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Abstract—The use of renewable energy sources of energy and
in particular wind and solar has been on the rise over the last
decades with plans to increase it even more. Such developments
introduce significant challenges in existing power systems and
can result in high electricity prices and costly infrastructure
investments. In this paper we propose a new electricity market
mechanism whereby the uncertain and dynamic nature of wind
power and other stochastic sources is embedded in the market
mechanism itself, by modelling producers’ bids as probabilistic
estimates. An extension on the bilevel programming formula-
tion of an electricity market, based on the Continuous Ranked
Probability Score (CRPS) reduces the impact of poor estimates
for both the stochastic producers and the system operator. We
introduce a simulation setting which first demonstrates that
impact and then proceed to illustrate the main features our
market setup and compare it with a conventional electricity
market and a standard bilevel setup.

NOMENCLATURE

i Index of dispatchable generators in set I
j Index of stochastic generators in set J
D Total demand
λshed Value of involuntarily shed demand
λDi, λWj Generators’ day-ahead price offers
CDi, CWj Generators’ capacities
λ+
Bi, λ

−
Bi Price offers of up and down regulation

R+
i , R

−
i Available upwards and down regulation

Pi,Wj Day-ahead market generation
k Index of balancing scenarios in set K
W 0

jk, Ŵ
0
jk Actual and forecasted stoch. generation

r+ik, r
−
ik Up and down regulation energy in balancing

W spill
jk ,W shed

lk Spilled wind and unsupplied load in balancing

I. INTRODUCTION

Electricity is nowadays commonly exchanged through
liberalised electricity markets, with a day-ahead mechanism
permitting to settle on supply, consumption and prices, and
a real-time mechanism for settling on unforeseen deviations
from the day-ahead schedule. Such mechanisms were de-
signed in a context where dispatchable generators, with non-
negligible marginal costs, were dominating. By depending
primarily on conventional (fossil, hydro and nuclear) power
generation based on marginal pricing, deterministic market
designs were considered adequate with straightforward se-
tups consisting of a forward optimal allocation accompanied
by a real-time balancing mechanism.

However, as the stakes of renewable energy increase, such
market designs tend to become inefficient since they are not
designed to take into account the uncertainty brought by the
substantial variability and limited predictability associated
with stochastic sources, most notably wind power and solar
energy. In fact for Denmark where 30% of its electricity

production is based on wind power, the uncertainty brought
by renewable sources directly impacts day-ahead market
prices introducing price volatility [1]. In addition to this,
high stakes of renewable sources in a day-ahead market
which settles independently from the balancing market re-
quire significant flexible capacity in order to cope with the
forecast errors. It is suggested that if the expected increase
in renewables is not met by an increase in flexible capacity
balance costs will escalate dramatically [2], [3].

Both challenges can be addressed by introducing a two-
stage stochastic programming formulation of the electricity
market whereby day-ahead and balancing are jointly cleared
so that the day-ahead settlement takes into account the ex-
pected real-time costs. In doing so, it is possible to maximise
the social welfare while guaranteeing optimal revenues for
the individual players. However, current approaches do come
with shortcomings. For example, [4] consider the deploy-
ment of reserve capacity in their stochastic model. Now
although, they promote an energy-only settlement where
the capacity is ‘converted’ to energy through the market
mechanism, the participants can still speculate and therefore
influence the market clearing. This issue is addressed by [5]
who propose a single auction which clears the market and
arranges the financial settlement. However, the stochastic
clearing requires the flexible generators to accept losses
for some wind power production realisations. This issue
has been addressed by [6], [7] who propose a stochastic
model based on two-level programming (or ‘bilevel’) which
respects the merit-order for all the producers and guarantees
revenue adequacy for both day-ahead and balancing markets.

In the context of these recent proposals, the producers
are expected to have the opportunity to bid distributions of
their production outputs or some summary characteristics
(i.e. prediction intervals) along with their prices, instead of
just fixed values. Although this type of modelling can be
more realistic in capturing the uncertain nature of renewable
sources, it brings additional challenges, since the quality of
such bids now defines the settlement in the market. It is
important to evaluate them in terms of their accuracy, and
in order to do so, we propose the use of strictly proper
scoring rules [8]. Scoring rules were developed for this
purpose and have found several applications in evaluating
forecasts, from inflation rates and wind resources [9], to
information gathered from citizen sensor networks [10]. In
terms of energy related applications, to name a few, scoring
rules have been used in order to assess the quality of the
ensemble forecasts of wind speed issued over Europe [11]
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and in order to aggregate reported production levels in virtual
power plants [12].

Against this background, we contribute to the state of
the art by demonstrating bilevel optimisation’s sensitivity
on imperfect estimates of stochastic production and by
proposing a settlement based on scoring rules where the costs
induced by supply uncertainties are reflected on the merit-
order definition. We use a simple but informative market
setup, and a Monte Carlo simulation of the realisation of a
wind producer’s output to evaluate the proposed mechanism,
benchmarking it against a conventional market design and
the standard bilevel model. We show that it is possible to
limit the stochastic generator’s exposure to balancing costs,
and to reduce the market’s operation costs.

The rest of the paper is organised as follows: In Section
II we describe the setting in more detail, while Section III
formally describes the CRPS. Section IV presents the CRPS
based bilevel dispatch model and in Section V we introduce
the illustrative example, describe the effect of imperfect
estimates and compare the various dispatch models. Lastly,
Section VI concludes the paper.

II. UNCERTAINTY AND INCENTIVES IN ELECTRICITY
MARKETS

We consider that a wind power producer faces an upper
limit CW in its ouput, defined by the specific technical
specifications of the deployed wind farm units and that the
real-time generation is equal to yCW , where y ∈ [0, 1]
is a realisation of the random variable Y which models
the wind producer’s stochastic behaviour. The variable Y
follows a distribution G defined by a set of parameters θ s.t.
Y ∼ G(y; θ), where θ can be equal to (µ, σ2) depending
on the definition of the used distribution. A wind power
producer will estimate these parameters, and report them to
the market operator during the bidding stage of the day-
ahead market. We will refer to the distribution that is derived
by the estimated parameters θ̂ as ‘estimated distribution’ and
denote it by F (y; θ̂).

Now, as already mentioned, in stochastic programming
the market operator uses the stochastic generators’ reports
to calculate the optimal forward dispatch by estimating
real-time balancing based on a number of expected out-
comes. These ‘balancing scenarios’ represent the market

operator’s expectation of wind power production and are
based on the reported estimated distributions. Naturally, and
in consistence to stochastic optimisation literature (cf. [7])
the expected outcomes yj for each generator follow their
respective distributions Fj(yj ; θ̂j) with j ∈ {1, 2, ..., J}.
However, given the nature of the estimated event and the
inevitable errors that are associated with forecasting, these
estimates are rarely perfect; it is very common for wind
power producers to under or over-estimate their distributions,
hence θ̂j 6= θ with G 6= F .

To put this into perspective and in order to numerically
evaluate our proposed market setting we will be introducing
a specific distribution, without this restricting our theoretical
framework in Section IV. In consistence with the related
literature (cf. [13], [7]), we will be using a Beta distri-
bution to model the per-unit production of a wind farm.
For producer j let W 0

j be the real-time generation equal
to yjCWj where yj ∈ (0, 1] are realisations of Yj which
follow Beta distributions with parameters θj = (µj , σ

2
j ) s.t.

Yj ∼ B(aj , bj). The parameters a and b are derived from
(µ, σ2) as follows:

a =
(1− µ)µ2

σ2
− w, b =

(1− µ)a
µ

(1)

Although it is entirely possible that (µ̂j , σ̂
2
j ) 6= (µj , σ

2
j ), with

(µ̂j , σ̂
2
j ) being the generator j’s estimated mean and vari-

ance, we simplify our analysis by considering only the esti-
mation of the mean. This translates to (µ̂j , σ̂

2
j ) = (δµj , σ

2
j )

with δ being a parameter which denotes the imperfect nature
of the estimate. In Figure 1 we demonstrate the differences
between the perfect and imperfect estimates by plotting the
cumulative distribution function of the Beta distribution with
the parameters used in the numerical example in Section
V, alongside with the distributions which correspond to
over and under estimating of the mean of the actual Beta
distribution. As expected, the whole shape of the distribution
is affected by mis-estimating the mean, given that as shown
in equations (1) the mean influences both a and b.

It becomes clear how important it is to elicit quality
predictions of wind power generation within the stochas-
tic optimisation framework as we expect that drawing the
balancing scenarios from imperfect estimates will have a
severe impact on the final settlement of the market. The
above challenge can be addressed through the integration of
a strictly proper scoring rule in the proposed market mech-
anism. As a starting point we will be using the continuous
ranked probability score [14] due to its appearance in wind
power literature, hence known to be able to model wind
forecasts sufficiently[9].

III. CONTINUOUS RANKED PROBABILITY SCORE

Before turning to the details of the proposed market
dispatch, we formally introduce the CRPS. The CRPS, like
all strictly proper scoring rules, incentivises a risk neutral
forecaster to truthfully report its forecast by maximizing his
expected reward. According to [14], the CRPS is defined as:

CRPS = −
∫ y

−∞
2F 2(u)du−

∫ ∞
y

2(1− F (u))2du (2)
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Fig. 2: Expected CRPS penalty

where y is the actual outcome of the forecasted event, and
F is the cumulative form of the distribution reported by the
forecaster based on parameters θ̂. Following the calculations
in [14], the expected score of a forecaster reporting distri-
bution F , but holding a belief G is:

E[CRPS] = (3)

−
∫ +∞

−∞
(G(u)− F (u))2du−

∫ +∞

−∞
G(u)(1−G(u))du

They also prove that CRPS is indeed a strictly proper
scoring rule, as the expected score is maximised when the
forecaster’s report matches his belief (i.e. when F = G).

Within the market concept we propose, the CRPS needs
to have an impact on the merit-order definition. In order to
do so, it needs to be rescaled so that wind producers with
severely poor estimates risk being left out from the day-
ahead market, while those generating estimates of high qual-
ity do not face any repercussions. In this context, the mis-
estimation parameter δ is set in a logical interval [0.3, 1.7]
s.t. µ̂ = [0.3, 0.4, 0.5, ...., 1.5, 1.6, 1.7]× µ affecting a and b
accordingly. Figure 2 describes the rescaled expected CRPS:

E[CRPS′] =

S+
(
1− E[CRPS∗]−min(E[CRPS∗]

max(E[CRPS∗]−min(E[CRPS∗]

)
+

S−
(

E[CRPS∗]−min(E[CRPS∗]
max(E[CRPS∗]−min(E[CRPS∗]

)
(4)

the minimum and maximum of E[CRPS∗] is calculated
based on the mis-estimation of the beta distributions, with
CRPS∗ = −CRPS and parameters S+ and S− defining
the boundaries of the scoring. Since CRPS is expected to
penalise agents with imperfect estimates, S+ is set equal
to the highest price offer submitted by the dispatchable
generators and S− is set equal to zero.

IV. DISPATCH UNDER UNCERTAINTY: BILEVEL
OPTIMISATION

In this section we introduce our stochastic market settle-
ment model based on bilevel optimisation. Stochastic opti-
misation methods model more realistically the uncertainty
in power systems, by focusing on the interactions between
the two stages of the electricity market: day-ahead dispatch

and real-time balancing operation. By taking into account
the impact of the day-ahead market’s clearing on the bal-
ancing cost during the real-time market, the overall market
efficiency can be improved, especially when considering the
deterministic approaches in conventional electricity market
setups. However, in some stochastic optimisation models,
the flexible producers (i.e. dispatchable producers providing
balancing energy in the real-time market) are dispatched
out of the merit-order in order to ensure sufficient flexible
capability for the balancing. Such settlement, in essence,
penalises them for offering balancing service.

On the contrary, the bilevel approach addresses effectively
such issues by introducing an additional layer in the de-
cision making process, thus forming a two level optimi-
sation problem. Such formulation is based on the leader-
follower strategic game known as Stackelberg game [15]
and is naturally relevant to the electricity markets context
as it realistically models the interconnection between the
day-ahead and balancing stage: The leader (balancing) can
optimise its objective based on the optimal respond of the
follower (day-ahead market).

In this work we use the bilevel model in [7] as a
foundation and further extend it by introducing a CRPS
based penalty for the stochastic generators. We maintain the
notion that the CRPS penalty affects only the merit order in
the day-ahead market dispatch and that it does not impose
additional penalties based on the quality of the forecast. This
is based on the principle that although it is very important
to shield stochastic models from poor estimates of wind
power, there should also be minimum external influence on
the payments issued by the market settlement as it could
potentially discourage investments in renewable energy.

Against this background, given a finite set K of scenarios
of wind power generation Ŵ 0

jk s.t. Ŵ 0
jk = ŷjkCWj with

yjk sampled from B(âj , b̂j), the objective of the upper-
level problem is to compute the optimal value (denoted
by Wmax

j ) which minimises the day-ahead market dispatch
and expected balancing cost in equation (5a) subject to
the operation constraints listed in equations (5b)-(5j). The
upper-level problem computes the optimal value (denoted by
Wmax

j ) which minimises the sum of the day-ahead dispatch
and expected balancing costs. The lower-level problem,
described by equations (5l)-(5o), then optimises the day-
ahead market dispatch by setting Wmax

j as the upper bound
for stochastic generator j. The stochastic generators’ updated
cost λCRPS′

Wj is equal to the generation’s marginal cost λWj

plus the CRPS associated expected penalty E[CRPS′]. For-
mally, the bilevel model is defined as:

[upper level]: Day-ahead + expected power balancing

Min
∑
i∈I

λDiPi +
∑
j∈J

λCRPS′

Wj Wj+

∑
k∈K

pk

[∑
i∈I

λ+Bir
+
ik −

∑
i∈I

λ−Bir
−
ik +

∑
j∈J

λshedW shed
jk +

+
∑
j∈J

λWj

[
Ŵ 0

jk −Wj −W spill
jk

]]
(5a)



under the following constraints for k-balancing scenarios:∑
i∈I

[
r+ik − r

−
ik

]
+
∑
j∈J

W shed
jk +

+
∑
j∈J

[
Ŵ 0

jk −Wj −W spill
jk

]
= 0 : γBk (5b)

Pi + r+ik ≤ CDi ∀i ∈ I (5c)

Pi − r−ik ≥ 0 ∀i ∈ I (5d)

r+ik ≤ R
+
i ∀i ∈ I (5e)

r−ik ≤ R
−
i ∀i ∈ I (5f)∑

j∈J
W shed

jk ≤ D ∀j ∈ J (5g)

W spill
jk ≤ Ŵ

0
jk ∀j ∈ J (5h)

r+ik, r
−
ik,W

shed
jk ,W spill

jk ≥ 0 (5i)

0 ≤Wmax
j ≤ CWj ∀j ∈ J (5j)

[lower level] Day-ahead Market Dispatch

Min
I∑

i=1

λDiPi +

J∑
j=1

λCRPS′

Wj Wj (5k)

under the following constraints:∑
i∈I

Pi +
∑
j∈J

Wj = D : λF (5l)

Pi ≤ CBi ∀i ∈ I (5m)
Wj ≤Wmax

j (as computed in the upper-level) (5n)

PBi,Wj ≥ 0 ∀i, j ∈ I, J (5o)

In order to solve the bilevel problem it has to be trans-
formed into an equivalent single level optimisation problem
by replacing equations (5k)-(5o) with their Karush-Kuhn-
Tucker conditions. Further transformations are required since
the KKT complementarity conditions are non-linear. It
should be noted that this process is quite technical but well
known in the related literature [15], [7], [6], hence we omit
it here for conciseness.

V. NUMERICAL RESULTS AND DISCUSSION

In this section we introduce a simple market setup which
consists of 3 dispatchable generators, with one of them being
capable of supplying upwards and downwards balancing, and
a single wind power producer (see Table I for the specific
variables). Based on the above setup we explore how the
standard bilevel model (Improved Dispatch bilevel model in
[7]) and its CRPS extension handle imperfect estimates and
their impact on the market as over-estimation creates a deficit
in production and under-estimation a production surplus.

In this context, we benchmark the stochastic models
against a deterministic conventional market setup described
by equations (6a)-(6e):

Min
∑
i∈I

λDiPi +
∑
j∈J

λWjWj (6a)

TABLE I: Input Variables in Illustrative Example

Symbol Value Symbol Value

D 170 l 1
λshed 200 n 1
λW1 0 CDi (100,110,50)
λDi (35,30,10) CW1 50
λ+
Bi (40,-,-) R+

i (20,-,-)
λ−
Bi (34,-,-) R−

i (40,-,-)

under the following constraints:∑
i∈I

Pi +
∑
j∈J

Wj = D : λFCON (6b)

Wj ≤ Ŵj ∀j ∈ J (6c)
Pi ≤ CBi ∀i ∈ I (6d)
PBi,Wj ≥ 0 ∀i, j ∈ I, J (6e)

with Ŵj equal to µ̂jCWj , where µ̂j is the mean of the
estimated Beta distribution.

Finally, we simulate the real-time operation by sampling
the actual wind power production from the perfectly esti-
mated distribution G, while the balancing scenarios represent
the imperfect estimates and are drawn from F . The Monte-
Carlo simulation uses a sample of 105 realisations, while
both bilevel models use 1.5× 104 balancing scenarios. The
analysis consists of two parts: the first part focuses on the
market operation costs (i.e. the producers’ dispatched power
multiplied by their price bid), while the second part focuses
on the wind power producer.

For the first part we introduce two fundamental concepts
in stochastic optimisation: a) the ex-ante and b) the ex-post
evaluation. In the ex-ante evaluation the solution is computed
‘here-and-now’ based solely on the scenarios, hence relies on
the possibly imperfect estimates, while the ex-post evaluation
reflects on the ‘wait-and-see’ approach. In more detail, in the
ex-ante evaluation the solution is calculated before the real-
isation of the wind power production, as opposed to the ex-
post valuation which relies on knowledge of the outcome of
the estimated event. Moreover, for the ex-ante deterministic
conventional model there is no expected balancing and the
optimal dispatch is calculated based on the expected value
of the wind power production, hence for that model, the
total ex-ante operation cost is equal to the ex-post day-ahead
operation costs. Now, for all three models, under the ex-post
evaluation we compute the optimal balancing profile based
on the day-ahead dispatches and a Monte-Carlo simulation of
the actual production. Figures 3 and 4 summarise the results
of the first stage of the analysis. In particular 3 shows that for
the perfect estimate the total market cost is the same for the
conventional, standard and CRPS bilevel models (both ex-
ante and ex-post evaluations). The equivalence of the ex-ante
and ex-post settlements for the bilevel models suggests that
the stochastic modelling is robust and that the balancing with
15k scenarios is accurate. However, for imperfect estimates
both methods and especially the standard bilevel deteriorate.
This is to be expected, since in the ex-ante method balancing
relies on the imperfect estimates. Naturally, the gap between
ex-ante and ex-post evaluations increases as the quality of
the estimate decreases, with this highlighting the negative
impact of poor estimates. However, the CRPS bilevel model
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Fig. 3: Expected total operation costs.

is more robust, as the ex-ante evaluation is closer to the
ex-post, specially at over-estimating.

An additional positive result is that at severe over-
estimating the CRPS bilevel results in lower operation costs
when compared to both the conventional deterministic and
the standard bilevel models. Figure 4b explains the above
result for at least the standard bilevel model as it links over-
estimation with heavy balancing costs. Such costs are a result
of the expensive load curtailment which happens when the
wind power producer exaggerates on its output and creates a
deficit which is usually covered by the flexible dispatchable
generators (e.g. generator 1). However this may not be the
case, as it is possible that the wind power producer pushes
the dispatchable generator out of the day-ahead settlement
by over-estimating its output. If that generator is the most
expensive and happens to be the only offering balancing
power (like in our example), then the production deficit is
covered by load curtailment.

Nevertheless, the CRPS bilevel model does not result to
this type of market behaviour as it can exclude the wind
power producer from the day-ahead dispatch, hence shield
the system and the wind power producer from the heavy
costs. This is further reinforced by the plots in Figure 5
which introduce the second part of the analysis focusing
on the wind power producer. We now compute the market
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Fig. 4: Expected day-ahead and balancing operation cost.

revenue the wind power producer expects to derive using
the ex-post models and measure the wind power dispatch in
the day-ahead markets. The revenue is calculated based on
a first-price, energy-only settlement, and is given by:

P = λFW1 + E[λBRT(W
0
1k −W1)] (7)

where λBRT the real-time clearing price, with λBRT = 0 when
wind power is not dispatched in the day-ahead market.

The results in Figure 5 complement those in Figures 4a
and 4b and show that the CRPS bilevel model does not
dispatch the wind power producer when the estimates are of
extremely poor quality. Despite losing the relatively minor
gains from under-estimating, this has an overall positive
effect on the wind power producer’s market revenue, as
now it does not face the heavy losses associated with over-
estimating due to possible load curtailment in the standard
bilevel and conventional models.

Finally, the single-level mixed-integer programming trans-
formation of the bilevel problem (5a)-(5o) has been
solved using lp-solve 5.5 under R 3.1.1 on a Linux PC
Intel R©CoreTMi7-4770 @ 3.40 GHz with 8GB of RAM. The
computational time for the solution of the bilevel problem
was 58 minutes, with most of that time spent on the calcula-
tion of the sparse matrix of the constraints. We consider this
as an upper limit in the required time and since then we have
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Fig. 5: Market revenue for the wind power producer and dispatch.

considered Gurobi which has reduced computational time to
20 seconds with the same degree of accuracy.

VI. CONCLUSIONS

This paper introduces an extension of the bilevel opti-
misation clearing of an electricity market. It calls for a
new approach whereby the stochastic producers’ bids are
modelled as probabilistic estimates and proposes the use of
scoring rules (in particular the CRPS) to evaluate the quality
of the bids. The CRPS extension improves the bilevel model
as it significantly reduces the gap between the ex-ante and
ex-post stochastic evaluations at imperfect estimates. We
further show that for cases of severe over-estimation the
CRPS bilevel is more economical as it reduces the operation
costs by not dispatching wind in the day-ahead market, thus
protecting the producers from heavy load curtailment costs.

For future research there are short and long term direc-
tions. The short-term research targets involve several techni-
cal issues such as the consideration of other strictly proper
scoring rules (i.e. a logarithmic one) which can introduce
higher penalties to stochastic producers and an alternative
scaling of the scoring penalty so it can also capture the effort
made during the estimation process based on the principle
that those who invest more in generating their predictions
should get lower penalties at the event of poor estimates.
Also, a formal analysis of the quality of the stochastic
solution is needed as the use of 15k balancing scenarios
may not be practical in large networks. An analysis based on

instruments such as the ‘value of stochastic solution’ and the
‘expected value of perfect information’ will provide useful
insights.

Solving such issues will allow us to consider larger net-
works, closer to a realistic electricity market in terms of both
its structure (i.e. multiple buses, transmission constraints etc)
and the behaviour of its participants. An important extension
linked to the transition to a fully probabilistic market is
the consideration of strategic behaviour on behalf of the
stochastic producers. Having demonstrated the impact of
imperfect estimates the next logical step is to assume some
manipulation during and beyond the forecasting stage. This
comes natural after the realisation that electricity markets
are economic games and as such their participants seek to
maximise their gains.
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