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Abstract
Nanocomposite materials containing metal nanoparticles are of considerable interest in photonics and optoelectronics applications.

However, device fabrication of such materials always encounters the challenge of incorporation of preformed nanoparticles into

photoresist materials. As a solution to this problem, an easy new method of fabricating silver nanocomposites by an in situ reduc-

tion of precursors within the epoxy-based photoresist SU-8 has been developed. AgNO3 dissolved in acetonitrile and mixed with

the epoxy-based photoresist SU-8 forms silver nanoparticles primarily during the pre- and post-exposure soft bake steps at 95 °C.

A further high-temperature treatment at 300 °C resulted in the formation of densely homogeneously distributed silver nanoparticles

in the photoresist matrix. No particle growth or agglomeration of nanoparticles is observed at this point. The reported new in situ

silver nanocomposite materials can be spin coated as homogeneous thin films and structured by using UV lithography. A resolu-

tion of 5 µm is achieved in the lithographic process. The UV exposure time is found to be independent of the nanoparticle concen-

tration. The fabricated silver nanocomposites exhibit high plasmonic responses suitable for the development of new optoelectronic

and optical sensing devices.
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Findings
Noble metal nanoparticles (NPs) have been of high interest for

many years as their unique properties make them useable in a

large variety of applications [1]. The application of these NPs

ranges from optical imaging, optoelectronics and electrochem-

istry to catalysts [2]. However, it is difficult to use such NPs in

conjunction with standard top down micro- and nanofabrication

processes as positioning and control of the nanoparticles are

impossible to maintain [3]. Homogeneous polymeric thin film

metal nanocomposites are therefore of great interest within

micro- and nanofabrication [4-6]. The nanoparticles encased in

a polymeric matrix should maintain their physical properties,

while the nanocomposite can be structured by using standard

fabrication methods allowing for the development of new opto-

electronic and sensing devices.
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Metal nanoparticles in photoresists are also interesting within

technologies for three-dimensional structuring as these can be

used for fabrication of photonic crystals [7].

A good candidate for a polymeric matrix is the epoxy-based

photoresist SU-8, which is widely used for making high-aspect-

ratio structures [8]. SU-8 is good for optical sensors being

highly transparent in the visible region [9] and also useful in

biological sensing applications being quite biocompatible [10].

SU-8 is also well suited for direct laser writing and 3D struc-

turing [11] although only 2D structures are considered in this

work.

SU-8 thin films are deposited on wafers by using standard spin

coating techniques [12]. However, high loadings of preformed

NPs in the polymer change the rheological behaviour and might

hinder the ability to use spin-coating for thin film nanocompos-

ites [13,14]. Furthermore, it is difficult to obtain stable suspen-

sions of preformed NPs in SU-8 without aggregation and phase

separation.

In situ synthesis methods where the particles are formed

directly within the polymeric matrix from a precursor can

circumvent this problem. Here, we report a fast and simple

method for fabricating homogeneous SU-8-based metal

nanocomposite thin films with in situ generated silver nanopar-

ticles. These composite materials can be deposited on wafers by

using standard spin coating techniques and subsequently struc-

tured with UV lithography.

The nanocomposite is prepared by dissolving AgNO3 precursor

in acetonitrile in a two-fold dilution series: 500 mg·mL−1,

250 mg·mL−1, 125 mg·mL−1, 62.5 mg·mL−1, 31.3 mg·mL−1,

and 15.6 mg·mL−1. 0.5 mL of the freshly prepared precursor

solutions or 0.5 mL acetonitrile as reference is added to 4 mL of

SU-8 2002, which is a formulation of SU-8 with cyclopen-

tanone as the main solvent. As AgNO3 is not soluble in

cyclopentanone, acetonitrile is chosen as a co-solvent. AgNO3

precursor solutions with a concentration above 500 mg·mL−1

are immiscible with SU-8 using the described protocol.

The SU-8 mixture is then spun on a 100 mm fused silica or

silicon wafer, at 1500 rpm for 1 min followed by heating at

95 °C on a hotplate for 10 min. After heating, a UV exposure of

7.5 min is performed to cross-link the polymer followed by a

post exposure bake at 95 °C on a hotplate for 10 min. In case of

structuring, a mask is used in soft-contact mode during the

exposure and the wafer is then developed for 2 min in propy-

lene glycol monomethyl ether acetate (PGMEA) [15] followed

by rinsing with 2-propanol (IPA). After development or post

exposure bake some of the wafers are further heated to 300 °C

for 30 min on a hotplate. The UV exposure is done without any

filters in the aligner.

The chosen co-solvent for the AgNO3 precursor, acetonitrile, is

a mild reducing agent. This precursor solution must therefore be

prepared fresh, and added to the SU-8 just before spin coating,

to minimise unwanted formation of nanoparticles [13].

The used formulation of SU-8 can be used for depositing thin

films in the range of 1–1.8 µm as documented by the spin curve

shown in Figure 1. The resulting film thickness is smaller than

with unmodified SU-8, but the thickness can be increased by

using more viscous SU-8 formulations if desired.

Figure 1: Spin curves for SU-8 2002 and SU-8 2002 with acetonitrile.
The addition of acetonitrile results in a decreased film thickness
compared to the unmodified SU-8.

Mostly, AgNPs are formed during the heat treatments before

and after UV exposure. The exact process is not known as

acetonitrile and the many constituents of SU-8 play a role in the

NP formation. The AgNPs formed in the SU-8 polymer matrix

show a clear plasmonic absorption [16] in the visible region as

seen in Figure 2.

The high temperature post-exposure bake at 300 °C resulted in

the formation of densely populated silver nanoparticles in the

polymer matrix. They appeared to be single nanoparticles enti-

ties, smaller than the clusters that formed during the baking

steps at 95 °C. This is evident from the UV–vis absorption

spectra shown in Figure 3.

The plasmonic peak of a nanocomposite baked at 95 °C is

broad, which indicates particles or agglomerates with a wide

size distribution, whereas the peak corresponding to the

composite material treated at 300 °C is sharper, enhanced and
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Figure 4: SEM images of a cross section of a nanocomposite on a silicon wafer containing 0.5 mL of 125 mg·mL−1 AgNO3 precursor solution. a) after
a post-bake at 95 °C for 10 min and b) after an additional bake at 300 °C for 30 min.

Figure 2: UV–vis absorption spectra of silver nanocomposites at silica
wafers after post-exposure bake at 95 °C with varying AgNO3
precursor concentrations. The absorption increases with increasing
amounts of AgNO3 precursor added.

more defined with a λmax of 434.5 nm. The peak position at

434.5 nm is a typical value for the absorption band of AgNPs

[17]. Also; this peak resembles the plasmonic peak obtained for

AgNPs in cyclopentanone. The shoulder appearing at higher

wavelengths for the nanocomposite indicates the retention of

the AgNP clusters, formed during the lower temperature treat-

ments. These results are visually corroborated in the SEM

images shown in Figure 4.

The formation of AgNPs is confirmed with SEM by looking at

the cross-sectional area of a fabricated nanocomposite wafer as

shown in Figure 4. The images confirm that individual NPs of

25 nm in diameter are formed, although the randomly distrib-

uted NP clusters of roughly 80–100 nm are easy to spot when

looking at the composite treated at 95 °C. The SEM image

Figure 3: UV–vis absorption spectra of a nanocomposite on a silica
wafer containing 0.5 mL of 125 mg·mL−1 AgNO3 precursor solution
after different post-exposure heat treatments. Blue dashed curve –
after 95 °C for 10 min, red solid curve – after an additional 300 °C for
30 min and black dotted curve – AgNPs in cyclopentanone for com-
parison.

further confirms that the additional heat treatment of 300 °C

results in the generation of more 25 nm sized nanoparticles. It is

important to note that further growth of already formed agglom-

erated NPs does not happen during this last heat treatment.

Structuring of the nanocomposite is important if to be used in

micro- and nanofabrication. Although not fully optimized a

resolution of 5 µm is obtained using UV-lithography as shown

in Figure 5.

The UV exposure results in the formation of a Lewis acid which

cross-links the resist in the exposed areas [18]. The prolonged

exposure of 7.5 min compared to a standard exposure time of

10 s is required because of the absorption and shadowing effects

of the formed AgNPs. Further optimisation of the exposure time
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Figure 6: Microscope images at 2.5× magnification of SU-8 nanocomposites after post-exposure bake at 95 °C; a) with 250 mg·mL−1 of AgNO3
precursor solution added and b) 500 mg·mL−1 of AgNO3 precursor solution added.

Figure 5: Microscope image at 50× magnification of a nanocomposite
containing 0.5 mL of 125 mg·mL−1 AgNO3 precursor solution after
structuring using UV lithography.

needs to be done for improving the currently obtained resolu-

tion of 5 µm. However, preliminary experiments show that the

exposure time is independent of the added precursor solution

for the structured nanocomposites with concentrations up to

125 mg·mL−1 AgNO3.

With a concentration of 250 mg·mL−1 precursor solution added

to the SU-8, larger amounts of homogeneously distributed

micron-sized AgNP agglomerates are formed after the post-

exposure bake at 95 °C. This is easily seen from the micro-

scope image in Figure 6a. When the precursor solution concen-

tration is increased to 500 mg·mL−1, randomly distributed phase

separated islands of Ag, more than 100 µm in size, are formed

as shown in Figure 6b.

In conclusion, we have developed a method for making in situ

SU-8 silver nanocomposites with use of the precursor AgNO3

dissolved in the SU-8 compatible solvent acetonitrile. The

nanocomposite can easily be deposited and structured by using

standard micro- and nanofabrication processes such as spin

coating and UV lithography. A high resolution of 5 µm has

been achieved with UV lithography. The UV exposure time is

found to be independent of the AgNO3 precursor concentration.

We have shown that a bake at 300 °C results in further AgNP

formation in the composite and not particle growth or agglom-

eration. The plasmonic absorption maximum is close to 435 nm

and is independent of the AgNO3 precursor concentration up to

125 mg·mL−1. The AgNPs formed in the SU-8 matrix is

approximately 25 nm and distributed evenly in the composite

matrix. At higher precursor concentrations, larger agglomer-

ated NPs are dominant and large islands of phase separated Ag

are formed in the composite.

Experimental
Preparation of Ag NPs in cyclopentanone
Materials
Silver nitrate (AgNO3, ≥99.0%) and sodium borohydride

(NaBH4, ≥98.0%) was bought from Sigma-Aldrich. Luviskol®

VA 64, a poly(vinylpyrrolidone-co-vinyl acetate) (PVP/VA)

mixture was kindly gifted by BASF.

Method
1 g of PVP/VA and 0.1 g of silver nitrate is dissolved in 50 mL

of absolute ethanol. 0.02 g of sodium borohydride and 0.2 g of

PVP/VA dissolved in 10 mL of absolute ethanol is added to the

solution at one drop per second under vigorously stirring. 30 s

after complete addition the stirring is stopped.
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Solvent exchange
The solvent exchange is done using a rotary evaporator

Rotavapor® R-210 from Büchi.

1. 10 mL of the nanoparticle solution is attached to the

rotary evaporator and 1 mL of ethanol evaporated.

2. 1 mL of cyclopentanone is added to the solution.

3. 3 mL of ethanol is evaporated and 1 mL of cyclopen-

tanone added.

4. The remaining 6 mL of ethanol is evaporated and 1 mL

cyclopentanone added.
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