid (6-MSA). Yanuthone D formation depends on a
cluster composed of ten genes including yanA and
yanI, which encode a 6-MSA polyketide synthase
and a previously undescribed O-mevalon trans-
ferase, respectively. In addition, several branching
points in the pathway were discovered, revealing
five yanuthones (F, G, H, I, and J). Furthermore, we
have identified another compound (yanuthone X1)
that defines a class of yanuthones that depend on
several enzymatic activities encoded by genes in
the yan cluster but that are not derived from 6-MSA.

INTRODUCTION

Fungal polyketides (PKs) comprise a large and complex group of

metabolites with a wide range of bioactivities. Hence, the group

includes compounds that are used by fungi as pigments for UV-

light protection, in intra- and interspecies signaling, and in chem-

ical warfare against competitors (Williams et al., 1989). Many

PKs are mycotoxins that are harmful to human health, e.g., patu-

lin and the highly carcinogenic aflatoxins (Olsen et al., 1988). On

the other hand, several PKs have a great medical potential, e.g.,

cholesterol-lowering statins (Endo et al., 1976), the antimicrobial

and immunosuppressive mycophenolic acid (Bentley, 2000), the

acetyl-coenzyme A acetyltransferase-inhibiting pyripyropenes

(Frisvad et al., 2009), and the farnesyltransferase inhibiting

andrastins (Rho et al., 1998). Although more than 6,000 different

PKs have been isolated and characterized (AntiBase 2012),

these compounds are likely only the tip of the iceberg. For

example, for each fungus analyzed, only a small part of its full

repertoire of PKs genes appears to be produced under labora-

tory conditions (Pel et al., 2007; Andersen et al., 2013). In agree-

ment with this view, genome sequencing of several fungal

species have uncovered far more genes for PKs production

than can be accounted for by the number of compounds that

they are actually known to produce. Hence, the chemical space

of PKs is far from fully known, and many new drugs and myco-

toxins await discovery.

The fungal genome sequencing projects have demonstrated

that genes necessary for production of individual PKs often clus-

ter around the gene encoding the polyketide synthase (PKS),

which delivers the first intermediate in a given PK pathway.

Although this is helpful for pathway elucidation, compounds pro-

duced by orphan gene clusters (Gross, 2007) can still not be

easily predicted by bioinformatic tools (for review, see Cox,

2007 and Hertweck, 2009). This is because most fungal PKs

are produced by type I iterative PKSs whose products are noto-

riously difficult to predict. Moreover, the specificities and the

order of actions of the tailoring enzymes that modify the PK

released from the PKS further complicate prediction of the end

products. To elucidate the biochemical pathway of an orphan

gene cluster, it is therefore necessary to create gene cluster mu-

tations and/or to genetically reconstitute the pathway in a heter-

ologous host. Subsequent analytical and structural chemistry

analyses of the compounds that are present in the reference

strain but not in the mutant strains and of compounds that accu-

mulate in the mutant strains but are absent or present in minute

amounts in the reference strain may deliver insights that can be

used for pathway elucidation.

Aspergillus niger is an industrially important filamentous fun-

gus, which has obtained GRAS status for use in several industrial

processes and is used for production of organic acids and en-

zymes. Importantly, when the full genome sequence of A. niger

was examined, a gene cluster resembling the fumonisin gene
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cluster from Gibberella moniliformis was surprisingly identified,

suggesting that this well-characterized fungus has the genetic

potential to produce the carcinogenic fumonisins (Baker,

2006). This possibility was later confirmed by genetic and chem-

ical analyses (Pel et al., 2007; Frisvad et al., 2007). The fact that

the A. niger genome contains several orphan gene clusters for

production of secondary metabolites (Fisch et al., 2009) raises

the question of whether it can produce other bioactive PKs

that could be harmful, or perhaps beneficial, to human health.

To this end, one silent cluster in A. niger was recently activated

by expression of a transcription factor-encoding gene, which

was embedded in the cluster. The resulting strain produced six

azaphilone compounds, and further studies uncovered substan-

tial new insights into the biosynthesis of this class of compounds

(Zabala et al., 2012). It is interesting to note that among the 33

predicted PKS and PKS-like genes in A. niger, one encodes a

putative PKS, which is phylogenetically close to fungal 6-meth-

ylsalicylic acid (6-MSA) synthases (Fisch et al., 2009). Impor-

tantly, the model PK 6-MSA (Wattanachaisaereekul et al.,

2008) (Figure 1A) is known to be the precursor to, for example,

the mycotoxin patulin (Beck et al., 1990) produced by many

Aspergillus and Penicillium species, substantiating the possibil-

ity that this gene could be the source of yet another unknown

bioactive PK in A. niger. Importantly, none of these 6-MSA-

derived compounds have been observed in A. niger (Nielsen

et al., 2009). We therefore investigated whether A. niger has

the potential to produce 6-MSA or 6-MSA-derived compounds.

Known yanuthones constitute a group of compounds that are

derived from a six-membered methylated ring (the C7 core

scaffold) with three side chains: one sesquiterpene and two

varying side chains (-R and R’) (Figure 1B). In this study we

demonstrate that in A. niger, 6-MSA is the precursor for forma-

tion of yanuthone D, which is an antibiotic against Candida albi-

cans, methicillin-resistant Staphylococcus aureus (MRSA), and

vancomycin-resistant Enterococcus (Bugni et al., 2000). We

also show that yanuthone D is in fact a complex meroterpenoid

synthesized by a pathway where 6-MSA is decarboxylated,

heavily oxidized, and fused to a sesquiterpene and a mevalon

moiety (the di-acid of mevalonic acid). This is surprising,

because yanuthones have been hypothesized to originate from

the shikimate pathway (Bugni et al., 2000).

RESULTS

A. niger PKS48 Encodes a 6-MSA Synthase
To investigate the possibility that the A. niger gene PKS48/

ASPNIDRAFT_44965 encodes a 6-MSA synthase, we trans-

ferred the gene to A. nidulans, which has not been shown to pro-

duce 6-MSA and which does not contain a close homolog to

known 6-MSA PKSs. To ensure a high expression level on a

defined medium, the PKS48 gene was integrated into a well

characterized integration site, IS1 (Hansen et al., 2011), under

control of the strong constitutive promoter PgpdA. As expected,

themetabolite profile obtainedwith anAspergillus nidulans refer-

ence strain (IBT 29539) did not show any indications of 6-MSA

when analyzed by ultra-high-performance liquid chromatog-

raphy (UPHLC)-UV-visible diode array detector (DAD)-high-

resolution time-of-flightmass spectrometry (TOFMS) (Figure 2A).

In contrast, the metabolite profile of the strain expressing PKS48

showed the presence of a prominent new peak, which had the

same retention time as an authentic 6-MSA standard and dis-

played the same adducts and monoisotopic mass for the pseu-

domolecular ion. We therefore conclude that PKS48 encodes a

6-MSA synthase.

Production of Yanuthones D and E Is Eliminated by
Deletion of PKS48
The fact that 6-MSA has not previously been reported from

A. niger prompted us to investigate whether this compound

could be a precursor to a known secondarymetabolite produced

by this fungus. We therefore cultivated an A. niger reference

strain (KB1001) and an A. niger PKS48D strain on four different

solid media (minimal medium [MM], CYA, YES, and MEA) that

are known to trigger the production of a wide range of metabo-

lites (Nielsen et al., 2011). The resulting UHPLC-DAD-TOFMS

metabolite profiles were almost identical (Figure S1 available

online), showing that the PKS48D mutation did not induce a

global response on the secondary metabolism. However, on

YES and MM media, we identified two compounds that were

produced by KB1001, but not by the PKS48D strain (Figures

2B and 2C; Table S1). UHPLC separation with UV-visible and

Figure 1. Chemical Structures of 6-MSA and Previously Described

Yanuthones

(A) Chemical structure of 6-MSA.

(B) Chemical structures of previously described yanuthones: yanuthones A–E,

7-deacetoxyyanuthone A, and 22-deacetylyanuthone A (Bugni et al., 2000; Li

et al., 2003).
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high-resolution MS detection as well as MS/MS suggested that

the two compounds were yanuthones D and E. This was

confirmed by isolation of the compounds, nuclear magnetic

resonance (NMR) spectroscopy, and circular dichroism (CD)

(Tables S3 and S4). Hence, production of yanuthones D and E

appears to be based on the use of 6-MSA as a key precursor.

In this scenario, one carbon must be eliminated from C8-based

6-MSA to form the C7 core scaffold of yanuthones D and E.

Yanuthones Constitute a Complex Group of Compounds
That Appear to Originate from Different Precursors
In addition to yanuthones D and E, A. niger has previously been

reported to produce yanuthones A, B, and C, 1-hydroxyyanu-

thone A, 1-hydroxyyanuthone C, and 22-deacetylyanuthone A

(Bugni et al., 2000), and 7-deacetoxyyanuthone A has been re-

ported from the genus Penicillium (Li et al., 2003) (Figure 1B).

We thus examined the extracted ion chromatograms from the

UHPLC-DAD-TOFMS profiles obtained by KB1001 for the pres-

ence of these metabolites. In extracts obtained after cultivation

on MM, YES, and CYA media, this analysis identified trace

amounts of a compound (yanuthone X1) with a mass and

elemental composition corresponding to the yanuthone isomers

A and C. The nature of this compound was further investigated

by MS/MS, and its fragmentation pattern was similar to the

pattern of other yanuthones, showing characteristics such as

loss of a sesquiterpene chain. Moreover, the UV-visible spec-

trum of the compound was similar to spectra obtained for

yanuthones D and E, substantiating that this compound was a

yanuthone. Surprisingly, when the UHPLC-DAD-TOFMSmetab-

olite profiles obtained with the PKS48D strain were examined for

the presence of this yanuthone, it was still present. This observa-

tion strongly suggested that some yanuthones are produced

independently of PKS48.

Fully Labeled 13C8-6-MSA Is Incorporated into
Yanuthones D and E In Vivo
The fact that some yanuthones could be produced indepen-

dently of PKS48, combined with the fact that yanuthones have

been proposed to originate from the shikimate pathway, raised

the possibility that the absence of yanuthones D and E in the

PKS48 deletion strain potentially could be the result of an indirect

effect. To investigate this possibility, we fed fully labeled 13C8-6-

MSA to KB1001 and the PKS48D strain at different time points

during growth (24, 48, and 72 hr; see Experimental Procedures).

The addition of 13C8-6-MSA did not seem to adversely affect the

growth rate, and the morphologies of the colonies of the two

strains were identical (Figure S2). This indicates that the amounts

of 13C8-6-MSA added (2-10 mg/ml) did not significantly influence

strain fitness. Metabolites were then extracted from the plates

and analyzed by UHPLC-DAD-TOFMS. For both strains, 13C8-

6-MSA was incorporated into yanuthones D and E, resulting in

a mass shift of 7.023 Da. This is in agreement with the scenario

described above, where one carbon atom must be eliminated

from 6-MSA in the biosynthetic processing toward yanuthones

D and E. Moreover, the MS-based metabolite profiles also

showed that 13C8-6-MSA was exclusively incorporated into

compounds related to yanuthones. These compounds are only

present in tiny amounts and are likely intermediates or analogs

of yanuthone D or E, because they share the same UV chromo-

phore and because their masses corresponded to water loss(es)

or gain from yanuthone D or E. Based on these results, we

named the 6-MSA synthase (encoded by PKS48/ASPNIDRAFT_

44965) YanA (yanuthone) and the corresponding gene yanA. On

the other hand, no labeled yanuthone X1 was observed in

KB1001 as well as in the PKS48 deletion strain after addition

of 13C8-6-MSA (mass spectra are shown in Figure S3), confirm-

ing our finding that yanuthone X1 is formed in the absence of

PKS48. Hence, we conclude that 6-MSA is not the precursor

of yanuthone X1.

The yan Gene Cluster Comprises Ten Genes
To determine whether yanA defines a gene cluster for a biosyn-

thetic pathway toward yanuthones D and E, ten genes up- and

downstream of yanAwere annotated using FGeneSH (Softberry)

and AUGUSTUS software (Stanke andMorgenstern, 2005). Sub-

sequently, these twenty putative genes were examined using the

NCBI Conserved Domain Database (Marchler-Bauer et al., 2011)

for open reading frames (ORFs) encoding activities that are typi-

cally employed for the modification of PKs. Based on these

A

B

C

Figure 2. Extracted Ion Chromatograms

(A) Extracted ion chromatogram (EIC,m/z 153.0546 ± 0.005) of an A. nidulans

reference strain (IBT 29539) and a 6-MSA producing strain (IS1-44965/yanA).

(B) Base peak chromatograms (BPC) m/z 100-1,000 of the A. niger reference

(KB1001), yanAD, and yanRD strains.

(C) EICs of yanuthone D (1) 503.2640 ± 0.005 (red) and yanuthone E (2)

505.2791 ± 0.005 (black) for KB1001, yanAD, and yanRD.

All chromatograms are to scale.
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analyses, eight additional genes could potentially belong to the

yanA cluster, including genes encoding a transcription factor

(TF), a prenyl transferase, an O-acyltransferase, a decarboxy-

lase, two oxidases, two cytochrome P450s (CYP450s), and a

dehydrogenase (Figure 3; Table S2). Together with yanA and

192604 (a gene with no known homologs), these eight genes

form a cluster of ten genes that are not interrupted by any of

the remaining eleven genes included in the analysis. The fact

that one of the ten genes in this cluster (44961) putatively en-

codes a TF raised the possibility that expression of the genes

involved in yanuthones D and E production is controlled by this

TF. In agreement with this view, deletion of 44961 resulted in a

strain that did not produce these two yanuthones (Figures 2B

and 2C). To further delineate the yanA gene cluster, we deter-

mined the expression levels of the ten cluster genes as well as

of four flanking genes by RT-quantitative PCR (qPCR) in a

44961D strain and KB1001. When the two data sets were

compared, we found, as expected, that expression from 44961

is eliminated in the 44961D strain where the entire gene is

deleted (Figure S4). More importantly, the analysis demon-

strated that expression from the other nine genes in the cluster

was significantly downregulated in the 44961D strain as com-

pared to KB1001 (p value < 0.05). Specifically, the expression

was reduced more than 10-fold for seven of the genes, including

yanA. Expression of the remaining two genes, 54844 and 44964,

was expressed at a level corresponding to 20% and 11%,

respectively, of the level obtained with KB1001. In contrast,

expression levels from the four flanking genes were not signifi-

cantly different from KB1001 (Figure S4). Next, we individually

deleted the remaining eight genes in the proposed yan gene

cluster, which encode putative activities for PK modification.

None of the resulting strains, including 192604D, produced

yanuthone D, indicating that all genes belong to the yan cluster

(Table S1). As a control, the four additional genes flanking this

cluster were also individually deleted, but all these four strains

produced yanuthone D. Based on these analyses and the results

from the RT-qPCR, we propose that the yan gene cluster is

composed by 10 genes, yanA, yanB, yanC, yanD, yanE, yanF,

yanG, yanH, yanI, and yanR, where yanR encodes a TF that reg-

ulates the gene cluster (Figure 3; Table S2). Finally, all ten genes

were simultaneously deleted in one strain. When 13C8-6-MSA

was fed to this strain, no labeled metabolites were detected,

showing that all 6-MSA-derived yanuthones depend on this

gene cluster (see above).

YanF Converts Yanuthone E into Yanuthone D
As the first step toward elucidating the order of reaction steps in

the pathway toward yanuthones D and E, we asked whether

Figure 3. The Proposed yan Cluster

The yanA 6-MSA synthase-encoding gene is

flanked by nine cluster genes (yanB, yanC yanD,

yanE, yanF, yanG, yanH, yanI, and yanR) whose

products contain all necessary activities for con-

version of 6-MSA into yanuthone D.

yanuthones D and E are two different

end products or whether one is an inter-

mediate in the pathway toward produc-

tion of the other. To this end, we note that individual deletion of

genes in the yan gene cluster generally resulted in loss of pro-

duction of both yanuthones D and E on YES medium. The only

exception is the yanFD strain, which produced substantial

amounts of yanuthone E (2), but no yanuthone D (1) (Figure 4).

These findings suggest that YanF converts yanuthone E into

yanuthone D, which is the true end product of the pathway. Inter-

estingly, the yanFD strain produced a new and unknown com-

pound, which was not detected in KB1001. Elucidation of its

structure revealed a yanuthone E analog with a hydroxylation

at C-2 at the expense of the first double bond (between C-2

and C-3) in the sesquiterpene moiety (Table S4). This compound

was named yanuthone J (9).

m-Cresol and Toluquinol Are Intermediates of the
Yanuthone D Biosynthesis
Deletion of yanB, yanC, yanD, yanE, and yanG did not produce

any detectable intermediates, and the phenotype of these muta-

tions therefore does not link any of the genes to specific reaction

steps in the pathway toward formation of yanuthoneD. However,

one of the five putative enzymes, YanC, has a defined homolog,

PatI, in the Aspergillus clavatus patulin biosynthesis pathway

(Artigot et al., 2009) where it catalyzes the oxidation of m-cresol

into toluquinol, suggesting that toluquinol and m-cresol are also

likely intermediates in the yanuthone biosynthesis. To test this

hypothesis, we fed m-cresol and toluquinol to the yanAD strain.

Analysis of the metabolite profiles of the two strains indeed

showed that addition of m-cresol or toluquinol restored produc-

tion of yanuthones D and E in the yanAD strain (Figure 5).

In an attempt to further elucidate the role of the five enzymes,

the corresponding geneswere inserted into plasmid pDHX2 (Fig-

ure S5) and individually expressed in the A. nidulans strain

harboring the yanA gene. No new compounds were produced

in these IS1-yanA strains expressing yanC, yanD, yanE, and

yanG, despite the fact that 6-MSA was produced in high

amounts (Figure S6). Similarly, in the strain expressing yanB,

no new product was observed, but in this case 6-MSA was

absent, indicating that 6-MSA is a substrate for YanB.

Deletion of yanI and yanH Reveals Key Intermediates in
the Biosynthesis of Yanuthone D
In contrast to the yanBD-ED and yanGD strains, new products

were observed in the yanHD and yanID strains. Deletion of

yanH resulted in a strain where the most prominent compound

accumulating is 7-deacetoxyyanuthone A (3) (NMR data in

Table S4). Interestingly, we also identified two compounds in

this strain (Figure 4). Isolation and structure elucidation revealed

two C-1 oxidized yanuthone derivatives, which we named
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yanuthone F (4) and yanuthone G (5) (NMR data in Table S4).

Yanuthone G (5) is a glycosylated version of yanuthone F (4),

which can also be detected in trace amounts in KB1001 (Table

S1). Deletion of yanI resulted in a strain producing the known

compounds 7-deacetoxyyanuthone A (3) and 22-deacetylyanu-

thone A (6) (NMR data in Table S4; Figure 1B). Importantly, the

latter compound corresponds to yanuthone E (2) without the

mevalon moiety. In addition, two compounds were produced.

The structures were elucidated by NMR spectroscopy, revealing

that one, which we named yanuthone H (7), is very similar to

22-deacetylyanuthone A (6), but with a hydroxyl group at C-1

(Figure 4; Table S4). The other compound, which we named

yanuthone I (8), is a modification of 22-deacetylyanuthone A (6)

with a shorter and oxidized terpene (NMR data in Table S4). We

note that yanuthone I (8) was also detected in trace amounts in

KB1001 (Table S1).

Determination of the Yanuthone X1 Structure
Asmentioned above, yanuthoneX1 (12) has an elemental compo-

sition corresponding to yanuthone A and C but was bio-

synthesized from another precursor than yanuthone D and E.

We therefore isolatedandelucidated thestructure (Figure4; Table

S4). This analysis confirmed that yanuthone X1 (12) does not have

the same C7 core scaffold but instead has a C6 core with a

methoxygroup directly attached to the six-membered ring at the

expense of a methyl group (Figure 4). Despite the fact that yanu-

thone X1 (12) and yanuthones D and E employ different precur-

sors, they share common features like the epoxide and the

sesquiterpene side chain, and we therefore hypothesized that

they share common enzymatic steps during their biosynthesis.

In agreement with this, examination of themetabolite profiles ob-

tained with the yan gene deletion strains revealed that yanuthone

X1 (12) was absent in the yanC, yanD, yanE, and yanG deletion

strains (Table S1). In contrast, yanuthone X1 (12) is produced in

larger amounts in theyanADstrain,whichcannotproduce6-MSA.

Antifungal Activity of Yanuthones
Yanuthones have earlier been reported to display antimicrobial

activity (Bugni et al., 2000), and we therefore tested all ten yanu-

thones presented in this study for antifungal activity toward

C. albicans (Table 1). Among these compounds, our analysis

identified yanuthone D as the most toxic species in agreement

with the fact that it represents the most likely end point of the

pathway. Among the remaining yanuthones, three other species,

yanuthone G, yanuthone H, and 22-deacetylyanuthone A,

exhibited antimicrobial activity. In these cases, IC50 values

were �5- to 10-fold higher than the IC50 value determined for

yanuthone D.

DISCUSSION

Elucidation of the Biosynthetic Route from 6-MSA
toward Yanuthone D
We have used a combination of bioinformatics, genetic tools,

chemical analyses, and feeding experiments to investigate

Figure 5. Feeding with Unlabeled m-cresol and Toluquinol

Shown are EICs of yanuthone D (1) 503.2640 ± 0.005 (red) and yanuthone E (2)

505.2791 ± 0.005 (black) for KB1001 and the yanAD strain with and without

feeding. Chromatograms are to scale.

Figure 4. BPC m/z 100–1,000 of Reference Strain KB1001, yanHD,

yanID, and yanFD

All NMR-elucidated compounds are shown for comparison of intensity and

relative retention times. Below are structures of the yanuthones identified in

this study. The structures of yanuthone D (1), yanuthone E (2), 7-deacetox-

yyanuthone A (3), and 22-deacetylyanuthone A (6) are shown in Figure 1.
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whether 6-MSA is produced and whether it is used for produc-

tion of toxic secondary metabolites in A. niger. Our work demon-

strates that 6-MSA is synthesized by the YanA PKS and then

subsequently modified into the antimicrobial end product

yanuthone D. This is intriguing because yanuthones have previ-

ously been suggested to originate from shikimic acid (Bugni

et al., 2000). Yanuthones have previously been observed on

YES agar (Klitgaard et al., 2014; Nielsen et al., 2009) and a

mixture of yeast, beef, and casein extract (Bugni et al., 2000).

In this study yanuthones were detected on solid YES and MM

medium, but not on solid CYA or MEA medium, and yanuthone

synthesis is therefore conditionally induced. To this end, we

find that yanuthone D is not produced in liquid YES and MM

medium, in agreement with the fact that secondary metabolism

is generally turned off in submerged cultures (González, 2012;

Schachtschabel et al., 2013).

We have also shown that yanA defines a gene cluster of ten

members: yanA, yanB, yanC, yanD, yanE, yanF, yanG, yanH,

yanI, and yanR, which is regulated by YanR. In agreement

with this, YanR is homologous to Zn2Cys6 transcription factors

that are commonly involved in regulation of secondary metabo-

lite production. The fact that deletion of yanR completely abol-

ished production of yanuthone D suggests that YanR acts as an

activator of the yan cluster. Additionally, analyses of strains

where the remaining genes in the yan cluster were individually

deleted have allowed us to isolate and characterize the full

structures of three intermediates. Based on these compounds,

we propose the entire pathway for yanuthone D formation

including addition of a sesquiterpene and a mevalon to the

core polyketide moiety at different stages of the biosynthesis

(Figure 6).

In our model, the last intermediate in the pathway is yanuthone

E (2), which is converted into the end product yanuthone D (1) by

oxidation of the hydroxyl group at C-15 in a process catalyzed by

YanF. The fact that yanuthone E (2) is present in KB1001 indi-

cates that it may act as a reservoir for rapid conversion into the

more potent antibiotic compound yanuthone D. Yanuthone E

(2) is likely formed from 22-deacetylyanuthone A (6) by attach-

ment of mevalon to the hydroxyl group at C-22. Because 22-

deacetylyanuthone A (6), but not yanuthone E (2), accumulates

in the yanID strain, we propose that YanI, a putative O-acyltrans-

ferase, catalyzes this step. Intriguingly, YanI therefore appears to

be an O-mevalon transferase, an activity, which, to the best of

our knowledge, has not previously been described in the

literature. Next, we propose that 22-deacetylyanuthone A (6) is

formed by hydroxylation of C-22 of 7-deacetylyanuthone A (3).

In agreement with this view, 7-deacetylyanuthone A (3), but

not 22-deacetoxyyanuthone A (6), accumulates in the absence

of YanH.

Unfortunately we did not detect any intermediates leading

from 6-MSA to 7-deacetoxyyanuthone A (3) in any of the deletion

strains in A. niger. The remaining tentative steps in the pathway

were therefore deduced from bioinformatics and feeding exper-

iments. First, analyses of patulin formation in Aspergillus flocco-

sus (previously identified as Aspergillus terreus; Jens C. Frisvad,

personal communication) and in A. clavatus have shown that it

requires decarboxylation of 6-MSA into m-cresol (Artigot et al.,

2009; Puel et al., 2010). This step is catalyzed by 6-MSA decar-

boxylase (Light, 1969), which has been proposed to be encoded

by patG (Puel et al., 2010). m-Cresol is then converted into gen-

tisyl alcohol in two consecutive hydroxylation steps catalyzed by

the two cytochrome P450s CYP619C3 (PatH) and CYP619C2

(PatI). However, CYP619C2 may also act directly on m-cresol

to form the co-metabolite toluquinol, which is not an intermedi-

ate toward patulin. When we inspected the yan gene cluster for

similar activities, we found a putative 6-MSA decarboxylase

(YanB) and CYP619C2 (YanC), but not CYP619C3. These obser-

vations suggest thatm-cresol and toluquinol are intermediates in

yanuthone D formation. We present two lines of evidence in sup-

port of this view. First, our feeding experiments demonstrate that

both compounds can be converted into yanuthone D. Second,

heterologous expression of yanA in A. nidulans leads to produc-

tion of 6-MSA. This compound disappears if the strain also

expresses yanB, indicating that 6-MSA is a substrate for the

putative 6-MSA decarboxylase YanB. Together these results

strongly suggest that m-cresol is formed directly from 6-MSA

by a decarboxylation reaction, which is most likely catalyzed

by YanB. This reaction explains how C8-based 6-MSA can serve

as the building block for the C7-based core unit of yanuthones.

Moreover, the analyses show that toluquinol is an intermediate

in the production of yanuthone D and that it is formed from

m-cresol in a process most likely catalyzed by the putative cyto-

chrome P450 encoded by yanC. Conversion of toluquinol into

7-deacetylyanuthone A (3) requires epoxidation and prenylation.

Based on the fact that prenylated toluquinol is never observed in

KB1001 or mutant strains, we propose that epoxidation pre-

cedes prenylation. In this scenario, toluquinol is epoxidated

into (10), which is in equilibrium with the tautomer (11). This com-

pound (11) is then prenylated to form 7-deacetylyanuthone A (3)

as a sesquiterpene moiety is attached to C-13 of (11). The latter

reaction is likely catalyzed by YanG, a putative prenyltransfer-

ase. This is supported by the observation that yanuthone D (1)

and all detectable intermediates, including 7-deacetoxyyanu-

thone A (3), were absent in the yanGD strain. The identity of the

gene products(s) responsible for epoxidation of toluquinol is

less clear. Among the putative activities encoded by the genes

in the yan cluster, which have not been assigned to any reaction

step during the analyses above, we note the presence of a puta-

tive dehydrogenase (YanD) and one with an unknown activity

and with no obvious homologs (YanE) as judged by BLAST

Table 1. The Half-Maximal Inhibitory Concentration for

C. albicans Treated with a Small Library of Yanuthones

Compound Origin Isolate IC50 (mM)

Yanuthone D A. niger KB1001 3.3 ± 0.5

Yanuthone E A. niger KB1001 >100

Yanuthone F A. niger yanHD >100

Yanuthone G A. niger yanHD 38.8 ± 5.1

Yanuthone H A. niger yanID 24.5 ± 1.1

Yanuthone I A. niger yanID >100

Yanuthone J A. niger yanFD >100

7-deacetoxyyanuthone A A. niger KB1001 >100

22-deacetylyanuthone A A. niger KB1001 19.4 ± 1.8

Yanuthone X1 A. niger KB1001 >100

The IC50 values were calculated based on duplicate experiments carried

out in three independent trials and annotated with their respective SD.
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analysis of the GenBank database (Altschul et al., 1990). We

hypothesize that one or both of these enzymes catalyze epoxi-

dation. The fact that neither 6-MSA, m-cresol, toluquinol, nor

any other intermediates were detected in the yanBD, yanCD,

yanDD, and yanED strains suggests that these small, aromatic

compounds must be rapidly degraded or converted into other

compound(s), or they may be incorporated into insoluble mate-

rial, e.g., the cell wall.

Figure 6. Proposed Biosynthesis of yanuthone D

Structures and enzymatic activities in brackets are hypothesized, activities in plain text have been proposed from bioinformatics, and activities in bold have been

experimentally verified.
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Accumulation of Intermediates in the Yanuthone D
Pathway Triggers Formation of Novel Yanuthones
Disruption of the biosynthetic pathway toward yanuthone D re-

sults in formation of three branch points in the pathway toward

yanuthone D: at yanuthone E (2), at 7-deacetoxyyanuthone A

(3), and at 22-deacetylyanuthone A (6). In addition to yanuthone

E (2), yanuthone J (9) accumulates in the yanFD strain. Similarly,

yanuthone F (4) accumulates in addition to 7-deacetoxyyanu-

thone A (3) in the yanHD strain, and yanuthone H (7) accumulates

in addition to 22-deacetylyanuthone A (6) in the yanID strain. In

all cases, the sesquiterpenes of the accumulated intermediates

in the main pathway are oxidized at C-1 or C-2. Because

hydroxylation is a known detoxification mode, we speculate

that the abnormally high amount of potentially toxic intermedi-

ates 7-deacetoxyyanuthone A (3), 22-deacetylyanuthone A (6),

and yanuthone E (2) triggers the cell to initiate phase I type of

detoxification processes in which the toxic intermediates are

hydroxylated. This hypothesis is supported by the fact that there

is no obvious assignment of an enzyme with this activity, en-

coded by the yan gene cluster, and by the fact that one of the

intermediates, 22-deacetylyanuthone, is toxic to C. albicans.

An additional variant of yanuthone F (4) was identified in the

yanHD strain, in which yanuthone F (4) is glycosylated at the

hydroxyl group at C-15 to form yanuthone G (5). The glucose

moiety of yanuthone G (5) is intriguing because sugar moieties

are rare in fungal secondary metabolites, and the fact that

yanuthone G (5) is detected in KB1001 shows that it is a

naturally occurring compound (Figure 4; Table S1). Because

yanuthone G (5) production is upregulated in yanHD, we sug-

gest that glycosylation poses a second (phase II conjugation)

type of mechanism for further detoxification of possible toxic

intermediates.

The branch point at 22-deacetylyanuthone A (6) revealed a

novel compound yanuthone I (8), which is identical to 22-deace-

tylyanuthone A (6) and yanuthone H (7) but with a shorter and

oxidized sesquiterpene chain. A similar modification has been

observed in the biosynthetic pathway for production of myco-

phenolic acid (Regueira et al., 2011). Here it was proposed to

occur by oxidative cleavage between C-4 and C-5 of the sesqui-

terpene chain. Alternatively, it could occur by terminal oxidation

of a geranyl side chain.

Yanuthone X1 Defines a Novel Class of Yanuthones
Because yanuthones are based on a C7 scaffold, they were pre-

viously proposed to originate from shikimic acid (Bugni et al.,

2000). However, in our study we demonstrate that yanuthones

D and E originate from the C8 polyketide precursor 6-MSA, which

is decarboxylated to form the C7 core of the yanuthone structure.

In contrast, the novel yanuthone X1 (12) has a C6 core scaffold

that does not originate from 6-MSA and does not require decar-

boxylation by YanB. Based on this we define two classes of

yanuthones: those that are based on the polyketide 6-MSA,

class I, and those that are based on the yet unknown precursor

leading to the formation of yanuthone X1 (12), class II. The two

classes of yanuthones share several enzymatic steps. First we

note that the sesquiterpene side chain in yanuthone X1 (12) is

likely attached by YanG, as is the case for yanuthone D. Second,

it depends on enzyme activities of YanC, YanD, and YanE, but

not of YanB. Together this suggests that the precursor is a small

aromatic compound similar to 6-MSA but lacking the carboxylic

acid. Importantly, the main difference between yanuthone D and

yanuthone X1 (12) are the groups attached to C-16. In the case of

yanuthone X1 (12), this position is oxidized, whereas in yanu-

thones D and E there is a carbon-carbon bond that originates

from the methyl group of 6-MSA. Consequently, yanuthone X1

(12) cannot be mevalonated by YanI.

SIGNIFICANCE

This study has identified a cluster of 10 genes, which is

responsible for production of antimicrobial yanuthone D in

A. niger. We show that yanuthone D is based on the polyke-

tide 6-MSA and not on shikimic acid as previously sug-

gested, and we have proposed a detailed genetic and

biochemical pathway for converting 6-MSA into yanuthone

D. Interestingly, we have revealed that yanuthone X1,

although similar in structure, is not derived from 6-MSA,

but the yet unknown precursor to yanuthone X1 does employ

several enzymes encoded by the yan cluster. An important

finding in the elucidation of the biosynthesis is the identifica-

tion of yanI encoding an O-mevalon transferase, which rep-

resents a different enzymatic activity. We have discovered

that the pathway toward yanuthone D branches when inter-

mediates accumulate, because three intermediates are hy-

droxylated. Two of the hydroxylated compounds are further

modified by oxidative cleavage of the sesquiterpene and

glycosylation, respectively, resulting in five yanuthones.

The discovery of a glycosylated compound, yanuthone G,

is intriguing because glycosylated compounds are very

rare in fungal secondary metabolism. We successfully em-

ployed an interdisciplinary approach for solving the biosyn-

thetic pathway: applying gene deletions, heterologous gene

expression, UHPLC-DAD-MS,MS/MS, structural elucidation

by NMR spectroscopy and CD, and feeding experiments

with 13C-labeled and unlabeled metabolites. Together, our

analyses have cast insights into understanding the

complexity of fungal secondary metabolism.

EXPERIMENTAL PROCEDURES

Strains and Media

The strain IBT 29539 was used for strain constructions in A. nidulans.

ATCC1015-derived strain KB1001 was used for strain constructions in

A. niger. All fungal strains prepared in the present work (Table S5) have

been deposited in the IBT Culture Collection at the Department of Systems

Biology, Technical University of Denmark, Kongens Lyngby, Denmark.

Escherichia coli strain DH5a was used for propagating plasmids, except

E. coli ccdB survival2 cells (Invitrogen), which were used for plasmids carrying

the ccdB gene.

MM for A. nidulans was made as described by Cove (1966), but with 1%

glucose, 10 mM NaNO3, and 2% agar. MM for A. niger was prepared as

described by Chiang et al. (2011). YES, MEA, and CYA were prepared as

described by Frisvad and Samson (Samson et al., 2010). When necessary,

media were supplemented with 4mML-arginine, 10mM uridine, 10 mMuracil,

and/or 100 mg/ml hygromycin B (InvivoGen). Luria-Bertani (LB) medium was

used for cultivation of E. coli strains and consisted of 10 g/l tryptone (Bacto),

5 g/l yeast extract (Bacto), and 10 g/l NaCl (pH 7.0). When necessary, LB

was supplemented with 100 mg/ml ampicillin.

For batch cultivation the medium contained 20 g/l D-glucose-13C6 (99

atom % 13C; Sigma-Aldrich) or D-glucose, 7.3 g/l (NH4)2SO4, 1.5 g/l KH2PO4,

1.0 g/l MgSO4,7 H2O, 1.0 g/l NaCl, 0.1 g/l CaCl2, 0.1 ml of Antifoam 204
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(Sigma), and 1 ml/l trace element solution. Trace element solution contained

0.4 g/l CuSO4,5 H2O, 0.04 g/l Na2B2O7,10 H2O, 0.8 g/l FeSO4,7 H2O, 0.8 g/l

MnSO4,H2O, 0.8 g/l Na2MoO4,2 H2O, and 8.0 g/l ZnSO4,7 H2O.

Construction of Basic Vectors for Strain Construction

All primers are listed in Table S6. The PfuX7 polymerase (Nørholm, 2010) was

used in all PCRs. Fragments were assembled via uracil-excision fusion (Geu-

Flores et al., 2007) into a compatible vector.

pDH56 and pDH57 are designed for integration of novel genes into the IS1

site of A. nidulans. In pDH56, the AsiSI/Nb.BtsI uracil-excision cassette of

CMBU1111 (Hansen et al., 2011) is modified into a ccdB-cmR AsiSI/Nb.BtsI

uracil-excision cassette. Unlike with CMBU1111, new fragments can be intro-

duced into this cassette and cloned in ccdA-deficient E. coli strains like DH5a

without generating background because false positives resulting from incom-

plete digestion of the USER cassette are eliminated (Bernard and Couturier,

1992). Specifically, the suicide gene ccdB and the chloramphenicol resistance

gene cmR (ccdB-cmR) construct was PCR amplified (using primers 84 and 85)

from pDONR (Invitrogen) and inserted into CMBU1111 by uracil-excision clon-

ing in a manner that reconstituted the original uracil excision cassette on either

side of the insert. pDH57 was constructed from pDH56 by removing an unde-

sirable Nb.BtsI nicking site located in the ampR gene. pDH56 was PCR ampli-

fied in two pieces (81 + 76 and 75 + 80). 75 and 76were designed to introduce a

silent mutation into the Nb.BtsI recognition site. Fragments were assembled

via uracil-excision cloning, and correct clones were verified by sequencing.

The gene targeting substrate for insertion of the 6-MSA synthase gene yanA

was made by amplifying the synthase gene yanA (PKS48/ASPNIDRAFT_

44965) from IBT 29539 genomic DNA (primers 1 and 2) and inserted into

pDH57, yielding pDH57-yanA.

The pDHX2 vector is AMA1-based and designed for episomal gene

expression. pDHX2 was constructed by USER fusion of five fragments: (1)

E. coli origin of replication (oriR) and the E. coli ampicillin resistance gene

(ampR); (2) the 50 half of AMA1; (3) the 30 half of AMA1; (4) 0.5 kb of the PgpdA

promoter, an AsiSI/Nb.BtsI USER cassette containing ccdB and cmR, and

the TtrpC terminator; and (5) the A. fumigatus pyrG selection marker (Fig-

ure S5). Fragment 1 was amplified from pDH57 (primers 77 + 78); fragments

2, 3, and 5 were amplified from pDEL2 (primers 86 + 89, 87 + 88, and 82 +

83) (Nielsen et al., 2008); and fragment 4 was amplified from pDH57 (primers

79 + 80). Fragments were assembled as described by Geu-Flores et al.

(2007) using equal molar amounts of purified PCR product, and correct

clones were verified by restriction digestion. Plasmids for episomal heterolo-

gous expression of cluster genes were constructed by PCR amplification of

ORFs using primers 3–12 pairwise. Genes were inserted into AsiSI/Nb.BtsI-

digested pDHX2 as described by Nour-Eldin et al. (2006), resulting in pDHX2-

yanB, pDHX2-yanC, pDHX2-yanD, and pDHX2-yanE. Plasmids were verified

by sequencing.

Plasmids carrying gene targeting substrates for gene deletion in A. niger

were constructed by PCR amplification of upstream (US) and downstream

(DS) targeting sequences along with the hph marker, conferring resistance

to hygromycin B. US and DS targeting sequences were generated using the

primers 17–72, and hph was amplified from pCB1003 (McCluskey et al.,

2010) using primers 13 + 14. The three fragments were assembled into the

CMBU0020 vector (Hansen et al., 2011).

Strain Construction

Protoplasting and gene-targeting procedures were performed as described

previously for A. nidulans (Johnstone et al., 1985; Nielsen et al., 2006) and

A. niger (Chiang et al., 2011). NotI-linearized pDH57-yanA was transformed

into IBT 29539. Transformants were verified by diagnostic PCR as described

by Hansen et al. (2011).

Strains for episomal expression of cluster genes were constructed by

transforming the IS1-yanA strain with circular plasmids (pDHX2-yanB,

pDHX2-yanC, pDHX2-yanD, and pDHX2-yanE) using pyrG as a selectable

marker.

A. niger deletion strains were constructed by transforming KB1001 with

bipartite gene targeting substrates. The substrates were generated by PCR

amplification of the US::hph::DS cassettes of the CMBU0020-based plasmids

using primers GENE_US-FW+73 and 74+GENE_DS-RV. Deletion strains were

selected on 100 mg/ml hygromycin B and verified by diagnostic PCR.

RNA Extraction and RT-qPCR

RNA isolation from the A. niger strains and subsequent quantitative RT-PCRs

were done as previously described by Hansen et al. (2011) except that

biomass for RNA isolation was prepared with a Tissue-Lyser LT (QIAGEN)

by treating samples for 1 min at 45 MHz. The A. niger histone 3-encoding

gene, hhtA (ASPNIDRAFT_52637) and gamma-actin-encoding gene actA

(ASPNIDRAFT_200483) were used as internal standards for normalization of

expression levels. All primers used for quantitative RT-PCR are shown in Table

S6 (primers 90–121). The relative expression levels were approximated based

on 2DDc(t), with DDc(t) = Dc(t)(normalized) � Dc(t)(calibrator), where Dc(t)(normalized) =

Dc(t)(target gene) � Dc(t)(actA or hhtA).The calibrator c(t) values are those from the

A. niger reference strain KB1001. Statistical analysis of RT-qPCR results

was performed as a Student’s t test, and the error bars indicate the SD.

Chemical Analysis of Strains

Unless otherwise stated, strains were cultivated on solid MMmedia and incu-

bated at 37�C for 5 days. Extraction of metabolites was performed as

described by Smedsgaard (1997). 6-MSA was purchased from (Apin Chemi-

cals). Analysis was performed using UPHLC-DAD-TOFMS on a maXis 3G

orthogonal acceleration quadrupole time-of-flight mass spectrometer (Bruker

Daltonics) equipped with an electrospray ionization (ESI) source and con-

nected to an Ultimate 3000 UHPLC system (Dionex). The column used was

a reverse-phase Kinetex 2.6 mm C18, 100 mm 3 2.1 mm (Phenomenex), and

the column temperature was maintained at 40�C. A linear water-acetonitrile

(liquid chromatography-mass spectrometry grade) gradient was used (both

solvents were buffered with 20 mM formic acid) starting from 10% (v/v) aceto-

nitrile and increased to 100% in 10 min, maintaining this rate for 3 min before

returning to the starting conditions in 0.1 min and staying there for 2.4 min

before the following run. A flow rate of 0.4 ml,min�1 was used. TOFMS was

performed in ESI+ with a data acquisition range of 10 scans per second at

m/z 100–1,000. The TOFMS was calibrated using Bruker Daltonics high preci-

sion calibration algorithm by means of the use of the internal standard sodium

formate, which was automatically infused before each run. This provided a

mass accuracy of better than 1.5 ppm in MS mode. UV-visible spectra were

collected at wavelengths from 200 to 700 nm. Data processing was performed

using DataAnalysis 4.0 and Target Analysis 1.2 software (Bruker Daltonics)

(Klitgaard et al., 2014). Tandem MS was performed with fragmentation en-

ergies from 18 to 55 eV.

Preparative Isolation of Selected Metabolites

The fungal strains were cultivated on 10-200 YES plates at 30�C for 5 days. For

details about each extraction, see Table S3. Extracts were filtered and con-

centrated in vacuo. The combined extract was dissolved in 9:1 methanol

(MeOH):H2O, and 1:1 heptane was added, resulting in two phases. To the

MeOH/H2O phase H2O was added to a ratio of 1:1, and metabolites were ex-

tracted with dichlormethane (DCM). The phases were concentrated separately

in vacuo. The DCM phase was adsorbed onto diol column material and dried

before packing into a SNAP column (Biotage) with diol material. The extract

was fractionated on an Isolera flash purification system (Biotage) using seven

steps of heptane-DCM-EtOAc-MeOH. Solvents were of HPLC grade, and H2O

was purified and deionized by aMillipore system through a 0.22 mmmembrane

filter.

The Isolera fractions were subjected to further purification on a semiprepar-

ative high-performance liquid chromatography (HPLC), which was either a

Waters 600 controller with a 996 photodiode array detector (Waters) or a

Gilson 322 controller connected to a 215 Liquid Handler, 819 InjectionModule,

and a 172 DAD (Gilson). This was achieved using a Luna II C18 column (250 3

10 mm, 5 mm; Phenomenex) or a Gemini C6-Phenyl 110A column (250 3

10.00 mm, 5 mm; Phenomenex). 50 ppm TFA was added to acetonitrile of

HPLC grade and Milli-Q water. For choice of system, flow rate, column, gradi-

ents, and yields, see Table S3.

NMR and Structural Elucidation

The 1D and 2D spectra were recorded on a Unity Inova-500MHz spectrometer

(Varian). Spectra were acquired using standard pulse sequences, and 1H,

double quantum filtered-correlated spectroscopy, nuclear Overhauser effect

spectroscopy, heteronuclear single quantum coherence, and heteronuclear

multiple bond correlation spectra were acquired. The deuterated solvent
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was acetonitrile-d3, and signals were referenced by solvent signals for aceto-

nitrile-d3 at dH = 1.94 ppm and dC = 1.32/118.26 ppm. The NMR data was

processed in Bruker Topspin 3.1 or ACD NMR Workbook. Chemical shifts

are reported in ppm (d) and scalar couplings in hertz. The sizes of the J

coupling constants reported in the tables are experimentally measured values

from the spectra. There are minor variations in the measurements that may be

explained by the uncertainty of J. Descriptions of the structural elucidations

are shown in Table S4.

CD spectra were obtained from a J-710 spectropolarimeter (Jasco). The

methanol dissolved samples (1 mg/3 ml) were analyzed in 0.2 cm optical

path length cells at 20�C, and the spectra were recorded from 200 to

500 nm. Optical rotation was measured on a PerkinElmer 321 Polarimeter.

Production and Purification of Fully Labeled 13C-6-MSA

Because fully labeled 13C8-6-MSA was not commercially available, it was pro-

duced in-house from the 6-MSA-producing strain by batch cultivation. Spores

propagated on CYAmedia plates for 7 days at 30�Cwere harvested with 10ml

of 0.9% NaCl through Mira cloth. The spores were washed twice with 0.9%

NaCl. The batch fermentation was initiated by inoculation of 2,109 spores/l.

A Sartorious 1 l bioreactor (Satorious) with a working volume of 0.8 l equipped

with two Rushton six-blade disc turbines was used. The pH electrode (Mettler)

was calibrated according to manufacturer standard procedures. The biore-

actor was sparged with sterile atmospheric air, and off-gas concentrations

of oxygen and carbon dioxide were measured with a Prima Pro Process

Mass Spectrometer (Thermo-Fischer Scientific). Temperature was maintained

at 30�C, and pH was controlled by addition of 2 M NaOH and H2SO4. Start

conditions were pH: 3.0, stir rate: 100 rpm, and air flow: 0.1 volume of air

per volume of liquid per minute (vvm). These conditions were changed linearly

in 720 min to pH: 5.0, stir rate: 800 rpm, and air flow: 1 vvm. The strain was

cultivated until glucose was depleted, as measured by glucose test strips

(Machery-Nagel), and the culture had entered stationary phase as monitored

by off-gas CO2 concentration.

The entire volume of the reactor was harvested, and the biomass was

removed by filtration through a Whatman 1 qualitative paper filter followed

by centrifugation at 8,000 3 g for 20 min to remove fine sediments. The

6-MSA was then recovered from the supernatant by liquid-liquid extraction

using ethyl acetate with 0.5% formic acid.

The organic extract then dried in vacuo to give a crude extract that was re-

dissolved in 20 ml of ethyl acetate and dry loaded onto 3 g of Sepra ZT C18

(Phenomenex) resin prior to packing into a 25 g SNAP column (Biotage) with

22 g of pure resin in the base. The crude extract was fractionated on an Isolera

flask purification system (Biotage) using an water-acetonitrile gradient starting

at 15:85 going to 100% acetonitrile in 23 min at a flow rate of 25 ml min�1 and

kept at that level for 4 min. Fractions were collected using UV detection at 210

and 254 nm, resulting in a total of 15 fractions, of which 3 were pooled and

analyzed. 6-MSA concentration was assessed using a Dionex Ultimate

3000 UHPLC coupled with a ultimate 3000 RS diode array detector (Dionex)

equippedwith a Poroshell 120 phenyl hexyl 2.13 100mm, 2.7 mm (Agilent) col-

umn. Finally, purity (98.7%) was analyzed by UHPLC-TOFMS (Figure S3A).

Feeding Experiments

Solid YES plates were prepared using a 6 mm plug drill to make a well in the

middle of the agar. 25-100 ml of spore suspension was added to the well,

and plates were incubated at 30�C for 5 days. 100 mg of 13C-6-MSA,m-cresol,

and toluquinol (ortoluquinol) was added to the plates after 24, 48, and 72 hr,

respectively. Agar plugs were taken both as reported previously (Smedsgaard,

1997) and also separately from the center, the middle, and the rim of the

colony, respectively, to verify diffusion and absorption of the 6-MSA and the

location of yanuthone production. Samples were analyzed as described in

‘‘Chemical Analysis of Strains.’’

Antifungal Susceptibility Testing

All compounds were screened for antifungal activity toward C. albicans in

accordance with the CLSI standards using RPMI 1640 medium adjusted to

pH 7 with 0.165 MMOPS buffer (CLSI, 2012). Inoculum was prepared to a final

concentration of approximately 2.5 3 103 cells per ml. Inoculated media were

seeded into 96-well microtiter plates in aliquots of 200 ml using a Hamilton

STAR liquid handling workstation with an integrated Thermo Cytomat shaking

incubator and Biotek Synergy Mx microplate reader. The pure compounds

were dissolved in Me2SO and applied at 100 to 5 mM (1% Me2SO per well).

The plates were incubated at 35�C at 1,200 rpm shaking with a 2 mm ampli-

tude. Optical density was recorded every hour for 20 hr. Endpoint optical den-

sities from compound screens were normalized to the negative controls, and

susceptibility was evaluated as the percentage of reduction in optical density.

All bioactive compounds were tested in duplicate in three independent trials to

ensure reproducibility and to evaluate potency of the compound toward the

target organism. The half-maximal inhibitory concentration (IC50) was extrap-

olated from compound specific dilution sequences and annotated as the

average concentration for which 50% inhibition plus minus the SD was

observed.

SUPPLEMENTAL INFORMATION

Supplemental information includes six figures and six tables and can be found
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Figure S1, related to Figure 2. BPC of yanAΔ strain relative to the reference KB1001, cultivated  

on MM (A), YES (B), CYA (C), and MEA (D) for 5 days at 30°C.  
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Figure S2, related to Figure 2. The morphology of A. niger KB1001 is identical with and without 

addition of 
13

C8-6-MSA. The figure shows the top and bottom of KB1001 cultivated on YES 

medium for 5 days at 30 °C.  
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Figure S3, related to Figure 2. Positive electrospray (ESI+) mass spectrum of: (A) uniformly 

labeled 
13

C8-6-methylsalicylic acid, (B) unlabeled and labeled yanuthone D, (C) unlabeled and 

labeled yanuthone E, and (D) unlabelled yanuthone X1. The calculated shift from 
12

C7 to 
13

C7 is 

7.0234 Da.  
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Figure S4, related to Figure 3. RT-qPCR expression analysis of yanA and 13 flanking genes in a 

yanRΔ (44961Δ) strain and a reference strain, KB1001.  A. Absolute expression levels ((Δc(t))
-1

 

values) in KB1001 (grey bar) compared to the TFΔ strain (blue/red bar). Red bars indicate 

significant down-regulation (p-value <0.05), blue bars indicate non-significant changes (p-value 

>0.05).  Error bars indicate the standard deviation (SD). Values are normalized to expression of 

hhtA. B.  Relative expression levels (fold change, 2
ΔΔc(t)

 values) of yan cluster genes (except yanR, 

which is deleted) in the TFΔ strain relative to KB1001. Error bars indicate the standard deviation 

(SD). Expression levels are individually normalized to expression of actA and hhtA, as indicated. 



Supporting Information  

 
 

  



Supporting Information  

 
 

Figure S5, related to Figure 2. (A) Gene deletion in A. niger. The ORF is replaced by the 

selectable hygromycin B phosphatase (hph) gene. Not to scale. (B) pDHX2 vector used for 

expression of all cluster genes in the A. nidulans IS1-yanA strain. The vector contains the AMA1 

sequence for autonomous replication in Aspergillus and the pyrG gene for selection. 

 

 

 

A.  

 

 

B.  
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Figure S6, related to Figure 5. Base peak chromatogram (ESI+) of the five strains that express 

putative cluster genes yanB, yanC, yanD, yanE, and yanG in the A. nidulans IS1-yanA strain (6-

MSA producing reference strain). All strains, except Oex-yanB still produce 6-MSA. IS = internal 

standard: chloroamphenicol, A = austinol, DHA = dehydroaustinol. Chromatograms are to scale.  
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Table S1, related to Figures 2 and 4. Detection of metabolites in the deletion and overexpression 

strains using extracted ion chromatograms of [M+H]
+
 ± 0.005. 
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yanR∆ - - - + - + - - - - + 

 

  



Supporting Information  

 
 

Table S2, related to Figure 3. Overview of genes and proposed activities of the yan cluster. 

Locus 

(ASPNIDRAFT_) 

Gene name Predicted functional domains 

(CDD) 

Proposed activity 

44959 - No conservation - 

44960 - Glyoxalase - 

44961  yanR Fungal transcription factor Transcription factor  

54844  yanC CYP450 m-Cresol hydroxylase 

44963  yanB Amidohydrolase, decarboxylase 6-MSA decarboxylase  

44964  yanG UbiA-like prenyltransferase Prenyltransferase  

44965  yanA Polyketide synthase 6-MSA synthase  

193092  yanH CYP450 Cytochrome P450  

44967  yanI Membrane bound O-acyl transferase O-Mevalon transferase 

127904  yanD Short-chain dehydrogenase Dehydrogenase 

192604  yanE No conservation - 

44970  yanF FAD/FMN-containing 

dehydrogenases 

Oxidase 

44971  - No conservation -  

44972 - No conservation - 
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Table S3, related to Figure 4. Purification of metabolites 

Compound 

name 

Strain Number 

of plates 

Extraction Isolera fractionation Purification Yield 

Yanuthone D 

(1) 

A. niger 

KB1001 

200 EtOAc  

+ 1 % FA 

50g diol, 40 mL·min
-1

, 

CV = 66 mL, auto 

fractionation, 15 fractions 

Waters, Luna II C18, 4 

mL·min
-1

, 40-100% 

ACN over 20 min. 

4.5 mg 

Yanuthone E 

(2) 

A. niger 

KB1001 

200 EtOAc  

+ 1 % FA 

50g diol, 40 mL·min
-1

, 

CV = 66 mL, auto 

fractionation, 15 fractions 

Gilson, Luna II C18, 5 

mL·min
-1

, 40-100% 

ACN over 20 min. 

2.9 mg 

7-deacetoxy 

Yanuthone A 

(3) 

A. niger 

KB1001 

200 EtOAc  

+ 1 % FA 

50g diol, 40 mL·min
-1

, 

CV = 66 mL, auto 

fractionation, 15 fractions 

Waters, Luna II C18, 4 

mL·min
-1

, 40-100% 

ACN over 20 min. 

9.3 mg 

Yanuthone F 

(4) 

yanHΔ  100 EtOAc 25g diol, 25 mL·min
-1

, 

CV = 33 mL, auto 

fractionation, 10 fractions 

Gilson, Luna II C18, 5 

mL·min
-1

, 30-80% 

ACN over 18 min. 

Waters, gemini, 5 

mL·min
-1

, 40-65% 

ACN over 20 min 

1.8 mg 

Yanuthone G 

(5) 

yanHΔ 100 EtOAc 25g diol, 25 mL·min
-1

, 

CV = 33 mL, auto 

fractionation, 10 fractions 

Gilson, Luna II C18, 5 

mL·min
-1

, 30-80% 

ACN over 18 min. 

Waters, gemini, 5 

mL·min
-1

, 30-40% 

ACN over 20 min, to 

45% for 2 min. 

4.0 mg 

22-

deacetylyanu-

thone A (6) 

yanIΔ  100 EtOAc  25g diol, 25 mL·min
-1

, 

CV = 33 mL, auto 

fractionation, 12 fractions 

Gilson, Luna II C18, 5 

mL·min
-1

, 20-90% 

ACN over 17 min.  

Waters, Luna II C18, 5 

mL·min
-1

, 30-100% 

ACN over 20 min. 

7.3 mg 

Yanuthone H 

(7) 

yanIΔ 100 EtOAc  25g diol, 25 mL·min
-1

, 

CV = 33 mL, auto 

fractionation, 12 fractions 

Gilson, Luna II C18, 5 

mL·min
-1

, 30-60% 

ACN over 16 min. 

9.8 mg 

Yanuthone I 

(8) 

yanIΔ 100 EtOAc 25g diol, 25 mL·min
-1

, 

CV = 33 mL, auto 

fractionation, 12 fractions 

Waters, Luna II C18, 5 

mL·min
-1

, 30-60% 

ACN over 16 min. 

4.7 mg 

Yanuthone J 

(9) 

yanFΔ  

 

 

150 EtOAc  

+ 1 % FA 

25g diol, 25 mL·min
-1

, 

CV = 33 mL, auto 

fractionation, 15 fractions 

Waters, Luna II C18, 4 

mL·min
-1

, 20-100% 

ACN over 20 min. 

1.5 mg 

Yanuthone X1 

(12) 

A. niger 

KB1001 

200 EtOAc  

+ 1 % FA 

50g diol, 40 mL·min
-1

, 

CV = 66 mL, auto 

fractionation, 15 fractions 

Waters, gemini, 4 

mL·min
-1

, 90 % ACN 

isocratic for 15 min, 

then to 100 % ACN for 

5 min. 

1.5 mg 
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Table S4, related to Figure 6. Spectroscopic data 

The structural elucidation of the compounds showed several similar features in the 
1
H as well as 2D 

spectra comparable to those reported for the known yanuthones(Bugni et al., 2000; Li et al., 2003). 

All compounds except yanuthone I displayed 8H overlapping resonances at δH 1.93-2.11 ppm in the 
1
H spectrum corresponding to the four methylene groups H4, H5, H8 and H9 in the sesquiterpene 

moiety. Other common resonances were from the diastereotopic pair H-12/H-12’ and 3 methyl 

groups (H-19, H-20 and H-21) around δH 1.60 ppm, whereof H-20 and H-21 were overlapping. In 

the HMBC spectrum a correlation to the quaternary C-18 around δC 194 ppm was seen and all 

compounds also had two carbons around 60 ppm (one quaternary, one methine) being the carbons 

in the epoxide ring.   

The compounds however differed greatly in the moiety attached to C-16. Yanuthone D, yanuthone 

E and yanuthone J all displayed two methylene groups around δC 45 ppm, a methyl group around δC 

28 ppm, two carbonyls around δC 171 ppm and another quaternary carbon around δC 70 ppm for the 

mevalonic acid part. 7-deacetoxyanuthone A, yanuthone F and yanuthone G all had a methyl group 

attached at C-16 while yanuthone H, yanuthone I and 22-deacetylyanuthone A had a further 

hydroxy group at C-22. The hydroxylation in this position was indicated by a significant shift 

downfield of H-22/C-22.  

Some structures had a further modification being a hydroxy group at either C-1 or C-2. The 

compounds yanuthone F, G and H all had a hydroxy group at C-1, shifting C-1 and H-1 

significantly downfield. Yanuthone J had the hydroxy group attached at C-2 which shifted the 

resonances for C-2 and H-2 downfield, and due to the lack of the double bond in those structures, 

the resonance for H-3 was no longer observed in the double bond area but at δH 1.35 ppm. 

Yanuthone I differed in this part of the structure with fewer resonances due to the shorter terpene 

chain. 

The 
1
H NMR spectrum for yanuthone G stood out from the rest due to several resonances between 

3-5 ppm. Elucidation of the structure revealed a sugar moiety attached to the hydroxy group at C-

15. The presence of this hexose unit gave rise to the additional resonances observed. 

The NMR data for yanuthone X1 displayed the same resonances for the sesquiterpene part of the 

molecule, but the methoxy group attached to C-16 is different for all other reported yanuthones, and 

was obvious from the chemical shift of C-16 which gave rise to a resonance at δC 168.3 ppm, which 

is considerable further downfield than in the other structures. Furthermore C-17 was affected 

shifting upfield to δC 100.3 ppm. NMR data for all compounds can be found in invidual tabs in this 

file. 

The stereochemistry of the compounds was investigated by circular dichroism (CD) and optical 

rotation. The CD data for yanuthone D, E and 7-deacetoxyyanuthone A showed that the positive 

and negative cotton effects were identical to those previously reported for these compounds (Bugni 

et al., 2000).  
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Table S4, related to Figure 6. Spectroscopic data. Continued 

Yanuthone D 

HRESIMS: m/z = 503.2640 [M + H]
+
, calculated for [C28H38O8+H]

+
: 503.2639.       

         

CDMeOH: [θ]213 = 12.4263, [θ]230 = -7.8722, [θ]240 = 1.1769, [θ]260 = -4.0282, [θ]298 = 0.7690 

 

 NMR data for yanuthone D 

Atom 

assignment 

1
H-chemical shift [ppm]/  

J coupling constants [Hz] 

13
C-chemical 

shift [ppm] 

HMBC 

correlations 

NOESY 

connectivities 

1 1.59 (3H, s) 17.1 2, 19 - 

2 - 132.1 - - 

3 5.10 (1H, m) 125.0 1, 19 19 

4 2.06 (2H, m) 27.3 2, 3, 5/9 20 

5 1.97 (2H, m) 40.2 3/7, 6, 4/8,20 20 

6 - 136.4 - - 

7 5.09 (1H, m) 124.9 5/9, 8, 20  9 

8 2.09 (2H, m) 27.0 5/9, 6, 7, 10  20, 21 

9 1.99 (2H, m) 40.1 7, 8, 10, 11, 21 7, 11 

10 - 141.0 - - 

11 5.03 (1H, t, 1.5) 116.4 9, 12, 21 9, 12, 12’, 14 

12 2.66 (1H, m) 25.6 10, 11, 13, 14, 15/18 11, 12’, 14, 21 

12’ 2.76 (1H, m) 25.6 10, 11, 13, 14, 15/18 11, 12, 14, 21 

13 - 63.0 - - 

14 3.68 (1H, s) 58.6 12, 13, 15/18, 16, 22  11, 12, 12’, 21 

15 - 193.2 - - 

16 - 143.9 - - 

17 6.58 (1H, t, 1.5) 133.1 13, 15/18, 22 22, 22’, 24, 28 

18 - 193.2 - - 

19 1.66 (3H, s) 25.7 1, 2, 3 3, 4 

20 1.591 (3H, s) 16.1 5, 6, 7 5, 8 

21 1.63 (3H, s) 16.2 9, 10, 11 8, 12, 12’, 14 

22 4.84 (1H, dd, 16.1, 1.5) 60.2 15/18, 16, 17, 23 17 

22’ 4.89 (1H, dd, 16.1, 1.5) 60.2 15/18, 16, 17, 23 17 

23 - 171.2 - - 

24 2.69 (2H, m) 45.6 23, 26 17, 28 

25 - 70.0 - - 

26 2.64 (1H, m) 45.1 24, 25, 28 28 

26’ 2.57 (1H, m) 45.1 27 - 

27 - 173.1 - - 

28 1.33 (3H, s) 27.6 24, 25  17, 24, 26 
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Table S4, related to Figure 6. Spectroscopic data. Continued 

Yanuthone E 

HRESIMS: m/z = 505.2791 [M + H]
+
, calculated for [C28H40O8+H]

+
: 505.2789.       

         

CDMeOH: [θ]209 = 2.1815, [θ]241 = -12.3941, [θ]340 = 7.4622 

 

NMR data for yanuthone E 

Atom 

assignment 

1
H-chemical shift [ppm]/  

J coupling constants [Hz] 

13
C-chemical 

shift [ppm] 

HMBC 

correlations 

NOESY 

connectivities 

1 1.58 (3H, s) 17.7 2, 3, 19 - 

2 - 131.8 - - 

3 5.07 (1H, m) 124.9 1, 4, 5, 19 4, 5, 19 

4 2.02 (2H, m) 27.2 2, 6 3 

5 1.96 (2H, m) 40.3 3/7, 4, 6, 20,   3, 7 

6 - 135.8 - - 

7 5.06 (1H, t, 6.4) 124.9 5/9, 8, 20 5, 9, 20 

8 2.06 (2H, m) 27.2 5/9, 6, 7, 10 - 

9 1.99 (2H, m) 40.3 6, 7, 8, 11, 21 7, 11 

10 - 139.9 - - 

11 5.04 (1H, t, 7.2) 117.7 9, 12, 13, 21 9, 12, 12’, 14 

12 2.67 (1H, m) 26.6 10, 11, 13, 14, 18 11, 12’, 14 

12’ 2.42 (1H, m) 26.6 10, 11, 13, 14, 18 11, 12, 14 

13 - 61.3 - - 

14 3.64 (1H, d, 2.8) 60.1 12/12’, 13, 15, 16, 22/22’,  11, 12, 12’ 15 

15 4.68 (1H, br. s) 65.8 16, 17 14 

16 - 154.6 - - 

17 5.86 (1H, q, 1.4) 121.6 13, 15, 16, 22, 22’ 22, 22’, 24 

18 - 194.8 - - 

19 1.66 (3H, s) 25.6 1, 2, 3 3 

20 1.581 (3H, s) 16.0 5, 6, 7 7 

21 1.62 (3H, s) 16.3 9, 10, 11 - 

22 4.82 (1H, d, 16.1) 63.6 15, 16, 17, 18, 23 17, 22’ 

22’ 4.76 (1H, d, 16.1) 63.6 15, 16, 17, 18, 23 17, 22 

23 - 171.4 - - 

24 2.69 (2H, m) 45.8 23, 25, 26, 28 17 

25 - 70.2 - - 

26 2.59 (2H, m) 45.4 24, 25, 27, 28 - 

27 - 173.5 - - 

28 1.33 (3H, s) 27.7 25, 26 - 
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Table S4, related to Figure 6. Spectroscopic data. Continued 

Yanuthone J 

HRESIMS: m/z = 523.2907 [M + H]
+
, calculated for [C28H42O9+H]

+
: 523.2901       

        

 

 

NMR data for yanuthone J 

Atom 

assignment 

1
H-chemical shift [ppm]/  

J coupling constants [Hz] 

13
C-chemical 

shift [ppm] 

HMBC 

correlations 

1 1.28 (3H, m) 29.7 - 

2 - 70.9 - 

3 1.35 (2H, m) 44.0 4, 19 

4 1.43 (2H, m) 23.1 - 

5 1.93 (2H, m) 40.5 3, 4, 6, 7, 11, 

20 

6 - 136.3 - 

7 5.08 (1H, tq, 6.3, 1.0) 124.4 - 

8 2.09 (2H, m) 26.7 6, 7, 9, 10 

9 2.02 (2H, m) 40.3 7, 8, 10, 11, 21 

10 - 139.6 - 

11 5.03 (1H, tq, 6.3, 1.0) 117.5 - 

12 2.45 (1H, m) 26.5 10, 11, 13, (18) 

12’ 2.68 (1H, m) 26.5 10, 11, 13 

13 - 61.1 - 

14 3.63 (1H, d, 2.8) 59.9 13, 15, 16 

15 4.69 (1H, m) 65.7 - 

16 - 154.7 - 

17 5.86 (1H, q, 1.5) 121.5 13, 15, 22 

18 - (194.2) - 

19 1.12 (3H, s) 29.2 1, 2, 3 

20 1.58 (3H, s) 15.9 5, 6, 7 

21 1.62 (3H, s) 16.2 9, 10, 11 

22 4.83 (1H, d, 16.0)  63.6 16, 17, 23 

22’ 4.76 (1H, d, 16.0) 63.6 16, 17, 23 

23 - 171.2 - 

24 2.681 (2H, m) 43.7 23, 25, 26, 28  

25 - 70.9 - 

26 2.61 (2H, m) 45.1 24, 25, 27, 28  

27 - 173.6 - 

28 1.33 (3H, s) 27.5 25, 26 
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Table S4, related to Figure 6. Spectroscopic data. Continued 

7-deacetoxyyanuthone A 

HRESIMS: m/z = 345.2434 [M + H]
+
, calculated for [C22H32O3+H]

+
: 345.2424       

         

CDMeOH: [θ]206 = -13.6324, [θ]242 = -25.0218, [θ]335 = 16.7472 

 

 

 

NMR data for 7-deacetoxyyanuthone A 

Atom 

assignment 

1
H-chemical shift [ppm]/  

J coupling constants [Hz] 

1 1.67 (3H, d 1.0) 

2 - 

3 5.10 (1H, m) 

4 2.07-1.90 (2H, m) 

5 2.07-1.90 (2H, m) 

6 - 

7 5.09 (1H, m) 

8 2.07-1.90 (2H, m) 

9 2.07-1.90 (2H, m) 

10 - 

11 5.05 (1H, m) 

12 2.72 (1H, dd, 15.2, 7.9) 

12’ 2.39 (1H, dd, 15.2, 6.7) 

13 - 

14 3.62 (1H, d, 2.89) 

15 4.49 (1H, br. s) 

16 - 

17 5.70 (1H, p, 1.5) 

18 - 

19 1.60 (3H, s) 

20 1.59 (3H, s) 

21 1.64 (3H, s) 

22 2.07-1.90 (3H, m)  
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Table S4, related to Figure 6. Spectroscopic data. Continued 

Yanuthone F 

HRESIMS: m/z = 361.2373 [M + H]
+
, calculated for [C22H32O4+H]

+
: 361.2373       

         

 

 

NMR data for yanuthone F 

Atom 

assignment 

1
H-chemical shift [ppm]/  

J coupling constants [Hz] 

13
C-chemical 

shift [ppm] 

HMBC 

correlations 

NOESY 

connectivities 

1 3.84 (2H, br. s) 68.3 2, 3, 19 3, 5 

2 - 136.2 - - 

3 5.33 (1H, tq, 7.4, 1.5) 125.3 1, 19 1, 4, 5 

4 2.11 (2H, m) 26.8 2, 5, 6 3, 7 

5 1.99 (2H, m) 40.1 2/6, 4/8, 20 1, 3, 7 

6 - 136.2 - - 

7 5.09 (1H, tq, 6.9, 1.1) 124.9 4/8, 5/9, 20 4, 5, 8, 9 

8 2.07 (2H, m) 26.8 6, 5/9, 10 7 

9 2.01 (2H, m) 40.1 6, 8/12, 10, 21 7, 11, 14 

10 - 139.7 - - 

11 5.04 (1H, tq, 7.3, 1.2) 118.0 8/12, 9, 21 9, 12, 12', 14 

12 2.70 (1H, dd, 15.1, 8.1) 27.0 10, 11, 13 11, 12', 14 

12' 2.37 (1H, m) 27.0 10, 11, 13, 18 11, 12, 14 

13 - 61.4 - - 

14 3.60 (1H, d, 2.7) 60.2 13, 15, 16 9, 11, 12, 12', 15 

15 4.48 (1H, m) 67.6 16, 17 14, 22 

16 - 158.8 - - 

17 5.68 (1H, m) 123.2 13, 15, 22 22 

18 - 194.9 - - 

19 1.59 (3H, s) 13.5 1, 2, 3, 4 - 

20 1.591 (3H, s) 16.1 5, 6, 7 - 

21 1.62 (3H, s) 16.1 6, 10, 11, 13 - 

22 1.92 (2H, br. s) 20.0 15, 16 15, 17 
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Table S4, related to Figure 6. Spectroscopic data. Continued 

Yanuthone G 

HRESIMS: m/z = 523.2917 [M + H]
+
, calculated for [C28H42O9+H]

+
: 523.2901.       

         

 

 

NMR data for yanuthone G 

Atom 

assignment 

1
H-chemical shift [ppm]/  

J coupling constants [Hz] 

13
C-chemical 

shift [ppm] 

HMBC 

correlations 

NOESY 

connectivities 

1 3.86 (2H, s) 68.2 2, 3, 19 3, 19 

2 - 135.9 - - 

3 5.34 (1H, t, 6.3) 125.2 1, 4, 5, 19 1 

4 2.10 (2H, m) 26.8 2/6, 3, 5 5, 20 

5 1.99 (2H, m) 40.0 2/6, 4/8, 7, 20 4, 7 

6 - 135.9 - - 

7 5.10 (1H, t, 6.3) 124.9 4/8, 5/9, 20 5, 9 

8 2.06 (2H, m) 26.9 5/9, 6, 10 9, 20, 21  

9 2.02 (2H, m) 40.0 6, 8/12, 10, 11, 21 7, 8, 11, 14 

10 - 139.7 - - 

11 5.04 (1H, t, 6.7) 117.9 8/12, 9, 21 9, 12, 12’, 14, 15 

12 2.67 (1H, m) 26.9 10, 11, 13, 18 11, 14, 21 

12' 2.37 (1H, dd, 14.8, 6.2) 26.9 10, 11, 13, 18 11, 14, 21 

13 - 61.3 - - 

14 3.82 (1H, br. s) 59.7 15, 16 9, 11, 12, 12’, 15, 17, 21 

15 4.59 (1H, m) 76.2 23 11, 14, 17 

16 - 157.0 - - 

17  5.71 (1H, br. s) 123.9 13, 15, 22 14, 15, 27 

18 - 194.4 - - 

19 1.591 (3H, s) 13.7 1, 2, 3 1 

20 1.59 (3H, s) 15.9 5, 6, 7  4, 8 

21 1.62 (3H, s) 16.3 9, 10, 11 8, 12, 12’, 14 

22 1.97 (3H, m) 20.1 15, 16 26, 27 

23 4.56 (1H, m) 105.7 16 24, 25, 26, 27, 28, 28’ 

24 3.25 (1H, br. s) 74.6 23, 26/27 23, 25, 26, 27 

25 3.37 (1H, m) 77.2 - 23, 24, 26, 27, 28, 28’ 

26 3.35 (1H, m) 71.2 

- 22, 23, 24, 25, 27, 28, 

28’ 

27 3.35 (1H, m) 77.2 

- 17, 22, 23, 24, 25, 26, 28, 

28’ 

28 6.77 (1H, d, 10.7) 62.6 - 23, 25, 26, 27, 28’ 

28’ 3.66 (1H, d, 10.7) 62.6 - 23, 25, 26, 27, 28 
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Table S4, related to Figure 6. Spectroscopic data. Continued 

22-deacetylyanuthone A 

HRESIMS: m/z = 361.2372 [M + H]
+
, calculated for [C22H32O4+H]

+
: 361.2373       

         

 

 

NMR data for 22-deacetylyanuthone A 

Atom 

assignment 

1
H-chemical shift [ppm]/  

J coupling constants [Hz] 

13
C-chemical 

shift [ppm] 

HMBC 

correlations 

NOESY 

connectivities 

1 1.66 (3H, s) 25.8 2, 3, 19 - 

2 - 132.0 - - 

3 5.10 (1H, m) 124.9 1, 4, 5, 19 4, 5, 19 

4 2.07 (2H, m) 26.8 2, 5, 6 3, 5, 19, 20 

5 1.98 (2H, m) 40.1 4/8, 6, 3/7, 20 3, 4, 7 

6 - 136.0 -  

7 5.10 (1H, m) 124.9 4/8, 5/9, 20 8, 5/9, 20 

8 2.09 (2H, m) 26.8 5/9, 6, 7, 10 7, 9, 20, 21  

9 2.03 (2H, m) 40.1 7, 10, 11, 13, 8/12, 21 7, 8, 11 

10 - 140.2 - - 

11 5.05 (1H, ddd, 7.93, 6.71, 1.22) 118.0 9, 8/12, 13, 21 9, 12, 12’, 14, 21 

12 2.70 (1H, dd, 15.3, 7.9) 26.8 10, 13, 17, 18 11, 12’, 14, 21 

12' 2.42 (1H, dd, 15.3, 6.7) 26.8 10, 13, 17, 18 11, 12, 14, 21 

13 - 61.6 - - 

14 3.62 (1H, d, 2.8) 60.2 12,15, 16, 22 11, 12, 12’, 15 

15 4.64 (1H, m) 66.2 13, 16, 17, 18 14, 22, 22’ 

16 - 160.8 - - 

17 5.87 (1H, q, 1.73) 119.7 15, 16, 22 22, 22’ 

18 - 195.1 - - 

19 1.601 (3H, s) 17.7 1, 2, 3 3, 4 

20 1.60 (3H, s) 15.9 5, 6, 7 4, 7, 8 

21 1.63 (3H, s) 16.2 8/12, 9, 10, 11, 13 8, 11, 12, 12’ 

22 4.27 (1H, m) 62.0 15 15, 17 

22' 4.21 (1H, m) 62.0 - 15, 17 
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Table S4, related to Figure 6. Spectroscopic data. Continued 

Yanuthone H 

HRESIMS: m/z = 377.2332 [M + H]
+
, calculated for [C22H32O5+H]

+
: 377.2322.       

         

 

 

NMR data for yanuthone H 

Atom 

assignment 

1
H-chemical shift [ppm]/  

J coupling constants [Hz] 

13
C-chemical 

shift [ppm] 

HMBC 

correlations 

NOESY 

connectivities 

1 3.85 (2H, s) 68.3 2, 3, 4, 19 3 

2 - 136.0 - - 

3 5.34 (1H, m) 125.4 1, 4, 5, 19 1, 5 

4 2.11 (2H, m) 26.8 3, 5, 6 - 

5 1.99 (2H, m) 40.1 4/8, 6, 7, 12, 20 3 

6 - 135.9 - - 

7 5.10 (1H, t, 6.4) 124.9 4/8, 5/9, 20 9 

8 2.07 (2H, m) 26.8 5/9, 7, 10 - 

9 2.02 (2H, m) 40.1 7, 10, 11, 8/12, 21 7, 11 

10 - 139.8 - - 

11 5.05 (1H, t, 6.8) 118.0 8/12, 21 9, 12, 12’, 14 

12 2.71 (1H, dd, 15.1, 8.3) 26.8 10, 11, 13, 18 11, 12’, 14 

12' 2.40 (1H, dd, 15.1, 6.8) 26.8 20, 11, 13, 18 11, 12, 14 

13 - 60.9 - - 

14 3.62 (1H, d, 2.9) 60.4 12, 13, 15, 16 11, 12, 12’ 15 

15 4.64 (1H, br. s) 66.1 16, 17 14, 16, 17 

16 - 160.6 - 15 

17 5.87 (1H, d, 1.5) 119.7 13, 15, 16 15, 22, 22’ 

18 - 194.9 - - 

19 1.601 (3H, s) 13.5 1, 2 - 

20 1.60 (3H, s) 16.1 5/8, 7 - 

21 1.63 (3H, s) 16.2 8/12, 10, 11 - 

22 4.27 (1H, d, 17.6) 62.0 15, 16, 17, 18 17, 22’ 

22' 4.21 (1H, m) 62.0 15, 16, 17, 18 17, 22 
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Table S4, related to Figure 6. Spectroscopic data. Continued 

Yanuthone I 

HRESIMS: m/z = 325.1635 [M + H]
+
, calculated for [C17H24O6+H]

+
: 325.1646.       

         

  

 

NMR data for yanuthone I 

Atom 

assignment 

1
H-chemical shift [ppm]/  

J coupling constants [Hz] 

13
C-chemical 

shift [ppm] 

HMBC 

correlations 

NOESY 

connectivities 

5 - 177.4 - - 

6 2.28 (1H, m) 38.2 5, 7/7', 8, 20 7, 7', 8, 20 

7 1.48 (1H, m) 32.5 5, 6, 8, 20 6, 7', 8, 9, 20 

7' 1.26 (1H, m) 32.5 5, 6, 8, 20 6, 7, 8, 9, 21 

8 1.32 (2H, m) 24.5 7/7', 9, 10 6, 7, 7', 9, 11, 20 

9 1.92 (2H, t, 7.1) 38.7 7/7', 8, 10, 11, 21 7, 7', 8, 11, 14 

10 - 137.9 - - 

11 5.00 (1H, t, 7.1) 116.9 9, 12/12', 13, 21 8, 9, 12, 12', 14 

12 2.63 (1H, dd, 15.1, 7.9) 25.7 10, 11, 13, 14, 17, 18 12', 14, 17, 21 

12' 2.32 (1H, m) 25.7 9, 10, 11, 13, 14, 17, 18 12, 14, 17, 21 

13 - 60.0 - - 

14 3.59 (1H, d, 2.4) 59.1 12/12', 13/22/22', 15, 16 9, 11, 12, 12', 15, 17, 21 

15 4.61 (1H, br. S) 64.3 16, 17 14, 22' 

16 - 162.2 - - 

17 5.82 (1H, d, 1.6) 117.4 13/22/22', 14, 15, 16, 18 22' 

18 - 193.7 - - 

20 1.02 (3H, d, 6.7) 16.7 5, 6, 7 6, 7, 7', 8  

21 1.56 (3H, s) 15.6 9, 10, 11, 12/12', 13 7', 9, 12, 12', 14 

22 4.21 (1H, d, 18.5) 60.0 15, 16, 17, 18 22' 

22' 4.09 (1H, d, 18.5) 60.0 15, 16, 17, 18 15, 17, 22 

-COOH 12.01 (1H, br. s) -   
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Table S4, related to Figure 6. Spectroscopic data. Continued 

Yanuthone X1 

HRESIMS: m/z = 403.2482 [M + H]
+
, calculated for [C17H24O6+H]

+
: 403.2479       

        

 

 

NMR data for yanuthone X1 

Atom assignment 
1
H-chemical shift [ppm]/  

J coupling constants [Hz] 

13
C-chemical 

shift [ppm] 

HMBC 

correlations 

NOESY 

correlations 

1 1.66 (3H, s) 25.6 2, 3, 19 3 

2 - 132.2 - - 

3 5.08 (1H, m) 125.0 5 1, 4/5 

4 2.05 (2H, m) 27.6 3, 5, 6  3, 5 

5 2.00 (2H, m) 40.3 6, 4/8, 7, 11 3, 4 

6 - 135.6 - - 

7 5.08 (1H, m) 125.0 5/9, 20 - 

8 2.07 (2H, m) 27.6 5/9, 6, 7 9 

9 1.95 (2H, m) 40.3 7, 8, 10, 11, 21 8, 11 

10 - 139.8 - - 
11 5.01 (1H, t, 7.3) 117.5 9, 21 9, 12, 12’ 

12 2.78 (1H, dd, 15.3, 8.2) 26.2 10, 11, 13, 14 11, 12’ 

12’ 2.45 (1H, dd, 15.3, 6.7) 26.2 10, 11, 13, 14, 18 11, 12 

13 - 60.5 - - 

14 3.59 (1H, d, 3.1) 56.3 15, 16 15 

15 5.95 (1H, d, 3.1) 66.6 16 14 

16 - 168.3 - - 

17 5.30 (1H, s) 100.3 13, 15, 16 22 

18 - 193.7 - - 

19 1.57 (3H, s) 17.6 1, 2, 3 - 

20 1.571 (3H, s) 15.8 5, 6 - 
21 1.61 (3H, s) 16.3 9, 10, 11 - 

22 3.67 (3H, s)  57.4 16 17 

23 - 170.7 - - 

24 2.14 (3H, s) 20.6 23 - 
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Table S5, related to Figures 2, 3, and 4. Fungal strains. 

Name Organism Genotype 
IBT 29539 A. nidulans argB2, pyrG89, veA1, nkuAΔ 

OE-yanA A. nidulans argB2, pyrG89, veA1, nkuAΔ S1::PgpdA::yanA::TtrpC::argB 

OE-yanG A. nidulans argB2, pyrG89, veA1, nkuAΔ IS1::PgpdA::yanA::TtrpC::argB, pDHX2::yanG 

OE-yanC A. nidulans argB2, pyrG89, veA1, nkuAΔ IS1::PgpdA::yanA::TtrpC::argB, pDHX2::yanC 

OE-yanB A. nidulans argB2, pyrG89, veA1, nkuAΔ IS1::PgpdA::yanA::TtrpC::argB, pDHX2::yanB 

OE-yanD A. nidulans argB2, pyrG89, veA1, nkuAΔ IS1::PgpdA::yanA::TtrpC::argB, pDHX2::yanD 

OE-yanE A. nidulans argB2, pyrG89, veA1, nkuAΔ IS1::PgpdA::yanA::TtrpC::argB, pDHX2::yanE 

KB1001 A. niger pyrGΔ kusA::AFpyrG 

yanAΔ A. niger pyrGΔ kusA::AFpyrG yanAΔ 

yanGΔ A. niger pyrGΔ kusA::AFpyrG yanGΔ 

yanIΔ A. niger pyrGΔ kusA::AFpyrG yanIΔ 

yanCΔ A. niger pyrGΔ kusA::AFpyrG yanCΔ 

yanBΔ A. niger pyrGΔ kusA::AFpyrG yanBΔ 

yanHΔ A. niger pyrGΔ kusA::AFpyrG yanHΔ 

yanDΔ A. niger pyrGΔ kusA::AFpyrG yanDΔ 

yanEΔ A. niger pyrGΔ kusA::AFpyrG yanEΔ 

yanFΔ A. niger pyrGΔ kusA::AFpyrG yanFΔ 

yanRΔ A. niger pyrGΔ kusA::AFpyrG yanRΔ 

44959Δ A. niger pyrGΔ kusA::AFpyrG ASPNI_DRAFT44959Δ 

44960Δ A. niger pyrGΔ kusA::AFpyrG ASPNI_DRAFT44960Δ 

44971Δ A. niger pyrGΔ kusA::AFpyrG ASPNI_DRAFT44971Δ 

44972Δ A. niger pyrGΔ kusA::AFpyrG ASPNI_DRAFT44972Δ 

ClusterΔ A. niger pyrGΔ kusA::AFpyrG ASPNI_DRAFT44958-44972Δ 

  



Supporting Information  

 
 

Table S6, related to Figures 2, 3, and 4. Primers used in the study. See details in experimental 

section. 

# Primer name Sequence 5’→ 3’ 

1 44965-fw AGAGCGAUATGCCAGGCCTTGTACAC 

2 44965-rv TCTGCGAUTTAAGCATCCAGCTCCTTTGT 

3 44963_ORF_FW AGAGCGAUATGGACCGTATCGACGTACACC 

4 44963_ORF_RV TCTGCGAUCTAGGTACTATAAGTATGAACACGAGACTG 

5 44964_ORF_FW AGAGCGAUATGTCTACTACTAAGCGCTCGGTAAC 

6 44964_ORF_RV TCTGCGAUCTAGTATACTTTCATGGGTGCGTGA 

7 54844_ORF_FW AGAGCGAUCGGGCTAGACTTTCTCTTCCTAAG 

8 54844_ORF_RV TCTGCGAUATGGCGCTTGTTCATCTGACT 

9 127904_ORF_FW AGAGCGAUATGGTCAAGTTTTTTCAGCCCA 

10 127904_ORF_RV TCTGCGAUCTAACGGAACTGGGGAGGAA 

11 192604_ORF_FW AGAGCGAUTACTTTGCGACTACCTGCCATG 

12 192604_ORF_RV TCTGCGAUCTACTCCGACTTTTCACCTTTGG 

13 hph-1003-Fw AGCCCAATAUGCTAGTGGAGGTCAACACATCA 

14 hph-1003-Rv ATTACCTAGUCGGTCGGCATCTACTCTATT 

15 44965-chk-usF CAGTTGACTAGACTAGGAACGGTCA 

16 44965-chk-dsR AACGACCATGATGCTTGTTCAG 

17 44965_US-FW GGGTTTAAUATGACTCCACATCATCTTCCACAC 

18 44965_US-RV ATATTGGGCUGATGGTGTGTACAAGGCCTGG 

19 44965_DS-FW ACTAGGTAAUGACTGTTATGCATTGAATTTGAGC 

20 44965_DS-RV GGTCTTAAUAGATCCTGACGCTCATATCTGCT 

21 44964_US-FW GGGTTTAAUGGTCTTTCCGACACGTAAGTCTG 

22 44964_US-RV ATATTGGGCUTGGACCTCAATGGCCGCT 

23 44964_DS-FW ACTAGGTAAUGCGAGTATGAAGAAGGTGGATGA 

24 44964_DS-RV GGTCTTAAUATTCAGGGTCTTGAGATTGGC 

25 44963_US-FW GGGTTTAAUAAGTCCTCCCACGTCGGAG 

26 44963_US-RV ATATTGGGCUAGAATCTAAACCTTGTCTCTTCGCT 

27 44963_DS-FW ACTAGGTAAUGAACGTTTGATTGGTAATGGATGT 

28 44963_DS-RV GGTCTTAAUTCATCCACCTTCTTCATACTCGC 

29 54844_US-FW GGGTTTAAUGTAGAATAACAGCTACCTCGAATTTGA 

30 54844_US-RV ATATTGGGCUACGTGGTGCGTAAGCAGACAT 

31 54844_DS-FW ACTAGGTAAUCCTGCTGAATAAACACGAAGG 

32 54844_DS-RV GGTCTTAAUATGGACCGTATCGACGTACACC 

33 44960_US-FW GGGTTTAAUTGAGTACCTATCCACTCTTCCTGG 

34 44960_US-RV ATATTGGGCUGATGGAGTGTGAAGCCAATGAG 

35 44960_DS-FW ACTAGGTAAUTCATTCTAAAATTGGCGTCTTCA 

36 44960_DS-RV GGTCTTAAUCTACTGCCGCCGTCACTATCTA 

37 193092_US-FW GGGTTTAAUCATCGACATCTCTCTGCCCAT 

38 193092_US-RV ATATTGGGCUGAAAGCTGGTTGGAAGTATAAGTGG 

39 193092_DS-FW ACTAGGTAAUTGTGCAGCGGTATTGACTTCA 



Supporting Information  

 
 

40 193092_DS-RV GGTCTTAAUCACGGAGTTATTTTCCACGCT 

41 44967_US-FW GGGTTTAAUCGTTGGCATGACAGTCTTCAA 

42 44967_US-RV ATATTGGGCUGTCTGCCATCACAACCAGTTTG 

43 44967_DS-FW ACTAGGTAAUAGCCATGTTGCCAGACACAGT 

44 44967_DS-RV GGTCTTAAUACTACCATCTCGTAACCGTCCTAG 

45 127904_US-FW GGGTTTAAUGACCGACTCTACACTACCGTTCC 

46 127904_US-RV ATATTGGGCUATTGAACTGGTAAACATGCCATG 

47 127904_DS-FW ACTAGGTAAUTAGCCCTAGGACGGTTACGAG 

48 127904_DS-RV GGTCTTAAUAACCAACTTTGTTCCATTCTATCG 

49 192604_US-FW GGGTTTAAUGACACATCGTATTGATGACGACC 

50 192604_US-RV ATATTGGGCUCATGGCAGGTAGTCGCAAAG 

51 192604_DS-FW ACTAGGTAAUAAGAGAATACGGAACACATTGACC 

52 192604_DS-RV GGTCTTAAUCGGTCCAACAGTGAGGGTCT 

53 44970_US-FW GGGTTTAAUCGTTGATAATTCCAATTCCAATTC 

54 44970_US-RV ATATTGGGCUCGTCGAAGATGACCTGATTTG 

55 44970_DS-FW ACTAGGTAAUCGGGTTATCACTGTATCAATATCG 

56 44970_DS-RV GGTCTTAAUGCTACTACTATGCCGACTGCGT 

57 44971_US-FW GGGTTTAAUGGCCACACCTCAAGTTTGTATG 

58 44971_US-RV ATATTGGGCUCGGGATTGGAGTGCTCTAGTT 

59 44971_DS-FW ACTAGGTAAUGTTGGCTGAGAGTCAGGGTTAG 

60 44971_DS-RV GGTCTTAAUCCATTAGCTTCGGAACACTGG 

61 44959_US-FW GGGTTTAAUCCTTGTATTCATATCAATTGCGA 

62 44959_US-RV ATATTGGGCUATGTGACAATGAAGAATGGTACG 

63 44959_DS-FW ACTAGGTAAUGGAAAGGATGTTCCAAACAGTT 

64 44959_DS-RV GGTCTTAAUCTTTGTTGATTACTAGTCGTAATCATATG 

65 44961_US-FW GGGTTTAAUTGTCATGTTGTATCGGAGTGTTTAG 

66 44961_US-RV ATATTGGGCUTGTAGCACAAGTGTCTCACTAGTAAATAG 

67 44961_DS-FW ACTAGGTAAUGATTGGAAGTATCCCACAGTCTG 

68 44961_DS-RV GGTCTTAAUGAGAACACCGATCTCCGACGTGGGA 

69 44972_US-FW GGGTTTAAUGACGCAGTCGGCATAGTAGTAG 

70 44972_US-RV ATATTGGGCUGGAGAAGTGGTCAAACTTGTTTCA 

71 44972_DS-FW ACTAGGTAAUACAGGTGATTAAGATGCAAGGCT 

72 44972_DS-RV GGTCTTAAUCTTGCATCATCCGTAATTATGCT 

73 Upst-HygR-N CTGCTGCTCCATACAAGCCAACC  

74 Dwst-1003HygF-N GACATTGGGGAGTTCAGCGAGAG  

75 ampR_PM_FW AGCGCTACAUAATTCTCTTACTGTCATGCCATCC 

76 ampR_PM_RV ATGTAGCGCUGCCATAACCATGAGTGATAACACTG 

77 ori_coli_FW ATCCCCACUACCGCATTAAGACCTCAGCG 

78 ampR_RV AGCTGCTUCGTCGATTAAACCCTCAGCG 

79 p71_prom-

ter_short_usF 

AGCCCAATAUTAAGCTCCCTAATTGGCCC 

80 p71_prom-ter_dsR ATTACCTAGUGGGCGCTTACACAGTACA 

81 argB_FW ACTAGGTAAUATCGCGTGCATTCCGCGGT 
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82 pyrG_FW_C1 ACTAGGTAAUATGACATGATTACGAATTCGAGCT 

83 pyrG_RV_G16 AGTGGGGAUGCCTCAATTGTGCTAGCTGC 

84 ccdB-camR-fw AGAGCGAUCGCAGAAGCCTACTCGCTATTGTCCTCA 

85 ccdB-camR-rv TCTGCGAUCGCTCTTGCGCCGAATAAATACCTGT 

86 AMA1_FW AAGCAGCUGACGGCCAGTGCCAAGCT 

87 AMA1_RV ATATTGGGCUGGAAACAGCTATGACCATGAGATCT 

88 AMA-3'-Fw ACCCCAAUGGAAACGGTGAGAGTCCAGTG 

89 AMA-5'-Rv ATTGGGGUACTAACATAGCCATCAAATGCC 

90 ANIG-actA-qFw GTATGCAGAAGGAGATCACTGCTCT 

91 ANIG-actA-qRv GAGGGACCGCTCTCGTCGT 

92 ANIG-hhtA-qFw CTTCCAGCGTCTTGTCCGTG 

93 ANIG-hhtA-qRv GCTGGATGTCCTTGGACTGGAT 

94 44959-qFw GGCAAAGTTCTAGTCATCGACGA 

95 44959-qRv CATATATCCCAGAGGCGGACAC 

96 44960-qFw GATAGAGGAGATGAGGAAGAGAGGCT 

97 44960-qRv CCTTGGGTACCATTCACAGTCAG 

98 44961-qFw ACATGGACCACCGAGTAGCGT 

99 44961-qRv TAGGGTGTGCGAGAATATCACTTG 

100 54844-qFw CGATGAAGATGGCAATCCCAT 

101 54844-qRv CTATGGCATCGCATACTGAGAAAGA 

102 44963-qFw GCGAGGAGGTAGAAAAGGCAAT 

103 44963-qRv TGAACACGAGACTGGAGTACGGA 

104 44964-qFw TCTTCTGGATACTGGGAATTGGAG 

105 44964-qRv GCGTGATGCACCCTCAACA 

106 44965-qFw TTGTCTGTCAAGGAGGACGAGATT 

107 44965-qRv CTTCACCAAATGCTGCACAGTC 

108 193092-qFw ATCACGGCAAAGAGAGCCAAGT 

109 193092-qRv GAACTGTGGCACGACCATGTC 

110 44967-qFw TGCTGGCTGCTAAGGATTGATG 

111 44967-qRv ATGTTCCAACGCAATGAACAAC 

112 127904-qFw ATGAGCAACATGCTCCCACTACAT 

113 127904-qRv CAGTGATGGTCTTATCCGCCAG 

114 192604-qFw GCCTAATCCTGGGCATCGTG 

115 192604-qRv CTGTGCTCCCCGATCTGCA 

116 44970-qFw TCTCAGGGTGTCCATCTTCCGT 

117 44970-qRv CGACACGAAATAGGCATCATTCT 

118 44971-qFw ATCTACTCCGGCTCCTGCGAT 

119 44971-qRv ACTCGCAAACAACTTCATTGCTC 

120 44972-qFw AGGTGACTCGAACTGGTATGCTG 

121 44972-qRv CAGAATATACTCGATATGATCGCCTC 
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ABSTRACT: We present the results from stable isotope
labeled precursor feeding studies combined with ultrahigh
performance liquid chromatography-high resolution mass
spectrometry for the identification of labeled polyketide
(PK) end-products. Feeding experiments were performed
with 13C8-6-methylsalicylic acid (6-MSA) and 13C14-YWA1,
both produced in-house, as well as commercial 13C7-benzoic
acid and 2H7-cinnamic acid, in species of Fusarium,
Byssochlamys, Aspergillus, and Penicillium. Incorporation of 6-
MSA into terreic acid or patulin was not observed in any of six
evaluated species covering three genera, because the 6-MSA
was shunted into (2Z,4E)-2-methyl-2,4-hexadienedioic acid.
This indicates that patulin and terreic acid may be produced in
a closed compartment of the cell and that (2Z,4E)-2-methyl-2,4-hexadienedioic acid is a detoxification product toward terreic
acid and patulin. In Fusarium spp., YWA1 was shown to be incorporated into aurofusarin, rubrofusarin, and antibiotic Y. In A.
niger, benzoic acid was shown to be incorporated into asperrubrol. Incorporation levels of 0.7−20% into the end-products were
detected in wild-type strains. Thus, stable isotope labeling is a promising technique for investigation of polyketide biosynthesis
and possible compartmentalization of toxic metabolites.

Filamentous fungi are a rich source of bioactive metabolites,
including the polyketides (PKs), which constitute one of

the largest groups of natural products. PKs include important
pharmaceutics such as lovastatin, mycophenolic acid, and
griseofulvin.1 Three of the five major economically important
mycotoxins are also of PK origin: aflatoxins, zearalenones, and
fumonisins, aflatoxins being the most carcinogenic natural
compounds currently known and zearalenones being highly
estrogenic.2

With the rapid decrease in the cost of fungal genome
sequencing, a much more efficient foundation for elucidation of
biosynthetic pathways is now available.3 This can be used for
direct studies of biosyntheses, for improving cell factories via
metabolic engineering, or for product yield optimization.4

Alternatively, biosynthetic clusters can be transferred to a
heterologous host for higher yields, which is often vital for
producing sufficient amounts of a new drug candidate for
toxicological and pharmacological evaluation. However, linking
of fungal biosynthetic genes to their products by genetic
engineering approaches is still very time-consuming. This is
mainly due to the difficulties with bioinformatic prediction of
the products being synthesized by iterative polyketide synthases
(PKSs).5 In a recent study we have used feeding experiments
and ultrahigh performance liquid chromatography-high reso-
lution mass spectrometry (UHPLC-HRMS) to show that 13C8-

labeled 6-methylsalicylic acid (6-MSA, 1; Chart 1) and not the
previously hypothesized precursor shikimic acid was a central
building block in formation of yanuthone D in Aspergillus niger.6

The earliest biosynthetic studies using labeled precursors
were based on 14C and other radioactive isotopes to enable
detection.7 However, this has been overtaken by NMR
spectroscopy using stable isotope labeled (SIL) compounds,
where a (usually) 13C-, 15N-, 2H-, or 34S-labeled precursor is
used. NMR data can also reveal labeling positions in the final
products.8 The downside of NMR spectroscopy is the poorer
sensitivity compared with liquid chromatography mass
spectrometry (LC-MS), requiring time-consuming isolation of
SIL-labeled product(s) as well as much higher consumption of
SIL precursors. However, MS may not yield information on the
position of the labeling unless MS/MS can be used to form
assignable labeled fragments of the compound of interest.
SIL precursor feeding has been used in several studies of the

aflatoxin pathway,9 the asticolorin pathway (both NMR
based),10 and as noted above the yanuthone D pathway in A.
niger (MS based).6,11
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To ease interpretation of LC-MS results from these labeling
experiments, it is advantageous to use a 100% labeled precursor
that will result in formation of one distinct product isotopomer.
Furthermore, the mass shift induced should preferably be large
enough to be free of interference from the natural isotopomers
of the target.
For MS investigation of pathways where SIL precursors are

not available, the organism could be cultivated using fully
isotope labeled media leading to nearly complete isotope
enrichment in a so-called reciprocal or inverse labeling
experiment.12−14 This approach requires a minimal medium
where all C, N, H, or S sources can be labeled, which is not
available for complex media containing components that are
often required to induce expression of fungal secondary
metabolite pathways.
In recent studies, we were able to achieve close to 20%

labeling of PK end-products in A. niger using 13C8-6-MSA
produced by heterologous expression of a 6-MSAS gene (yanA)
in Aspergillus nidulans.6 Based on these results, we speculated
that it would be of scientific value to produce numerous SIL
precursors this way and use them for examination of various
biosynthetic pathways. To test the applicability of this strategy,
we used two commercially available precursors [benzoic acid
(5) and cinnamic acid (6)] and two in-house produced
precursors [6-MSA and YWA1 (8)] to investigate a number of
pathways where these four compounds are known or suspected
to be precursors to other compounds.

Since labeled 6-MSA was already available, it seemed obvious
to examine other known compounds biosynthesized using 6-
MSA as precursor. A well-known compound is the mycotoxin
patulin (2), for which the biosynthesis has already been
elucidated.15 Patulin is found in many species throughout three
different genera (Byssochlamys, Penicillium, and Aspergillus),
making it an excellent case for testing for broad versatility of
labeling across organisms. The compound terreic acid (3,16

Figure 1), produced by A. terreus ATCC 20542 (the original
mevinolin producer)17,18 is related to patulin and is also
biosynthesized from a 6-MSA precursor.19 Thus, terreic acid
was also selected for investigation.
A. niger is a producer of numerous PKs including asperrubrol

(7).20 It has previously been hypothesized that cinnamic acid is
a precursor to asperrubrol.21 Cinnamic acid is a known
precursor of benzoic acid in Phanerochaete chrysosporium,22

which means that benzoic acid might also be used to investigate
the biosynthesis of cinnamic acid. Because both cinnamic acid
and benzoic acid were commercially available as SIL
compounds, feeding experiments were performed using both.
The PK YWA1 (8)23 is a key precursor to several different

compounds in a variety of different fungal species; in A.
nidulans YWA1 (produced by WA, encoded by wA) is the
precursor to the green melanin responsible for pigmentation of
conidia.23 In A. niger, YWA1 (produced by AlbA, encoded by
albA) is also the precursor to conidial pigment; however here
the YWA1 is converted into 1,8-dihydroxynaphthalene (1,8-
DHN) by chain shortening, after which the 1,8-DHN is
polymerized into black melanin. YWA1 is also the precursor to
the naphtho-γ-pyrones, of which the predominant compounds
are the aurasperones.24,25

In Fusarium graminearum, YWA1 is the first stable
intermediate formed during biosynthesis of the red pigment
aurofusarin (12).26−28 In F. graminearum, YWA1 is biosynthe-
sized by PKS12,29 an orthologue of the WA PKS in A.
nidulans,24 resulting in the formation of a nonreduced
heptaketide. Folding of the heptaketide can result in the
formation of either YWA1 or isocoumarins.27 After release from
the PKS, YWA1 is converted into nor-rubrofusarin (9),
rubrofusarin (10), 9-hydroxyrubrofusarin, and finally the
dimers fuscofusarin (11) and aurofusarin.29

Antibiotic Y (13) (avenacein Y) was first isolated from F.
avenaceum in 1986, and although its biosynthetic pathway is
unknown,30 it displays several structural features in common
with YWA1 and rubrofusarin. This suggest that it may also be
formed via the nonreducing polyketide biosynthetic pathway.5

The carbon backbone of antibiotic Y includes a lactone, which
is atypical for nonreduced polyketides, and in this study, we
hypothesize that it is formed either by the fusion of a tri- and
tetraketide or by a previously undescribed carbon backbone
cleavage of YWA1 followed by recondensation into a lactone.
In this study, we have used LC-MS to investigate the

biosynthetic pathways of different filamentous fungi using SIL
precursors. Both well-known metabolites such as patulin and
terreic acid and metabolites biosynthesized from undescribed
pathways (antibiotic Y and asperrubrol) were investigated to
explore advantages and limitations of the approach.

■ RESULTS AND DISCUSSION
13C8-6-MSA Was Not Incorporated into Patulin or

Terreic Acid. Feeding experiments were performed using
several organisms that were known to produce patulin (P.

Chart 1. Chemical Structures of Compounds Investigateda

aCompounds are arranged according to biosynthetic origin. The
boxed compounds correspond to the SIL compounds used in the
study.
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griseofulvum, P. paneum, P. carneum, A. clavatus, B. nivea) or to
produce terreic acid (A. hortai and A. f loccosus).
No changes in morphologies or chemical profiles (acquired

base peak chromatograms, BPC) were observed for any of the
fungi fed with SIL precursors. Chemical analysis showed no
signs of incorporated 13C8-6-MSA into either patulin or terreic
acid. The analysis was conducted by examining extracted ion
chromatograms (EIC, ±0.02 Da) corresponding to both the
labeled and unlabeled forms of the compounds (Table 2) and
comparing these to reference standards of the compounds.
This was a surprise because 6-MSA is a known precursor to

both compounds.15,19 Since chemical analysis showed that the
13C8-6-MSA was removed from the medium, we hypothesize
that this result could be due to the fungi degrading the 6-MSA
as a source of nutrient. Another explanation could be that the
enzymatic activities involved in biosynthesis are linked in a
manner that does not allow entry of an advanced precursor. A
recent paper by Guo et al.19 showed that (2Z,4E)-2-methyl-2,4-
hexadienedioic acid is a shunt product in the terreic acid
pathway, and we subsequently detected a peak corresponding
to the correct accurate mass of this compound in an extract
from A. f loccosus. Investigation of the mass spectrum also
revealed the presence of an ion corresponding to one
incorporating 13C7 (Supporting Information, Figure S1). We
define the degree of labeling as

+
Signal

Signal Signal
labeled form

labeled form unlabeled form

For (2Z,4E)-2-methyl-2,4-hexadienedioic acid, the degree of
labeling was thus 76% in A. f loccosus fed after 3 days (Table 1).
Interestingly (2Z,4E)-2-methyl-2,4-hexadienedioic acid was also
found in the extracts from the patulin producers (Table 1), in
both labeled and unlabeled form, showing that it is also a shunt
product in the patulin biosynthesis. This strongly indicates that
it is a result of a detoxification reaction in the cytoplasm and
that patulin and terreic acid are produced in defined
compartments. This would make sense, since patulin is an
antifungal compound. The need for a detoxification process
also seems to be important because (2Z,4E)-2-methyl-2,4-
hexadienedioic acid was detected in amounts corresponding to
10−20% of the produced patulin as determined using UV. To
test for compartmentalization, the peptide sequence of the
proteins involved in the terreic acid pathway19 were analyzed in
order to predict any membrane bound proteins, using a range
of different prediction tools,31 including TargetP 1.1,32 PSORT
II,33 and MultiLoc2.34 However, no conclusive results were
returned on whether the proteins are membrane bound.

Benzoic Acid Is a Precursor to Asperrubrol in A. niger.
Asperrubrol biosynthesis in A. niger was investigated by
addition of the two proposed precursors, cinnamic acid and
benzoic acid. After feeding with 2H7-cinnamic acid, no changes
in morphologies or the BPCs were observed (data not shown).

Table 1. Results from the Labeling Experiments, Where the Highest Determined Degree of Incorporation Is Listed

target compound producer organism precursor
time of precursor
addition (d)

degree of incorporation (%, average
of duplicates)

patulin (2) P. griseofulvum, P. paneum, P. carneum, A.
clavatus, B. nivea

6-MSA (1) 3 NDa

(2Z,4E)-2-methyl, 4-hexadienoic
acid (4)

45b

terreic acid (3) A. hortai, A. f loccosus 6-MSA (1) 3 NDa

(2Z,4E)-2-methyl, 4-hexadienoic
acid (4)

6 NDa

3 76c

6 58c

asperrubrol (7) A. niger Cinnamic acid
(6)

3 NDa

6 NDa

Benzoic acid
(5)

3 1.3d

6 NDa

aurofusarin (12) F. avanaceum, F. graminearum YWA1 (8) 3 1.2f

7 0.3g

10 0.4g

antibiotic Y (13) 3 NDa

7 0.7e

10 0.4e

rubrofusarin (10) 3 0.4g

7 10g

10 17g

putative intermediate to
antibiotic Y (14)

3 NDa

7 2.2e

10 2.2e

aNo incorporation detected. bA. clavatus. cA. f loccosus. dF. avanaceum cultivated on DFM. eF. avanaceum cultivated on Bell’s medium. fF.
graminearum cultivated on DFM. gF. graminearum cultivated on Bell’s medium.
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Mass spectra of asperrubrol from samples fed with 2H7-
cinnamic acid exhibited no changes compared with the control
samples. If cinnamic acid was converted into benzoic acid or
another advanced precursor prior to incorporation into
asperrubrol, extracted ion chromatograms corresponding to
asperrubrol labeled with five, six, or seven 2H atoms should be
detectable; our experiments showed this was not the case.
Cultures of samples fed with 13C7-benzoic acid also did not

exhibit any changes in morphologies nor any peaks appearing
or disappearing in the BPCs (Supporting Information, Figure
S2), but investigation of the peak corresponding to asperrubrol
revealed an ion with m/z 344.2031, corresponding to a
difference of m/z 7.0233 compared with the [M + H]+ ion of
asperrubrol (Figure 1A). The ion corresponding to the [M +
Na]+ pseudomolecular ion of asperrubrol, as well as its labeled
form, was also detected. This corresponded to incorporation of
13C7 into the asperrubrol molecule. EICs of asperrubrol and its
labeled form (Figure 1B) exhibited similar peak shapes and
retention time (RT) and had a degree of incorporation of
around 1.3% (Table 1).
These results suggest that asperrubrol is indeed biosynthe-

sized from benzoic acid, which may in turn be synthesized from
cinnamic acid in a different compartment. These results support
the structure of asperrubrol reported by Rabache et al.20

Labeling in Fusarium spp. The compound YWA1 is
known to be a biosynthetic precursor of several compounds
including nor-rubrofusarin, rubrofusarin, fuscofusarin, and
aurofusarin in fusaria. To investigate the biosynthesis of
these, 13C-labeled YWA1 (8) was used in labeling studies
with two wild-type Fusarium strains, as well as two PKS12
deletion strains, deficient in the production of YWA1, grown
under conditions that induce production of the compounds of
interest. The two wild-type Fusaria did not exhibit any changes
in morphologies or BPCs as a result of adding labeled substrate
(data not shown). The mass spectrum extracted at the RT of
the peak corresponding to aurofusarin showed ions correspond-
ing to both unlabeled aurofusarin (12) and aurofusarin labeled
with 13C14 (Figure 2A).
EICs corresponding to labeled and unlabeled aurofusarin

(Figure 2B) exhibited similar peak shapes and RTs with an
incorporation degree of 0.4% (Table 1). No ions corresponding
to aurofusarin with incorporation of two labeled YWA1 units
were detected. This result was not surprising due to the low
frequency of incorporation, that is, the frequency of
incorporation of two units into aurofusarin would be (0.4%)2

≈ 0.0016%, which is below the limit of detection.
Based on the previously established biosynthetic pathway of

aurofusarin,26,28,29 intermediates of the biosynthesis were
investigated to determine if labeling of these could be detected.

Figure 1. (A) Mass spectrum extracted at RT 12.0 min contained the [M + H]+ (m/z 337.1798, mass deviation m/z 0.06 ppm) and [M + Na]+ (m/z
359.1599). Mass shift of 7.0233 Da (m/z 344.2031, mass deviation 0.60 ppm) suggests incorporation of 13C7 (red arrow). (B) EICs corresponding
to asperrubrol (7, top) and asperrubrol with 13C7 incorporated (bottom).

Figure 2. (A) Mass spectrum extracted at RT 10.3 min showing [M + H]+ (m/z 571.0869, mass deviation −0.35 ppm) and [M + Na]+ (m/z
593.0682) pseudomolecular ions. A mass shift of 14.0510 Da (m/z 585.1359 mass deviation, 3.1 ppm) suggests incorporation of 13C14 (red arrow).
(B) EICs corresponding to aurofusarin (12, top) and aurofusarin with 13C14 incorporated (bottom).
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Only one precursor to aurofusarin, rubrofusarin (See
Supporting Information, Figure S3), was detected in its labeled
form and exhibited an incorporation degree of 20% (Table 1).
The two PKS12 deletion strains, F. graminearum ΔPKS12

P1b and F. graminearum PH-1 HUEA (ΔPKS12), were also
investigated by feeding with 13C14-YWA1. These should not be
able to produce YWA1 or aurofusarin. The PH-1 HUEA strain
is thus pale white, while the wild-type F. graminearum is deep
red. For one of these strains, PH-1 HUEA, addition of YWA1
resulted in visual changes: addition of 13C14-YWA1 on day
three resulted in bright red coloring around the reservoir, and
addition after 7 days resulted in brownish coloring (Supporting
Information, Figure S4). Addition of 13C14-YWA1 after 10 days
did not result in any color change. The colors of the control
samples were unchanged throughout all 14 days. BPCs from
the analysis did not reveal any changes in the chemical profiles
(Supporting Information, Figure S5). Chemical analysis
showed that the samples fed on days three and seven contained
a compound with the same RT as aurofusarin. The mass
spectrum (Supporting Information, Figure S6) contained an
ion (m/z 599.1807) corresponding to aurofusarin with two
YWA1 units (13C28) incorporated. Because this strain is not
able to biosynthesize YWA1 on its own, all aurofusarin
produced must be a product of the added 13C14-YWA1, thus
allowing detection of aurofusarin with two YWA1 units
incorporated. This demonstrated that the fungus is indeed
able to take up YWA1 from the medium and that YWA1, as
expected, is a precursor to aurofusarin.
To test the hypothesis that antibiotic Y in F. avanaceum was

also formed from YWA1, a wild-type F. avenaceum was fed with
13C14-YWA1 under conditions that were known to induce
production of antibiotic Y. As expected, feeding did not affect
the metabolite profile (Supporting Information, Figure S7).
However, closer investigation of the mass spectrum from the
peak corresponding to antibiotic Y (Figure 3) revealed an ion
(m/z 333.0912) corresponding to antibiotic Y with 13C14
incorporated.
EICs corresponding to unlabeled antibiotic Y and antibiotic

Y with 13C14 incorporated (Figure 3B) exhibited similar RT,
confirming that the labeled YWA1 precursor is incorporated
into antibiotic Y. The unlabeled form was present in high
enough amounts to saturate the detector, which accounts for
the differences observed for the peak shapes. To calculate the
degree of incorporation, the intensity of the [13C1M + H]+ ion,
which was not saturated, was then used to estimate the
nonsaturated intensity of [M + H]+, calculated using the

theoretical ratio between these two. This showed that the
degree of incorporation of YWA1 into antibiotic Y was 0.4%
(Table 1). These results confirmed the hypothesis that YWA1
is a precursor to antibiotic Y and that its biosynthesis must
depend on a yet undescribed structural rearrangement. To
further investigate the biosynthesis of antibiotic Y, several
putative intermediates were proposed and their chemical
formulas formed the basis for a targeted analysis. One of
these putative intermediates to antibiotic Y exhibited a mass
spectrum indicative of YWA1 incorporation (Supporting
Information, Figure S8), with an incorporation degree of 2.3%.
Comparison of the aurofusarin gene clusters in the genome-

sequenced aurofusarin-producing fusaria revealed that the three
antibiotic Y producing F. avenaceum strains contained an
additional gene (aurE, FAVG1_08663) located centrally in the
gene cluster.35 AurE is predicted to encode a soluble epoxide
hydrolase (EC: 3.3.2.3) based on its enzymatic domains. It is
possible that the product of this unique gene is responsible for
cleavage of YWA1 (8), and molecular genetics studies have
been initiated to test this hypothesis.

Degrees of Incorporation. Overall the feeding experi-
ments showed that the degrees of incorporation of the labeled
precursors obtained by direct addition to wild-type strains
varied significantly from 0.3% to 76%, with two further cases of
incorporation into a presumed detoxification product. As
expected, strains deficient in production of the precursor
showed 100% incorporation. The degree of incorporation
seemed to correlate inversely with the quantity of end product
biosynthesized, with the signal of (2Z,4E)-2-methyl-2,4-
hexadienedioic acid being very low in the patulin producers
that have a 100-fold higher production of the compound than
the terreic acid producing strains. In other published labeling
studies, the degrees of incorporation of precursor have also
varied. In a study of the mycotoxin terretonin by McIntyre et
al., incorporation of several different differentially labeled
precursors was investigated.36 They found incorporation
degrees of 0.3−2.5% depending on the precursor and
cultivation conditions used. A study by Yoshizaws et al.
investigated the incorporation of acetate in the biosynthesis of
dehydrocurvalarin and found that these were incorporated at
approximately 2%.37 Finally, Yue et al. reported a 6%
incorporation of ethyl (2R,3R)-2-methyl-3-hydroxy pentanoate
into tylactone for an investigation of macrolide biosynthesis.38

The results revealed several important parameters for
successful labeling of a compound through the use of an
advanced labeled precursor. The organism must be able to take

Figure 3. (A) Mass spectrum extracted at RT 8.2 min with [M + H]+ (m/z 319.0449, mass deviation 0.18 ppm) and [M + Na]+ (m/z 341.0261)
pseudomolecular ions corresponding to antibiotic Y. Mass shift of 13C14 suggest incorporation of labeled YWA1 (red arrow). (B) EICs
corresponding to antibiotic Y (13; m/z 333.0912, mass deviation −1.8 ppm; top) and antibiotic Y with 13C14 (bottom).
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up the labeled precursor and, if necessary, transport it to a
specific biosynthetic compartment in the cell. Second, the
labeled compound must be included in the biosynthesis of a
compound to act as a precursor. Finally, the precursor must be
recognized by the tailoring enzymes as a substrate, and it is
dependent on tailoring enzymes that are not physically coupled
to the PKS synthesis, for example, as a protein complex. One
hypothesis could be that synthesis of the PKs takes place in a
so-called metabolon, where the SIL precursor cannot be
inserted, as described for the tricarboxylic acid cycle.39

Examination of the data showed that the highest degree of
incorporation of the labeled precursors was obtained at
different time points, which is not surprising because
biosynthesis also occurs at different time points during growth.
For antibiotic Y, the highest degree of incorporation was
obtained by addition after 7 days, but for aurofusarin, the
highest incorporation was obtained with addition on day three.
Presumably, the best strategy is to add the labeled compound at
the onset of biosynthesis for the compound(s) to be studied.
Another complication is that produced compounds may be
recycled as part of the primary metabolism, as described for the
nonribosomal peptide roquefortine C.40

Due to the low incorporation degrees observed for wild-type
strains, a targeted analysis approach was required for
determination of the incorporation levels. This could be
combined with more systematic feeding studies, where fungi of
interest could be cultivated using a whole panel of SIL
precursors to investigate the biosynthesis of more complex
compounds, since it is well suited for confirming hypotheses
concerning biosynthetic pathways.

■ EXPERIMENTAL SECTION
General Experimental Procedures. All LC-MS analysis was

performed using ultrahigh-performance liquid chromatography
(UPHLC) UV/vis diode array detector (DAD) high-resolution MS
(HRMS). The equipment used was an Agilent 6550 iFunnel Q-TOF
LC/MS system (Torrance, CA) with an electrospray ionization (ESI)
source operating in positive polarity, connected to an Agilent 1290
infinity UHPLC. The column used was an Agilent Poroshell 120
phenyl hexyl 2.7 μm, 250 mm × 2.1 mm column.
Chemicals. Solvents were LC-MS grade, and all other chemicals

were analytical grade. All were from Sigma-Aldrich (Steinheim,
Germany) unless otherwise stated. Water was purified using a Milli-
Q system (Millipore, Bedford, MA). Electrospray ionization time-of
flight (ESI-TOF) tune mix was purchased from Agilent.

13C8-Labeled 6-MSA (Table 2), 98.7%, had been produced by
fermentation of a genetically modified A. nidulans by cultivation on
labeled media, as described by Holm et al.6 13C7-Benzoic acid, 99%
labeled, and 2H7-cinnamic acid, 98%, were purchased from Sigma-
Aldrich (Steinheim, Germany).

Construction of YWA1 Producing Strain. Protoplasting and
gene targeting procedures were performed as described previously for
A. nidulans.41,42 The wA ORF (AN8209) was amplified with primers
wA-fw (5′-GAGCGAUATGGAGGACCCATACCGTGT-3′) and wA-
rv (5′-TCTGCGAUTATTAGAACCAGAGGATTATTATTGTT-3′)
and inserted into the expression vector pDH57 via USER cloning, as
described by Holm et al.6 The gene targeting substrate for insertion of
the YWA1 synthase gene was excised from pDH57-wA by NotI
digestion and transformed into IBT 29539, as previously described.6

Transformants with wA integrated into IS1 were verified by diagnostic
PCR as described by Hansen and co-workers.43

Production and Purification of 13C14-Labeled YWA1. The
constructed YWA1 producing strain was propagated on solid MM
medium prepared as described by Cove44 and supplemented with 4
mM arginine. Spores were harvested after 14 days incubation at 30 °C
with 10 mL of saline (0.9% NaCl in water) with 0.01% Tween 80 and
filtered through Miracloth (Merck Millipore, Billerica, MA, USA). The
spores were washed twice with saline prior to application. The batch
fermentation was initiated by inoculation of 5 × 109 spores/L. A 1 L
bioreactor (Sartorius, Goettingen, Germany) with a working volume of
0.8 L equipped with two Rushton six-blade disc turbines was used. The
pH electrode (Mettler, Greifensee, Switzerland) was calibrated
according to manufacturer standard procedures. For batch cultivation,
the following media composition was applied: 20 g/L D-glucose-13C6
(99 atom % 13C, Sigma-Aldrich) or D-glucose, 7.5 g/L (NH4)2SO4, 1.5
g/L KH2PO4, 1.0 g/L MgSO4·7H2O, 1.0 g/L NaCl, 0.1 g/L CaCl2, 0.1
mL of Antifoam 204 (Sigma-Aldrich), 1 mL/L trace element solution
(0.4 g/L CuSO4·5 H2O, 0.04 g/L Na2B2O7·10H2O, 0.8 g/L FeSO4·
7H2O, 0.8 g/L MnSO4·H2O, 0.8 g/L Na2MoO4·2H2O, 8.0 g/L
ZnSO4·7H2O.

The bioreactor was sparged with sterile atmospheric air, and off-gas
concentrations of oxygen and carbon dioxide were measured with a
Prima Pro Process mass spectrometer (Thermo-Fischer Scientific,
Waltham, MA, USA). Temperature was maintained at 30 °C, and pH
was controlled by addition of 2 M NaOH and H2SO4. Start conditions
were as follows: pH 3.0, stir rate 100 rpm, and air flow 0.1 volume of
air per volume of liquid per minute (vvm). These conditions were
changed linearly in 720 min to pH 5.0, stir rate 800 rpm, and air flow 1
vvm. The cultivation was ended at glucose depletion, as measured by
glucose test strips (Macherey-Nagel, Düren, Germany), and the
culture had entered stationary phase as monitored by off-gas CO2
concentration. The entire volume of the reactor was harvested, and the
biomass was removed by filtration through a Whatman No. 1
qualitative paper filter followed by centrifugation at 8000g for 20 min
to remove fine sediments. The YWA was then recovered from the
supernatant by repetitive liquid−liquid extraction using ethyl acetate
with 0.5% formic acid. The organic extract was completely dried in
vacuo resulting in a crude extract that was redissolved in 20 mL of
ethyl acetate and dry loaded onto 3 g of Sepra ZT C18 (Phenomenex,
Torrence, CA, USA) resin prior to packing into a 25 g SNAP column
(Biotage, Uppsala, Sweden) with 22 g of pure resin in the base. The
crude extract was fractionated on an Isolera flask purification system
(Biotage) using a water−acetonitrile gradient starting at 15:85 going to
100% acetonitrile in 23 min at a flow rate of 25 mL min−1 and kept at
that level for 4 min. Fractions were collected using UV detection at
210 and 254 nm, resulting in a total of 20 fractions, of which two were
pooled and analyzed. The total yield of 0.6 g of 13C14−YWA1 was
estimated to be 90% pure by UHPLC-UV/vis-TOFMS analysis and
have a labeling degree of 98.2% based on the 13C13

12C/13C14 ratio.
UHPLC-DAD-Quadrupole Time-of-Flight (qTOF) MS. Analysis

was performed using UPHLC-DAD-HRMS. The equipment used was
an Agilent 6550 iFunnel Q-TOF LC/MS system (Agilent
Technologies, Torrence, CA, USA), connected to an Agilent 1290
infinity UHPLC. The column used was an Agilent Poroshell 120
phenyl hexyl 2.7 μm, 250 mm × 2.1 mm, and the column was
maintained at 60 °C. The UV was used to measure at 280 nm. A linear
water−acetonitrile (LC-MS-grade) gradient was used (both solvents
were buffered with 20 mM formic acid) starting from 10% (v/v)
acetonitrile and increased to 100% in 15 min, maintaining this rate for
2.5 min before returning to starting conditions in 0.1 min and staying

Table 2. SIL Compounds Used in the Study

compound
elemental

compositiona
monoisotopic
mass [Da]

mass differenceb

[Da]

6-MSA 13C8H8O3 152.0473 8.0268 (7.0235)c

cinnamic
acid

C9
2H7HO2 148.0524 7.0439

benzoic acid 13C7H6O2 122.0368 7.0235 (6.0201)c

YWA1 13C14H12O6 276.0634 14.0450

aElemental composition denotes the formula of the compound and
indicates the presence of labeled atoms. bMass difference denotes the
mass difference between the SIL compound and the natural
predominant isotype. cMass difference of compound following
potential decarboxylation.
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there for 2.4 min before the following run. A flow rate of 0.35 mL/min
was used. MS was performed in both ESI+ and ESI− in the mass range
m/z 30−1700. Additional parameters and settings are published in
Kildgaard et al.45

Cultivation of Fungi. Attempted labeling of patulin and terreic
acid was carried out using the following fungi: Penicillium griseofulvum
(IBT 18169), P. paneum (IBT 24722), P. carneum (IBT 26356),
Byssochlamys nivea (CBS 546.75), Aspergillus clavatus (IBT 27903), A.
hortai (IBT 26384 = NRRL 274, formerly identified as A. terreus), and
A. f loccosus (IBT 22556 = WB 4872 = NRRL 4872, formerly identified
A. terreus var. f loccosus). The IBT strains are available from the IBT
culture collection at authors’ address, NRRL strains from National
Center for Agricultural Utilization Research (Peoria, IL, USA), and the
CBS strain from Centraalbureau voor Schimmelcultures (Utrecht,
Netherlands).
With a 5 mm plug drill, a reservoir was cut in the middle of a solid

YES 9 cm media plate (Figure 4), prepared as described Frisvad and

Samson.46 Into this reservoir was added 65 μL of spore suspension,
and the fungi were incubated for 7 days at 30 °C in darkness. On day
three, 100 μg of 13C-labeled 6-MSA dissolved in 100 μL of EtOH−
H2O (1:4) was added to the reservoir. Control samples without
addition and with addition of 100 μL of EtOH−H2O (1:4) were also
prepared. On day seven, five plugs were excised from across the fungus
using a 5 mm plug drill, and the plugs were extracted using acidic ethyl
acetate−dichloromethane−methanol (3:2:1 vol/vol/vol) as described
by Smedsgaard,47 followed by analysis using LC-MS. All experiments
were performed in duplicate.
A. niger experiments, for the labeling of asperrubrol, were carried out

following the described procedure, with addition of 100 μg of 13C7-
labeled benzoic acid or 2H7-cinnamic acid dissolved in 100 μL of Milli-
Q water on day 3 or 6, respectively. Separate control samples without
labeled compounds were also fed to the strains. 2H7-Cinnamic acid
was only fed to A. niger KB1001. All experiments were prepared in
duplicate. Sampling and extraction was performed as described above.
For the Fusarium labeling experiments four strains were used: F.

avanaceum (IBT 41708), F. graminearum PH-1 (NRRL 31084) , F.
graminearum ΔPKS12 P1b,48 and F. graminearum PH-1 HUEA.49

Fungi were inoculated on both Bells medium50 and defined Fusarium
medium (DFM)51 and cultivated for 14 days at 30 °C in darkness to
produce spores for the feeding experiment.
For the feeding experiments, solid Bells and DFM plates were

prepared using a plug 5 mm drill to make a reservoir in the middle of
the plate. Into this plate was added 65 μL of spore suspension, and the
fungi were then cultivated for 14 days at 30 °C in darkness. After 3, 7,
and 10 days, respectively, 100 μg of labeled YWA1, dissolved in 55 μL

of ACN, was added to the reservoirs in the plates. Separate controls
without labeled compounds and controls with 100 μL of ACN were
also prepared. All experiments were prepared in duplicate. Sampling
and extraction was performed as described above.
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Figure S1 – A) Mass spectrum obtained from (2Z,4E)-2-methyl-2,4-hexadienedioic (4) at RT 2.8 

min contained the [M+H]
+
 (m/z 273.0761) pseudomolecular ion, as well as a an ion that displayed 

to a shift in mass indicative of incorporation of 
13

C
7
-atoms. B) EICs corresponding to (2Z,4E)-2-

methyl-2,4-hexadienedioic and (2Z,4E)-2-methyl-2,4-hexadienedioic with 
13

C7-atoms incorporated 

are shown, and demonstrated the same peak shape and elution time.  

  



 

 

Figure S2 – BPCs from extracts of A. niger showed that no changes in the metabolite profiles were 

detected when the labeling solutions were added. The fungi were cultivated on YES for 7 days at 30 

°C in darkness.  The chromatograms have been scaled. 

  



 

Figure S3 – A) Mass spectrum obtained from rubrofusarin at RT 10.5 min contained the [M+H]
+
 

(m/z 273.0761) pseudomolecular ion, as well as a an ion that displayed to a shift in mass indicative 

of incorporation of 14 
13

C-atoms. B) EICs corresponding to rubrofusarin (10) and rubrofusarin with 

14 
13

C-atoms incorporated are shown, and demonstrated the same peak shape and elution time. 



 

 

Figure S4 – Photographs of the Fusarium graminearum HUEA mutants used in the labeling 

experiment cultivated on DFM medium at 30 °C for 14 days. Labeling solution was added after 

three, seven, or 10 days. The photographs show that addition of the labeling solution after three 

days resulted in a clear red color around the well where the solution was added. Addition after 

seven days resulted in a brownish coloring around the well, whilst addition after 10 days yielded no 

change. 



 

Figure S5 - BPCs from extracts of F. gramineraum HUEA showed that no changes in the 

metabolite profiles were detected when the labeling solutions were added. The fungi were cultivated 

on DFM for 14 days at 30 °C in darkness.  The chromatograms have been scaled. 



 

Figure S6 – Mass spectrum extracted at RT 10.3 min contained the [M+H]
+
 (m/z 599.1819) and 

[M+Na]
+
 (m/z 621.1629) pseudomolecular ions that corresponded aurofusarin with incorporation of 

two 
13

C14-labeled YWA1 units, while showing now traces of the unlabeled form. The ions (m/z 

569.3079), (m/z 591.3509), and (m/z 613.3327) were believed to be lipids unrelated to the 

investigated compounds.  



 

Figure S7 – BPCs from extracts of F. avanaceum showed that no changes in the metabolite profiles 

were detected when the labeling solutions were added. The fungi were cultivated on Bells medium 

for 14 days at 30 °C in darkness. The chromatograms have been scaled. 



 

Figure S8 – A) Mass spectrum obtained from the putative intermediate to antibiotic Y (14) at RT 

6.4 min contained the [M+H]
+
 (m/z 291.0500) pseudomolecular ion, as well as a an ion that 

displayed to a shift in mass indicative of incorporation of 14 
13

C-atoms. B) EICs corresponding to 

the naturally occurring putative intermediate to antibiotic Y and the putative intermediate with 14 
13

C-atoms incorporated are shown, and demonstrated the same peak shape and elution time.  
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Biosynthetic pathways of secondary metabolites from fungi are
currently subject to an intense effort to elucidate the genetic basis
for these compounds due to their large potential within pharma-
ceutics and synthetic biochemistry. The preferred method is me-
thodical gene deletions to identify supporting enzymes for key
synthases one cluster at a time. In this study, we design and apply
aDNAexpression array forAspergillus nidulans in combinationwith
legacy data to form a comprehensive gene expression compendium.
We apply a guilt-by-association–based analysis to predict the extent
of the biosynthetic clusters for the 58 synthases active in our set of
experimental conditions. A comparison with legacy data shows the
method to be accurate in 13 of 16 known clusters and nearly accu-
rate for the remaining 3 clusters. Furthermore, we apply a data
clustering approach,which identifies cross-chemistry betweenphys-
ically separate gene clusters (superclusters), and validate this both
with legacy data and experimentally by prediction and verification
of a supercluster consisting of the synthase AN1242 and the prenyl-
transferase AN11080, as well as identification of the product com-
pound nidulanin A. We have used A. nidulans for our method
development and validation due to the wealth of available bio-
chemical data, but the method can be applied to any fungus with
a sequenced and assembled genome, thus supporting further sec-
ondary metabolite pathway elucidation in the fungal kingdom.

aspergilli | natural products | secondary metabolism | polyketide synthases

No other group of biochemical compounds holds as much
promise for drug development as the secondary (nongrowth

associated) metabolites (SMs). A review from 2012 (1) found that
for small-molecule pharmaceuticals, 68% of the anticancer agents
and 52%of the antiinfective agents are natural products, or derived
from natural products. The fact that SMs are often synthesized as
polymer backbones that are subsequently diversified greatly via the
actions of tailoring enzymes sets the stage for combinatorial bio-
chemistry (2), because their biosynthesis is modular.
Major groups of SMs include polyketides (PKs) consisting of

-CH2-(C = O)- units, ribosomal and nonribosomomal peptides
(NRPs), and terpenoids made from C5 isoprene units. These
polymer backbones are, with the exception of ribosomal peptides,
made by synthases or synthetases and aremodified by a plethora of
tailoring enzymes, including (de)hydratases, oxygenases, hydro-
lases, methylases, and others.
In fungi, these biosynthetic genes of secondary metabolism are

organized in discrete clusters around the synthase genes. Although
quite accurate algorithms are available for identification of possible
SM biosynthetic genes, particularly PK synthases (PKSs), NRP
synthetases (NRPSs), and dimethylallyl tryptophan synthases
(DMATSs) (3, 4), the assignment and prediction of themembers of
the individual clusters solely from the genome sequence have not
been accurate.Relevant protein domains can be predicted for some
of the genes (e.g., cytochrome P450 genes) (5); however, genes in
identified clusters often have unknown functions, which makes
predicting their inclusion impossible. Furthermore, SM gene clus-
ters often colocalize on the chromosomes (6), which makes sepa-
ration of clusters solely based on gene function predictions difficult.

The efficient elucidation of the biosynthetic genes for each SM
cluster has thus so far been based on laborious single gene deletion
of each of the putative members and chemical profiling of the SMs
of the deletion strains. This effort has been especially noticeable in
themodel fungusAspergillus nidulans, which is presently the fungal
species with the largest number (n = 25) of characterized SM
synthases/synthetases, due to amassive effort by several groups (7–
30). In recent studies, this fungus has also been shown to have
cross-chemistry between gene clusters on separate chromosomes
(8, 30). Although these reactions are highly interesting for com-
binatorial chemistry, the identification of gene clusters involved in
cross-chemistry is cumbersome because it involves combinatorial
deletion of SM synthetic genes, thus greatly increasing the po-
tential number of candidates.
In this study, we propose a general “omics”-based method for

the accurate determination of fungal SM gene cluster members.
The method is based on an annotated genome sequence and
a catalog of gene expression, a set of information that is readily
available for many fungal species and can easily be generated for
more. To develop, benchmark, and validate this algorithm, we have
used A. nidulans as a model organism, which is especially well-
suited for this purpose due to the above-stated wealth of in-
formation. The algorithm is proven to be very powerful in identi-
fying gene cluster members. We furthermore report an extension
of the algorithm, which is proven to be successful in identifying
cross-chemistry between gene clusters.

Results
Analysis of SMs A. nidulans on Complex Solid Medium Identifies 42
Compounds. Initially, we evaluated the production of SMs on four
different solid media [oatmeal agar (OTA), yeast extract sucrose
(YES), Czapek yeast autolysate (CYA), and CYA with 50 g/L
NaCl sucrose (CYAS); Materials and Methods] at 4, 8, and 10 d.
The object of this was to identify a selection of media that (i)
gave as many produced SMs as possible, (ii) showed one or more
SMs unique to each medium, and (iii) had SMs that were only
produced on two of the selected media.
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These characteristics should allow us to have as many active
gene clusters as possible, as well as ensuring unique production
profiles for as many SM gene clusters as possible.
From this initial analysis, we selected the YES, CYA, and

CYAS media for transcriptional profiling. On these media, we
were able to separate and detect 59 unique SMs, of which we
could name 42 by comparison with our extensive in-house library
of microbial metabolites (31) and the AntiBase 2010 natural
products database. The production profile of the compounds
satisfied the three criteria listed above (Fig. 1, Fig. S1, and
Dataset S1).

Generation of a Diverse Gene Expression Compendium for A.
nidulans. Samples were taken for transcriptional profiling from
plates cultivated in parallel to those of the SM profiling above.
RNA was purified, prepared for labeling, and hybridized to cus-
tom-designed Agilent Technologies arrays based on version 5 of
the A. nidulans annotation (32).
The produced data were combined with previously published

microarray data fromA. nidulans bioreactor cultivations (33, 34) to
form a microarray compendium spanning a diverse set of con-
ditions, comprising 44 samples in total. The set includes four strains
of A. nidulans. Four different growth media are included: three
complex media (see above) and one minimal medium. Medium
variations include five different defined carbon sources (ethanol,
glycerol, xylose, glucose, and sucrose), as well as yeast extract.
The combined compendium of expression data is available in
Dataset S2.

Correlation-Based Identification of Gene Clusters. To identify gene
clusters efficiently around SM synthases, we developed a gene
clustering score (CS) based on the Pearson product-moment cor-
relation coefficient. Our CS gives a numerical value for correlation
of the expression profile of a given gene with the expression pro-
files of the three immediate neighbor genes on either side. Only
positive correlation is considered. Values for the CS are available
in Dataset S2.
Statistical simulation of the distribution of CS on the given

dataset showed that CS values ≥2.13 corresponded to a false-

positive rate of 0.05 (Fig. S2). Therefore, CS ≥ 2.13 was used as
a guideline for identifying the extent of gene clusters.

Prediction of the Extent of 51 Gene Clusters. Evaluation of the size
of the clusters around SM genes was performed using a pre-
computed list of 66 putative PKSs, NRPSs, and DMATSs from
the secondary metabolite unique regions finder (SMURF) algo-
rithm (3) based on the A. nidulans FGSC A4 gene set (35). In
addition to these 66 genes, we added one prenyltransferase gene
found in the primary literature (30) and three diterpene synthase
(DTS) genes predicted by Bromann et al. (25), resulting in 70
putative biosynthetic genes. All 25 experimentally verified PKSs,
NRPSs, DTSs, and prenyltransferases were found to be included
in this list (Tables 1–3).
For each of the 70 biosynthetic genes, we examined the genes

nearby for high CS values and inspected the expression profiles of
the genes manually for additional validation and refinement.
Apart from 12 genes that were silent under the conditions tested
(Table S1), this allowed prediction of the sizes of gene clusters
around 58 biosynthetic genes organized in 51 clusters and counting
of a total of 254 genes included in the clusters (an example is shown
in Fig. 2). The fact that we can map expression for 58 of the 70
biosynthetic genes (a large proportion of the gene clusters) is
surprising, considering that many, or even themajority, of the gene
clusters are reported to be silent under standard laboratory con-
ditions (13, 14, 20, 36–38). An example of a cluster previously
described as silent but identified here is the inpAB cluster (39).
However, those cultivation experiments were conducted on liquid
minimal medium and not on solid complex media, where we find
that the expression from most of these genes is most pronounced.
We therefore see the large number of active clusters as a confir-
mation of adequate diversity of the cultivation conditions in our
microarray compendium.
Next, we investigated how our cluster predictionsmatched those

published in the literature. This comparison demonstrated that our
algorithm generally predicts gene clusters with excellent accuracy.
Specifically, we accurately predict the extent of 11 of the 16 known
gene clusters (Tables 1–3). In two of the remaining 5 gene clusters,
the difference is due to artifacts. For the gene sterigmatocystin
cluster (Fig. 2), the difference of 24 genes relative to 25 genes is
caused by differences in the current gene annotation compared
with the original paper from 1996 (17). Changes in gene calling are
also the reason for discrepancy in the terrequinone cluster, where
our legacy microarray data only contain data for 3 of the 5 genes,
thus impairing the prediction. For the three remaining cases, the
2 gene clusters involved in meroterpenoid (austinol and dehy-
droaustinol) biosynthesis and the aspyridone cluster, the di-
vergence seems to be biological. For the austinol/dehydroaustinol
double-cluster system, we predict 3 extra genes in one cluster
(around AN8383) and 2 extra genes in the other cluster (around
AN9259) in addition to genes identified by Lo et al. (30). We in-
dividually deleted the 3 extra genes (AN8375, AN8376, and
AN8380) in the AN8383 cluster; however, apart from differences
in the austinol/dehydroaustinol ratio, we could only confirm the
results of Lo et al. (30) of these genes not being essential for
austinol/dehydroaustinol biosynthesis (Fig. S3). Because the size
of most of the clusters was accurately predicted by our algorithm,
we speculate that some or all of the extra genes are involved in
biosynthesis of derivatives of austinol/dehydroaustinol. In agree-
ment with this scenario, it is not uncommon that newly detected
compounds are linked to known PKS pathways. For example,
shamixanthones and arugusins were recently discovered to be
products derived from the monodictyphenone cluster (8, 11), and
this cluster has been redefined several times (9, 10). For the
remaining case, the apdG gene of the aspyridone cluster (20),
misprediction of the cluster members is due to a complete di-
vergence between the transcription profiles of apdG and the re-
mainder of the gene cluster. In general, we conclude that the use of

21(8)

116(4)

1

314(4)

2(1)

YES CYAS

CYA

Fig. 1. Venn diagram of SMs found on three different solid media. The
number of different metabolites is sorted according to which media the
metabolites have been identified on. The number of metabolites unable to
be confidently identified are noted in parentheses. Details can be found in
Dataset S1, and the chemical structures are illustrated in Fig. S1.
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CS values in combination with inspection of the expression profiles
is a very effective tool to predict the extent of gene clusters, be-
cause the borders of 13 of 16 clusters were accurately predicted
(when predictions were adjusted to compensate for the two arti-
facts discussed above) and there was near-accurate prediction of
all 16 clusters.

Diverse Gene Expression Compendium Is Important for Accurate
Prediction. To evaluate the compendium size needed for accu-
rate predictions, we used principal component analysis (PCA) on
our matrix of expression values (Dataset S2). Greater than 95% of
the variation within the set can be described in the first three
principal components. This suggests that a theoretical lower limit
for this type of analysis would be three arrays if one could select
conditions with a near-perfect difference in expression levels,
ideally high, medium, and low expression for all genes, and with
a maximum difference between all clusters and their surrounding
genes. This would be nearly impossible to achieve for all clusters.
However, if one is only interested in a single or a few gene clusters
of interest, and has the appropriate prior knowledge, it should be
possible to select three to five conditions and achieve accurate
predictions. Very informative studies have been performed with
two conditions, but the boundaries of the cluster can be difficult to
determine (e.g., ref. 25).
To test howmuch it was possible to reduce our dataset, we used an

unsupervised PCA-based analysis for incremental reduction of the
dataset. In this, we found (unsurprisingly) that our biological repli-
cate samples contain the smallest amount of unique information.

Ten of 44 samples can be removed with only an approximately 10%
loss in the data variation, and 25 of 44 samples (all replicates) can be
removedwith less than a 35% loss in data variation. The time sample
series on a solid medium presented in this study were not reduced
from the set until all biological replicates were reduced. We con-
clude that in selection of samples for cluster elucidation, one should
sample as diversely as possible. Biological replicates are not cost-
effective unless already available from prior studies.

Clustering of Synthase Expression Profiles Identifies Superclusters.
Recent work has identified two cases of cross-chemistry between
clusters located on separate chromosomes. The production of
austinol and derived compounds (themeroterpenoid pathway) has
been shown to be dependent on two separate clusters (11, 30), and
the biosynthesis of prenyl xanthones is dependent on three sepa-
rate clusters (8). We were interested in seeing whether this is
a general phenomenon and whether such cross-chromosomal
“superclusters” could be detected using our expression data.
A full gene-to-gene comparison of expression profiles between

all predictedNRPSs, PKSs,DTSs, and prenyl transferases found in
the array data was conducted, and the genes were clustered (Fig.
3). This clustering is not based directly on the expression profiles,
because expression index variation from silent conditions distorts
clustering. Instead, we clustered on the basis of a Spearman-based
score of similarity to the expression profiles of the other synthases,
which effectively eliminates noise.
The method is efficient for clustering the synthases and trans-

ferases according to shared products. Seven of eight sets of genes

Table 1. Prediction of PKS gene clusters

Cluster size

GeneID Gene Compound (if known) Predicted Known Medium Ref(s).

AN0150 mdpG Monodictyphenone/emodin 12 12 Solid (7–10)
AN7903 Violaceol I and II 12 ? Solid (11)
AN6448 pkbA 8 ? Solid (24)
AN7084 8 Solid
AN8209 wA Green conidial pigment 6 ? Solid
AN7909 orsA Orsellinic acid/F9975/violaceols 5 5 Solid (11–14)
AN1784 4 Solid
AN9005 4 Solid
AN6000 aptA Asperthecin 3 3 Solid (15)
AN6431 3 Solid
AN11191 2 Solid
AN7489 1 Solid
AN3273 1 Solid
AN2547 easB Emericellamide 4 4 Both (16)
AN3230 pkfA Orsellinaldehydes 6 ? Both (24)
AN7071 pkgA Alternariol/isocoumarins 7 ? Both (24)
AN7825 stcA Sterigmatocystin 24* 25 Both (17–19)
AN7815 stcJ Sterigmatocystin 24* 25 Both (17–19)
AN8383 ausA Austinol 7 4 Both (11, 24, 30)
AN2032 pkhA Unknown 10 ? Liquid (24)
AN2035 pkhB Unknown 10 ? Liquid (24)
AN8412 adpA Aspyridone 7† 8 Liquid (20)
AN6791 1 Liquid
AN8910 1 Liquid

This table contains predicted PKSs as well as PKS-like genes (AN7489 and AN7815) and a PKS/hybrid gene
(AN8412). The medium column describes under which type of medium (liquid, solid, or both) the cluster is
expressed. For gene clusters with identified functions and gene members, the number of identified cluster
members is given as well as references to the original papers. Further details on the cluster members and the
expression profiles of the individual clusters may be found in Dataset S2 and Fig. S4. Chemical structures of all
compounds may be found in Fig. S1.
*Difference seemingly due to the current gene calling diverging from the original paper from 1996 (17).
†Algorithm was not able to predict the inclusion of apdG, the outmost gene hypothesized to be a part of the
cluster (20). The expression profile of apdG diverges from the rest of the cluster.
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predicted to be in the same biosynthetic clusters by the method
above are found to cluster together in this representation. The
exception is AN2032 and AN2035, which do not cocluster due to
very low signals from the AN2032 probes on the microarray.
Furthermore, the clustering is accurate in terms of cross-chemistry.

In examining the two examples of cross-chemistry between gene
clusters, it is found that these are predicted correctly. The mer-
oterpenoid pathway includes the PKS AN8383 and the DMATS
AN9259, which are illustrated to colocate in Fig. 3. The other ex-
ample is the prenylxanthone biosynthetic pathway, which includes

Table 2. Prediction of NRPS gene clusters

Cluster size

GeneID Gene Compound (if known) Predicted Known Medium Source

AN9226 18 Solid
AN6444 8 Solid
AN4827 7 Solid
AN8105 8 Solid
AN8513 tdiA Terrequinone A 3* 5 Solid (21, 22)
AN1242 nlsA Nidulanin A 3 Solid This study
AN6961 2 Solid
AN0016 1 Solid
AN10486 1 Solid
AN7884 14 Both
AN3495 inpA Unknown 7 7 Both (25, 39)
AN3496 inpB Unknown 7 7 Both (25, 39)
AN2545 easA Emericellamide 4 4 Both (16)
AN2621 acvA/pcbAB Penicillin G 3 3 Both (25, 27, 28)
AN3396 mica Microperfuranone 3 3† Both (29)
AN2924 2 Both
AN10576 ivoA N-acetyl-6-hydroxytryptophan 2 2 Both (23, 26)
AN0607 sidC Siderophores 1 1 Both (55)
AN10297 1 Both
AN5318 1 Both
AN1680 1 Liquid
AN2064 1 Liquid
AN9129 1 Liquid
AN9291 1 Liquid

This table contains predicted NRPSs as well as NRPS-like genes (AN3396, AN5318, and AN9291). The medium
column describes under which type of medium (liquid, solid, or both) the cluster is expressed. For gene clusters
with identified functions and gene members, the number of identified cluster members is given as well as refer-
ences to the original papers. Further details on the cluster members and the expression profiles of the individual
clusters may be found in Dataset S2, and Fig. S4. Chemical structures of all compounds may be found in Fig. S1.
*Extent of the gene cluster is predicted correctly. The difference is due to the absence of two of the genes on the
legacy microarray data, which removes them from the prediction.
†Yeh et al. (29), who examined this cluster, found increased transcription of the two extra genes we predict, but
they found them to be nonessential for microperfuranone production.

Table 3. Prediction of gene clusters around prenyltransferases and diterpene synthases

Cluster size

GeneID Type Gene Compound (if known) Predicted Known Medium Source

AN11194 DMATS 18 Solid
AN11202 DMATS 18 Solid
AN9259 DMATS 12 10 Both (30)
AN8514 DMATS tdiB Terrequinone A 3* 5 Solid (21, 22)
AN11080 DMATS nptA Nidulanin A 1 Both This study
AN10289 DMATS 1 Solid
AN6784 DMATS xptA Variecoxanthone A 1 1 Solid (8–10)
AN1594 DTS Ent-pimara-8(14),15-diene 9 9 Solid (25)
AN3252 DTS 7 Solid
AN9314 DTS 2 Solid

This table contains predictedDMATSs, functionally prenyltransferases, and threeDTSs predictedbyBromann et al.
(25). Themedium columndescribes onwhich type ofmedium (liquid, solid, or both) the cluster is expressed. For gene
clusters with identified functions and gene members, the number of identified cluster members is given as well as
references to the original papers. Further details on the clustermembers and the expression profiles of the individual
clusters may be found in Dataset S2, and Fig. S4. Chemical structures of all compounds may be found in Fig. S1.
*Extent of the gene cluster is predicted correctly. The difference is due to the absence of two of the genes on the
legacy microarray data, which removes them from the prediction.
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the PKS AN0150 and the DMATS AN6784. These two genes are
also found close to each other in Fig. 3.
We further use the maximum separation distance of two genes

in the same biosynthetic cluster in the heat map of Fig. 3 as a cutoff
distance for cross-chemistry. This allowed the genes to be sorted
into seven larger superclusters. Details on the expression profiles
of the individual clusters in each supercluster can be found in Fig.
S4. Although we cannot directly separate tight coregulation from
cross-chemistry with this method, the presence of these super-
clusters consisting of individual clusters with similar expression
profiles suggests a larger extent of cross-chemistry in A. nidulans
than what has been reported to date. To test the predictive power
of this clustering further, we performed a gene deletion study
within supercluster 5, which contains clusters located on six of the
eight chromosomes.

Identification of the Chemical Structure of Nidulanin A Confirms
Prediction of Cross-Chemistry Between NRPS AN1242 (NlsA) and
Prenyltransferase AN11080 (NptA). To test the hypothesis of super-
clusters and whether the analysis above could be used to elucidate
cross-chemistry, we constructed a deletion mutant of the NRPS
AN1242 and evaluated the SMs found in the mutant relative to
a reference strain. Four related compounds (compounds 1–4) were
found to be absent in the ΔAN1242 strain (Fig. S5). MS isotope
patterns as well as tandemMS (MS/MS) analysis showed compound
1 to have the molecular formula C34H45N5O5, with compounds
2 and 3 likely being oxygenated forms with one and two extra oxygen
molecules, respectively. Compounds 1–3 all seem to be prenylated,
as shown by spontaneous loss of a prenyl-like fragment, C5H8, in

a small fraction of the ions during MS analysis. Compound 4 has
a molecular formula of (1)-C5H8, suggesting it to be the unpreny-
lated precursor of compound 1.
We thus isolated and elucidated the structure of compound 1,

henceforth called nidulanin A, based on NMR spectroscopy. The
stereochemistry of compound 1 was examined using Marfey’s
method (40) and was supported by bioinformatic analysis of the
protein domains of AN1242 (SI Text). Altogether, nidulanin A is
proposed to be a tetracyclopeptide with the sequence -L-Phe-L-
Kyn-L-Val-D-Val- and an isoprene unit N-linked to the amino
group of L-kynurenine (Fig. 4).
Because no prenyltransferase genes are found near AN1242,

cross-chemistry catalyzed by an N-prenylating DMATS is a likely
assumption. Examination of supercluster 5 in Fig. 3, where the
NRPS AN1242 is found, shows AN11080 to be the DMATS with
the expression profile most similar to AN1242. Gene deletion of
AN11080 and subsequent ultra-high-performance liquid chroma-
tography (UHPLC) high-resolution MS (HRMS) analysis of the
ΔAN11080 strain show that the deprenylated compound 4, but
none of the three prenylated forms, is present, thus confirming that
nidulanin A and the two oxygenated forms (compounds 3 and 4)
are synthesized by cross-chemistry between AN1242 (now NlsA)
on chromosome VIII and AN11080 (now NptA) on chromosome
V (Fig. S5).
Furthermore, we note that the masses corresponding to com-

pound 3 (nidulanin A + O) and compound 4 (nidulanin A + O2)
are not found in the reference strain or in the ΔAN11080 strain.
This suggests that compounds 3 and 4 are oxidized after the
prenylation step.
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Fig. 2. Identification of the sterigmatocystin biosynthetic cluster. (A) Gene expression profiles across 44 experiments for the 24 genes (marked in black in B)
predicted to be in the sterigmatocystin biosynthetic cluster (liquid and solid cultures are marked for reference). The expression profile of AN7811(stcO) is
marked in blue. (B) Illustration of the values of the gene CS for the 24 genes and the two immediate neighbors. Genes included in the predicted cluster are
marked in black. AN7811(stcO) did not have a CS above the used cutoff of 2.13 denoting clustering but was added due to the similarity of the expression
profile, as shown in blue. The predicted extent of the cluster corresponds with the cluster as originally described by Brown et al. (17), when correcting for the
fact that the gene models have changed since then. Full data for all predicted clusters may be found in Dataset S2.
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Discussion
In this study, we present a method for fungal SM cluster esti-
mation based on similarity of expression profiles for neighboring
genes. For the given organism A. nidulans, comparison with legacy

data has verified the method to be highly accurate and effective
for a large proportion of the gene clusters.
It is clear from our results that the composition of the gene

expression compendium has a significant effect on cluster pre-
dictions. We show here that it is important with a diverse set of
samples, including both liquid and agar cultures as well as min-
imal medium and complex medium. This is in accordance with
previous observations (11, 13, 14, 20, 36) stating that at a given
set of conditions, only a fraction of the clusters are active. A
reduction analysis of our own data has further shown that the
inclusion of biological replicates in the dataset does not improve
the analysis as much as inclusion of more unique samples. A
diverse set of conditions should remedy regulation at the tran-
scriptional level as well as chromatin-level regulation, which has
been shown to have significant effects in fungi (13, 41). Another
factor of importance is the quality of genome annotation. Er-
roneous gene calls inside clusters decrease the value of the CS
for genes within a distance of three genes. Furthermore, prob-
lems with gene calls can affect expression profiling if a non-
transcribed region is included in the gene cluster. However,
neither of these seems to be a problem in the data presented
here. Including the expression profiles of seven genes in the
calculation of the CS also increases the robustness of the method
toward erroneous gene calls.
The stated robustness of the CS has the disadvantage that the

CS alone performs poorly for clusters with four or fewer genes,
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Fig. 3. Cross-chromosomal clustering. Matrix diagram of the correlation between 67 predicted and known biosynthetic genes. Each square in the matrix
shows the compounded squared Spearman correlation coefficient for comparison of the expression profile of the genes color-coded from 0 (white) to 1
(green). Genes are sorted horizontally according to their location on the chromosomes (marked in orange) and vertically according to their scores (Left,
marked with a dendrogram). (Right) Genes located in the same clusters are highlighted with a gray box, which is connected with a gray bracket in one case.
Genes with known cross-chemistry are marked with a black bracket. An example of cross-chemistry found in this study is marked with a red bracket. Seven
putative superclusters are marked. Further details of the clusters may be found in Fig. S4.
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Fig. 4. Proposed absolute structure of nidulanin A. Details on the structural
elucidation are available in SI Text.
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because the maximum value of CS for n genes is n − 1. However,
in the cases of small clusters, the clustering can still be predicted
from the transcription profiles, as shown in this study.
In some cases, we also see that cluster calling based on expression

profiles outperforms the combination of gene KO and metab-
olomics. If a given detectedmetabolite is not the end product of the
biosynthetic pathway, gene deletions will only identify a part of an
SM cluster as being relevant for thatmetabolite, thusmissing genes.
An example of this is seen in the emodin/monodictyphenone
cluster (PKS AN0150), where a subset of the genes is only required
for some of the metabolites, resulting in a two-step elucidation of
the gene cluster (7, 8). The CS method correctly calls the
full cluster.
One aspect of the method is the ability to identify gene clusters

simply from identifying groups of genes with high CS values, and
not using a seeding set of synthases as was done in this case. This
allows the unbiased identification of gene clusters throughout the
entire genome. Although we see a surprising amount of these
clusters (Dataset S2) not limited to the predicted SM synthases, we
have not evaluated these in this study, because data for appropriate
benchmarking is not available. However, we believe that there is
great potential for biological discoveries to be made here, both in
terms of promoter and chromatin-based transcriptional regulation.
The final extension of the algorithm is its ability to identify

biosynthetic superclusters scattered across different chromo-
somes. Although this is a recently reported phenomenon (8), we
believe that this is a common phenomenon, at least in A. nidulans
and possibly in fungi in general. It is important to note that our
method does not allow one to discriminate between tight cor-
egulation and cross-chemistry between two distant clusters. It is
therefore most efficient in cases in which it is evident that a given
gene cluster does not hold all enzymatic activities required to
synthesize the associated compound. In those cases, the use of
a diverse transcription catalog, such as the one applied here, is
a powerful strategy for identifying cross-chemistry, as shown for
the NRPS AN1242 and the assisting prenyltransferase AN11080
in the synthesis of nidulanin A and derived compounds.
In summary, this study provides (i) an updated gene expres-

sion DNA array for A. nidulans, (ii) a wealth of information
advancing the cluster elucidation in the model fungus A. nidu-
lans, (iii) a powerful tool for prediction of SM cluster gene
members in fungi, (iv) a proven methodology for prediction of
SM gene cluster cross-chemistry, and (v) a proposed structure for
the compound nidulanin A.

Materials and Methods
Strains. A. nidulans FGSC A4 was used for all transcriptomic experiments in
this study. Furthermore, legacy data using the FGSC A4, A. nidulans
AR16msaGP74 (expressing the msaS gene from Penicillium griseofulvum)
(34), A. nidulans AR1phk6msaGP74 (expressing the msaS gene from P. gri-
seofulvum and overexpressing the A. nidulans xpkA) (34), and A. nidulans
AR1phkGP74 (overexpressing the A. nidulans xpkA) (33), were applied.

The A. nidulans FGSC A4 stock culture was maintained on CYA agar at 4 °C.
A. nidulans strain IBT 29539 (veA1, argB2, pyrG89, and nkuAΔ) was used for all
gene deletions. Gene deletion strains (see below) are available from the IBT
fungal collection as A. nidulans IBT 32029, (AN1242Δ::AfpyrG, veA1, argB2,
pyrG89, and nkuAΔ) and A. nidulans IBT 32030, (AN11080Δ::AfpyrG, veA1,
argB2, pyrG89, and nkuAΔ). For chemical analyses, A. nidulans IBT 28738
(veA1, argB2, pyrG89, and nkuA-trS::AfpyrG) was used as reference strain.

Metabolite Profiling Analysis. A. nidulans strains were inoculated on CYA
agar, OTA, YES agar, and CYAS agar (42). All strains were three-point in-
oculated on these media and incubated at 32 °C in darkness for 4, 8, or 10 d,
after which three to five plugs (6-mm diameter) along the diameter of the
fungal colony were cut out and extracted (43).

Samples were subsequently analyzed by UHPLC-UV/vis diode array detector
(DAD)-HRMS on a maXis G3 quadrupole time-of-flight mass spectrometer
(Bruker Daltonics) equipped with an electrospray injection (ESI) source. The
mass spectrometerwas connected to anUltimate 3000UHPLC system (Dionex).
Separation of 1-μL samples was performed at 40 °C on a 100-mm × 2.1-mm

inner diameter (ID), 2.6-μm Kinetex C18 column (Phenomenex) using a linear
water-acetonitrile gradient (both buffered with 20 mM formic acid) at a flow
rate of 0.4 mL/min starting from 10% (vol/vol) acetonitrile and increased to
100% acetonitrile in 10 min, keeping this for 3 min. HRMS was performed in
ESI+ with a data acquisition range of 10 scans per second atm/z 100–1,000. The
mass spectrometer was calibrated using sodium formate automatically infused
before each analytical run, providing a mass accuracy better than 1.5 ppm.
Compounds were detected as their [M + H]+ ion ± 0.002 Da, often with
their [M + NH4]

+ and/or [M + Na]+ ion used as a qualifier ion with the same
narrow mass range. SMs with a peak areas >10,000 counts (random noise
peaks of approximately 300 counts) were integrated and identified by com-
parison with approximately 900 authentic standards available from previous
studies (31, 44) and dereplicated against the approximately 18,000 fungal
metabolites listed in AntiBase 2010 by ultraviolet-visible (UV/Vis) spectra, re-
tention time, adduct pattern, and high-resolution data (<1.5 ppm mass accu-
racy and isotope fit better than 40 using SigmaFit; Bruker Daltonics) (31, 45).

Array Design. Initial probe design was done using OligoWiz 2.0 software (46)
from the coding sequences of predicted genes from the genome sequence
of A. nidulans FGSC A4 (35), using version 5 of the A. nidulans gene anno-
tation, downloaded from the Aspergillus Genome Database (32).

For each gene, a maximum of three nonoverlapping, perfect-match 60-
mer probes was calculated using the OligoWiz standard scoring of cross-
hybridization, melting temperature, folding, position preference, and low
complexity. A position preference for the probes was included in the com-
putations. Pruning of the probe sequences was done by removing duplicate
probe sequences.

Also included on the chip were 1,407 standard controls designed by
Agilent Technologies. Details of the array are available from the National
Center for Biotechnology Information Gene Expression Omnibus (accession
no. GPL15899).

Microarray Gene Expression Profiling. Mycelium harvest and RNA purification.
Whole colonies from three-stab agar plates were sampled for transcriptional
analysis by scraping the mycelium off the agar with a scalpel and transferring
the agar directly into a 50-mL Falcon tube containing approximately 15 mL of
liquid nitrogen. Care was taken to transfer a minimum of agar to the Falcon
tube. The liquid nitrogen was allowed to evaporate before capping the lid
and recooling the tube in liquid nitrogen before storing the tube at −80 °C
until use for RNA purification.

For RNA purification, 40–50 mg of frozen mycelium was placed in a 2-mL
microcentrifuge tube precooled in liquid nitrogen containing three steel
balls (two balls with a diameter of 2 mm and one ball with a diameter of 5
mm). The tubes were then shaken in a Retsch Mixer Mill at 5 °C for 10 min
until the mycelium was ground to a powder. Total RNA was isolated from
the powder using the Qiagen RNeasy Mini Kit according to the protocol for
isolation of total RNA from plant and fungi, including the optional use of
the QiaShredder column. Quality of the purified RNA was verified using
a NanoDrop ND-1000 spectrophotometer and an Agilent 2100 Bioanalyzer
(Agilent Technologies).
Microarray hybridization. A total of 150 ng in 1.5-μL total RNA was labeled
according to the One Color Labeling for Expression Analysis, Quick Amp Low
Input (QALI) manual, version 6.5, from Agilent Technologies. Yield and spe-
cific activity were determined on the ND-1000 spectrophotometer and veri-
fied on a Qubit 2.0 fluorometer (Invitrogen). A total of 1.65 μg of labeled
cRNA was fragmented at 60 °C on a heating block, and the cRNA was pre-
pared for hybridization according to the QALI protocol. A 100-μL sample was
loaded on a 4 × 44 Agilent Gasket Slide situated in a hybridization chamber
(both from Agilent Technologies). The 4 × 44 array was placed on top of the
Gasket Slide. The array was hybridized at 65 °C for 17 h in an Agilent Tech-
nologies hybridization oven. The array was washed following the QALI pro-
tocol and scanned in a G2505C Agilent Technologies Micro Array Scanner.
Analysis of transcriptome data. The raw array signal was processed by first
removing the background noise using the normexp method, and signals
between arrays were made comparable using the quantiles normalization
method as implemented in the Limma package (47). Multiple probe signals
per gene were summarized into a gene-level expression index using Tukey’s
medianpolish, as performed in the last step of the robust multiarray average
(RMA) processing method (48). The data are available from the Gene Ex-
pression Omnibus database (accession no. GSE39993).

The generated data from the Agilent Technologies arrays were combined
with legacy Affymetrix data (accession nos. GSE12859 and GSE7295) using the
qspline normalization method (46) to combine the two normalized sets of
data to onemicroarray catalog with expression indices in comparable ranges.
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Calculation of the Gene CS. The CS is calculated for each individual gene along
the chromosomes according to the following equation:

CS± 3 ¼
X3
i¼− 3

�
s0;i þ

��s0;i��
2

�2

þ
X3
i¼1

�
s0;i þ

��s0;i��
2

�2

; [1]

where s0,i is the Spearman coefficient for the expression indices of the gene
in question and the gene located i genes away in a positive or negative
direction relative to the chromosomal coordinate of the gene. The absolute
term is added to set inverse correlations to 0. The CS assigned to a specific
gene is the average of the CS for the liquid cultures and the CS for the solid
cultures to adjust for background expression levels. Genes located less than
four genes away from the ends of the supercontigs are assigned a CS of 0. All
calculations were performed in the R software suite v. 2.14.0 (49), using the
Bioconductor package (50, 51) for handling of array data. An adaptable R
script for calculation of the CS is available on request.

Generation of Random Values for Evaluation of CS Significance. To estimate
significance levels of the CS, a random set of scores was generated by
selecting six genes at random as simulated neighbors for each of the 10,411
genes in the dataset. Examining this random distribution showed 95% of the
population to have a CS <2.13 (Fig. S2). This value was used to have a false
discovery rate of 0.05. All calculations were performed in R (49).

Identification of Gene Clusters. Gene clusters were defined around each NRPS,
PKS, and DMATS by examination of the transcription profile of all sur-
rounding genes with a CS ≥2.13 as well as three flanking genes in either
direction. All genes with similar expression profiles were included in
the cluster.

PCA-Based Analysis of Dataset Variation. PCA analysis was performed on the
data of Dataset S2 using the prcomp-function of R (49). For stepwise re-
duction of the dataset, all principal components were calculated in each
iteration and a sample was eliminated based on the one that had the largest
contribution to the last principal component (i.e., with the smallest amount
of unique information).

Generation of A. nidulans Gene Deletion Mutants. The genetic transformation
experiments were performed with A. nidulans strain IBT 29539 [veA1, argB2,
pyrG89, and nkuAΔ as described by Nielsen et al. (52)]. Fusion PCR-based
bipartite gene targeting of substrates using the AFpyrG marker for selection
and deletion of AN1242 was performed as described by Nielsen et al. (52),
with the exception that all PCR assays were performed with the PfuX7 DNA
polymerase (53). The deletion construct for AN11080 was assembled by
uracil-specific excision reagent (USER) cloning. Specifically, sequences up-

stream and downstream of the gene to be deleted were amplified by PCR
using primers containing a uracil residue (Table S2). The two PCR fragments
were simultaneously inserted into the PacI/Nt.BbvCI USER cassette of
pU20002A by USER cloning (54, 55). As a result, AFpyrG is now flanked by
the two PCR fragments to complete the gene targeting substrate. The gene
targeting substrate was released from the resulting vector pU20002A-
AN11080 by digestion with SwaI. All restriction enzymes are from New
England Biolabs. Primer sequences for deletion of the targeted genes and
verification of strains are listed in Table S2. In addition, internal AFpyrG
primers were used in combination with the check primers listed in Table S2
for confirmation of correct integration of DNA substrates (52). Trans-
formants and AFpyrG pop-out recombinant strains were rigorously tested
for correct insertions as well as for the presence of heterokaryons by
touchdown spore-PCR analysis on conidia with an initial denaturation at 98 °C
for 20 min.

MS/MS-Based Characterization of Compounds 1–4. Analysis was performed as
stated above for the UHPLC-DAD-HRMS but in MS/MS mode, where analysis
of the target mass and 6 m/z units up (to maintain isotopic pattern) was
performed both via a targeted MS/MS list for the target compounds of in-
terest and by the data-dependent MS/MS mode with an exclusion list, such
that the same compound was selected several times. MS/MS fragmentation
energy was varied from 18 to 55 eV.

Isolation and Structural Elucidation of Nidulanin A. Two hundred plates of
minimal medium were inoculated with A. nidulans, from which SMs were
extracted and nidulanin A was isolated in pure form. One-dimensional and
2D NMR spectra were recorded on a Bruker Daltonics Avance 800-MHz
spectrometer with a 5-mm TCI Cryoprobe at the Danish Instrument Centre
for NMR Spectroscopy of Biological Macromolecules at Carlsberg Laboratory.
Stereoisometry of the amino acids was elucidated using Marfey’s method
(40). Details are provided in SI Text, Table S3, and Figs. S6–S8.

NRPS protein domainswere predicted to identify adenylation domains and
epimerase domains (56). Adenylation-domain specificities were predicted
using NRPSpredictor (57). Details are provided in SI Text.
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SI Materials and Methods
Fungal Growth, Extraction, and Isolation of Nidulanin A. Aspergillus
nidulans (IBT 22600) was inoculated as three-point stabs on 200
plates of MM and incubated in the dark at 30 °C for 7 d. The
fungi were harvested and extracted twice overnight with EtOAc.
The extract was filtered and concentrated in vacuo. The com-
bined extract was dissolved in 100 mL of MeOH and H2O (9:1),
and 100 mL of heptane was added after the phases were sepa-
rated. Eighty milliliters of H2O was added to the MeOH/H2O
phase, and metabolites were then extracted with 5 × 100 mL of
dichloromethane (DCM). The phases were then concentrated
separately in vacuo. The DCM phase (0.2021 g) was absorbed
onto diol column material and dried before packing into a 10-g
SNAP column [coefficient of variation (CV) = 15 mL; Biotage]
with diol material. The extract was then fractionated on an Iso-
lera flash purification system (Biotage) using seven steps of
heptane-DCM-EtOAc-MeOH. A flow rate of 20 mL·min−1 was
used, and fractions were automatically collected with 2 × 2 CVs
for each step. Solvents used were of HPLC grade, and H2O was
milliQ-water (purified and deionized using a Millipore system
through a 0.22-μm membrane filter). Two of the Isolera frac-
tions were subjected to further purification on separate runs on
semipreparative HPLC (Waters 600 Controller with a 996-pho-
todiode array detector). This was achieved using a Luna II C18
column (250 mm × 10 mm, 5 μm; Phenomenex). A linear water-
MeCN gradient was used starting with 15% MeCN and in-
creasing to 100% over 20 min using a flow rate of 4 mL·min−1.
MeCN was of HPLC grade, and H2O was milliQ-water (purified
and deionized using the Millipore system through a 0.22-μm
membrane filter); both were added to 50 ppm of TFA. The
fractions obtained from the separate runs were pooled, and
a final purification using the same method yielded 1.5 mg of
nidulanin A.

Marfey’s Method. Stereoisometry of the amino acids was eluci-
dated using Marfey’s method (1). One hundred micrograms of
the peptide was hydrolyzed with 200 μL of 6 M HCl at 110 °C for
20 h. To the hydrolysis product (or 2.5 μmol of standard D- and
L-amino acids) was added 50 μL of water, 20 μL of 1 M NaHCO3
solution, and 100 μL of 1% 1-fluoro-2-4-dinitrophenyl-5-L-ala-
nine amide (FDAA) in acetone, followed by reaction at 40 °C for
1 h. The reaction mixture was removed from the heat and neu-
tralized with 10 μL of 2 M HCl, and the solution was diluted with
820 μL of MeOH to a total volume of 1 mL. The retention times
of the FDAA derivatives were compared with retention times of
the standard amino acid derivatives.

Analysis. Analysis was performed using ultra-high-performance
liquid chromatography (UPHLC) UV/Vis diode array detector
(DAD) high-resolution MS (HRMS) on a maXis G3 orthogonal
acceleration (OA) quadrupole–quadrupole time of flight (QQ-
TOF) mass spectrometer (Bruker Daltonics) equipped with an
electrospray injection (ESI) source and connected to an Ultimate
3000 UHPLC system (Dionex). The column used was a reverse-
phase Kinetex 2.6-μm C18, 100 mm × 2.1 mm (Phenomenex), and
the column temperature was maintained at 40 °C. A linear water-
acetonitrile gradient was used (both solvents were buffered with 20
mM formic acid) starting from 10% (vol/vol) MeCN and increased
to 100% in 10min, maintaining this rate for 3 min before returning
to the starting conditions in 0.1 min and staying there for 2.4 min
before the following run. A flow rate of 0.4 mL·min−1 was used.
HRMS was performed in ESI+ with a data acquisition range of

10 scans per second atm/z 100–1,000. The mass spectrometer was
calibrated using bruker daltonics high precision calibration
(HPC) by means of the use of the internal standard sodium for-
mate, which was automatically infused before each run. UV
spectra were collected at wavelengths from 200 to 700 nm. Data
processing was performed using DataAnalysis software (Bruker
Daltonics). HRMS analysis of nidulanin A was measured to
604.3497 Da corresponding to a molecular formula of C34H45N5O5
(deviation of −0.6 ppm).

NMR. The 1D and 2D spectra were recorded on a Bruker Daltonics
Avance 800-MHz spectrometer equipped with a 5-mm TCI
Cryoprobe at the Danish Instrument Centre for NMR Spectros-
copy of Biological Macromolecules at Carlsberg Laboratory.
Spectra were acquired using standard pulse sequences, and a 1H
spectrum,aswell asCOSY,NOESY,heteronuclear singlequantum
coherence (HSQC), and heteronuclear multiple bond correlation
(HMBC) spectra, were acquired. The deuterated solvent was
acetonitrile-d3, and signals were referenced by solvent signals for
acetonitrile-d3 at δH = 1.94 ppm and δC = 1.32/118.26 ppm. The
NMR data were processed using Topspin 3.1 (Bruker Daltonics).
Chemical shifts are reported in parts per million (δ), and scalar
couplings are reported in hertz. The sizes of the J coupling con-
stants reported in the tables are the experimentally measured
values from the spectra. There are minor variations in the meas-
urements, which may be explained by the uncertainty of J. NMR
data for nidulaninA are presented in Table S3, and the structure is
shown in Fig. S6.

Protein Domain Predictions. Nonribosomal peptide synthase
(NRPS) protein domains were predicted using the analysis tool of
Bachmann and Ravel (2) with the standard settings. Only do-
mains with significant P values (P < 0.05) were included in the
analysis. Adenylation domain specificities were predicted using
NRPSpredictor (3).

Structural Elucidation. The 1H NMR spectrum of nidulanin A
displayed four resonances at δH 8.16, 7.91, 7.64, and 7.51 ppm,
which were identified as amide protons indicative of a non-
ribosomal peptide type of compound. For each resonance,
a COSY correlation to a proton further up-field in the α-proton
area could be observed. This coupled each of the amide protons
to Hα protons at resonances of δH 4.82, 3.92, 4.56, and 3.85 ppm,
respectively. Investigation of the NOESY connectivities allowed
for assembling of the peptide backbone, which revealed a cyclical
tetrapeptide as illustrated in Fig. S7.
The two protons at δH 7.64 and 4.56 ppm were part of a larger

spin system with correlations to a couple of diastereotopic protons
at δH 3.02 [1H, doublet of doublets (dd), 14.4, 8.0] and 2.82 (1H,
dd, 14.3, 7.5) ppm, as well as five aromatic protons at δH 7.14 [1H,
multiplet (m)], 7.21 (2H, m), and 7.22 (2H, m). HMBC correla-
tions from the diastereotopic pair as well as the aromatic protons
revealed a quaternary carbon with a carbon chemical shift of 137.5
ppm. This information, put together, led to the amino acid phe-
nylalanine. The protons at δH 7.91 and 3.92 ppm, as well as the
protons at δH 7.51 and 3.85 ppm, had very similar spin systems. In
both spin systems, a single proton appeared (δH 1.93 and 1.96, both
multiplets), as well as two methyl groups as doublets (δH 0.71/0.78
ppm and 0.84/0.79 ppm). In both cases, the amino acid could be
established as valine. Elucidation of the final part of the structure
showed that this was not one of the standard proteinogenic amino
acids. For this final part, three different spin systems, as well as two
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isolated methyl groups, were present, which could be linked to-
gether by HMBC correlations as well as NOESY connectivities.
The first spin system consisted of the amide proton at δH 8.16 ppm,
the Hα proton at 4.82 ppm, and a diastereotopic pair of protons at
δH 3.63 (1H, dd, 17.7, 9.7) and 3.09 (1H, dd, 17.6, 4.9) ppm. The
second spin system consisted of four aromatic protons at δH 7.79
(1H, dd, 8.2, 1.5), 7.28 [1H, doublet of doublets of doublets (ddd),
8.6, 7.0, 1.5], 6.81 (1H, dd, 8.7, 0.7), and 6.57 (1H, ddd, 8.6, 7.0, 1.1)
ppm, whereas the third and final spin system contained three
protons located in the double-bond area at δH 5.95 (1H, dd, 17.6,
10.7), 5.13 (1H, dd, 10.7, 1.0), and 5.15 (1H, dd, 17.6, 1.0) ppm.
The latter was shown to be connected to the two methyl groups at
δH 1.39 [3H, singlet (s)] and 1.38 (3H, s) ppm, and the presence of
a quaternary carbon at δC 53.7 ppm linked this part as an isoprene
unit. The entire residue and key HMBC correlations for the
structural elucidation of this part are shown in Fig. S8. The residue
contains the amino acid L-kynurenine, which is an intermediate in
the tryptophan degradation pathway. In this structure, L-kynur-
enine has been further modified, because the aforementioned
isoprene unit has been incorporated onto the amine located at the
aromatic ring.

To establish the stereochemistry of nidulanin A, Marfey’s
analysis (1) was performed. This technique enables one to de-
termine the absolute configuration of amino acids in peptides (1).
The analysis showed the phenylalanine residue present was L-
phenylalanine, whereas the analysis for valine showed equal
amounts of L- and D-valine.
We used bioinformatics prediction algorithms to identify

the stereochemistry of the added amino acids further. Both
NRPS protein domain predictions and adenylation domain
specificity predictors identify four adenylation domains, cor-
responding to the four amino acids of the cyclopeptide. By
comparison of predictions and the known sequence, the spec-
ificity and sequence of the adenylation domains were assigned
as predicted to Phe-Kyn-Val-Val. The last two adenylation
domains give similar predictions, further supporting both to be
specific for valine.
The structure with the proposed absolute chemistry is given in

Fig. 4. The absolute configuration of the kynurenine, as well as the
order of the L- and D-valine, which is based solely on the bio-
informatic studies, has not been verified chemically.

1. Marfey P (1984) Determination of D-amino acids. II. Use of a bifunctional reagent,1,5-
difluoro-2,4-dinitrobenzene. Carlsberg Res Commun 49:591.

2. Bachmann BO, Ravel J (2009) Chapter 8. Methods for in silico prediction of microbial
polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence
data. Methods Enzymol 458:181–217.

3. Rausch C, Weber T, Kohlbacher O, Wohlleben W, Huson DH (2005) Specificity
prediction of adenylation domains in nonribosomal peptide synthetases (NRPS)
using transductive support vector machines (TSVMs). Nucleic Acids Res 33(18):
5799–5808.
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Fig. S1. Chemical structures of secondary metabolites. Structures are shown in alphabetical order in columns from left to right.
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Fig. S2. Quantile plot of clustering scores (CSs). The gray line plots the quantile for a given value of the CS based on a random combination of genes (Materials
and Methods). Ninety-five percent of the values attained are 2.13 or below (as shown). The red line is a plot of the quantiles of actual values for the genes, as
can be found in Dataset S2.
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Fig. S3. Extracted ion chromatograms (EICs) for austinol and dehydroaustinol (mass tolerance ± 0.005 Da) from UHPLC-DAD-HRMS of chemical extractions
from the reference strain and the ΔAN8375, ΔAN8376 and ΔAN8382 strains. DAD, diode array detector.
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Fig. S4. Overview of the gene expression profiles for all predicted members of the biosynthetic gene clusters (Tables 1–3 and Dataset S2). The y axis indicates
the gene expression index on a log2 scale, and the x axis represents the 44 experimental conditions included in the microarray compendium. The biosynthetic
clusters are sorted into the Superclusters indicated in Fig. 3.
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Fig. S5. Extracted ion chromatograms (EICs) for compounds 1–4. Mass tolerance ± 0.005 Da from UHPLC-DAD-HRMS of chemical extractions from the ref-
erence strain and ΔAN1242 and ΔAN11080 strains. DAD, diode array detector.
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Table S1. List of predicted biosynthetic geneswhere low expression
indices with low variation across the 44 conditions were found

GeneID Type Gene name
Compound
(if known) Gene no. Known Refs.

AN0523 PKS 4 (1)
AN1034 PKS afoE Asperfuranone 5 7 (2, 3)
AN1036 PKS afoG Asperfuranone 5 7 (2, 3)
AN10430 PKS
AN3273 PKS
AN3386 PKS
AN3612 PKS
AN5475 PKS
AN6961 NRPS
AN9243 NRPS
AN9244 NRPS
AN6810 DTS

These genes are assumed to be silent in all 44 conditions. DTS, diterpene
synthase; NRPS, nonribosomal peptide synthase; PKS, polyketide synthase.

1. Bromann K, et al. (2012) Identification and characterization of a novel diterpene gene cluster in Aspergillus nidulans. PLoS ONE 7(4):e35450.
2. Chiang YM, et al. (2008) Molecular genetic mining of the Aspergillus secondary metabolome: Discovery of the emericellamide biosynthetic pathway. Chem Biol 15(6):527–532.
3. Bergmann S, et al. (2010) Activation of a silent fungal polyketide biosynthesis pathway through regulatory cross talk with a cryptic nonribosomal peptide synthetase gene cluster. Appl

Environ Microbiol 76(24):8143–8149.

Table S2. Primer sequences

Primer name Sequence

AN1242-DL-Up-F GAGATCGTCGATGGAGTGGCG

AN1242-DL-Up-Rad gatccccgggaattgccatgCTGCGAGGCACATCATGTTGCC

AN1242-DL-Dw-Fad aattccagctgaccaccatgGGGTCTGGGTACGCGGGTTTG

AN1242-DL-Dw-R GATGTGTAGGCGCGACATGGG

AN1242-CHK-Up-F CCGTCATCATCGTTATAGCC

AN1242-CHK-Dw-R GCACCCGCTATCACATAC

AN1242-GAPCHK-F GGCATTATGTGAGCTGTCGTG

AN1242-GAPCHK-R GATGGAGGGCTTGGTCTTGG

AN1242-INTCHK-R GATCGAGACGGGTCGTTTAGG

AN11080-DL-Up-FU GGGTTTAAUGGCAGGTACCAATAATGA

AN11080-DL-Up-RU GGACTTAAUAGATATACGAGTATGCGG

AN11080-DL-Dw-FU GGCATTAAUAGTGCCTGATAACTCTGC

AN11080-DL-Dw-RU GGTCTTAAUGTTGAATCCCTCTGCCTT

AN11080-CHK-Up-F GGACGGCCCATATTCAGA

AN11080-CHK-Dw-R AATAAGCTGTAGCGGCGA
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Table S3. NMR data for nidulanin A in acetonitrile-d3

Atom assignment
1H-chemical shift, ppm/J
coupling constants, Hz 13C-chemical shift, ppm HMBC correlations NOE connectivities

1 8.16 (1H, d, 9.2) — — 2, 3, 3′, 35
2 4.82 (1H, ddd, 8.6, 7.0, 1.5) 48.2 — 1, 3, 3′, 18
3 3.63 (1H, dd, 17.7, 9.7) 50.0 2, 4, 17 1, 2, 3′, 6
3′ 3.09 (1H, dd, 17.6, 4.9) 50.0 4 1, 2, 3, 6
4 — 198.9 — —

5 — 116.6 — —

6 7.79 (1H, dd, 8.2, 1.5) 131.8 4, 8, 10 3, 3′, 7
7 6.57 (1H, ddd, 8.6, 7.0, 1.1) 114.3 5, 9 6
8 7.28 (1H, ddd, 8.6, 7.0, 1.5) 134.0 6, 10 —

9 6.81 (1H, dd, 8.7, 0.7) 114.9 5, 7 15, 16
10 — 148.7 — —

11 9.01 (1H, s) — 5, 9, 12 15, 16
12 — 53.7 — —

13 5.95 (1H, dd, 17.6, 10.7) 145.0 — 14, 14′
14 5.13 (1H, dd, 10.7, 1.0) 113.3 12 13
14′ 5.15 (1H, dd, 17.6, 1.0) 113.3 12, 13 13
15 1.39 (3H, s) 27.8 12, 13, 16 9, 11
16 1.38 (3H, s) 27.5 12, 13, 15 9, 11
17 — 172.1 — —

18 7.64 (1H, d, 8.4) — — 2, 19, 20, 20′
19 4.56 (1H, q, 8.0) 53.7 — 18, 28, 20, 20′
20 3.02 (1H, dd, 14.4, 8.0) * 19, 21, 22/26 18, 19, 20′
20′ 2.82 (1H, dd, 14.3, 7.5) * 19, 21, 22/26, 27 18, 19, 20
21 — 137.5 — —

22 7.22 (1H, m) 128.0 23/25 —

23 7.21 (1H, m) 127.7 21 —

24 7.14 (1H, m) 126.4 — —

25 7.21 (1H, m) 127.7 21 —

26 7.22 (1H, m) 128.0 23/25 —

27 — 172.7 — —

28 7.91 (1H, d, 9.2) — — 19, 29, 30, 31
29 3.92 (1H, d, 9.5) 59.1 27, 33 28, 30, 31, 32, 34
30 1.93 (1H, m) 26.3 — 28, 29, 31, 32
31 0.71 (3H, d, 6.6) 18.1 29, 30, 32 28, 29, 30
32 0.78 (3H, d, 6.6) 18.9 29, 30, 31 29, 30
33 — 172.2 172.6 —

34 7.51 (1H, d, 9.6) — — 29, 36
35 3.85 (1H, dd, 9.8, 10.7) 59.4 33, 39 1, 36, 37, 38
36 1.96 (1H, m) 26.9 — 34, 35, 37, 38
37 0.84 (3H, d, 6.7) 18.1 35, 36, 38 35, 36
38 0.79 (3H, d, 6.6) 18.9 35, 36, 37 35, 36
39 — 172.1 — —

1H NMR spectrum and 2D spectra were recorded at with a Bruker Daltonics Avance 800 MHz spectrometer at Carlsberg Laboratory. Signals were referenced
to the solvent signals for acetonitrile-d3 at δH = 1.94 ppm and δC = 1.32/118.26 ppm. There are minor variations in the measurements which may be explained by
the uncertainty of J. d, doublet; dd, doublet of doublet; ddd, doublet of doublets of doublets; m, multiplet; q, quartet; s, singlet.
*Cannot be unambiguously assigned.

Dataset S1. Overview of UHPLC-DAD-HRMS analysis of chemical extractions from the reference strain on three solid media after 4, 8, or
10 d (4d, 8d, and 10d, respectively)

Dataset S1

Values given are extracted ion chromatogram peak areas. DAD, diode array detector.

Dataset S2. Gene expression indices from 44 experimental conditions sorted according to chromosomal coordinates

Dataset S2

Locus names and annotation from the Aspergillus Genome Database (www.ASPGD.org) are given where available. Clustering scores and cluster members
are given.
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ABSTRACT: Filamentous fungi are a rich source of bioactive
compounds, ranging from statins over immunosuppressants to
antibiotics. The coupling of genes to metabolites is of large
commercial interest for production of the bioactives of the
future. To this end, we have investigated the use of stable
isotope labeled amino acids (SILAAs). SILAAs were added to
the cultivation media of the filamentous fungus Aspergillus
nidulans for the study of the cyclic tetrapeptide nidulanin A.
Analysis by UHPLC-TOFMS confirmed that the SILAAs were
incorporated into produced nidulanin A, and the change in
observed m/z could be used to determine whether a
compound (known or unknown) incorporated any of the added amino acids. Samples were then analyzed using MS/MS and
the data used to perform molecular networking. The molecular network revealed several known and unknown compounds that
were also labeled. Assisted by the isotope labeling, it was possible to determine the sequence of several of the compounds, one of
which was the known metabolite fungisporin, not previously described in A. nidulans. Several novel analogues of nidulanin A and
fungisporin were detected and tentatively identified, and it was determined that these metabolites were all produced by the same
nonribosomal peptide synthase. The combination of stable isotope labeling and molecular network generation was shown to very
effective for the automated detection of structurally related nonribosomal peptides, while the labeling was effective for
determination of the peptide sequence, which could be used to provide information on biosynthesis of bioactive compounds.

Filamentous fungi are prolific producers of small bioactive
compounds, and the secondary metabolites (SMs) are

especially interesting as a source for pharmaceuticals. These
include compounds such as the cholesterol-lowering drug
lovastatin, the immunosuppressive mycophenolic acid, and the
antimicrobial griseofulvin and penicillin.1 SMs are categorized
on the basis of their biosynthetic origin, where the major classes
are the polyketides (PKs),2 nonribosomal peptides (NRPs),3

and terpenoids,4 all produced by synthases/synthetases
encoded by complex biosynthetic genes clusters. In fungi,
NRP synthases (NRPSs) consist of modules responsible for the
binding of amino acids (AAs) and stepwise coupling of the
peptide. Unfortunately, it is still not possible to accurately
predict the AAs encoded by these modules and, hence, the
product of the NRPS. This makes it difficult to predict the
products of a given synthetase and the involved biosynthetic
pathway.
Studies of biosynthetic pathways using radioactive labeled

substrates have been performed since the 1950s5 using sensitive
radiation detectors.6,7 However, advances in GC/MS and LC-
MS instrumentation has made it possible to use stable isotope
labeled (SIL), without the risks associated with handling
radioactive material.8 One approach is 13C biosynthetic pathway
elucidation where a known precursor of a compound of interest
is added to the cultivation media of an organism, and the mass
spectrum of a given compound is then compared to the
predicted 13C labeling pattern.8 This approach has been used in

many experiments, including studies of the aflatoxin pathway,7

the asticolorin pathway,9 and recently the yanuthone D
pathway.10 Studies in bacteria have shown that cultivation in
the presence of labeled AAs could be used to aid character-
ization of linear NRPs by tandem MS analysis.11−13 However,
even though interpretation of fragmentation spectra of linear
NRPs is a well-established technique, fragmentation patterns of
cyclic peptides (often containing nonproteinogenic AAs and/or
organic acids) are known to be complex,14 making the
characterization of them by MS/MS difficult at best. Fungi
are able to take up AAs from their environment,15 a property
that has been used previously to study incorporation of stable
isotope labeled amino acids (SILAAs) into proteins from
filamentous fungi using LC-MS.16,17 SILAAs might therefore be
a suitable route for introducing NRP precursors into fungi to
probe the NRP pathways.
To investigate the biosynthesis of compounds, the molecular

networking method developed by Dorrestein and co-workers18

can be used to investigate compounds of interest. The method
is based on characterizing molecules using MS/MS, after which
the fragmentation spectra of the molecules are clustered on the
basis of similarity. This can be visualized in a network, in a way
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where compounds exhibiting similar fragmentation spectra are
grouped together in clusters. Compounds that are biosyntheti-
cally related can share structural similarities, which can result in
similar fragmentation spectra, leading to the formation of
clusters of biosynthetically related compounds. This approach
has been used in the investigation of peptides from Streptomyces
roseosporus19 and analysis of compounds produced by gut
microbiota.20 This new approach allows for faster examination
of biosynthesis compared to traditional labor intensive methods
relying on stepwise gene deletion and analysis.
One of the most extensively investigated filamentous fungi is

Aspergillus nidulans which houses a high number of putative SM
pathways.21 Recent genome-based studies report that A.
nidulans has 12 NRPSs, 14 NRPS-like proteins, 32 PKSs, 1
PKS-NRPS, and 26 terpene synthase or cyclase encoding
genes,22−24 and much of this metabolic potential is still to be
characterized. New products are still being discovered, such as
the mixed NRP-terpene nidulanin A (Figure 1A).21 This is a

cyclic tetrapeptide consisting of one L-phenylalanine (Phe)
residue, one L-valine (Val) and one D-Val residues, one L-
kynurenine residue, and an isoprene unit. Nidulanin A proved
difficult to isolate in sufficient quantities for structure
elucidation by NMR, and thus, two putative analogs were not
isolated and fully characterized.21

In this study, we propose a new method for characterization
of SM biosynthetic pathways. The method combines an
experimental protocol as well as recently developed MS/MS
networking tools and proves to be very powerful for: (i)

highlighting novel compounds produced by the organism, (ii)
assisting in characterizing the biosynthetic pathways responsible
of their synthesis; (iii) and assisting in probing the structure of
NRPs by MS/MS. We illustrate the workflow and demonstrate
the effectiveness of the method by applying it to the study of
the biosynthesis of the compound nidulanin A and related
products produced by A. nidulans.

■ EXPERIMENTAL SECTION
Chemicals. Solvents were LC-MS grade, and all other

chemicals were analytical grade. All were from Sigma-Aldrich
(Steinheim, Germany) unless otherwise stated. Water was
purified using a Milli-Q system (Millipore, Bedford, MA). ESI-
TOF tune mix was purchased from Agilent Technologies
(Torrance, CA, USA).
The labeled AAs were purchased from Cambridge Isotope

Laboratories (Andelover, MA, USA) and Sigma-Aldrich. The
AAs were labeled to different degrees: L-valine (13C5, 97−99%),
L-phenylalanine (13C9

15N, 98% 13C, 98% 15N), anthranilic acid
(ring 13C6, 99%), L-tryptophan (D8, 98%), and L-tyrosin
(13C9

15N, 96%).
LC-MS Analysis. All samples were analyzed as described in

previously published work.25 In summary, samples were
analyzed on a Dionex Ultimate 3000 UHPLC system (Thermo
Scientific, Dionex, Sunnyvale, California, USA) equipped with a
Kinetex C18 column (100 × 2.1 mm, 2.6 μm particles)
(Phenomenex, Torrance, CA, USA) running an acidic water/
ACN gradient. This was coupled to Bruker maXis 3G
quadrupole time-of-flight mass spectrometer (Q-TOF-MS)
system (Bruker Daltonics, Bremen, Germany) equipped with
an ESI source operating in positive polarity.

LC-MS/MS Analysis for Molecular Network Analysis.
Samples for the molecular network analysis were analyzed using
the same system described in previously published work.26

Samples were analyzed using an Agilent LC-MS system
comprising an Agilent 1290 Agilent 1290 infinity UHPLC
(Agilent Technologies, Torrence, CA, USA) equipped with an
Agilent Poroshell 120 phenyl-hexyl column (250 mm × 2.1
mm, 2.7 μm particles), running an acidic water/ACN gradient.
This was coupled to an Agilent 6550 Q-TOF-MS equipped
with an iFunnel ESI source operating in positive polarity.
For the network analysis, automated data-dependent MS/

HRMS was performed for ions detected in the full scan at an
intensity above 1.500 counts at 10 scans/s in the range of m/z
200−900, with a cycle time of 0.5 s, a quadrupole isolation
width of m/z ± 0.65 using a collision energy of 25 eV and a
maximum of 3 selected precursors per cycle, and an exclusion
time of 0.04 min. Differentiation of molecular ions, adducts,
and fragment ions was done by chromatographic deconvolution
and identification of the [M + Na]+ ion.25

Molecular Network Analysis. Samples for the molecular
networking analysis were analyzed using the Agilent LC-MS
system. The network was created using data from fungi
cultivated without SILAA as well as data from fungi cultivated
with one type of SILAA. No data from fungi cultivated with
multiple SILAAs were included. Data was converted from the
standard .d (Agilent standard data-format) to .mgf (Mascot
Generic Format) using the software MSConvert which is part
of the ProteoWizard27 (vers. 3.0.4738) project. The converted
data-files were processed using the molecular networking
method developed by Dorrestein and co-workers.18 The
following settings were used for generation of the network:
Minimum pairs, Cos 0.65; parent mass tolerance, 2.0 Da; ion

Figure 1. (A) Structure of nidulanin A. The coloring illustrates the
different biosynthetic units that make up the metabolite: blue, Phe;
green, kynurenine; red, Val; orange, isoprene. (B) Mass spectra of
nidulanin A at different concentrations of 13C9

15N-labeled Phe added
to A. nidulans IBT 4887, cultivated at 25 °C in the darkness for 7 days
on MM.
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tolerance, 0.5; network topK, 100; minimum matched peaks, 6;
minimum cluster size, 2.
The molecular networking workflow is publically available

online.28 The molecular networking data was analyzed and
visualized using Cytoscape (vers. 2.8.2).29

Preparation of Fungi. Three different wild-type strains of
A. nidulans, IBT 4887 (A4), 22818, and 25683 were three-point
inoculated on solid Czapek yeast autolyzate (CYA)30 media.
Fungal strains are available from the IBT culture collection at
the authors’ address. The nlsAΔ mutant strain (AN1242Δ, IBT
30029)21 was inoculated on solid CYA media with added
arginine supplements (4 mM). All fungi were incubated at 25
°C in darkness for 7 days in standard 9 cm diameter Petri
plates. To each plate was then added 2.5 mL of autoclaved
Milli-Q water, and the spores were suspended using a Drigalski
spatula. The AA sequence for HcpA (CAP93139.1) was
obtained from GenBank (NCBI), and sequences for
An08g02310 and AN1242.5 were obtained from the AspGD
portal. Pairwise alignments for sequence similarity were
conducted in the NCBI/BLAST/blastp suite.31

Preparation of Labeling Solutions. Several different
concentrations (Table 1) of AAs in the media were tested to
determine the best for incorporation. Solutions were prepared
by dissolving the AAs in Milli-Q water followed by sterile
filtering of the solutions.
Inoculation of Fungi. Liquid minimal media (MM) was

prepared as in Nielsen et al.32 but without addition of agar. The
fungi were cultivated in 12-well plates with a well size of 2 mL
from Nunc (Cat. No. 150200, Roskilde, Denmark). To each
well 1.2 mL of MM was added followed by 0.4 mL of AA
solution when testing one AA or 0.2 mL of each solution when
testing two AAs. Finally, the fungus was inoculated by
transfering 5 μL of one of the spore suspensions to the well.
The plate was then sealed with an Aeraseal breathable sealing
film (Cat. No. A9224-50EA, Excel Scientific, Victorville, Ca,
USA) to prevent contamination while allowing for exchange of
gases. The fungi were kept stagnant while incubated at 25 °C in
the darkness for 7 days.
Extraction of Fungi. After incubation, the mat-like biomass

was removed from the wells using a needle and transferred to a
4 mL glass vial. The biomass was extracted using acidic ethyl
acetate−dichloromethane−methanol (3:2:1 v/v/v) as de-
scribed by Smedsgaard.33

■ RESULTS AND DISCUSSION

Exploring Labeling of Nidulanin A. A visual inspection
(Supporting Information, Figure S1) of the fungi revealed a
slight increase in sporulation at the highest tested concen-
trations (c1) of AAs (Table 1). This was most likely because the
AAs were used as the carbon and nitrogen source for the
organism leading to a richer growth medium. Addition of

anthranilic acid completely inhibited growth in the three
highest tested concentrations but resulted in no changes at the
lowest tested concentration (c4). Additions of the AAs did not
result in the immediate detection of any new compounds;
however, it did alter the intensities of some compounds up to
10-fold, although none of these up-regulated compounds
showed any signs of AA incorporation in their mass spectra
(Supporting Information, Figure S2).
Peaks corresponding to known NRPs produced by A.

nidulans, such as nidulanin A and the emericellamides, were
investigated to determine if incorporation of SILAAs could be
detected. However, nidulanin A was initially the only
compound for which incorporation of SILAAs could be
detected as its production seems to be linked to biomass
production. The 13C9

15N-labeled Phe used in the experiment
should induce a mass shift of m/z 10.0223 if incorporated
directly into a compound. However, during cellular uptake, the
nitrogen atom will be exchanged, meaning that incorporation
leads to a mass shift of m/z 9.0302. The mass spectra seen in
Figure 1B exhibited changes depending on the concentration of
labeled Phe in the growth medium. At the highest tested
concentration (c1), there was no trace of the m/z 604.3490 ion
of protonated nidulanin A, and instead, the mass spectrum took
on a bell shape centered on m/z 620.382. This bell shape
occurred because Phe was both used as a substrate for the
central carbon cycle and directly incorporated into nidulanin A.
This means that the general concentration of 13C in the
medium in the fungal cells was increased enough to lead to
distorted isotope patterns. At the lowest tested concentration
(c4), the mass spectrum exhibited two distinct signals. One is
the protonated ion corresponding to the [M + H]+ ion of
nidulanin A, while the other was m/z 9.0300 higher
corresponding to the mass difference of a substitution of 12C9

to 13C9 atoms. A similar type of experiment should be
conducted prior to studying the effect of SILAAs on other
species of fungi, media, and culture conditions, as it would be
expected to vary depending on cellular metabolism.
The kynurenine residue in nidulanin A should be

biosynthetically derived from Trp, and it was there to test
whether Trp could be added to the fungus and catabolized into
kynurenine acid followed by incorporation into nidulanin A.
However, addition of labeled Trp did not result in
incorporation at any of the tested concentrations. To
investigate whether the kynurenine unit was formed prior to
incorporation into nidulanin A, 13C6-labeled anthranilic acid
was tested as it is a precursor to Trp and hence kynurenine.
The mass spectrum of nidulanin A at the lowest concentration
(c4) of anthranilic acid (Figure 2) showed the occurrence of a
new ion at m/z 610.3701, a shift of m/z 6.0200 compared to
unlabeled nidulanin A, corresponding to the incorporation of

Table 1. SILAAs Used in the Experimenta

start concentration in media (c)

AA elemental composition monoisotopic mass [Da] mass difference [Da] c1[M] c2 [M] c3 [M] c4[M]

Phe 13C9H11
15NO2 175.1062 10.0272 (9.0302)b 1.7 × 10−2 5.7 × 10−3 1.9 × 10−3 6.4 × 10−4

Val 13C5H11NO2 122.0958 5.0168 4.7 × 10−3 1.6 × 10−4 5.2 × 10−5 1.7 × 10−6

anthranilic acid 13C6
12CH7NO2 143.0678 6.0201 7.4 × 10−3 2.5 × 10−3 8.3 × 10−4 2.8 × 10−4

Trp C11D8H4N2O2 212.1401 8.0502 5.6 × 10−3 1.9 × 10−3 3.2 × 10−3 1.1 × 10−3

Tyr 13C9H11
15NO3 191.1011 10.0272 (9.0302)b 2.9 × 10−2 9.7 × 10−3 3.2 × 10−3 1.1 × 10−3

aMass difference denotes the mass difference between the SILAA and the naturally predominant isotope. bMass difference due only to 13C-labeling.

Analytical Chemistry Article

DOI: 10.1021/acs.analchem.5b01934
Anal. Chem. 2015, 87, 6520−6526

6522

http://dx.doi.org/10.1021/acs.analchem.5b01934


13C6.This indicated that anthranilic acid was used as a substrate
by the NRPS and further biosynthesized into kynurenine.
Mass spectra obtained from analysis of A. nidulans cultivated

with 13C5 labeled Val (Figure 2) showed no trace of unlabeled
nidulanin A, but it showed two ions with a m/z difference of

5.0163, corresponding to nidulanin A with one and two Val
residues (13C5) incorporated, respectively. Nidulanin A contains
two Val residues, and the results showed a very high degree of
labeled Val incorporation.
In the original paper describing nidulanin A,21 two putative

analogues differing in mass corresponding to incorporation of
one and two oxygen atoms, respectively, were reported. It was
hypothesized that one of these analogs could be a compound
where Tyr was incorporated instead of Phe. To test the
hypothesis, cultivation experiments were performed using
13C9

15N-labeled Tyr. Mass spectra of the two analogues (See
Supporting Information, Figures S3 and S4) showed the
incorporation of 13C9 atoms indicating incorporation of Tyr,
thus confirming the previous hypothesis.
After the initial successful experiments, addition of multiple

different AAs to the growth medium at the same time was
tested, using the concentrations (c4) that were found to have
the best results. In the experiment, both labeled Phe and Val
was added to the growth medium, which was predicted to result
in incorporation of three AAs. The mass spectrum obtained
from the analysis (Figure 2) depicts a very complex substitution
pattern. This was most likely because the nidulanin A could
possibly be labeled with both Phe and Val in different amounts
leading to five different possible combinations of the labeling
(Phe, Val, 2 Val, Phe + Val, and Phe +2 Val).
Spectra (obtained from the Bruker maXis) contained many

of the same ions identified in the previous experiment, but the
mass accuracy was poor even after calibration. The sample was
reanalyzed to investigate whether the poor mass accuracy and
isotopic pattern could be caused by insufficient resolution of
the MS during recording of data in centroid mode. However,

Figure 2. Mass spectra of nidulanin A showing incorporation of tested
anthranilic acid and Val. High incorporation was observed in the case
of the addition of 13C6-labeled anthranilic acid. The addition of 13C5-
labeled Val formed two distinct ions as incorporation of both the one
and two residues was observed. Addition of both 13C9-Phe and 13C5-
labeled Val lead to a complex isotope pattern, containing ions
corresponding to incorporation of both Val and Phe.

Figure 3. (A) Subcluster containing a node corresponding to nidulanin A and several previously described analogues. The circles represent the
consensus MS/MS spectrum for a given parent mass (decimals removed for legibility). The thickness of the black lines connecting the nodes
(circles) indicates the similarity of the MS/MS spectra for the connected nodes, as scored by the networking algorithm. Previously undescribed
compounds are marked with a dashed outline. (B) MS/MS spectra of three nodes in bold are shown. Blue diamonds denote the product ion of the
compounds; red triangles denote fragments formed by the unlabeled nidulanin A, while the green circles denote fragments found in nidulanin A that
now contain labeled atoms.
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no difference was observed when the samples were reanalyzed
in profile mode. As in the experiment with addition of Phe
(Figure 1B), the isotope pattern formed a bell shaped pattern
centered on m/z 620.3, indicating that the concentrations of
the AAs used were too high.
Molecular Network Analysis Revealing New Analogs.

Samples were taken from fungi cultivated both with and
without labeled AAs. The entire molecular network generated
(Supporting Information, Figure S5) contained several distinct
smaller separate subnetworks. Utilizing the information from
the labeling experiment, the masses of the nodes were
investigated to find nodes that differed in m/z according to
the predicted shifts obtained from incorporation of the SILAAs.
A subnetwork containing a node corresponding to nidulanin A,
as well as several nodes corresponding to nidulanin A labeled
with AAs, was identified, as seen in Figure 3A. MS/MS spectra
that exhibit the same fragment ions or the same neutral losses
will be connected in the network. The thickness of the line
indicates the similarity of the MS/MS spectra of the
compounds, as scored by the networking algorithm. Bio-
synthetically similar compounds might therefore be grouped
together using the generated molecular networks. This
subnetwork also contained several nodes that corresponded
to the previously reported21 oxygenated forms of nidulanin A
that contained one and two extra oxygen molecules,
respectively, as well as an unprenylated form. In addition,
several nodes corresponding to unknown compounds were also
found, as described in Table 2. The subnetwork is depicted in
the Supporting Information, Figure S6, with all decimals for the
masses.
SILAA Incorporation Supports Structure Determina-

tion. A comparison of the MS/MS spectra from nidulanin A
and nidulanin A labeled with Phe (Figure 3B) as well nidulanin
A labeled with Val and anthranilic acid (Supporting
Information, Figure S7) and the unprenylated form (Support-
ing Information, Figure S8) allowed for easier assignment of
the fragments, as the labels conferred information about the
substructure. This information was used to determine the AA
sequence of the peptide, although it gives no information on
the stereochemistry. Investigation of the fragment m/z 247
showed that it was composed of both a Phe and Val residue.
This was supported by results from the feeding studies where
addition of labeled 13C9-Phe and

13C5-Val lead to the formation
of fragments of m/z 256 and m/z 252, respectively,

corresponding to incorporation of the labeled AAs. Assigned
fragments (Supporting Information, Table S1) could also be
used to provide structural information on the unknown
compound m/z 493, as its MS/MS spectrum displayed several
of the same fragments. By using these fragments, it was possible
to determine that the unknown compound contained a Phe-
Val-Val peptide and that, on the basis of the fragmentation
spectrum, the peptide was most likely cyclic. By examining the
labeling pattern of the unknown compound (Supporting
Information, Figure S9), it was found that Phe was not
incorporated when using the lowest concentration (c4) but only
when using higher concentrations (c1−c3). The mass spectrum
of the compound showed incorporation of two 13C9-labeled
Phe residues as well as two 13C5-labeled Val-residues, while the
MS/MS spectrum also exhibited a fragmentation ion
corresponding to two linked Phe residues (Supporting
Information, Table S2).
Reinvestigation of the subcluster also showed a node

corresponding to m/z 511, which fit with the incorporation
of two labeled Phe-residues. On the basis of the labeling pattern
and fragmentation spectra, the compound was shown to be a
cyclic tetrapeptide with the sequence Phe-Phe-Val-Val. This
compound has previously been described in the literature as the
compound fungisporin and has been isolated from spores from
several species of Penicillium and Aspergillus.34

Two nodes corresponding to fungisporin with one and two
oxygen atoms incorporated were also detected, analogous to
the ones detected for nidulanin A. Labeling experiments again
showed (See Supporting Information, Figures S10 and S11)
that Tyr was incorporated into the metabolites; see Table 2.
The production of fungisporin has recently been linked to a
specific NRPS, HcpA, in P. chrysogenum by Ali and co-
workers.35 In that study, 10 different cyclic tetrapeptides were
found to be produced by the NRPS, including fungisporin and
an analog containing a Tyr instead of a Phe residue. The
authors also found this pool of 10 cyclic tetrapeptides to be
produced by A. niger. Pairwise alignments of amino acid
sequences of HcpA to the orthologous NRPS of A. niger and
NlsA in A. nidulans indeed showed a relatively high degree of
conservation with 55% and 51% identity on the amino acid
level, respectively. Moreover, the order of predicted domains is
equivalent for the three orthologous proteins except for the lack
of the cryptic condensation domain in HcpA. However, we do

Table 2. Investigated Compoundsa

labeling information

name RT [min] molecular formula AA composition modification m/z [M + H]+ Phe Val Ant Tyr Trp

nidulanin A 8.7 C34H45N5O5 Phe-Kyn-Val-Val prenylated 604.3493 1 2 1 − −
nidulanin B 7.7 C34H45N5O6 Tyr-Kyn-Val-Val prenylated 620.3443 1 2 1 1 −
nidulanin C 7.3 C34H45N5O7 not determined prenylated 636.3392 1 2 1 1 −
nidulanin D 7.0 C29H37N5O5 Phe-Kyn-Val-Val 536.2867 1 2 1 − −
fungisporin A 7.3 C28H36N4O4 Phe-Phe-Val-Valb 493.2809 2 2 − − −
fungisporin B 6.3 C28H36N4O5 Tyr-Phe-Val-Valb 509.2758 2 2 − 1 −
fungisporin C 5.4 C28H36N4O6 Tyr-Tyr-Val-Valc 525.2708 1 1 − 1 −

7.3 C33H44N4O5 not determinedc 577.3384 2 2 − 1 −
7.9 C35H39N7O6 not determinedc prenylated 654.3035 1 − 1 1 −
6.7 C30H31N7O6 not determinedc 586.2401 1 − 1 1 −

fungisporin D 7.2 C30H37N5O4 Phe-Trp-Val-Valb 532.2924 1 2 1 − −
aThe column labeling information denotes the number of specific labeled AA residues detected for each compound. (−) no detection of
incorporation. AA composition refers to the identity and sequence of the AAs in the compound. For some compounds, the AA composition could
not be determined. bCompound also described by Ali et al.35 cPreviously undescribed compound.
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not observe indications of NlsA being unusual and non-
canonical as was reported for HcpA.21

Investigation of the two previously reported analogues of
nidulanin A showed incorporation of one Tyr residue,
accounting for the analog with one extra oxygen. Unfortunately,
we were unable to determine the full structure of the analog
with a molecular mass corresponding to the incorporation of
two extra oxygen atoms. The subnetwork (Figure 3A)
contained three additional nodes corresponding to unknown
compounds. From the MS/MS spectra of these compounds
(See Supporting Information, Figure S12), labeling spectra (See
Supporting Information, Figures S13−S16), and fragments
(Table 2), it was likely that the compounds with m/z 586 and
654 were prenylated and unprenylated forms of the same
compound. MS/MS spectra obtained of the compounds
exhibited a formation of fragments corresponding to two
linked Val-residues, but the compounds were present in too
small quantities to allow for full structure determination.
Examination of the results from the Tyr-labeling showed that
mass spectra exhibited mass shifts indicative of incorporation of
one Tyr-residue, but none containing two Tyr residues was
detected. A plausible explanation could be that the degree of
incorporation was too low to observe this, and it is speculated
that the real structure does indeed contain two Tyr residues.
Nidulanin and Fungisporin Are Products Originating

from the Same Biosynthetic Gene. It was investigated if the
other cyclic tetrapeptides described by Ali et al.35 were
produced by A. nidulans, and the analysis showed that one
additional form, a cyclo-Phe-Trp-Val-Val peptide, was produced,
as confirmed by data from the labeling experiment (See
Supporting Information, Figure S16). Analysis of the AN1242
deletion strain, which did not express the NlsA gene, showed
that none of the cyclic tetrapeptides from Table 2 were
produced, demonstrating that the compounds were most likely
products of the NlsA gene. This was also supported by the
bioinformatic study, which revealed that the NlsA gene from A.
nidulans showed a relatively high conservation when compared
to the HcpA gene in A. niger, which has been shown to encode
the NRPS responsible for the production of fungisporin.
Molecular networking has previously been used as a

dereplication strategy for natural products.36 Using this
approach, the network can be “seeded” by including data-files
obtained from analysis of different standards. However, when
working with undescribed natural products, standards are of
course not available. This can also be the case for compounds
isolated and described by other research groups. In some cases,
a biosynthetic analog of a compound is not formed in large
enough amounts to record a MS/MS spectrum of sufficient
quality. In that case, incorporation of SIL precursors could be
used to form labeled compounds that would have similar MS/
MS spectra to the unlabeled form, thereby helping the
molecular network generation. In the case where the recorded
MS/MS spectrum of a compound is not found to be similar to
any other in the molecular network, stable isotope labeling
could then be used to artificially form a similar compound that
would then cluster with the compound of interest. This could
potentially be used to expand the usage of molecular
networking for compounds that do not form as characteristic
fragments as NRPs, for instance PKs.

■ CONCLUSION
In this study, we demonstrated a combined approach for
elucidation and characterization of biosynthetic pathways. By

combining SIL and molecular networking, it was possible to
find new and undescribed metabolites in A. nidulans, one of the
most investigated filamentous fungi. The effectiveness of the
method was illustrated using the secondary metabolite
nidulanin A from the filamentous fungus A. nidulans. The
experiments were conducted in three different wild-type strains
and showed that it was possible to simply add SILAAs to the
growth medium, leading to incorporation of these AAs into
produced metabolites, which could be confirmed by LC-
HRMS/MS. By using the molecular networking algorithm, it
was possible to find several new analogues of the metabolite, as
well as to detect known metabolites that were structurally
related. The fact that these compounds have not been reported
before also highlights the ability of combined approaches to
extract spectral features from compounds that might otherwise
be overlooked. This was the case for fungisporin and its two
different analogues that had not previously been reported from
A. nidulans. The MS/MS data obtained could be used to
determine the order in which the AAs were coupled in the
cyclic peptide nidulanin A and could be used to tentatively
determine the structure of new metabolites, thus compliment-
ing other techniques such as NMR. It was determined that
nidulanin A, fungisporin, and nine other NRPs were produced
by the same NRPS, a coupling that had not previously been
realized. The described method has been demonstrated to be
useful as an exploratory tool, especially when molecular biology
can provide information about what AAs are used in the
biosynthesis. Further studies, employing a large number of
different AAs for different fungi in an automated system, could
be used to probe the NRP production of the organisms. Data
from these experiments could be investigated in a targeted
manner for a specific case like the probing of nidulanin A or for
investigation of the whole NRP production in an organism.
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Figure S1. Photographs of Aspergiullus nidulans IBT4887 used in the study. The top row is a photo of A. nidulans cultivated 

without the addition of any amino acids. The other rows are photographs of A. nidulans cultivated with the addition of the 

noted amino acids at the indicated concentrations. The addition of anthranilic acid only resulted in growth of the fungus at 

the lowest tested concentration. The fungi were kept stationary while being incubated at 25 °C in darkness for 7 days in MM 

without any added amino acids. 



 

Figure S2. Top is a BPC from A. nidulans IBT4887 cultivated without any added amino acids, while the other BPC are from 

fungi where AAs have been added in the denoted concentration. The chromatograms showed a difference in intensity of 

several peaks, including peaks at RT 5.8 min (austinol), 6.0 min (dehydroaustinol), and 6.9 min (sterigmatocystin). However, 

a close inspection of the data showed that no signs of incorporation of labeled AAs in any of the corresponding compounds. 

The chromatograms have been scaled to the highest signal. The extract from the sample with added Trp showed a strong 

signal at 8.1 min, which corresponded to a known impurity (tributyrin). 



 

Figure S3. Labeling of nidulanin B. The mass spectra are from A. nidulans IBT 4887, cultivated at 25 °C in darkness for 7 

days on MM. The mass spectra were extracted at RT 7.70-7.75 min and have been scale to the highest signal. 



 

Figure S4. Labeling of nidulanin C. The mass spectra are from A. nidulans IBT 4887, cultivated at 25 °C in darkness for 7 

days on MM. The mass spectra were extracted at RT 7.27-7.32 min and have been scale to the highest signal. 

 



 

Figure S5. Molecular network generated from analysis of samples from A. nidulans. Each circle represents the precursor ion 

of a given compound where as the color of the circle represents the m/z-ratio. The thickness of the blue lines connecting the 

nodes (circles) indicates the similarity of the MS/MS spectra for the connected nodes, as scored by the networking algorithm. 

The network was constructed based on samples from experiments with and without addition of stable isotope labeled AAs. 

The sub-network marked with the dotted ring contains a node corresponding to NA. 



 

Figure S6 – Sub-cluster containing a node corresponding to nidulanin A and several previously described analogues. The 

circles represent the consensus MS/MS spectrum for a given parent. The thickness of the blue lines connecting the nodes 

(circles) indicates the similarity of the MS/MS spectra for the connected nodes, as scored by the networking algorithm. 

Previously undescribed compounds are marked with a dashed outline. 

 



 

Figure S7. MS/MS spectra obtained from analysis of NA labeled with anthranilic acid as well as one and two Val residues 

respectively. The blue diamonds denote to the product ion of the compounds, red triangles denote fragments formed by the 

unlabeled NA, while the green circles denote fragments found in NA that now contain labeled atoms.  

  



Table S1. Fragment ions formed by fragmentation of nidulanin A 

Fragment [m/z] Chemical formula Structure 

536 C29H37N5O5 

 
437 C24H29N4O4 

 
290 C15H20N3O3 

 
247 C14H19N2O2 

 



219 C13H19N2O 

 
199 C10H19N2O2 

 
171 C9H18N2O 

 
146 C9H8NO 

 
120 C8H10N 

 
 



 

Figure S8. Labeling of nidulanin D. The mass spectra are from A. nidulans IBT 4887, cultivated at 25 °C in darkness for 7 

days on MM. The mass spectra were extracted at RT 6.95-7.00 min and have been scale to the highest signal. 

  



 

Figure S9. Labeling of fungisporin. The mass spectra are from A. nidulans IBT 4887, cultivated at 25 °C in darkness for 7 

days on MM. The mass spectra were extracted at RT 7.34-7.40 min and have been scale to the highest signal.  

  



Table S2. Fragment ions formed by fragmentation of nidulanin fungisporin A 

Fragment [m/z] Chemical formula Structure 

295 C18H18N2O2 

 
267 C17H18N2O 

 
199 C10H19N2O2 

 
171 C9H18N2O 

 
120 C8H10N 

 
 

  



 

 

Figure S10. Labeling of fungisporin B. The mass spectra are from A. nidulans IBT 4887, cultivated at 25 °C in darkness for 7 

days on MM. The mass spectra were extracted at RT 6.25-6.29 min and have been scale to the highest signal. 



 

Figure S11. Labeling of fungisporin C. The mass spectra are from A. nidulans IBT 4887, cultivated at 25 °C in darkness for 7 

days on MM. The mass spectra were extracted at RT 5.40-5.45 min and have been scale to the highest signal. 

  



 

Figure S12 MS/MS spectra obtained from analysis of three unknown. The blue diamonds denote to the product ion of the 

compounds while the red triangles denote fragments formed by the unlabeled NA. The MS/MS obtained from fragmentation 

of the ion 654 exhibits many of the same ions as the one obtained from 586. The mass difference between the two ions indicate 

that they could be a prenylated and unprenylated form of the same compound.  

  



 

Figure S13. Labeling of new compound with the molecular formula C33H45N4O5. The mass spectra are from A. nidulans IBT 

4887, cultivated at 25 °C in darkness for 7 days on MM. The mass spectra were extracted at RT 7.3-7.4 min and have been 

scale to the highest signal. 



 

Figure S14. Labeling of new compound with the molecular formula C34H40N5O7. The mass spectra are from A. nidulans IBT 

4887, cultivated at 25 °C in darkness for 7 days on MM. The mass spectra were extracted at RT 7.93-7.99 min and have been 

scale to the highest signal. 

  



 

Figure S15. Labeling of new compound with the molecular formula C35H32N5O4. The mass spectra are from A. nidulans IBT 

4887, cultivated at 25 °C in darkness for 7 days on MM. The mass spectra were extracted at RT 6.50-7.00 min and have been 

scale to the highest signal. 



- 

Figure S16. Labeling of fungisporin D. The mass spectra are from A. nidulans IBT 4887, cultivated at 25 °C in darkness for 7 

days on MM. The mass spectra were extracted at RT 7.15-7.20 min and have been scale to the highest signal. 
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Abstract (250 words) 

There is an urgent need for novel bioactive compounds for control of both acute and chronic 
diseases. Microorganisms are a rich source of bioactives; however, chemical identification is a 
major bottleneck. Thus, strategies that can prioritize the most prolific microbial strains and 
attractive compounds are of highest interest. In this study, we present an integrated approach to 
evaluate the biosynthetic richness in bacteria and mine the associated chemical diversity. As an 
example, we subjected 13 strains of Pseudoalteromonas luteoviolacea isolated from around the 
globe to an untargeted metabolomics experiment. The results were correlated to whole-genome 
sequences of the strains. We found that 30% of all chemical features and 24% of the biosynthetic 
genes were unique to a single strain, while only 2% of the features and 7% of the genes were shared 
between all. The list of chemical features was reduced to 50 discriminating features using a genetic 
algorithm and support vector machines. Features were dereplicated by MS/MS networking to 
identify molecular families of the same biosynthetic origin, and the associated pathways were 
probed using comparative genomics. Interestingly, most of the discriminating features were related 
to antibacterial compounds, including the thiomarinols that were reported from P. luteoviolacea 
here for the first time. Additionally, we used comparative genomics to identify the biosynthetic 
cluster responsible for the production of the antibiotic indolmycin, a cluster that could not be 
predicted by antiSMASH. In conclusion, we present an integrative strategy for elucidating the 
chemical spectrum of a bacterium and link it to biosynthetic genes. 

 

Significance Statement (96 words, understandable to general public) 

To optimize our search for novel bioactive compounds useful in disease treatment, we here combine 
untargeted metabolomics and comparative genomics to probe for new bioactive secondary 
metabolites based on their pattern of distribution. We demonstrate the usefulness of this combined 
approach in the marine Gram-negative bacterium Pseudoalteromonas luteoviolacea, which is a 
chemically and genetically diverse species. The approach allowed us to identify new antibiotics and 
their associated biosynthetic pathways. Combining metabolomics and genomics is an efficient 
mining approach for chemical diversity in a broad range of microorganisms that are prolific 
producers of secondary metabolites.  
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Introduction 

Microorganisms have remarkable biosynthetic capabilities and can produce secondary metabolites 
with high structural complexity and important biological activities. Microorganisms have especially 
been a rich source of antibiotics (1, 2); however, with the rapid spread of antibiotic resistance in 
human and animal pathogens, there is an urgent need for finding and identifying novel bioactive 
metabolites. Chemical identification of microbial metabolites is a major bottleneck, and tools that 
can help prioritize the most prolific microbial strains and attractive compounds are of highest 
interest.  

The search for novel chemical diversity can be done ‘upstream’, at the genome level, 
or ‘downstream’, at the metabolite level. While the historical approach has been downstream 
identification of target molecules, searching upstream has become highly attractive with the 
availability of full genome sequences at a low cost (3–6). The analyses are greatly aided by several 
in silico prediction tools (7), including antiSMASH (8, 9) and NaPDoS (10) for secondary 
metabolite pathway identification. Several studies have explored the general genomic capabilities 
within a group of related bacteria (11–16), but only few studies have explored the overall 
biosynthetic potential and pathway diversity (17–19). Ziemert et al. (18) compared 75 genomes 
from three closely related Salinispora species and predicted 124 distinct biosynthetic pathways, 
which by far exceeds the currently 13 known compound classes from these bacteria. The study 
underlined the discovery potential in looking at multiple strains within a limited phylogenetic space, 
as a third of the predicted pathways were found only in a single strain. 

 A large potential is found in combining the upstream approach with the significant 
advances in analytical methods for downstream approaches. Building on the versatility, accuracy, 
and high sensitivity that the LC-MS platform has achieved, sophisticated algorithms and software 
suites have been developed for untargeted metabolomics (20–24). The core of these programs is the 
feature detection (or peak picking), i.e. the identification of all signals caused by true ions (25), and 
peak alignment, the matching of identical features across a batch of samples. Today, many 
programs consider not only the parent mass and the retention time, but also the isotopic pattern, ion 
adducts, charge states, and potential fragments (25) which greatly improves the confidence in these 
feature detection algorithms (26). This high-quality data can be combined with multivariate analysis 
tools, which not only aids analysis and interpretation, but also form a perfect basis for integration 
with genomic information. Recently, molecular networking has been introduced as a powerful tool 
in small molecule genome mining (27, 28). It builds on an algorithm (29, 30) capable of comparing 
characteristic fragmentation patterns, thus highlighting molecular families with the same structural 
features and potentially same biosynthetic origin. This enables the study and comparison of a high 
number of samples, at the same time aiding dereplication and tentative structural identification or 
classification (31). 

Here, we present an integrated diversity mining approach that links genes, pathways, 
and chemical features at the very first stage of the discovery process using a combination of 
publically available prediction tools and machine learning algorithms. We use genomic data to 



interrogate the chemical data and vice versa in order to quickly get an overview of the biosynthetic 
capabilities of a group of related organisms and identify unique strains and compounds suitable for 
further chemical characterization. We demonstrate our approach on a unique group of organisms 
that is strains of the marine bacterial species Pseudoalteromonas luteoviolacea (32, 33). Previous 
studies in our lab have shown that it is a highly chemically prolific and diverse species with strains 
producing an antibiotic cocktail of violacein and either pentabromopseudilin or indolmycin (34). 
We use the integrated approach to evaluate the promise of continued sampling and discovery efforts 
within this species as demonstrated by the finding of an additional group of antibiotics that is the 
thiomarinols. 

 

Results  

The secondary metabolome and genome of P. luteoviolacea is dominated by unique features 

A total of 13 strains of P. luteoviolacea were analyzed for their genomic potential and ability to 
produce secondary metabolites. To obtain a global, unbiased view of the metabolites produced, 
molecular features were detected by LC-ESI-HRMS in an untargeted metabolomics experiment. On 
average, more than ~2,000 molecular features were detected in each strain. Merging of ESI+/ESI- 
data resulted in a total of 7,190 features from the 13 strains (excluding media components), with 
more features detected in positive mode (6,736) as compared to negative mode (2,151). To facilitate 
comparison to genomic data, the features were represented as pan- and core plots commonly used 
for comparative microbial genomics (35, 36). Here, core metabolome features are shared between 
all strains, while the pan-metabolome represents the total repertoire of features detected within the 
collection (Fig 1A). Surprisingly, only 2% of the features were shared between all the strains. In 
contrast, 30% of all features were unique to single strains. As the number and detection of features 
in each strain change with the chosen threshold for feature filtering, the pan- and core plots were 
also made based on the 2,000 and 500 most intense features (Fig. S1). Here, the same trend was 
observed with 6-10% core features and 20% unique features. Thus, regardless of feature filtering 
settings, the overall pattern of diversity is the same.  

To link the chemical diversity to the genomic diversity, we analyzed the genomes of 
the 13 strains. The average genome size was around 6 Mb with approximately 5,100 putative 
protein encoding genes per strain (Table S1). The corresponding pan- and core genomic analysis 
was performed according to Vesth et al (36) (Fig. 1B). A total of 9,979 protein encoding genes were 
predicted in the pan-genome including 3,322 genes (33%) conserved between all strains, thus on 
average, the core genome constituted ~65% for each strain. Of the accessory genome, 23% of the 
total genes (2,329) could only be found in a single strain (singletons/unique genes). Considering 
only genes predicted to be involved in secondary metabolism, the diversity was even higher (Fig. 
1C). On average, 8.6% of the total genes were predicted to be allocated to secondary metabolism 
(Table S1), which is extremely high compared to other sequenced strains belonging to 
Pseudoalteromonas (37, 38). Similar to the total pan-genome, 24% (386) of the genes putatively 
involved in secondary metabolism were found in only a single strain; however, only 7% (119) were 



shared between all 13 strains. Thus, we see approximately a 5-fold higher genetic diversity in 
secondary metabolism as compared to the full pan-genome. 

The high number of unique genes and molecular features, suggest an open pan-
genome/metabolome (35), in which there is a continuous increase in diversity with continued 
sampling, which is very attractive for discovery purposes. Both set of data suggest, that 90% of the 
diversity/genomic potential for secondary metabolism can be covered with 10 strains, but that each 
new strain holds promise for new compounds and biosynthetic pathways.  

 

Pan-genomic diversity and pathway mapping suggest a highly dynamic accessory genome 

To get an overview of the potential evolutionary relationship between the strains and associated 
pathways, a pan-genomic map was generated illustrating shared orthologs between groups of 
species (Fig. 2).  The method uses a conservative BLAST-based non-greedy pairing of genes, which 
results in 2,435 genes found to be present as 1:1 orthologs in all strains, which is slightly less than 
the 3,388 genes found in the method illustrated in Figure 1. In general, we observed two main 
clades (A and B) based on shared genes, one consisting of six strains and the other of seven. Each 
clade has 190-220 genes unique for that clade. The method also further reflects the genetic diversity 
of each strain, as illustrated in Figure 1B-C. Based on this, we generated presence/absence patterns 
for all genes showing in which other strains that gene has orthologs, a useful starting point for data 
correlation. 

For genetic analysis of biosynthetic pathways in multiple strains, pathways predicted 
by antiSMASH across the 13 strains were grouped into 37 operational biosynthetic units (OBUs) 
(18) (Table S2). OBU presences were compared to the pan-genomic map (Fig. 2) to trace 
biosynthetic pathways. Only ten pathways were conserved in all strains, including a glycosylated 
lantipeptide (ripp 1) and two bacteriocins (ripp 2 and ripp 3). All strains maintained essential 
pathways likely responsible for production of siderophores (NRPS1 putative catechol-based 
siderophore) and homoserine lactones (different variations). The violacein pathway vio is also 
conserved in all strains, in addition to an unassigned type III PKS and a hybrid NRPS-PKS 
pathway. Interestingly, the majority of clusters follow the linearity of Figure 2, suggesting that 
many of the pathways have been introduced and retained based on a competitive advantage of those 
clusters. More than 50% of the predicted pathways are restricted to one or two strains, suggesting 
that many pathways are introduced highly dynamically (in evolutionary scale) and through 
horizontal gene transfer. 

 

Feature prioritization and dereplication of the pan-metabolome by support vector machine and 
molecular networking reveals key discriminative metabolites 

To explore the diversity within the pan-metabolome and prioritize chemical features for more 
detailed structural analysis, a two-pronged approach was used: multivariate analysis based on 



machine learning algorithms and comparative analyses based on the pattern of conservation 
generated from the pan-genomic diversity map. A classifier based on a combination of a genetic 
algorithm (GA) and support vector machine (SVM) (39, 40) was used as a feature selection method 
to filter the most important features from the complex data set, starting with the 500 most intense 
features and reducing it to the 50 most significant features to distinguish all 13 strains (Table S3). In 
addition, extracts from all strains were analyzed with LC-ESI-MS/MS to generate a molecular 
network (Fig. S2 for full figure) (28). The candidates identified by multivariate and comparative 
analyses were correlated to the molecular network (27, 31) for dereplication and connection of 
molecular features that likely belong to the same structural class and thus biosynthetic pathway. For 
example, the vio pathway (41) was found in all 13 strains, and the antibiotic violacein was a a 
discriminating core feature (Table S3). In the molecular network, violacein was found to belong to a 
molecular family of minimum five related analogues (Fig. S3) likely associated with the vio 
pathway, including proviolacein, and oxyviolacein as well as a novel analogue with two extra 
hydroxyl groups (Fig. S3).  

 

Some P. luteoviolacea strains have lost the ability to produce polyhalogenated compounds 

The discriminating features do not necessarily reflect the same groupings as the 
genomic analyses. Therefore, they can be used as a tag for identifying the corresponding 
biosynthetic pathway through correlation with genomic presence/absence patterns. On the list of 
descriptive features generated using the SVM (Table S3), there are six highly halogenated features 
that all seem to be restricted to seven strains: CPMOR-2/DSM6061(T), S2607/S4060-1, 
NCIMB1944/2ta16, and CPMOR-1. To investigate whether halogenation in general is unique to 
those strains, a list of features with high mass defect was made, resulting in more than 40 
halogenated compounds (Table S4) restricted to the seven strains. Most of them had no match to 
known compounds, but many match the structural scaffolds of poly-halogenated phenols and 
pyrrols or hybrids hereof (42) and have expected antibacterial activity (43).  

 No pathway predicted by antiSMASH had a halogenase incorporated, thus the pattern 
of presence in these seven strains was used to probe for associated clusters. Indeed, we found an 
intact group of 11 genes (including two brominases) conserved in the seven aforementioned strains 
(Fig. S4). The recently characterized bmp pathway correspond to ten of these genes (bmp1-10) (42) 
which is responsible for the production of poly-brominated phenols/pyrrols in strain 2ta16, with the 
11th gene being a putative multidrug transporter possibly conferring resistance (putatively assigned 
bmp11), an activity not described in bmp1-10. Surprisingly, all 11 genes were also found in 
NCIMB1942/NCIMB2035 where no halogenated compounds were detected. However, in the latter 
strains, the gene cluster is broken, with four genes located elsewhere in the genome, providing a 
plausible explanation for the lack of halogenated compounds. Also, bmp1, bmp2, and bmp7-10 were 
found in S4047-1/S4054, which suggest that a common ancestor had an intact bmp pathway.   

Two of the discriminative features found in the seven strains are two isomeric dimeric 
bromophenol-bromopyrrole hybrids with eight bromines in total (Fig. S5). The monomers 



corresponding to the likewise novel ‘tetrabromopseudilin’ is also found in the extract, suggesting 
that these ‘bis-tetrabromopseudilin’ are true compounds rather than artefacts arising from MS 
insource chemistry. Full structural characterization of these low proton density compounds lies 
beyond the scope of this study, but underlines the versatility of the bmp pathway and associated 
chemical diversity. 

 

Identification of the indolmycin cluster shows resistance genes and potential QS control 

Strains S4047-1, S4054, and CPMOR-1 are all producing the antibiotic indolmycin, as previously 
reported (34). Indolmycin was identified by GA/SVM as a discriminating feature for those three 
strains. In addition to indolmycin, the molecular family consisted of the N/C-demethyl- and N/C-
didemethyl indolmycin analogues as well as indolmyceinic acid, a methylated and two 
hydroxylated analogues. Most of these analogues have not been reported from microbial sources 
and their tentative structures were verified by their MS/MS fragmentation pattern (Fig. S6).  

Like violacein, indolmycin is derived from L-tryptophan, but even though the 
biosynthetic pathway has been described by feeding studies in Streptomyces (44–46), the 
biosynthetic cluster has never been characterized. The pan-genome was probed for genes with 
presence/absence patterns matching the distribution of indolmycin and the related analogues, which 
led to the identification of 11 clustered genes, suggesting these to be the genetic basis for 
indolmycin biosynthesis (Fig. 3). The identified genes had predicted functions to those expected to 
be required for the synthesis of indolmycin such as an aromatic aminotransferase (unk3), 
aldoketomutase (unk4), SAM methyltransferase (unk5), and aminotransferase (unkX). Indolmycin 
has been identified as a competitive inhibitor of bacterial tryptophanyl-tRNA synthetases (47, 48), 
and the putative cluster seems to incorporate a tryptophanyl tRNA synthase (unk2), which in 
Streptomyces griseus has been found to confer resistance to indolmycin (48). Interestingly, the 
cluster is flanked by luxI and luxR homologues, suggesting that the indolmycin pathway potentially 
could be under QS regulation. 

 

Thiomarinols add to the antibiotic cocktail 

The strains 2ta16/NCIMB1944 were identified as hotspots for biosynthetic diversity based on 
Figure 2. This was supported by 313 chemical features unique to these two strains. Based on the 
GA/SVM, they can be distinguished from the rest of the strains based on a feature with m/z 640 RT 
9.73 min (C30H44N2O9S2), tentatively identified as thiomarinol A. Thiomarinols are hybrid NRPS-
PKS compounds based on pseudomonic acid and pyrrothine. One of the gene clusters (hybrid 
NRPSPKS5) restricted to the pair of 2ta16/NCIMB1944 was found to have high similarity to that of 
pseudomonic acid (mup) (49) and the recently characterized thiomarinol (tml) cluster (50), 
corroborating the finding of the compound class. Thiomarinols have previously reported 
antibacterial activities from Pseudoalteromonas sp SANK 73390 (51, 52).  



In the molecular network, it was possible to identify a whole series of thiomarinol and 
pseudomonic acid analogues (Fig. 4A+D), all restricted to NCIMB1944 and 2ta16. In addition to 
thiomarinol A-D, pseudomonic acid C amide and its hydroxyl-analogue could be assigned based on 
the characteristic MS/MS fragmentation pattern (Fig. 4B+C). Besides the known analogues, two 
novel analogues with formulas C25H43NO8 and C34H51NO11 could be identified. Both shared the 
marinolic acid moiety based on the C6H6O2 (m/z 110.0368) fragment and the loss of C11H20O4 
(m/z 216.1362); however, they contained only a single nitrogen and no sulfur, indicating a 
completely new type of thiomarinol based on neither a holothine nor ornithine ‘head’ like the 
known analogues (Fig. 4C).   

 

Discussion 

Advances in genomics and metabolomics have significantly increased our ability to generate high-
quality data on microbial secondary metabolism at a very high speed. This, in turn, has enabled a 
completely new approach to drug discovery combining the two ‘omics approaches.  

Using a combination of comparative metabolomics and genomics, we find a high 
potential and remarkable intra-species diversity in terms of secondary metabolite production for P. 
luteoviolacea. Overall, 8.6% of the genes are allocated to secondary metabolism and on average 10 
NRPS/PKS related OBUs are predicted. This is very high considering the relatively small size of 
the genomes (~6 Mb) and is comparable to that of recognized prolific species such as Salinospora 
arenicola (10.9% of 5.8 Mb)(13, 18, 53) and Streptomyces coelicolor (8% of 8.7 Mb) (54). Our data 
suggest an open pan-genome which is characteristic for species that are adapted to several types of 
environments (55), i.e. being both planktonic and associated with marine macro-algal surfaces. The 
pan-genome is a dynamic descriptor that will change with the number of strains and the specific 
subset. Nonetheless, our findings correlate with comparative genomic studies of other bacterial 
species (11, 12, 14, 55). .   

We found ~5-fold higher genetic diversity in secondary metabolism compared to the 
full pan-genome which supports that production of secondary metabolites is a functionally adaptive 
trait (56, 57). More than half of the 41 predicted pathways are restricted to one or two strains, while 
only ten pathways were shared between all. This is similar to findings in Salinispora (18), where 
78% of the pan-genome is associated with one or two strains. Violacein (58, 59), indolmyin (60, 
61), and pentabromopseudilin (42) are all examples of cosmopolitan antibiotics found in unrelated 
species, thus, we hypothesize that P. luteoviolacea acquired and retained biosynthetic genes linked 
to e.g. antibiotic production as part of adapting to a specific niche that it commonly occupies. 

 Diversity is further supported at the chemical level: Using unbiased global 
metabolite profiling, we identify >7,000 putative chemical features among the 13 analyzed strains. 
As the number of chemical features depends on the filtering threshold, this should not be seen as an 
absolute number of compounds that can be isolated and fully characterized. However, it provides an 
unbiased estimate of diversity, which in this case does not seem to change with the chosen 



threshold. Surprisingly, only 2% of the features were shared between all the strains. To the best of 
our knowledge, there is only one other study in intra-species chemical diversity. Krug et al (19, 62) 
analyzed 98 isolates of Myxococcus xanthus in a semi-targeted approach and found 11 out of 51 
identified compounds to be shared between all strains and a similar fraction present in only one or 
two strains. We find almost half of all features and one third of the 500 most intense features could 
be assigned to one or two strains (thus taking into account the almost clonal strains), which 
underlines a great potential for unique chemistry within a single species.  

The remarkable chemical diversity can be found even within the same sample. Strains 
S4047, S4054, and S4060 that were all collected from seaweed from the same geographical location 
(2,9817, -86,6892). Strains S4047 and S4054 share 99% of their gene families (clonal) and 70% of 
their chemical features, but strain S4060 only share 24% of gene families and 30% of features with 
the other two. It is also reflected in the biosynthetic pathways, where nine pathways were found in 
S4060, but not in S4047 and S4054. This is a fascinating ecological conundrum as the accessory 
metabolites and genes usually are considered to answer the immediate, more localized needs for the 
strains. Nonetheless, this is not the first report of such an occurrence. Vos et al. (63) found 21 
genotypes of M. xanthus using multilocus sequence typing among 78 strains collected from soil on 
a centimeter scale. Likewise, significant differences have been found in the chemical profiles of co-
occurring strains of M. xanthus (19) and Salinibacter ruber (64). In contrast, NCIMB1944 and 
2ta16 that originate from the Mediterranean Sea (France) and Florida Keys (US), respectively, share 
99% of their gene families and 70% of their features. That demonstrates that genomic content can 
be relatively conserved across bio-geographical locations, suggesting a high selective pressure to 
conserve those genes despite an overall low degree of chemo-consistency.  

In this study, SVM was applied in conjunction with GA to compile a list of 50 
chemical features of interest for further structural characterization. Based on SVM, the reduced set 
of features are the ones that maximize the difference between samples, which in this study is 
exploited to select features unique to each strain or a subset of strains. GA works as a wrapper to 
select features to be evaluated in the SVM classifier (65). The intrinsic nature of the GA makes it 
highly suitable for discovery purposes as it favors diversity in how the subset of features is selected 
(40). To the best of our knowledge, there are only few examples on the use of SVM in untargeted 
secondary metabolite profiling (66, 67). The list of discriminating features highlights key 
metabolites, both in the core- and accessory metabolome. Of the 50 discriminating features, only 15 
could be tentatively assigned to known compound classes. In this specific case, the list even reflects 
the four antibiotic classes identified in this species, underlining the utility of GA/SVM to prioritize 
not only strains but also compounds before the rate-limiting step of structural identification. The 
combination with molecular networking further strengthen this approach as it makes it possible to 
identify structural analogues that likely have similar biological activity. 

To the best of our knowledge, this is the first example of direct coupling of genomic 
and metabolomic data at a global level and at this early stage of the discovery process. By solely 
using the patterns of presence/absence across the pan-genome in conjunction with synteny, we 
could identify gene clusters without relying on the functions. This allowed for the identification of 



the pentabromopseudilin and indolmycin gene clusters. Combined with presence/absence of 
molecular features, this is an extremely powerful tool for translation back and forth between 
genome and metabolome. Thus, it is possible to identify specific compounds using genomic queries 
or to specifically identify a gene cluster based on chemistry. Of course, in order to fully confirm the 
link between compound and genes, knock-out mutants need to be analyzed, but here, single 
candidates for clusters could be directly and rapidly identified. 

The combination of metabolomics and genomic data identifies obvious hotspots for 
chemical diversity among the 13 strains, which permit intelligent strain selection for more detailed 
chemical analyses. By randomly picking a single strain, worst case, only 38% of the 500 most 
intense chemical features (and thus most relevant from a drug discovery perspective) are covered 
(NCIMB2035). However, when maximizing strain orthogonality by selecting the two strains 
(NCIMB1944 + CPMOR-1) with the highest number of unique genes, pathways, and chemical 
features, 82% of the diversity can be covered. This is extremely important as the isolation and full 
structural characterization of these compounds still represent the greatest bottleneck in the 
discovery process. This study shows that investigation of multiple strains of the same species can be 
a valuable strategy for detection of new compounds and is imperative to uncovering the full 
biosynthetic potential of a species. 

  



Material and Methods 

Strains, cultivation, and sample preparation for chemical analyses. The 13 strains of P. 
luteoviolaceae included in the study were collected or donated to us as previously described (34, 
68). We did attempt to build a larger collection; however, P. luteoviolaceae autolyses very easily 
and in most laboratories it has not been possible to store and revive strains. The strains were 
cultured in biological duplicates in Marine Broth (MB, Difco 2216) at 25 ºC (200 rpm) for 48h 
before extraction. See details in SI.   

LC-MS and LC-MS/MS data acquisition. LC-MS and MS/MS analyses were performed on an 
Agilent 6550 iFunnel Q-TOF LC-MS (Agilent Technologies, Santa Clara, CA, US) coupled to an 
Agilent 1290 Infinity UHPLC system. Separation was performed using a Poroshell 120 phenyl-
hexyl column (Agilent, 250 mm × 2.1 mm, 2.7 µm) with a water/ACN gradient and MS data 
recorded both in positive and negative electrospray (ESI) mode in the m/z 100-1,700 Da mass 
range. Data for molecular networking was collected using a data-dependent LC-MS/MS as reported 
previously (69) with optimized collision energies and scan speed. See SI for full experimental setup, 
procedures, and method parameters. 

Feature extraction and multivariate analysis. Extraction of chemical features was performed 
using MassHunter (Agilent Technologies, v. B06.00) and the Molecular Features Extraction (MFE) 
algorithm and recursive analysis workflow. Feature lists were imported to Genespring – Mass 
Profiler Professional (MPP) (Agilent Technologies, v. 12.6) and filtered with features resulting 
from the media removed. The feature lists from ESI+ and ESI- were merged in a table as generic 
data and re-imported into MPP. The data was then normalized and aligned resulting in a single list 
of chemical features for each sample. The list of discriminating features was generated in MPP 
using genetic algorithm with a population size of 25, 10 generations, and a mutation rate of 1. The 
GA was evaluated using the SVM with a linear kernel type with and imposed cost of 100 and ratio 
of 1. The feature list was validated via the leave-one-out method. Further details and settings found 
in SI. All 50 discriminating features (Table SX) were manually verified to be present in the original 
datasets. Molecular formulas were predicted from the accurate mass of the molecular ion or related 
adducts (70) as well as the isotope pattern and matched against AntiMarin (v. 08.13) and Metlin 
(71) databases to tentatively assign known compounds. 

Molecular networking. For molecular networking, raw LC-MS/MS data was converted to .mgf 
using MSConvert from the ProteoWizard project (72) and analyzed with the algorithm described in 
Watrous et al. (28). The data can be accessed here (provide the public link to MSV munber, make 
sure all the annotations and molecules discussed here are annotated there, the esiest way to do this is 
to create a network and then click on addto library in the network viewer). The network 
corresponding to a cosine value of more than 0.7 was visualized using Cytoscape 2.8.3 (73).  

DNA extraction and sequencing. Cultures were grown in MB for xx days and genomic DNA 
isolated using either the JGI phenol-chloroform extraction protocol or the xxx kit [Jette for 
extraction protocol]. Library preparation and 150 base paired end sequencing was done at Beijing 
Genomics Institute (BGI) on the Illumina HiSeq 2000 system. At least 100-fold coverage was 



obtained for all genome sequences in this study. Genomes were assembled using CLC Genomic 
Workbench (v. 2.1/2.04) with default settings. All sequences have been deposited in GenBank and 
assigned the accession numbers provided in table SXX. The genome of strain 2ta16 was 
downloaded from GenBank. 

Genome annotation and analysis. Contigs were analyzed using the CMG-biotools package as 
described Vesth et al. (36). Genes were predicted using Prodigal 2.00. Gene families were 
constructed by genome-wide and pairwise BLAST comparisons. Genes were considered part of the 
same gene family with a sequence identify >50% over at least 50% of the length of the longest 
gene. 

A pan- and core-genome plot was constructed according to Friis et al [ref]. A pan-genomic 
dendrogram based on occurrences of gene families was used to sort input order by clustering prior 
to generating the plot (14). 

Putative biosynthetic pathways were predicted from sequences (FASTA) with antiSMASH 2.0 (8, 
9), with KS and C domains of PKS and NRPS predicted with NaPDoS (10) using default settings. 
Pathways were assessed to be similar OBUs when MultiGeneBlast (74) analyses revealed that 80% 
of the genes in the pathway are present with homologues that show at least 60% amino acid 
identity. For assessment and assembly of pathways split between different contigs, the sequences of 
homologues on the same contig were used as scaffold. MultiGeneBlast (74) was used for recursive 
OBU analysis across all 13 strains, thus proving pseudo-scaffolds for larger pathways, which in turn 
give higher confidence in the assignments. Partial pathways with the same pattern of conservation 
were combined in order to avoid overestimation of diversity. 

 

Mapping of genes shared by groups of species. All predicted sets of protein sequences for the 13 
strains were compared using the blastp function from the BLAST+ suite (75). These 169 whole-
genome blast tables were analyzed to identify bi-directional best hits in all pairwise comparisons. 
Using custom Python-scripts, this output was analyzed to identify, for all proteins, in which strains 
orthologs were found. This allowed identification of unique genes, genes shared by clades and sub-
clades of species, and genes shared by all 13 strains of Pseudoalteromonas. The script also 
generates a binary 13 digit "barcode" of the presence/absence of gene orthologs across the 13 
species for all proteins in the pan-genome.  
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Fig. 1. Pan- and core metabolome and genome plots of 13 P. luteoviolaceae strains. A) The pan-
metabolome curve (blue) connects the cumulative number of molecular features detected (positive 
and negative mode merged). The core-metabolome curve (red) connects the conserved number of 
features. The bars show the number of new molecular features detected in each extract (media 
components excluded). B) The pan- (blue) and core- (red) genome curves for all predicted genes. C) 
The pan- (blue) and core- (red) genome curves for genes predicted to be involved in secondary 
metabolism. 

 

  



 

Fig. 2: Tree of shared genes for groups of species with OBUs overlaid. The numbers in the nodes 
shows the number of mutual 1:1 orthologs found in the species to the right of that circle. The areas 
of the nodes are proportional to the number of genes. The length of the edges only illustrates 
connectivity and not phylogenetic distance. 

 

 

  



 

 

 

Fig. 3. Putative biosynthetic cluster (A) and proposed biosynthetic scheme (B)(1) for indolmycin. 
Color-codes for enzyme functions rather than names? ORFs? 
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Fig. 4. A) Molecular network of the thiomarinol/pseudomonic acid molecular family. Dashed nodes 
indicate novel analogues. Mass differences are highlighted for ion adducts only. B) MS/MS spectra 
representing the four different analogue types. Parent mass m/z 641 is thiomarinol A, representing 
the holothin head type; m/z 690 is [M+NH4]+ of m/z 673 thiomarinol B, representing the sulfone 
head type; m/z 567 is pseudomonic acid C amide, representing the non-sulfonated analogues; m/z 
650 is a novel analogue with a non-sulfonated head. C) Structures and suggested fragmentation of 
thiomarinol A, B, and pseudomonic acid C amide. D) Table of detected analogues in strains 
NCIMB1944 and 2ta16.  
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Supplementary materials and methods: 

 

Strain cultivation and extraction. The strains were cultured in biological duplicates in 20 mL 
Marine Broth at 25 ºC (200 rpm) for 48h. Cultures were extracted with 20 mL ethyl acetate 
(EtOAc) with 0.1% formic acid (FA), ultrasonicated for 10 min, and left on a shaking table (100 
rpm) for 30 min. Phases were separated by centrifugation (3000 rcf, 4 ºC, 15 min). The cultures 
were re-extracted with 10 mL butanol (BuOH). The supernatants were pooled, dried under nitrogen, 
and re-dissolved in 2 mL methanol (MeOH). Samples for LC-MS/MS and molecular networking 
were used directly (1 µL injection), while samples for LC-MS and untargeted feature extraction 
were diluted 20-fold before injection (3 µL injection).  

 

LC-MS and LC-MS/MS data acquisition. LC-MS and MS/MS analyses were performed on an 
Agilent 6550 iFunnel Q-TOF LC-MS (Agilent Technologies, Santa Clara, CA, US) coupled to an 
Agilent 1290 Infinity UHPLC system equipped with a Flexible Cube module. Compounds were 
separated on a Poroshell 120 phenyl-hexyl column (Agilent, 250 mm × 2.1 mm, 2.7 µm) at 60 °C 
with a water-acetonitrile (AcCN) gradient (both buffered with 20 mM formic acid (FA)) running 
from 10-100% AcCN over 20 min followed by a 4 min wash (100% AcCN). The gradient was then 
returned to 10% AcCN for a total gradient time of 26 min. Data was recorded both in positive and 
negative electrospray (ESI) mode and data was acquired in the m/z 100-1,700 Da mass range with a 
sampling rate of 2 Hz. The instrument was tuned and calibrated using a proprietary Agilent 
calibration algorithm using the Agilent ESI-L tuning mix solution. During operation, a lock mass 
solution containing ions m/z 119.9881 and 966.0007 in negative and m/z 186.2216 and 922.0098 in 
positive was constantly infused. 

Data for molecular networking was collected using a data-dependent ESI+-LC-
MS/MS as reported previously (48) with the following modifications. MS1 spectra were recorded in 
positive electrospray mode from m/z 200-1,700 Da followed by MS/MS with a fixed collision 
energy of 25 V and a speed of 5 scans/sec. Spectra were obtained for the three most intense ions, 
which were excluded after being detected twice; however, released after 0.5 min for detection of 
analogues with different retention times.   

Due to carry-over in the auto sampler of certain compounds (polybrominated), the 
samples were split in to two groups to minimize carry-over, i.e. non- and positive PBP producers 
(24). Within the two groups, the samples were randomized using the macro developed by Bertrand 
et al. (47) with blank runs every 5 samples and blank media control samples every 10 samples to 
assess the extent of the carry-over throughout the batch. Extensive valve cleaning was applied 
during the run. Likewise, the Flexible Cube solvents were 20% dichloromethane in 2-propanol 
(v/v%) and 30% water in 2-propanol to maximize removal of problematic compounds.  

 



Feature extraction and multivariate analysis. To deconvolute the raw total ion current spectra, 
the data-analysis program MassHunter (Agilent Technologies, v. B06.00) was used. Chemical 
features were extracted from the LC-MS data using the Molecular Features Extraction (MFE) 
algorithm and the recursive analysis workflow. Features were extracted from RT 2.00-21.00 min, 
with a minimum intensity of 5,000 counts and aligned considering adducts ([M+H]+, [M+Na]+, [M-
H]-, [M+Cl/Br]-, [M+CH3COO]-) and neutral losses ([M-H2O]+). The isotopes of the chemical 
features were detected using a tolerance of 0.0025 m/z + 7 ppm error, and were limited to a charge 
state of 1, while compounds with an interminable charge were excluded. Feature alignment, 
binning, and alignment was performed using the following tolerances (Δm/z 0.0025 ± 7 ppm), mass 
window set (±0.2 min, 15 ppm), and a MFE quality score of minimum 98. Only features present in 
both replicate samples were considered. For the recursive feature extraction, chromatograms were 
smoothed using a Gaussian function (3 point function width and 1.5 point Gaussian width) and a 
cut-off intensity of 3,500 counts was used. The threshold used for the MFE and recursive analysis 
was purposely set low to allow for the detection of numerous features to ensure correct alignment of 
peaks, after which the aligned feature list could be filtered based on a higher threshold. 

Feature lists were imported to Genespring – Mass Profiler Professional (MPP) 
(Agilent Technologies, v. 12.6), and filtered for features with raw intensities lower than 100,000 
(ESI+ data) and 60,000 counts (ESI- data). Media components or other interfering signals were 
defined as peaks present in the medium blank and these were manually excluded from the analysis. 
Features present in all samples (including the blank), but having more than a 10x fold change 
between sample and medium blank were treated as potential carry-over and included on the ‘true 
compound’ feature list. The lists from ESI+ and ESI- were merged in an Excel table as generic data 
and reimported into MPP, where features within RT ±0.15 min and 15 ppm mass tolerance were 
aligned. Intensities were normalized (quantile) and Z-transformed due to differences in intensities in 
ESI+ and ESI-. A total number of 8,699 features were aligned. By only taken in to account features 
present in both replicates, the number of features was reduced to 7,190. The list of discriminating 
features was generated in MPP using genetic algorithm with a population size of 25, 10 generations, 
and a mutation rate of 1. The GA was evaluated using the SVM with a linear kernel type with and 
imposed cost of 100 and ratio of 1. The feature list was validated via the leave-one-out method.  

 

Mass defect screening. A list of all halogen containing compounds described from 
Pseudoalteromonas and Alteromonas was extracted from AntiMarin (v. 08.13). Based on this, the 
minimum mass defect from any metabolite was found to be 0.0937 Da, whilst the lowest mass 
defect increase per 100 Da was found to be 0.0263 Da. Chemical features were extracted using the 
same settings as for the MFE analysis, and then filtered for compounds with a mass defect of -
0.0937 Da with -0.02 Da per 100 Da at a tolerance of +/- 0.0100 Da. Likewise, the listed was 
validated by the isotope patterns of the filtered features. 

  



Figure S1.  Filtered pan- and core-metabolome plots 

 

 

 

Fig. S1. A) The pan-metabolome curve (blue) connects the cumulative number of the total number 
of molecular features detected (positive and negative mode merged). The core-genome curve (red) 
connects the conserved number of features. The bars show the number of new molecular features 
detected in each extract (media components excluded). B) The pan- (blue) and core-(red) 
metabolome curves of the 2,000 most intense features. C) The pan- (blue) and core-(red) 
metabolome curves of the 500 most intense features.   



Table S1.  Overall genomic features of the 13 P. luteoviolacea strains 

 

 

 

Table S1. Overall descriptive features of all 13 draft genomes. Total genes predicted using Prodigal 
2.00, while antiSMASH 2.0 (4, 5) was used to predict the number of genes allocated to secondary 
metabolism. *The total number of OBUs (in parentheses) and number of PKS/NRPS pathways 
were calculated based on antiSMASH and NaPDoS (6) predictions and recursive analysis by 
MultiGeneBlast (77).  

  

Strain #
Contig 
sequence 
total (Mb)

Genome 
contig count

# predicted 
protein coding 
genes

# unique 
genes 

% genes 
allocated to 
secondary 
metabolism

# OBU*
Accession 
number

S4054 6.1 219 5146 19 7.4 13 (21)
S4047-1 6.1 180 5130 8 7.6 13 (21)
CPMOR-1 6 105 5186 560 6.2 6 (13)
H33 6.1 151 5160 7 10.2 20 (29)
H33S 6.1 143 5149 4 9.7 18 (26)
2ta16 6.4 175 5355 49 9.3 10 (16) PRJNA210324
NCIMB1944 6.4 107 5323 11 9.4 12 (18)
S2607 5.9 73 4997 291 11.3 18 (25)
S4060-1 6 74 5092 371 9.2 12 (18)
DSM6061(T) 5.9 168 5003 119 8.0 10 (19)
CPMOR-2 5.9 155 4948 115 8.7 10 (20)
NCIMB1942 5.5 227 4831 553 7.2 7 (13)
NCIMB2035 4926 7.1 9 (16)



Table S2.  Overview of predicted Operational Biosynthetic Units (OBUs) 

 

Table S2. Pathway (OBU) distributions among the 13 Pseudoalteromonas luteoviolacea strains and 
their tentative functionality as predicted by antiSMASH. * Marks partial pathways on split contigs. 
Partial pathways with the same pattern of conservation are combined in order ot avoid 
overestimation of diversity; ** Gene cluster?   
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ripp1 Glycosylated lantipeptide 1 1 1 1 1 1 1 1 1 1 1 1 1
Homoserinelactone 1 1 1 1 1 1 1 1 1 1 1 1 1
NRPS1 + NRPSPKS4 * 1 1 1 1 1 1 1 1 1 1 1 1 1
ripp2 Bacteriocin 1 1 1 1 1 1 1 1 1 1 1 1 1
PKS2 Type III 1 1 1 1 1 1 1 1 1 1 1 1 1
vio Violacein 1 1 1 1 1 1 1 1 1 1 1 1 1
NRPSPKS2 1 1 1 1 1 1 1 1 1 1 1 1 1
ripp3 Bacteriocin 1 1 1 1 1 1 1 1 1 1 1 1 1
NRPSPKS3 Trans AT 1 1 1 1 1 1 1 1 1 1 1 1 1
ripp4 ** 1 1 1 1 1 1 1 1 1 1 1 1 1
NRPS3 0 0 0 0 1 1 0 0 1 1 1 1 1
NRPS7 Siderophore 1 1 1 1 0 0 1 1 0 0 0 0 0
other2 ** + other3 ** 1 1 1 1 0 0 1 1 0 0 0 0 0
PKS3 Type2 PKS 1 1 1 1 0 0 1 1 0 0 0 0 0
NRPS2 Dipeptide 1 1 (0) (0) 1 1 (0) 0 (0) (0) (0) (0) (0)
NRPS8 Pentapeptide 0 0 0 0 0 0 0 0 1 1 1 1 0
other 5 0 0 0 0 0 0 0 0 0 0 1 1 1
PKS1 Trans AT PKS 0 0 0 0 1 1 0 0 0 0 0 0 0
NRPSPKS1 0 0 0 0 1 1 0 0 0 0 0 0 0
other1 0 0 0 0 1 1 0 0 0 0 0 0 0
tml Thiomarinol 0 0 0 0 1 1 0 0 0 0 0 0 0
NRPS5 0 0 1 1 0 0 0 0 0 0 0 0 0
NRPS6* 0 0 1 1 0 0 0 0 0 0 0 0 0
NRPSPKS6 0 0 1 1 0 0 0 0 0 0 0 0 0
NRPSPKS7 0 0 0 0 0 0 0 0 1 1 0 0 0
other4 0 0 0 0 0 0 0 0 1 1 0 0 0
NRPS9 TypeIII/NRPS 0 0 0 0 0 0 0 0 1 1 0 0 0
NRPS11 * 0 0 0 0 0 0 0 0 1 1 0 0 0
NRPS10 0 0 0 0 0 0 1 1 0 0 0 0 0
NRPS13 * + NRPS15 * 1 1 0 0 0 0 0 0 0 0 0 0 0
NRPSPKS10 0 0 0 0 0 0 0 0 0 0 1 1 0
NRPSPKS11 * 0 0 0 0 0 0 0 0 0 0 1 1 0
NRPS4 0 0 0 0 0 0 0 0 0 0 0 0 1
NRPS11 Lipopeptide 1 0 0 0 0 0 0 0 0 0 0 0 0
NRPS12 + NRPSPKS8 * Lipopeptide 1 0 0 0 0 0 0 0 0 0 0 0 0
NRPSPKS9 * 1 0 0 0 0 0 0 0 0 0 0 0 0
NRPS14 * + NRPS16 * 0 1 0 0 0 0 0 0 0 0 0 0 0

Total no. of pathways 18 16 16 16 16 16 14 14 16 16 15 15 13
NRPS/PKS 11 9 9 9 9 9 7 7 9 9 8 8 6



Table S3.  50 discriminating molecular features identified by GA/SVM

 

Continued on next page  
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2.31 203.0614 - - - Potential noise 0 0 0 0 0 0 0 1 0 0 1 1 0
2.64 218.1019 C12H14N2O2 - 0.17 [M+H]+ Cyclo(Ala-Phe) isomer 1 1 0 0 1 1 0 0 1 1 1 1 0
2.88 218.1071 C12H14N2O2 - 0.17 [M+H]+ Cyclo(Ala-Phe) isomer 1 1 1 0 1 1 1 0 1 1 1 1 0
3.15 175.0633 C10H9NO2 + 1.99 [M+H]+ Indole-3-acetic acid 1 0 0 0 0 1 0 0 0 0 0 0 0
3.50 138.0325 C6H4O - 6.99 [M+COOH]- Poor mass accuracy low mass range ESI- 0 1 1 1 0 1 0 0 1 1 1 1 1
3.55 224.1166 C11H16N2O3 - 0.94 [M+H]+ Aminochelin 0 0 0 0 1 1 0 0 1 0 0 0 0
3.69 449.1767 C17H31N5O5S2 + 0.30 [M+Na]+ 0 1 0 0 0 0 0 0 0 0 0 0 0
3.77 289.1063 C14H15N3O4 - 1.14 [M+Na]+ 0 0 0 0 0 0 0 0 0 0 1 1 1
4.67 554.2444 C22H42N4O8S2 - 0.04 [M+Na]+ Pantethine 1 1 1 1 1 1 1 1 1 1 1 1 1
5.38 448.1450 C17H28N4O6S2 + 0.00 [M+Na]+ 0 1 0 0 0 0 0 0 0 0 0 0 0
6.03 261.1113 C13H15N3O3 - 1.83 [M+H]+ Cyclo(L-Asn-L-Phe) 0 0 0 0 0 0 0 0 0 0 1 1 1
6.31 438.1903 C23H26N4O5 - 0.48 [M+Na]+ 0 0 0 0 0 0 0 0 0 0 0 0 1
6.40 219.0895 C12H13NO3 - 0.73 [M+H]+ Methyl indole-3-lactate 0 0 0 0 0 0 0 0 0 0 0 1 1
6.61 872.5081 C45H72N6O9S + 0.00 [M+2H]+ 1 1 1 1 1 1 1 0 1 1 1 1 1
7.01 257.1164 C14H15N3O2 - 1.61 [M+K]+ Indolmycin 0 0 0 0 0 0 0 0 0 0 1 1 1
7.08 283.0936 - - - Potential noise 0 0 0 0 0 0 0 0 0 0 1 1 1
7.27 362.1577 C16H26O9 - 0.08 [M+Na]+ 1 1 1 1 1 1 1 1 1 1 1 1 1
7.51 485.2989 C24H37N8O3 + 0.33 [M+Na]+ 0 0 0 0 1 1 0 0 0 0 0 0 0
8.15 398.1550 C15H22N6O7 + 0.86 [M+H]+ 1 1 1 1 1 1 1 1 1 1 1 1 1
8.35 343.0957 C20H13N3O3 - 0.33 [M+H]+ Violacein 1 1 1 1 1 1 1 1 1 1 1 1 1
8.61 448.1945 C20H32O11 - 0.23 [M+Na]+ 1 1 1 1 1 1 1 1 1 1 1 1 1
8.62 448.1945 C20H32O11 - 0.23 [M+NH4]+ 1 1 1 1 1 1 1 1 1 1 1 1 1
9.33 229.1678 C12H23NO3 - 1.73 [M+H]+ Dimethyl-2-oxodecanoylhydroxamic acid 1 1 1 0 0 1 0 0 0 1 0 0 0
9.34 656.2437 C30H44N2O10S2 - 0.36 [M+H]+ 0 0 0 0 0 1 0 0 0 0 0 0 0



Table S3 continued.  50 discriminating molecular features identified by GA/SVM
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9.34 268.2033 - - - Potential noise 1 1 1 0 0 1 0 0 0 0 0 0 0
9.73 640.2488 C30H44N2O9S2 - 0.49 [M+Na]+ Thiomarinol 0 0 0 0 1 1 0 0 0 0 0 0 0

10.38 290.1916 C15H30O3S - 1.32 [M+H]+ 0 0 0 1 0 1 0 1 1 1 1 1 0
10.64 620.2680 C28H44O15 - 0.23 [M+NH4]+ 1 1 1 1 0 1 1 1 1 1 1 1 0
10.66 681.2832 C34H43N5O8S - 0.28 [M+H]+ 0 0 0 0 1 1 0 0 1 1 1 1 1
11.42 706.3061 C33H46N4O13 + 0.43 [M+NH4]+ 1 1 0 1 0 0 1 1 1 1 1 0 1
11.45 119.0734 - - - Potential noise 0 0 0 0 0 0 0 0 0 0 0 0 1
11.87 320.1624 C18H24O5 - 0.47 [M-H2O]+ Pseudoalteromone A 1 1 1 1 1 1 1 1 1 1 1 1 1
12.17 414.2743 C22H34N6O2 + 0.80 [M+H]+ 0 0 1 1 1 1 0 0 1 0 0 0 0
12.17 785.5934 C40H83N9S3 - 0.12 [M+H]+ 0 0 1 1 1 1 0 0 1 0 0 1 0
12.46 361.2253 C21H31NO4 + 0.24 [M+H]+ 0 0 0 0 0 0 0 0 0 0 0 0 1
12.91 268.2038 C16H28O3 + 1.21 [M+H]+ (7E)-9-Ketohexadec-7-enoic acid 1 0 1 1 0 0 1 1 1 1 1 1 0
14.86 431.2308 C24H33NO6 + 0.73 [M+Na]+ 1 1 1 0 0 1 0 0 0 1 0 0 0
15.44 1150.1522 C10H2Br9Cl4N7O5 + 23.08 Ambiguous Excellent isotope match 1 1 1 1 1 1 0 0 0 0 0 0 1
16.11 497.7101 C12H6Br4O2 + 2.54 [M-H]- 6,6'-Bis-(2,4-dibromophenole); MC21-A 0 0 0 1 0 1 0 0 0 0 0 0 0
16.59 658.6366 C19H6Br5NO - 2.70 [M-H]- 1 1 1 0 0 1 0 0 0 0 0 0 0
16.77 745.7626 C21H23Br5N2O3 - 0.23 [M-H]- 1 1 1 0 0 1 0 0 0 0 0 0 0
17.14 566.4295 C32H58N2O6 + 0.00 [M+Na]+ 1 1 1 1 0 1 1 1 1 0 1 1 0
17.45 602.4506 C32H62N2O8 + 0.18 [M+H]+ 1 1 1 1 1 1 1 1 1 1 1 1 0
17.46 590.4268 C30H54N8O4 - 0.40 [M+H]+ 1 1 1 1 1 1 1 1 1 1 1 1 0
17.58 628.4663 C34H64N2O8 + 0.34 [M+H]+ 1 1 1 1 1 1 1 1 1 1 1 1 0
17.60 676.5754 C41H76N2O5 - 0.16 [M+H]+ Potential ornithine lipids 1 1 1 1 1 1 1 1 1 1 1 1 0
17.69 664.5754 C40H76N2O5 - 0.09 [M+H]+ Potential ornithine lipids 1 1 1 1 1 1 1 1 1 1 1 1 0
18.39 939.4053 C20H8Br8N2O2 + 0.00 [M-H]- 1 1 1 1 1 1 0 0 0 0 0 0 1
18.66 939.4053 C20H8Br8N2O2 18.88 [M-H]- Excellent isotope match 1 1 1 1 1 1 0 0 0 0 0 0 1
20.33 658.5649 C41H74N2O4 - 0.39 [M+Na]+ 1 1 1 1 1 1 1 1 1 1 1 1 0



Table S3. The 50 descriminating molecular features identified with GA/SVM from the 500 most intense features. Molecular formulas are 
determined with MassHunter function ‘Generate formulas’, also considering the isotope pattern of the peak. All tentative IDs are based on 
hits in AntiMarin or Metlin, and the candidates are evaluated based on accurate mass, isotope pattern (in particular for the halogenated 
compounds), relative retention time, and fragmentation pattern (for Metlin hits).  



Figure S2.  Full molecular network 

 

 

 

Fig. S2. Molecular network of 13 strains of P. luteoviolacea based on LC-ESI+-MS/MS. Spectra 
originating from blank media samples are excluded from the analysis. Highlighted are the three 
gene cluster family-molecular family pairs identified in this study, those are violacein, indolmycin, 
and thiomarinol. 

  



Figure S3.  Network of the violacein molecular family 

 

 

Fig. S3. A) Molecular network of the violacein MF. Grey nodes are shared between all strains, 
while white nodes are shared but multiple, but not all strains. Dashed nodes indicate a novel 
analogue. B) Selected zoom of MS/MS spectra of violacein (top) with parent mass [M+H]+ 344 Da 
and the novel analogue (bottom) with an extra hydroxyl group [M+H]+ 376 Da.  

  



Table S4.  Halogenated molecular features found by mass defect screening  
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5.56 215.9430 - 3.67 C7H5BrO3

3-Bromo-4,5-dihydroxybenzaldehyde
2-Bromo-4,5-dihydroxybenzaldehyde
3-Bromo-4-hydroxybenzoic acid 1 1 1 1 1 1 0 0 0 0 0 0 1

6.43 369.8314 +0.51 C8H9Br3N2 1 1 1 0 0 0 0 0 0 0 0 0 0

7.04 293.8531 - 1.29 C7H4Br2O3

5,6-dibromoprotocatechualdehyde
2,3-Dibromo-4,5-dihydroxybenzaldehyde 0 0 1 1 1 1 0 0 0 0 0 0 1

8.91 386.8218 -0.13 C7H8Br3N3O 1 1 1 0 0 0 0 0 0 0 0 0 0

9.22 293.8532 - 1.63 C7H4Br2O3 5,6-dibromoprotocatechualdehyde 1 1 1 1 1 1 0 0 0 0 0 0 1

9.32 265.8586 - 2.99 C6H4Br2O2 1 1 1 1 1 1 0 0 0 0 0 0 0

9.90 449.8215 - 0.19 C12H9Br3N2O2 0 1 1 0 0 0 0 0 0 0 0 0 0

10.06 397.8266 -0.25 C9H9Br3N2O 0 0 0 0 0 0 0 0 0 0 0 0 1

11.02 779.7992 + 1.89 C30H16Br4N4O2 1 1 1 1 1 1 0 0 0 0 0 0 1

12.33 436.7895 + 0.65 C11H6Br3NO3 1 1 1 1 0 1 0 0 0 0 0 0 0

12.33 468.8158 + 0.42 C12H10Br3NO4 1 1 1 1 0 1 0 0 0 0 0 0 0

13.24 567.7626 + 1.11 C15H12Br4N2O2 0 0 0 0 0 0 0 0 0 0 0 0 1

14.23 521.6220 - 0.31 C8H3Br5N2 Pentabromo-bipyrrole* 1 1 1 1 0 1 0 0 0 0 0 0 1

14.23 419.8001 - 1.15 C12H7Br3O2

Corallinaether
3,5,5'-tribromo-[1,1'-biphenyl]-2,2'-diol 1 1 1 1 1 1 0 0 0 0 0 0 1

14.36 659.7885 + 1.43 C21H16Br4N2O3 0 0 0 0 0 0 0 0 0 0 0 0 1

14.42 470.7109 - 0.92 C10H5Br4NO Tetrabromopseudilin* 1 1 1 1 1 1 0 0 0 0 0 0 1

14.73 511.6341 - 2.43 C8H2Br4Cl2N2 Tetrabromo-dichloro-bipyrrole* 1 0 1 0 0 0 0 0 0 0 0 0 1

14.75 467.6837 - 0.71 C8H2Br3Cl3N2 Tribromo-di-chloro-bipyrrole* 1 1 1 1 1 1 0 0 0 0 0 0 1

14.86 555.5841 - 3.17 C8H2Br5ClN2 Pentabromo-chloro-bipyrrole* 1 1 1 0 0 0 0 0 0 0 0 0 1

14.95 599.5334 - 2.63 C8H2Br6N2 Hexabromo-2'2-bipyrrole 1 1 1 0 0 0 0 0 0 0 0 0 1

15.20 460.7220 + 0.02 C10H4Br3Cl2NO Tribromo-dichloro-phenol-pyrrole* 1 0 1 1 0 1 0 0 0 0 0 0 1

15.26 497.7106 - 0.94 C12H6Br4O2 2-(2',4'-dibromophenoxy)-3,5-dibromophen 1 1 1 1 1 1 0 0 0 0 0 0 1

15.33 504.6727 - 2.39 C10H4Br4ClNO Tetrabromo-6-chloropseudiline 1 1 1 1 1 1 0 0 0 0 0 0 1
15.44 1152.1421 - - Poor isotope match ** 1 1 1 1 1 1 0 0 0 0 0 0 1



Table S4 continued.  Halogenated molecular features found by mass defect screening  

 

 

 
Table S4. List of halogenated molecular features identified by mass defect screening in MassHunter. The expected mass defect (0.0937 Da 
with -0.02 Da per 100 Da +/- 0.0100 Da) was determined from known halogenated compounds from Pseudoalteromonas in AntiMarin. 
The isotope pattern was used to confirm the presence of halogenations and used to calculate the molecular formula. Tentative IDs are based 
on hits in AntiMarin and evaluated based on accurate mass and isotope pattern. Compound marked * have no hit but belong to a known 
class of isomeric compounds. ** Peaks have a poor isotope match resulting in ambiguous determination of the formula. 
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15.44 548.6216 - 1.13 C10H4Br5NO Pentabromopseudilin 1 1 1 1 1 1 0 0 0 0 0 0 1

16.11 497.7093 - 0.94 C12H6Br4O2 2-(2',4'-dibromophenoxy)-3,5-dibromophen 0 0 0 1 0 1 0 0 0 0 0 0 0

16.32 468.6955 - 1.46 C10H3Br4NO 2,3,5,7-terabromobenzofuro[3,2-b]pyrrol 1 1 1 1 1 1 0 0 0 0 0 0 1

16.59 657.6420 - 0.94 C20H6Br5O 1 1 1 0 0 1 0 0 0 0 0 0 0

16.76 745.7611 + 1.95 C21H23Br5N2O3 1 1 1 0 0 1 0 0 0 0 0 0 0

16.93 779.7453 - 0.71 C20H17Br5N8O 1 0 1 0 0 1 0 0 0 0 0 0 0

17.66 797.5000 - 0.18 C16H9Br7N2O 1 1 1 0 0 0 0 0 0 0 0 0 0

18.19 992.3117 + 0.66 C10HBr7Cl3N5O9 Poor isotope match** 1 1 1 0 0 0 0 0 0 0 0 0 1

18.25 921.5107 + 2.73 C19H15Br7NO7 1 1 1 1 1 1 0 0 0 0 0 0 1

18.29 859.4774 + 2.00 C20H7Br7N2O2 1 1 1 1 1 1 0 0 0 0 0 0 1

18.39 939.4000 + 5.62 C20H8Br8N2O2 Bis-tetrabromopseudilin* 1 1 1 1 1 1 0 0 0 0 0 0 1

18.63 1019.3123 + 0.56 C17HBr7Cl2O12 1 1 1 1 1 1 0 0 0 0 0 0 1

18.66 939.4028 + 2.64 C20H8Br8N2O2 Bis-tetrabromopseudilin* 1 1 1 1 1 1 0 0 0 0 0 0 1

18.78 999.4254 + 1.01 C22H12Br8N2O4 1 1 1 1 1 1 0 0 0 0 0 0 1

19.05 969.4156 + 0.25 C21H10Br8N2O3 1 1 1 1 1 1 0 0 0 0 0 0 1

20.29 1330.1637 + 0.71 C17H2Br7Cl6N3O20 1 1 1 0 0 1 0 0 0 0 0 0 0



Figure S4.  bmp pathway 

 

 

 

 

 

 

 

Fig. S4. bmp pathway + flanking putative resistance gene… 

 

  



Figure S5.  Tentative identification of dimeric halogenated compounds 

 

 

Fig. S5. Isotope patterns of A) C10H5Br4NO (RT 14.42, 14.xx, and 14.xx min) and B) 
C20H8Br8N2O2 (RT 18.39 + 18.66 min) detected in ESI- (top) and the corresponding EIC (bottom) 
and putative structure of a ‘bis-tetrabromopseudilin’. 



Figure S6.  Network of the indolmycin molecular family

 



 

Fig. S6. A) Molecular network of the indolmycin molecular family. Dashed nodes indicate a novel analogue. B) Tentatively identified 
indolmycin analogues in strains S4047-1, S4054, and CPMOR-1. C) MS/MS spectra of selected analogues with assigned fragments. 
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