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Abstract	  23 

Green fluorescent proteins (GFPs) are widely used for visualization of proteins to 24 

track localization and expression dynamics. However, phenotypically important 25 

processes can operate at too low expression levels for routine detection, i.e. be 26 

overshadowed by autofluorescence noise. While GFP functions well in translational 27 

fusions, the use of tandem GFPs to amplify fluorescence signals is currently avoided 28 

in Saccharomyces cerevisiae and many other microorganisms due to the risk of loop-29 

out by direct-repeat recombination. We increased GFP fluorescence by translationally 30 

fusing three different GFP variants, yeast-enhanced GFP, GFP+ and superfolder GFP 31 

to yield a sequence-diverged triple GFP molecule 3vGFP with 74-84 % internal repeat 32 

identity. Unlike a single GFP, the brightness of 3vGFP allowed characterization of a 33 

weak promoter in S. cerevisiae. Utilizing 3vGFP, we further engineered a less leaky 34 

Cu2+-inducible promoter based on CUP1. The basal expression level of the new 35 

promoter was approx. 61 % below the wild-type CUP1 promoter, thus expanding the 36 

absolute range of Cu2+-based gene control. The stability of 3vGFP towards direct-37 

repeat recombination was assayed in S. cerevisiae cultured for 25 generations under 38 

strong and slightly toxic expression after which only limited reduction in fluorescence 39 

was detectable. Such non-recombinogenic GFPs can help quantify intracellular 40 

responses operating a low copy number in recombination-prone organisms. 41 

 42 

Keywords: signal amplification, synthetic biology, promoter engineering, protein 43 

multimerization  44 

45 
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Introduction	  46 

Green fluorescent protein (GFP) is an invaluable tool for real-time visualization of 47 

intracellular proteins. Since the initial cloning, numerous improvements, variants and 48 

applications have been developed (Snapp 2009; Miyawaki 2011). GFP is particularly 49 

useful for quantification of intracellular events, localizations and populations at 50 

single-cell resolution. However, a minimal expression level is required such that the 51 

fluorescent output exceeds the cell autofluorescence and produces detectable signals. 52 

Still, biologically important processes occur through the interaction of a few 53 

molecules per cell, which is hard to quantify using existing fluorescent proteins and 54 

non-specialized experimental setups (Raj and van Oudenaarden 2009; Li and Xie 55 

2011; Gahlmann and Moerner 2014). Further, the engineering of synthetic cell 56 

functionalities can depend on fine characterization and balancing of low gene 57 

expression levels (Ajikumar et al. 2010; Harton et al. 2013).  58 

The strategies for improving fluorescent output signals include the design of new GFP 59 

variants such as GFP+, yeast-enhanced GFP (yEGFP) and superfolder GFP (sfGFP) 60 

(Cormack et al. 1997; Scholz et al. 2000; Pédelacq et al. 2006). Still, monitoring of 61 

single-molecule events such as chromosome movements in Escherichia coli has e.g. 62 

required multimerization of 96 DNA binding sites to localize enough fluorescent 63 

protein to produce a distinguishable signal (Xie et al. 2008). Artificial tethering of a 64 

bright yellow fluorescent protein (Venus YFP) to the inside E. coli cell membrane 65 

allowed a microscope-detectable signal from a single YFP-tagged protein (Yu et al. 66 

2006). Thus without techniques for single-molecule GFP sensitivity, the full-genome 67 

mapping of subcellular protein localization in Saccharomyces cerevisiae (yeastGFP) 68 

did not produce signals above background for 361 open reading frames (8 pct. of 69 
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total) otherwise shown to be expressed in the growth phase assayed (Ghaemmaghami 70 

et al. 2003; Huh et al. 2003). Equivalently, the issue of not detecting all low-71 

expressing S. cerevisiae proteins was also observed when the GFP library was applied 72 

to flow cytometry (Newman et al. 2006). 73 

In some contexts, simple overexpression may shed light over the lacking information, 74 

but since the location of many proteins is a result of interactions with other cell 75 

components, a radical change in copy number could easily result in artificial 76 

observations. In other situations, the target output is the activity of specific weak 77 

promoters, e.g. in synthetic biological circuits, fluorescence-coupled biosensors or 78 

when developing promoter libraries. Several technologies permit the engineering of 79 

new promoters, e.g. responsive to other inducer molecules by hybridizing with 80 

upstream TF-binding sites (Blazeck and Alper 2013) or tuned to match fine, desirable 81 

transcription levels through mutagenesis of a strong native promoter (Nevoigt et al. 82 

2006). Difficulties in GFP detection may have been a limitation in these 83 

developments for weaker promoter levels, though low expression may be 84 

phenotypically important for a wide range of synthetic biology purposes. In synthetic 85 

circuit designs, any concealed information on the shape of dose-response curves 86 

inhibits the analysis of mechanistic clues otherwise given by the response curvature 87 

(Ang et al. 2013). In applications of metabolite biosensors, background-covered 88 

signal levels means that the full regulatory capability cannot be utilized, e.g. limiting 89 

subsequent fluorescence-activated cell sorting (FACS). Ultimately, such 90 

autofluorescence could conceal properly functional GFP completely (Billinton and 91 

Knight 2001). 92 

 93 
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The efforts aimed at reducing the autofluorescence target two phenomena: Simple 94 

medium autofluorescence arises from measuring fluorescence without isolating cells 95 

from medium, e.g. in continuously growing cultures. These effects can be reduced by 96 

the choice of medium or spectral unmixing by correcting for autofluorescence from a 97 

wavelength representing effects of the culture medium (Lichten et al. 2014). 98 

However, the cell autofluorescence is a more central issue, i.a. resulting from the 99 

fluorescence of flavins and NAD(P)H (Billinton and Knight 2001). Cellular 100 

autofluorescence also impacts techniques such as flow cytometry and microscopy and 101 

the weak signal intensity must be amplified intrinsically to the cell.  102 

 103 

Previous studies in mammalian cell lines have tackled the obstacle of cell 104 

autofluorescence using directly repeated GFPs typically fused three to six times in 105 

tandem using a small translational linker (Genové et al. 2005). By such approaches, it 106 

has been possible to achieve good linear increments in fluorescence signals. However, 107 

tandem repeats are problematic in organisms with proficient homologous 108 

recombination such as Escherichia coli or S. cerevisiae where recombination between 109 

DNA can happen within windows of identity at around 25 nucleotides (Ahn et al. 110 

1988). This could explain why tandem GFP methods are avoided in these organisms. 111 

However, even slight sequence divergence between repeats substantially decreases the 112 

rate of recombination as seen in the case of recombination between 350 bp inverted 113 

repeats, which was 4,600-fold reduced when sequence identity was reduced from 100 114 

% to 74 % in S. cerevisiae (Datta et al. 1997). Similar effects occur in E. coli where 115 

up to 1,000-fold reduction was observed following a reduction in repeat identity to 80 116 

% (Rayssiguier et al. 1989).  117 



 6 

Thus, in this study we present a simple methodology to take advantage of the ability 118 

to add sequence divergence to tandem proteins while maintaining function through 119 

variation in amino acid sequence as well as synonymous codon usage. By fusing three 120 

different GFP variants that vary mainly at nucleotide-level, we produce a new triple 121 

tandem GFP (3vGFP) stabilized towards direct-repeat recombination. We 122 

demonstrate the utility of 3vGFP through a genetically triggered promoter (ON/OFF) 123 

and developing and characterizing a new version of a Cu2+-responsive promoter with 124 

reduced leakiness. Application of 3vGFP allowed visualization of weak signals that 125 

could not be separated from autofluorescence levels using the brightest individual 126 

GFP variant, superfolder GFP. Lastly, we test the stability towards recombination 127 

after culturing of the strain harboring 3vGFP through 25 generations. 128 

Materials	  and	  methods	  129 

Materials	  130 

Unless otherwise stated, reagents were purchased from Sigma-Aldrich. Synthetic 131 

complete (SC) medium was prepared from 1.4 g/L synthetic complete drop-out mix 132 

lacking uracil, tryptophan, leucine and histidine (Y2001), 6.7 g/L yeast nitrogen base 133 

without amino acids (Y0626) and 20 g/L D-glucose, pH standardized to 5.6. When SC 134 

was supplemented with additional amino acids, 60 mg/L leucine, 20 mg/L uracil, 135 

20 mg/L histidine-HCl and 20 mg/L tryptophan was added. Yeast Peptone Dextrose 136 

medium contained 20 g/L D-glucose. 137 

Oligonucleotides were purchased from Integrated DNA Technologies.  138 

Plasmids	  139 

The plasmids employed in this study are listed in Table 1. 140 
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Table 1 Plasmids employed in this study, describing whether they lead to 141 

chromosomal integration or propagate autonomously in S. cerevisiae.  142 

Plasmid Expression cassette 

(promoter-ORF-

terminator) 

Maintenance in S. 

cerevisiae through 

Reference 

pPR4-3vGFP pSPAL10-3vGFP-tURA3 CEN/ARS, HIS3 This study 

pPR4-sfGFP pSPAL10-sfGFP-tURA3 CEN/ARS, HIS3 This study 

pCU2-3vGFP pCUP1dim -3vGFP-

tURA3 

CEN/ARS, URA3 This study 

pCfB258-CUP1-

3vGFP 

pCUP1-3vGFP-tCYC1 Chromosomal 

integration 

This study 

pCfB258-CUP1-

SPO13-3vGFP 

pCUP1dim -3vGFP-

tCYC1 

Chromosomal 

integration 

This study 

pDS1U-X2-

3vGFP 

pTEF1-3vGFP Chromosomal 

integration 

This study 

pEXP22 pADH1-GAL4AD-

RalGDS-tADH1 

TRP1 Life Technologies 

pEXP32 pADH1-GAL4DBD-

Krev1-tADH1 

LEU2 Life Technologies 

pRS413 - LEU2 (Sikorski and 

Hieter, 1989) 

pRS415 - HIS3 (Sikorski and 

Hieter, 1989) 

	  143 

Strains	  144 

The strains analyzed in this study are listed in Table 2. 145 

The following background strains were used to construct the strains: 146 

Saccharomyces cerevisiae MaV203 (MATα, leu2-3,112, trp1-901, his3Δ200, ade2-147 

101, gal4Δ, gal80Δ,SPAL10::URA3, GAL1::lacZ, HIS3UAS GAL1::HIS3@LYS2, 148 
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can1R, cyh2R) (Purchased from Life Technologies). 149 

Saccharomyces cerevisiae PRa18 (MATα, leu2-3,112, trp1-901, his3Δ200, ade2-101, 150 

gal4Δ, gal80Δ, GAL1::lacZ, can1R, cyh2R) Derived from S. cerevisiae MaV203. 151 

Saccharomyces cerevisiae PRa26: MATα, leu2-3,112, trp1-901, his3Δ200, ade2-101, 152 

gal4Δ, gal80Δ, GAL1::lacZ, rad16::KanMX, can1R, cyh2R. Derived from S. cerevisiae 153 

PRa18. 154 

Saccharomyces cerevisiae CfB1010 (MATa; ura3-52; his3Δ1; leu2-3/112; MAL2-8c; 155 

SUC2; are2Δ::loxP-KanMX; X-3::tHMG1-PTEF1-PPGK1-AtATR2). Derived from S. 156 

cerevisiae CEN.PK 102-5B. 157 

158 
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Table 2 S. cerevisiae strains analyzed in this study, indicating which plasmids or 159 

chromosomal integrations were introduced into the respective parental strains. 160 

 161 

Construction	  of	  3vGFP	  plasmids	  162 

Plasmids were constructed by uracil-excision (USER) cloning. The general method 163 

for USER cloning was based on agarose gel-purification of the PCR products 164 

amplified using DNA polymerase X7 (Nørholm 2010). These were mixed in an 165 

equimolar 20 µL reaction with 0.5 µL USER enzyme (New England Biolabs) and 0.5 166 

Strain 

name 

Promoter GFP Plasmid #1 Plasmid #2 Plasmid #3 Integrative 

plasmid 

Parent 

strain 

PRa106 ON 3vGFP pPR4-

3vGFP 

pEXP32 pEXP22 - PRa26 

PRa107 OFF 3vGFP pPR4-

3vGFP 

pRS415 pEXP22 - PRa26 

PRa108 - - pRS413 pRS415 pEXP22 - PRa26 

PRa109 ON sfGFP pPR4-

sfGFP 

pEXP32 pEXP22 - PRa26 

PRa110 OFF sfGFP pPR4-

sfGFP 

pRS415 pEXP22 - PRa26 

CK24 pCUP1 3vGFP - - - pCfB258-

CUP1-

3vGFP 

CfB1010 

CK28 pCUP1dim 3vGFP - - - pCfB258-

CUP1-

SPO13-

3vGFP 

CfB1010 

PRa114 pTEF1 3vGFP - - - pDS1U-

X2-3vGFP 

PRa18 
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µL DpnI FastDigest (Thermo Scientific) in FastDigest buffer at 37 degrees C for 1-2 167 

hours. Following 25 minutes at room temperature, 2.5 µL reaction was transformed 168 

into E. coli. Correctly cloned plasmids were identified using restriction analysis and 169 

DNA sequencing. The detailed use of oligonucleotides for assembly of all plasmids is 170 

described in Supplementary data. 171 

Construction	  of	  strains	  172 

Plasmids and DNA for chromosomal targeting was introduced in S. cerevisiae by 173 

methods described previously (Gietz and Schiestl 2007). The PRa18 strain was 174 

constructed from the MaV203 strain by deletion of SPAL10::URA3 through 175 

replacement with a kanMX gene deletion cassette flanked by loxP recombination sites 176 

from the pUG6 plasmid as described before (Güldener et al. 1996). DNA flanks to 177 

direct homologous recombination of the cassette to the chromosomal locus were 178 

generated by PCR on S. cerevisiae MaV203 gDNA spanning a fragment from 5’-179 

CCATTCAACTAACATCACAC to 5’-CCTTCACCATAAATATGCC (upstream 180 

flank) and from 5’-CTCACAAATTAGAGCTTC to 5’-CCCATATCCAACTTCCAA 181 

(downstream flank). These flanks were cloned to the kanMX gene deletion cassette 182 

and transformed into yeast. The kanMX cassette was looped out by heterologous 183 

expression of Cre recombinase from the pSH47 plasmid (Güldener et al. 1996). To 184 

construct PRa26 subsequently, the chromosomal HIS3 gene within the rad16 locus 185 

was deleted using the same kanMX approach. The targeting flanks spanned regions 186 

from 5’- AGTTGGTACACCAGTTATACGG to 5’- 187 

AAAGCATAGGATACCGAGAAAC (upstream flank) and 5’- 188 

TGACATCACCCGAAAAGAAGC to 5’- GATTATGGTTACGATGTCGA 189 

(downstream flank). 190 
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To construct PRa114, the pTEF1-3vGFP construct was chromosomally integrated into 191 

the PRa18 strain using divisible selection (Rugbjerg et al. 2015). DNA fragments for 192 

integration was liberated from the vector pDS1U-X2-3vGFP by digestion with SmiI 193 

and transformed into yeast along with empty divisible selection plasmids pDS2 and 194 

pDS3 in order to reconstitute the selectable Ura+ phenotype. 195 

To construct respectively CK24 and CK28 from the CfB1010 strain, the pCUP1-196 

3vGFP and pCUP1dim-3vGFP was chromosomally integrated by cloning into the 197 

EasyClone integrative vectors (Jensen et al. 2013). The DNA fragments for 198 

integration were obtained through NotI digestion of the vectors pCfB258-CUP1-199 

3vGFP and pCfB258-CUP1-SPO13-3vGFP respectively, followed by agarose gel 200 

purification. 201 

Estimation	  of	  TEF1-‐3vGFP	  fitness	  cost	  202 
Microtiter cultures of 200 µL YPD was inoculated by 100x backdilution of overnight 203 

YPD pre-cultures of PRa114 and PRa108, each inoculated from single colonies. The 204 

cultures were cultivated in a 96-well plate at 30 deg. C and continuous shaking in an 205 

ELx808 plate reader (BioTek), set to measure optical density every 15 minutes at 206 

OD630. The plate was covered with a BreathSeal (Greiner Bio-one) and plastic lid. 207 

Growth rates were calculated for all three biological replicates by exponential 208 

regression between OD630 and time (hours) during the same OD630 span of 209 

exponential growth phase. All OD630 values were initially standardized to the time 210 

zero reading to account for differences in seal absorbance. 211 

Cultivations	  for	  stability	  tests	  212 

The PRa114 strain was cultured from a single colony inoculated in 25 mL YPD 213 

medium and cultured at 30 deg. C and 250 rpm horizontal shaking in three parallel 214 
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lineages. By measuring OD600, the number of generations passed was calculated. 2 % 215 

of the culture was passed to fresh medium and grown again until totally 25 216 

generations had passed. For comparison between cultured population and reference 217 

strain, approx. 25 µL of each cell population was inoculated in YPD medium at the 218 

same time and cultured at 30 deg. C for 16 hours with 250 rpm horizontal shaking.   219 

Fluorescence	  measurements	  220 

Pre-cultures in selective SC medium were inoculated from single colonies and 221 

cultures overnight at 30 deg. C. From these, 200 µL microtiter cultures of selective 222 

SC medium were inoculated and cultured at 30 deg. C with 300 rpm horizontal 223 

shaking in an Innova shaking incubator for 16 hours. As cover, the microtiter plates 224 

were covered with a BreathSeal (Greiner Bio-one) and a plastic lid. 225 

The cell cultures were diluted approx. 1:100 in FACS flow buffer (BD Biosciences) 226 

and analyzed on a LSR Fortessa flow cytometer (BD Biosciences) equipped with a 227 

blue laser (488 nm) and set to measure 10,000 cells within a gate defined by forward 228 

and side scatter to capture all yeast cells. A FITC filter (530/30 nm) was used to 229 

measure GFP fluorescence reporting the area of the measured peaks. The laser voltage 230 

was adjusted to optimally utilize the dynamic range of detection.  Data was processed 231 

and visualized as histograms with FlowJo version 10 (default settings) by overlaying 232 

the populations for each particular comparison. 233 

 234 

Sequence	  alignment	  235 

Simple nucleotide and protein sequence alignment was performed using the ClustalO 236 

algorithm (Sievers et al. 2011). 237 

238 
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Results	  and	  discussion	  239 

Amplification	  of	  fluorescence	  by	  tandems	  of	  differently	  encoded	  GFPs	  240 

To amplify the fluorescence signal of a GFP molecule while keeping transcription 241 

strength constant, the new 3vGFP protein was engineered by fusion of nucleotide 242 

sequences encoding yEGFP, GFP+ and sfGFP (Cormack et al. 1997; Pédelacq et al. 243 

2006) (Fig. 1A). Two glycine residues were introduced as translational linker in each 244 

junction. The fluorescence of 3vGFP was evaluated when expressed from a weak S. 245 

cerevisiae hybrid promoter (pSPAL10) (Vidal et al. 1996) based on pSPO13 to mimic 246 

low-expression applications (Huang and Schreiber 1997; Harton et al. 2013). The 247 

low-level strength of pSPAL10 is attained by utilizing the UME6 repressor binding 248 

site naturally present within the SPO13 promoter, which allows very low expression 249 

levels e.g. useful for control of cell growth. Further, GAL4-binding sites fused 179 bp 250 

upstream of start codon provide an upstream activating sequence, allowing 251 

transcription factor-based ON/OFF inputs.  252 

The output fluorescence was first evaluated with single sfGFP (Fig. 1B), which is the 253 

individually brightest of the three GFPs tested. However, the fluorescence levels 254 

could not be distinguished from the control strain devoid of genes encoding GFP 255 

(PRa108). In contrast, the fluorescence of a strain (PRa106) carrying the gene 256 

encoding 3vGFP controlled by the same promoter was 3-fold higher than the 257 

background level and thus the level of the single sfGFP strain (Fig. 1B).  258 

 259 

To test the utility of 3vGFP as output signal in a synthetic biology setting, we 260 

constructed versions of the strain with the pSPAL10 promoter turned OFF. The 261 
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promoter is activated (ON) when a hybrid GAL4 activation domain binds a cognate 262 

hybrid GAL4 DNA-binding domain, which interacts with GAL4-binding sites of 263 

pSPAL10. The protein-protein interaction domains were based on the known Krev1 264 

and RalGDS interaction domains (Herrmann et al. 1996). However omitting the 265 

DNA-binding domain prevents reconstitution of a functional transactivator (OFF). 266 

These ON/OFF effects of present DNA-binding domain remained hidden below the 267 

background levels of the sfGFP strains, while observable in strains with 3vGFP as 268 

output (Fig. 1B). 269 

 270 

Figure 1  271 

Stability	  towards	  recombination	  272 

Direct-repeat recombination in mitotic S. cerevisiae is reported to occur at rates 273 

between 5.8∙10-5 and 12∙10-5 per cell generation for repeats of several kilo base pair 274 

identity (Dornfeld and Livingston 1992). This recombination rate is linearly 275 

dependent on identity length at such long segments, however the rate drops rapidly 276 

below the minimal efficient processing segment (MEPS) length at around 250 bp in S. 277 

cerevisiae (Jinks-Robertson et al. 1993).  While internal identity of 3vGFP ranges 74-278 

84 % (Fig. 2B), the identical segments are maximally at a ten-fold shorter length than 279 

the MEPS. 280 

To test the recombination stability of 3vGFP, we wanted to measure whether the 281 

fluorescence levels originating from 3vGFP would attenuate following repeated 282 

culturing. While the 3vGFP molecule is engineered to limit direct-repeat 283 

recombination, long-term cultivation could potentially still lead to this especially if 284 

favored by a concurrent fitness advantage. To test stability at high expression level, 285 

we therefore also chromosomally integrated 3vGFP under control of the strong 286 
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promoter from TEF1 i.e. at a level surpassing the intended use of 3vGFP. Expressing 287 

3vGFP from the TEF1 promoter caused a considerate cost in fitness of approx. 15 % 288 

in YPD, reducing the growth rate from an average of 0.35 hr-1 to 0.30 hr-1 compared 289 

to the negative control strain PRa108. Following culturing by serial passing (2 %) of 290 

liquid cultures for 25 generations of three parallel lineages, single-cell level analysis 291 

revealed that the average fluorescence level of the cell population had diminished by 292 

7 percent, perhaps due to spontaneous direct-repeat recombination. The single cell-293 

level visualization indicated a slight left-shift of the population (Fig 2A). These 294 

results exemplify that direct-repeat recombination can occur within 3vGFP in S. 295 

cerevisiae and if selected for, these effects can become significant. However, since 296 

3vGFP is intended for use at levels of low expression, a fitness advantage is not likely 297 

to further drive diminished fluorescence at a typical utility of 3vGFP. 298 

 299 

Figure 2.  300 

301 
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Application	  of	  3vGFP	  to	  construct	  an	  inducible	  promoter	  with	  reduced	  leakiness	  302 

Inducible promoters are important for development of e.g. synthetic genetic circuits, 303 

but the leakiness levels can be problematic in certain uses. To demonstrate the utility 304 

of 3vGFP, we therefore wanted to use it as output for genetic re-engineering of the 305 

popular Cu2+-responsive promoter of S. cerevisiae CUP1. pCUP1 has been employed 306 

in many different biotechnological cases (Labbé and Thiele 1999; Scholz et al. 2000; 307 

Rugbjerg et al. 2013), but displays considerable baseline activity (leakiness). pCUP1 308 

induction results from elevated Cu2+ concentrations mediated through binding of Cu2+ 309 

to the ACE1 transcription factor, which in turn binds to upstream activating sequence 310 

(UAS) elements of pCUP1 (Huibregtse 1989; Evans et al. 1990) (elements 311 

schematically depicted in Fig. 3A). The leakiness level of pCUP1 measured with 312 

3vGFP corresponded to 2.5-fold the cell autofluorescence (Fig. 3B). Based on the 313 

regulatory mechanism of ACE1, we anticipated that trace levels of Cu2+ in the growth 314 

medium did not cause this leakiness, but rather assumed this basal transcriptional 315 

activity to be ACE1-independent. Accordingly, as strategy we hypothesized that 316 

swapping the promoter region downstream of ACE1 UASs for a transcriptionally 317 

repressed promoter could provide attenuation, while maintaining the response to 318 

ACE1-dependent induction. We therefore combined the upstream region of pCUP1 (-319 

149 to -454) containing three ACE1-binding sites, with part of the S. cerevisiae 320 

pSPO13 (-1 to -157) including its UME6 repressor-binding site (Fig. 3A). This new 321 

promoter (pCUP1dim) controlling 3vGFP resulted in fluorescence that was reduced 322 

approx. 61 % (before background-subtraction) to levels close to the cell 323 

autofluorescence (Fig. 3B), while the promoter remained responsive to addition of 324 

Cu2+ (Fig. 3C). 325 



 17 

 326 

Figure 3  327 

 328 

The recombination-stabilized tandem GFP described in this study can enable 329 

characterization of minimally expressed genes in recombination-efficient organisms 330 

such as S. cerevisiae and other yeasts. As shown in this study, 3vGFP allowed 331 

characterization of the activation of a weak promoter and accordingly characterization 332 

of manipulations taking place at such low expression levels. Further, this particular 333 

approach of recombination-stabilizing GFPs with different protein and nucleotide 334 

sequences can be scaled in number. Recent brighter fluorescent proteins could be 335 

applied such as mNeonGreen (Shaner et al. 2013).  336 

In principle, sequence divergence could be generated strictly at nucleotide level 337 

through codon optimization of segments encoding the same protein. Codon 338 

optimization can however introduce significant effects on the translation efficiencies 339 

(Goodman et al. 2013). Another concern may be spurious promoter/RBS activities, 340 

which could theoretically cause transcription and translation initiation from locations 341 

within the tandem GFP, thus producing truncated tandem proteins. Such situations 342 

would complicate the isolation of promoter responses and might require alleviation of 343 

the second and third GFP start codon.  344 

An alternative method for assessment of promoter activities could be the use of the 345 

fluorescent RNA of the Spinach family, which bypasses the step of translation since 346 

the RNA forms the fluorescent signal (Paige et al. 2012; Pothoulakis et al. 2014). 347 

However, while the technology has potential for synthetic biological use, its general 348 

applicability remains to be seen, such as the detection limits for low expression levels. 349 

Further relevant, fluorescent in situ hybridization for RNA (RNA FISH) is a 350 
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technique allowing sensitive detection of transcripts at single-cell level (Zenklusen et 351 

al. 2008). This alleviates genetic engineering, but entails more sample treatment than 352 

for detection of GFP fluorescence. 353 

In this study, a new simple strategy for engineering tandem fluorescent proteins was 354 

employed to produce brighter GFP signals with improved stability towards loop-out 355 

recombination. GFPs with sequence variation mainly at nucleotide level were 356 

translationally linked to form a recombination-stabilized tandem GFP molecule 357 

3vGFP. Such GFPs could be useful for characterizing promoter activities in the range 358 

where normal single GFP signals fall below the cell autofluorescence levels. We 359 

specifically applied the 3vGFP molecule to characterize the ON/OFF levels of a weak 360 

promoter, which was not possible using a single sfGFP, and to develop a new hybrid 361 

Cu2+-responsive promoter pCUP1dim with lower leakiness level. The plasmid pCU2-362 

3vGFP encompassing the nucleotide sequence of 3vGFP and pCUP1dim will be 363 

deposited at the Addgene repository. 364 
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Figures 526 

 527 

Figure 1 Increased GFP fluorescence signal above autofluorescence level by 528 

triple tandem GFP (3vGFP). A) Internal organization of individual GFP molecules 529 

fused as 3vGFP. 3vGFP consists of yeast-enhanced GFP (yEGFP), GFP+ and 530 

superfolder GFP. B) The S. cerevisiae strains carrying 3vGFP allowed the capture of 531 

the weak, ON/OFF promoter pSPAL10 unlike strains carrying a single sfGFP. The 532 

ON levels with single sfGFP corresponded to the background level of the empty 533 

control strain without GFP. The strains are described in detail in Table 2. Error bars 534 

depict standard error from biological replicates (n = 3). 535 
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537 
Figure 2 Stability of the triple tandem GFP (3vGFP) towards loop-out 538 

recombination. A) Parallel lineages of a pTEF1-3vGFP S. cerevisiae strain was 539 

cultured for 25 generations and re-measured to verify stability towards loop-out 540 

recombination, compared to a background strain without GFP. Flow cytometry of 541 

representative example shown. Each sample contained 10,000 cells. The maxima of 542 

the samples are standardized to an equal top point. B) Sequence identities between the 543 

three direct repeats of sequences encoding GFP variants, as calculated by ClustalO. 544 
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 546 
Figure 3 Development of weak Cu2+ -responsive promoter through 547 

characterization with 3vGFP. A) Organization of DNA-binding sites for the Cu2+-548 

responsive ACE1 activator and UME6 repressor in the wildtype CUP1 promoter and 549 

the new dimmed, hybrid promoter pCUP1dim. B) OFF-level fluorescence measured 550 

in absence of Cu2+ demonstrating the lower activity of the new hybrid promoter as 551 

captured with 3vGFP. Error bars depict standard error from biological replicates (n = 552 

3). C) Fluorescence of strain populations in response to addition of Cu2+. Flow 553 

cytometry of representative example shown. Each sample contained 10,000 cells. The 554 

maxima of the samples are standardized to an equal top point. 555 
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