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Abstract
We integrate the recently proposed spatial trans-
former network (SPN) (Jaderberg & Simonyan,
2015) into a recurrent neural network (RNN) to
form an RNN-SPN model. We use the RNN-
SPN to classify digits in cluttered MNIST se-
quences. The proposed model achieves a single
digit error of 1.5% compared to 2.9% for a con-
volutional networks and 2.0% for convolutional
networks with SPN layers. The SPN outputs a
zoomed, rotated and skewed version of the input
image. We investigate different down-sampling
factors (ratio of pixel in input and output) for
the SPN and show that the RNN-SPN model is
able to down-sample the input images without de-
teriorating performance. The down-sampling in
RNN-SPN can be thought of as adaptive down-
sampling that minimizes the information loss in
the regions of interest. We attribute the superior
performance of the RNN-SPN to the fact that it
can attend to a sequence of regions of interest.

1. Introduction

Attention mechanisms have been used for machine
translation (Bahdanau et al., 2014), speech recognition
(Chorowski et al., 2014) and image recognition (Ba et al.,
2014; Gregor et al., 2015; Xu et al., 2015). The re-
cently proposed spatial transformer network (SPN)
(Jaderberg & Simonyan, 2015) is a new method for incor-
porating spatial attention in neural networks. SPN uses a
learned affine transformation of the input and bilinear inter-
polation to produce its output. This allows the SPN net-
work to zoom, rotate and skew the input. A SPN layer
can be used as any other layer in a feed-forward convolu-
tional network1. The feed-forward SPN (FFN-SPN) is illus-
trated in Figure1 panel a) where a SPN combined with a

1See e.g.https://goo.gl/1Ho1M6

convolutional network is used to predict a sequence of dig-
its. Because the predictions are made withn independent
softmax layers at the top of the network, the SPN layers
must find the box containing the entire sequence. A better
model would sequentially produce the targets by locating
and zoom in on each individual element before each pre-
diction. In this paper we combine the SPN network with a
recurrent neural network (RNN) to create a recurrent SPN
(RNN-SPN) that sequentially zooms in on each element.
This is illustrated in Figure1 panel b). In the SPN-RNN
a RNN network produces inputs for the SPN at each time-
step. Using these inputs the SPN produces a transformed
version of the input image which is then used for classi-
fication. By running the recursion for multiple steps and
conditioning each transformation on the previous time-step
the RNN-SPN model can sequentially attend to the part of
the image containing each elements of interest and only use
the relevant information for classification. Because these
regions are generally small we experiment with forcing the
RNN-SPN to down-sample the image which can thought of
as adaptive down-sampling thus keeps the resolution of the
regions of interest (nearly) constant.

2. Related Work

Gregor et al. 2015introduced a differentiable attention
mechanism based on an array of Gaussians and combined
it with a RNN for both generative and discriminative
tasks.Ba et al. 2014andSermanet et al.combined a non-
differentiable attention mechanism with an RNN and used
it for classification. Their attention mechanism was trained
using reinforcement learning. Other related work include
(Xu et al., 2015) who applies visual attention in an encoder-
decoder structure.

3. Spatial Transformer Network

The SPN network is implemented similarly to
(Jaderberg & Simonyan, 2015). A SPN network takes an

http://arxiv.org/abs/1509.05329v1
https://goo.gl/1Ho1M6
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Figure 1.SPN networks for predicting the sequence 723 from an image. a) A FFN-SPN network attend to the entire sequence (blue box).
The digits are classified by three separate softmax layers atthe top of the network. Because the network cannot zoom in on individual
digits in the sequence all digits are classified from the sameimage crop. b) A RNN-SPN where the transformation is predicted with an
RNN. This allows the model to create a separate crop for each digit. Each crop (indicated with blue numbers) is then passedthrough the
same classification network. The structure enables the model to zoom in on each individual digit.

image or a feature map from a convolutional network as
input. An affine transformation and bilinear interpolation
is then applied to the input to produce the output of the
SPN. The affine transformation allows zoom, rotation and
skew of the input. The parameters of the transformation
are predicted using a localization networkfloc:

floc(I) = Aθ =

[

θ1 θ2 θ3
θ4 θ5 θ6

]

, (1)

whereI is the input to the SPN with shape[H ×W × C]
(height, width, channels) and matrixAθ specifies the affine
transformation. The affine transformation is applied on a
mesh gridG ∈ Rh×w:

G ={(y1, x1), (y1, x2), ...(y2, x1), (y2, x2),

...(yw, xh−1), (yh, xw)}. (2)

wherew andh does not need to be equal toH andW . G
is illustrated in Figure2 panel a). The grid is laid out such
that (y1, x1) = (−1,−1) and(yh, xw) = (+1,+1) with
the points in-between spaced equally. The affine transfor-
mation is applied toG to produce an imageS which tells
how to select points fromI and map them back ontoG:

Sij = Aθ





yi
xj

1



 (3)

where we have augmented each point with a1. Since the
mapped points inS does not correspond exactly to one
pixel in I bilinear interpolation is used to interpolate each
point in S. The sub-gradients for the bilinear interpola-
tion are defined and we can use standard backpropagation
through the transformation to learn the parameters infloc.
The sampling process is illustrated in Figure2 where panel
a) illustratesG and panel b) illustratesS after we have ap-
plied the transformation.

3.1. Down-sampling

We can vary the number of sampled points by varyingh and
w. Havingh andw less thanH andW will downsample
the input to the SPN. We specify the down sampling with
d. d larger than 1 will downsample the input. The number
of sampled points formI is:

npoints =

(

H

d

)

·

(

W

d

)

=
H ·W

d2
. (4)

For 2D images the sampled points decrease quadratically
with d.

3.2. RNN-SPN

In the original FFN-SPN the localization network is a feed-
forward convolutional neural network. We modify this
model by letting an RNN predict the transformation ma-
trices such that

c = fconv(I) (5)

ht = f rnn
loc (c, ht−1) (6)

Aθ = g(ht). (7)

wherefconv is a convolutional network takingI as input and
creating a feature mapc, f rnn

loc is an RNN, andg is a FFN.
Here an affine transformation is produced at each time-step
from the hidden state of the RNN. Importantly the affine
transformations are conditioned on the previous transfor-
mations through the time dependency of the RNN.

4. Experiments

We test the model on a dataset of sequences of MNIST dig-
its cluttered with noise. The dataset was created by placing
3 random MNIST digits on a canvas of size 100× 100 pix-
els. The first digits was placed by randomly sampling an
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Figure 2. a) The sampling gridG of equally spaced sampling points. We sety1 andx1 to −1 andyh, xw to +1. b) A recurrent SPN
is able to zoom in on each element in the sequence. c) Bilineartransformation will interpolate the red cross by calculating a weighted
average of the four nearest pixels. The operation is differentiable.

y position on the canvas. The x positions were randomly
sampled subject to the entire sequence must fit the canvas
and the digits are non-overlapping. Subsequent digits are
placed by following a slope sampled from±45◦. Finally
the images are cluttered by randomly placing 8 patches of
size9 × 9 pixels sampled from the original MNIST digits.
For the test, validation and training sets we sample from
the corresponding set in the original MNIST dataset. We
create 60000 examples for training, 10000 for validation,
and 10000 for testing2. Figure3 shows examples of the
generated sequences.

As a baseline model we trained a FNN-SPN with the SPN
layer following immediately after the input. The classifica-
tion network had 4 layers of conv-maxpool-dropout layers
followed by a fully connected layer with 400 units and fi-
nally a separate softmax layer for each position in the se-
quence. The convolutional layers had 96 filters with size
3 × 3 and rectified linear units were used for nonlinearity
in both the convolutional and fully connected layers. For
comparison we further train a purely convolutional network
similar to the classification network used in the FFN-SPN.

The RNN-SPN use a gated recurrent unit (GRU)
(Chung et al., 2014) with 256 units. The GRU is run for
3 time steps. At each time step the GRU unit usec as input.
We apply a linear layer to convertht into A

t
θ. The RNN-

SPN is followed by a classification convolutional network
similar to the network used in the FFN-SPN model, except
that the convolutional layers only have 32 filters.

In all experiments, the localization networks had 3 layers of
max-pooling convolutional layers. All convolutional layers
had 20 filters with size[3 × 3]. All models were trained
with RMSprop (Tieleman & Hinton, 2012) down-sampling
factors and dropout rates optimized on the validation set.
A complete description of the models can be found in the

2The script for generating the dataset is available along with
the rest of the code.

Table 1.Per digit error rates on MNIST sequence dataset, d is the
down-sampling factor.

Cluttered MNIST Sequences
Model Err. (%)
RNN-SPN d=1 1.8
RNN-SPN d=2 1.5
RNN-SPN d=3 1.8
RNN-SPN d=4 2.3
FFN-SPN d=1 4.4
FFN-SPN d=2 2.0
FFN-SPN d=3 2.9
FFN-SPN d=4 5.3
Conv. net. 2.9

Appendix.

The models were implemented using Theano
(Bastien et al., 2012) and Lasagne (Dieleman et al.,
2015). The SPN has been merged into the Lasagne
library3. Code for models and dataset is released at
https://goo.gl/RspkZy.

5. Results

Table1 reports the per digit error rates for the tested models.
The RNN-SPN models perform better than both convolu-
tional networks (2.9%) and FFN-SPN networks (2.0%). In
Figure3 we show where the model attend on three sample
sequences from the test set. The last three columns show
image crops after the affine transformation using a down-
sampling factor of three. We found that increasing the
down-sampling factor above one encouraged the model to
zoom. When the down-sampling factor is greater than one
we introduce an information bottleneck forcing the model
to zoom in on each digit. The poor performance of the FFN-

3Available here:http://goo.gl/kgSk0t

https://goo.gl/RspkZy
http://goo.gl/kgSk0t
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Figure 3. The left column shows three examples of the generated cluttered MNIST sequences. The next column shows where the model
attend when classifying each digit. In the last 3 column we show the image crops that the RNN-SPN uses to classify each digit. The
input sequences are100× 100 pixels. Each image crop is33× 33 pixels because the model uses a down-sample factor of 3.

SPN convolutional net for high down-sampling values is
explained by the effective decrease in resolution since the
model needs to fit all three digits in the image crop.

6. Conclusion

We have shown that the SPN can be combined with an RNN
to classify sequences. Combining RNN and SPN creates
a model that performs better than FFN-SPN for classify-
ing sequences. The RNN-SPN model is able to attend to
each individual element in a sequence, something that the
FFN-SPN network cannot do. The main advantage of the
RNN-SPN model when compared to the DRAW network
(Gregor et al., 2015) is that the SPN attention is faster to
train. Compared with the model of (Mnih et al., 2014) our
model is end-to-end trainable with backpropagation. In this
work we have implemented a simple RNN-SPN model fu-
ture work include allowing multiple glimpses per digit and
using the current glimpse as input to the RNN network.
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Appendix

6.1. RNN-SPN

Localisation network

1. maxpool(2,2)
2. conv(20@(3,3))
3. maxpool(2,2)
4. conv(20@(3,3))
5. maxpool(2,2)
6. conv(20@(3,3))
7. GRU(units=256)
8. Denselayer(6, linear output)

Classification network

1. SPATIAL TRANSFORMER LAYER (downsample = 1, 3,
4)

2. conv(32@(3,3))
3. maxpool(2,2)
4. dropout(p)
5. conv(32@(3,3))
6. maxpool(2,2)
7. dropout(p)
8. conv(32@(3,3))
9. dropout(p)

10. Dense(256)
11. softmax

In table Table1 the model are reported at RNN SPN with
an entry for each tested downsample factor.

6.2. Baseline models

FFN-SPN model

1. SPATIAL TRANSFORMER LAYER (downsample = 2.0)
2. conv(96@(3,3))
3. maxpool(2,2)
4. dropout(p)
5. conv(96@(3,3))
6. maxpool(2,2)
7. dropout(p)
8. conv(96@(3,3))
9. dropout(p)

10. Dense(400)
11. 3× softmax

Localisation network

1. maxpool(2,2)
2. conv(20@(3,3))
3. maxpool(2,2)
4. conv(20@(3,3))
5. maxpool(2,2)
6. conv(20@(3,3))
7. Denselayer(200)
8. Denselayer(6, linear output)

This model is reported in Table1 as the SPN conv. network.
Finally we also trained the classification network from the
FFN-SPN reported as conv. Net in Table1.


