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Self-steepening of optical pulses arises due to the dispersive contribution of the effective Kerr nonlinearity.
In typical structures this response is on the order of a few femtoseconds with a fixed frequency response. In
contrast, the effective Kerr nonlinearity in photonic crystal waveguides (PhCWGs) is largely determined by
the geometrical parameters of the structure and is consequently tunable over a wide range. Here we show
group-velocity (group-index) modulation leads to a previously unexplored physical mechanism for generating
self-steepening. Further, we demonstrate that periodic media such as PhCWGs can exhibit self-steepening
coefficients two orders of magnitude larger than typical systems. At these magnitudes the self-steepening strongly
affects the nonlinear pulse dynamics even for picosecond pulses. Due to interaction with additional higher-order
nonlinearities in the semiconductor materials under consideration, we employ a generalized nonlinear Schrödinger
equation numerical model to describe the impact of self-steepening on the temporal and spectral properties of
the optical pulses in practical systems, and define appropriate figures of merit. These results provide a theoretical
description for recent experimental results presented by C. A. Husko et al. [Sci. Rep. 3, 1100 (2013)] and
F. Raineri et al. [Phys. Rev. A 87, 041802 (2013)]. More generally, these observations apply to all periodic media
due to the rapid group-velocity variation characteristic of these structures.
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I. INTRODUCTION

A recent trend in nonlinear optics is the development and de-
sign of waveguide systems with tunable nonlinearities. In ad-
dition to a broad tuning range, these systems are characterized
by the ability to separate the contributions of the material con-
stituents from the device geometry. This is in contrast to early
approaches in both glass [1] and semiconductors [2] which re-
quired a change in material composition to modify the waveg-
uide properties. The role of geometry drastically changed with
the advent of microstructured fibers and the demonstration
that fabrication parameters could be the dominant contribution
to the dispersion [3]. More recently, it has been shown
that gas-filled hollow-core fibers can activate or suppress
nonlinearities such as the Raman effect [4]. In parallel, rapid
advances in integrated semiconductor devices have pushed the
forefront of optical science by reducing nonlinear thresholds
to subfemtojoule energy levels [5] while simultaneously
incorporating dispersion control [6]. Among nanostructures,
photonic crystal waveguides (PhCWGs) are of extreme interest
due to the link between geometric fabrication and direct
modulation of the electric field, giving rise to exciting physical
phenomena such as slow light and enhanced nonlinearity.

Slow light refers to light propagating at a reduced group
velocity in the medium. Interest in this unique property has
inspired a large body of research investigating the linear and
nonlinear properties of slow light in two-dimensional (2D)
PhCWGs over the past decade [7–9]. Recall that the group
index ng is related to the waveguide dispersion relation ω(k)
and the group velocity vg: ng = c

vg
= c ∂ω

∂k
, with frequency ω,

wave vector k, and the speed of light in vacuum c. Of particular
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significance, it was shown that optical χ (3) effects such as the
Kerr nonlinearity scale with the group index squared in the
presence of slow light [8]. Briefly, one factor of ng arises from a
larger electric field for a given power (nonlinear enhancement),
with the second from longer effective optical path length
(linear enhancement). We note that the slow-light enhancement
described here is derived from the structure. In contrast,
material slow light from atomic resonances does not exhibit
this enhancement [10]. In PhCWGs we write the effective
nonlinear Kerr parameter as γeff = γ ( ng

no
)
2 = ω

c
n2
Aeff

( ng

no
)
2
, with

the bulk Kerr coefficient n2, modal area Aeff , and linear
refractive index no. While the γ term is well described
in the literature, research into the slow-light enhancement
contribution ng

no
in 2D PhCWGs required significant advances

in nanofabrication techniques which were only mastered the
past few years.

A 2D PhCWG consists of a periodic array of low-index
dielectric embedded in a high-index material. A common
experimental configuration which we consider here consists
of a hexagonal pattern of air holes etched in an air-suspended
semiconductor slab. Importantly, the dispersion of these
2D PhCWGs is highly tunable due to selected geometric
modifications of the periodic lattice known as dispersion
engineering [6,11]. The precise modulation of the waveguide
group index enables exquisite control over the dispersion and
therefore the nonlinear properties of the medium. Experimen-
tal reports of slow-light-enhanced nonlinear Kerr effects in 2D
PhCWGs include demonstrations of solitons, third-harmonic
generation, and four-wave mixing, among others [12–14].
Despite this strong interest in slow light, the dispersion of
the Kerr χ (3)(ω) nonlinearity or self-steepening (SS) term,
τNL = 1

γeff
∂ωγeff , has received surprisingly little attention in

these systems.
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The earliest investigations of SS in waveguide systems
were carried out in glass fiber with these studies emphasizing
the spectral reshaping properties [15,16] or the formation
of optical shock fronts [17]. Later it was shown that SS is
essential for extending the validity of the generalized nonlinear
Schrödinger equation (GNLSE) envelope approximation down
to the single-cycle regime [18], and for explaining broadband
supercontinuum generation [19]. In these systems the SS
term is determined almost exclusively by the wave angular
frequency ω and therefore exhibits a fixed response of about a
femtosecond for optical frequencies. A more recent numerical
investigation showed the wavelength dependence of the non-
linear Kerr effect in silicon channel waveguides leads to values
up to tens of femtoseconds near the mode cutoff [20]. An alter-
native approach for generating SS using cascaded χ (2) media
as an effective tunable χ (3) was shown with similar strength as
traditional media [21]. To date, self-steepening in tunable χ (3)

media has not been explicitly experimentally demonstrated.
In this article, we investigate self-steepening in 2D photonic

crystal waveguides. Importantly we show that the large
variation in waveguide group index ng leads to a previously
unexplored physical mechanism for generating self-steepening
with a characteristic time scale τNL on the order of hundreds
of femtoseconds, two orders of magnitude larger than in
nonperiodic waveguide systems [16,20]. We derive an analytic
formulation and describe the origin of this effect. Further, we
describe structures in which the values of τNL are anomalous
(negative), hence leading to notably different physical effects
than previously known χ (3) systems. The broad tuning range
of τNL enabled by dispersion engineering make PhCWGs an
ideal system for further studies of SS. While the magnitude
of τNL is quite large, the presence of other effects such as
group-velocity dispersion (GVD, β2 = 1

c

∂ng

∂ω
) and higher-order

nonlinearities such as multiphoton absorption or free-carrier
effects can disrupt the ideal dynamics. We consequently
describe the experimental situations in which SS is expected
to contribute significantly in the semiconductor system under
consideration using a numerical model. This analysis supports
recent experimental results showing pulse temporal advance
in PhCWGs [22,23]. Though the Raman effect is narrow
band in semiconductors and negligible here, this analysis
could be extended to include periodic glass media where
Raman and Brillouin effects must be considered [24]. These
results provide a theoretical description of giant and tunable
self-steepening in nanoscale optical waveguides.

More generally, this investigation applies to all periodic
media (1D, 2D, 3D) where a dispersive χ (3)(ω) arises due to
strong group-index modulation near the band edge. We recall
that the GNLSE applies to periodic media in this regime [25].
Given the importance of the dispersive nonlinearity τNL in
explaining supercontinuum broadening in fibers, we expect the
terms elucidated here to be critical for accurately describing
this phenomenon in photonic crystals.

II. SELF-STEEPENING IN PhCWGs

Though near-arbitrary dispersion profiles are possible in
periodic media [6,11], here we focus on three specific
experimentally demonstrated structures for clarity. Figure 1
shows three group-index curves for PhCWGs with different
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FIG. 1. (Color online) Group-index curves and self-steepening
parameters of PhC waveguides. (a) We show three typical waveg-
uides: (line b, green) a dispersion-engineered structure with a quasiflat
plateau, (line c,cyan) a W1 line-defect waveguide, and (line d, blue)
a dispersion-engineered waveguide with a peak. (b)–(d) show the
self-steepening parameter τNL = γ1/γeff (black line) as a function of
wavelength for the three structures. The different contributions to
SS are shown: 1/ω (black-dashed), 2∂ωng/ng (red), and ∂ωAeff/Aeff

(blue).

dispersion relations: (i) a standard line defect waveguide of
one missing row of holes in a hexagonal lattice (W1), (ii) a
dispersion-engineered waveguide [6] exhibiting a plateau, and
(iii) a dispersion with a pronounced group-index peak. The dot
indicates a point of interest we investigate in this work.

If we assume the Kerr nonlinearity evolves linearly, then
the impact of dispersive nonlinearity on pulse propagation
dynamics is modeled by adding a first-order Kerr correction
term to the GNLSE [18,20]:

∂zA + i

2
β2∂ttA = iγeff(1 + iτNL∂t )|A|2A. (1)

Here t is the relative time in the reference frame of the pulse
with A(z,t) = √

Po(z,t)eiφ(z,t) the electric-field envelope with
power Po and phase φ. The last term τNL is referred to as the
self-steepening or shock term and expressed as:

τNL = γ1

γeff
= 1

ω
+ 1

n2

∂n2

∂ω
− 1

Aeff

∂Aeff

∂ω
+ 2

ng

∂ng

∂ω
, (2)

where we used the relationship γ1 = ∂ωγeff . The two first terms
exist in bulk material and contribute up to a few femtoseconds.
In practice the Kerr dispersion is often neglected. These are
the traditional self-steepening terms known in unstructured
waveguides and do not play a role here with these small
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magnitudes [16]. The third term encompassing effective modal
areas Aeff was considered in fibers [26], and theoretically
in silicon channel waveguides [20] with surprisingly little
attention in photonic crystal fibers [27]. Further, in those earlier
works the area term contributed a few percent whereas here
the slow-light modes exhibit rapid variation in spatial profile
with ω and this term contributes ≈ 25% to the total τNL.

The key physical insight of this work is the realization
that the final term due to the dispersive group index ng gives
rise to a previously unknown mechanism for controlling self-
steepening. In contrast to earlier observations, in our photonic
crystal waveguide the magnitude of τNL is set by a combination
of the group index ng , GVD (β2), and effective modal area Aeff .
As these three parameters depend strongly on the geometry, we
clearly see the advantage of using nanostructures to study the
dispersive nonlinearity. We now examine this effect in detail.

Figures 1(b)–1(d) show the evolution of the ratio τNL

for the waveguides in Fig. 1(a). The contribution of the
different terms composing Eq. (2) are also represented. We
note three major observations unique to the PhCWG system.
First, τNL is two orders of magnitude larger than unstructured
waveguides (black dashed line) where τNL = 1

ω
≈ 1 fs. Notice

the 1
ω

contribution appears to be near zero and completely
flat compared to the PhCWG contributions on this scale.
Second, the sign of τNL is negative. Consequently the spectral
and temporal properties of the nonlinear waves behave in an
opposite or anomalous manner as we will examine. Third,
the dominant contribution arises from the dispersion term
(red) with a modification in the opposite direction due to Aeff

(blue). If we ignore the area contribution, we approximate
τNL ≈ 2

ng

∂ng

∂ω
= 2cβ2

ng
.

Examining the characteristics of the waveguides individ-
ually, we find different trends for each. Regarding the W1
waveguide, Fig. 1(c), τNL steadily decreases approaching the
mode cutoff (increasing wavelength). A value of about −200
fs is obtained close to the band edge, however, in a region
where propagation loss is large in this type of PhCWG [28].
On the contrary for the dispersion-engineered waveguides the
values are mostly negative with a small positive region for the
structures presented. Notice in this case values as large as −200
fs [Fig. 1(b)] and −400 fs [Fig. 1(d)] are reached away from
the band edge where propagation losses are reduced [29,30].
The lower linear loss of the latter structures has implications
for practical observation of these effects.

III. TEMPORAL AND SPECTRAL PROPERTIES DUE TO
ANOMALOUS SELF-STEEPENING IN PhCWGs

We now describe the physical implications of the self-
steepening term on nonlinear wave propagation in PhCWGs.
For that purpose we consider typical parameters found in
recent nonlinear experiments [12,22,23,31,32]. We take γeff =
1600 (W m)−1 (ng = 15, no = 3.17 for GaInP), an anomalous
dispersion of β2 = −7.7 ps2/mm, n2 = 6 × 10−18 m2/W, and
modal area Aeff = 0.34 μm2 [6]. The dispersive nonlinearity
is τNL = −220 fs as detailed above. The input pulses are
TFWHM = 2.3 ps (FWHM of a hyperbolic secant, TFWHM =
1.76To) with P0 = 3−10 W (6–20 pJ/pulse). The dispersion

length LD = T 2
o

β2
is computed as 220 μm. Importantly, through-

out this work we purposely maintain small soliton numbers
(N < 2) so as to avoid more complicated soliton dynamics
modulating the peak intensity and pulse duration [22].

At this point we are focusing on the basic physical effects
resulting from the unique photonic crystal dispersion in the
“ideal” system. In the next section we will introduce the
full effects present in typical semiconductor waveguides and
describe how these results are modified. While based on actual
experimental structures, note that the conditions may not be
optimal for emphasizing the self-steepening effect and we
invite the community to explore the parameter space further.

The normalized self-steepening parameter s is

s = τNL

T0
. (3)

For our parameters s = −0.1, more than five times larger than
nonperiodic waveguides [16]. This is even more remarkable
when one considers the pulses are 2.3 ps long compared to
the sub-100 fs pulses required in unstructured media where
s = 1

ωT0
. The large value of s requires much shorter length

scales to observe the associated effects of self-steepening. A
pulse experiencing self-steepening will eventually develop a
shock front after propagating a shock length [17] of about

zs = 0.43
LNL

|s| , (4)

where LNL = (γeffPo)−1 is the nonlinear effective length, and
the numerical constant depends on the actual pulse shape,
here a hyperbolic secant [17]. Typical shock lengths in our
structures are zs ≈ 350 μm for a 2.3 ps pulse with peak power
of 8 W. As this article is focused on self-steepening, we do
not describe the physics of optical shock waves in detail here.
Nonetheless, this is a well-known and useful length scale for
estimating the relative scaling of self-steepening which we
adopt here for convenience. Note that the mechanism presented
here is not the only possibility for developing shock fronts.
A highly nonlinear medium in the presence of weak normal
dispersion, for example, could also lead to shock formation
even though no dispersive nonlinearity is present [33].

The nonlinear dispersion τNL plays a key role in the pulse
dynamics of both the temporal and spectral properties. We first
address the impact of SS on temporal shape and delay. A subtle
point that must be addressed is the dual role of β2. First, it has
been shown in earlier work that β2 dissipates shock fronts [16].
Second, and separate to this point, we showed above that β2

is intrinsically linked to the large magnitude of τNL. As a
result, one cannot ignore β2 for a SS effect arising from a
strong modulation of the group index ng, and consequently
observing a tilted line shape is unlikely for SS derived from
this method. While the temporal shape is not modulated in this
case, the temporal arrival time is affected as we show below.

Figure 2(a) shows the temporal profile obtained for the point
indicated by the blue dot in Figs. 1(a)–1(c) after a propagation
distance of 200 μm. The input pulse (black line) has a peak
power of 8 W (LNL = 80 μm), hence the pulse has completed
about two and a half nonlinear lengths LNL. The thick red
line shows the case where we include only the Kerr and SS
contributions to Eq. (1). That is, we include the β2 contribution
to τNL but neglect the temporal dispersion term ∂tt . Notice
that since s is negative here, the pulse peak tilts forward

013816-3
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FIG. 2. (Color online) (a) Temporal and (b) spectral pulse prop-
erties of anomalous self-steepening in PhC waveguides. Notice the
behavior is opposite to unstructured media exhibiting normal self-
steepening. Traces are shown for propagation of 200 μm ≈ 2.5LNL.
Legend: Kerr and SS only (thick red), full Eq. (1) (dashed blue), and
input pulse (black).

in time, which is opposite to earlier studies with a positive
self-steepening term. Moreover, with the large s value here, a
steep temporal leading edge is already clearly visible after a
propagation of a just few LNL. Simulations with all the terms
in Eq. (1) are shown as the dashed blue line. In contrast to the
ideal dispersionless case (thick red) where the temporal trace
exhibits a clear abrupt leading edge characteristic of shock
formation, the shock front is less pronounced for the same
propagation length and the pulse tends to preserve its initial
shape (soliton effect).

A separate temporal effect in the presence of self-steepening
is a shift in pulse arrival time. Assuming the pulse duration
T0 > τNL and a moderate soliton number, the dispersive
nonlinearity acts as a small perturbation that slightly modifies
the group velocity 	T = z

LNL
τNL [17,34,35]. Here with the

negative τNL value, the pulses are expected to advance in time,
once again in contrast to the delay of earlier observations.
This effect is clearly visible by the temporal advance of the
two traces examined in Fig. 2. One of the most challenging
aspects of observing self-steepening in real PhCWGs is the
strong resemblance of SS and free-carrier dispersion (FCD) in
the time domain. We investigate this in detail below.

Figure 2(b) shows typical pulse spectra for the negative
s values characteristic of PhCWGs. The pulse spectrum is
clearly rendered asymmetric in the presence of self-steepening.
The blueshifted peaks become more intense, while the red
components are notably broader compared to the symmetric
broadening characteristic of self-phase modulation (SPM).
The role of β2 is less pronounced.

IV. SELF-STEEPENING IN SEMICONDUCTORS

In our analysis thus far we have ignored several effects
present in practical systems. The role of linear loss has been
previously studied and in the limit αzs > 1 shock waves are
unobservable altogether [17]. For the waveguide experiments

referenced above the linear loss is given by α = 15 dB/cm (at
ng = 15). This yields αzs = 0.11, indicating these waveguides
can in principle support shocks.

However, in semiconductor media we must also consider
nonlinear absorption of multiple photons across the electronic
band gap. For a typical wavelength of 1550 nm (photon energy
of 0.8 eV), silicon (Eg = 1.1 eV) is restricted by two-photon
absorption (TPA), and the wide-gap material GaInP (Eg =
1.9 eV) is limited by three-photon absorption (3PA). While
the optical properties of silicon have been widely studied, only
over the past few years have we investigated the χ (3) properties
of GaInP and established this material as a viable platform for
nonlinear optics at 1.5 μm [12,22,32,36]. In simplest terms,
nonlinear absorption damps the dynamics similar to linear
absorption. An order of magnitude estimate shows that the
loss due to TPA (3PA) requires α2Izs < 1 (α3I

2zs < 1), with
the intensity I = Po

Aeff
, to observe a shock. Physically these

ratios compare the strength of the nonlinear loss to the self-
steepening term.

For the TPA case (e.g., silicon, α2=1 GW/cm [37]) the ratio
α2Izs = 0.43

|s|
α2

kon2
≈ 1.8 indicating SS-induced shocks are not

generally accessible in this material, even for this large s =
−0.1. Here we have defined a nonlinear figure of merit (FOM)
for self-steepening and TPA. Its form is noticeably similar
to the well-known version for Kerr-TPA switching ( α2

kon2
) [38]

with the additional term for SS. Notice this ratio is independent
of power for TPA and therefore SS will always be much weaker
than TPA. Since TPA dominates the SS effect, we focus mainly
on the 3PA system in the following analysis.

The 3PA material (e.g., GaInP, α3 = 0.013 GW2/cm3 [39])
is much more favorable, yielding α3I

2zs = 0.43
|s|

α3I

kon2
� 1,

which is satisfied for intensities up to ≈ 50 GW/cm2. This
threshold is intensity dependent due to the different nonlinear
orders of χ (3) Kerr and χ (5) 3PA. Including the slow-light
enhancements α3 ∝ n3

g and n2 ∝ n2
g this relation becomes

0.43
|s|

α3I

kon2
( ng

no
) � 1 and is satisfied up to ≈ 10 GW/cm2 for

the conditions here. In contrast, the TPA-limited SS case
does not scale with slow light. Note these estimates are only
indicative and do not correspond to strict thresholds. For larger
powers, free-carrier absorption would play an important role
until the peak power falls below its threshold. Now that we
have established the role of nonlinear loss, we describe the
free-carrier effects.

Free carriers generated via these nonlinear absorption
mechanisms have an equally significant impact in the pulse
dynamics through both dispersive (FCD, nFC) and absorptive
(FCA, σ ) contributions. Importantly, the physical signatures
of anomalous self-steepening strongly resemble those of FCD,
especially in the time domain. Namely, like anomalous SS, the
pulse also advances as a function of input power due to FCD
combined with anomalous GVD as our recent experiments
show [22,40].

A broader GNLSE including all of these effects is

∂A

∂z
= −α

2
A + ıD(ı∂t )A(z,t) +

(
ikonFC − σ

2

)
Nc(A)A

+
(

iγeff − γ1
∂

∂t
− α2eff

2

)
|A|2A − α3eff

2
|A|4A. (5)
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The dispersion operator D(ı∂t ) = ∑
n�2(∂n

ωk)(ı∂t )n/n ac-
counts for dispersion at all orders, with t being the retarded
time in the moving frame at velocity c/ng−ω0 .

The free-carrier density Nc(z,t) is controlled by the gen-
eration and recombination of the 3PA-induced free carriers
according to the following rate equation:

∂Nc

∂t
= ρ

(3)
FC|A|6 − Nc

τc

, (6)

where we have defined the power-normalized carrier gen-
eration rate ρ

(3)
FC = α3/(3�ω0A

3
5eff), with the photon energy

�ω0, and the effective free-carrier lifetime τc. We assume
no intrapulse recombination for our short pulses here and a
long repetition rate such that the last term is negligible and
Eq. (6) can be solved by direct integration. As the carriers
accumulate across the pulse, there is a time-delayed response
of the free-carrier effects.

For the modeling below, we take the slow-light-scaled
values of the bulk parameters as described in prior lit-
erature [36,40]. The parameters are α3eff = α3

A2
5eff

( ng

n0
)
3 =

18 m−1.W−2, nFC,eff = nFC( ng

n0
) = −1.8 × 10−26 m3, and

σeff = σ ( ng

n0
) = 1.3 × 10−20 m2. The 3PA area is A5eff[36].

As a guideline the third-order dispersion (TOD, β3 = 1
c

d2ng

dω2 )
is about +0.7 ps3/mm. For completeness, the higher-order
dispersion terms with order >3 were also included, but they
play only a minor role. The dispersion operator D(ı∂t ) =∑

n�2(∂n
ωk)(ı∂t )n/naccounts for dispersion at all orders, with

t being the retarded time in the moving frame at velocity
c/ng−ω0 . Regarding one case briefly presented below where
the material is limited by TPA (silicon), we take α2eff =
α2
Aeff

( ng

n0,Si
)
2 = 570 (W m)−1. It is worthwhile to point out that

these parameters correspond to actual experimental parameters
and therefore are immediately realizable in current systems.

Figure 3(a) shows the pulse temporal shift due to the
competing self-steepening and FCD effects in the 3PA limited
material (α2 = 0) at an input peak power of 8 W after a
propagation distance of 500 μm. When considered in isolation,
the FCD-GVD curve (blue, no SS) and SS-only curve (red,
no FCD) each would contribute a few picoseconds of delay.
Moreover they have a relatively similar temporal shape. Note
these effects do not add linearly, but rather compete for power
and interact dynamically to yield the full result (green).

Importantly, the spectral features of FCD and SS are
distinct. Figure 3(b) shows the spectral properties of pulses
propagating in the 3PA system. Considering only the self-
steepening effect (red curve) results in a minor modulation to
the symmetric shape expected from SPM only and does not
shift the spectral center of mass. In contrast, the FCD induces
a clear blueshift in the pulse center of mass [22]. When we
consider these effects simultaneously (green curve), the FCD
is clearly the dominant contribution. Thus these effects are
more easily distinguished in the spectral domain.

The nonlinear scaling laws of SS and the FCD-GVD
temporal shift are also notably different. Notice τNL ∝ Po

whereas FCD(2) ∝ P 2
o (TPA) or FCD(3) ∝ P 3

o (3PA), where we
have written FCD(m), with m indicating the order of nonlinear
absorption generating the free carriers. Figures 3(c) and 3(d)
report the scaling of SS and FCD as a function of power for

FIG. 3. (Color online) Temporal and spectral behavior of anoma-
lous self-steepening after a propagation distance of 500 μm in
realistic PhCWGs. (a) Temporal traces for 3PA-limited materials:
full (green), FCD alone (blue), self-steepening alone (red). The black
lines correspond to the input pulse. (b) Spectra for 3PA-limited
materials. (c)-(d) Pulse temporal advance as a function of power
for (c) 3PA-limited (solid) and (d) TPA-limited (dashed) systems.
Green curves correspond to the full model in Eq. (5). Blue lines are
the case where we neglect SS, whereas red lines indicate when FCD
is neglected. We include the full 3PA result in (d) to compare the
relative scales of the two systems.

3PA [Fig. 3(c)] and TPA-limited [Fig. 3(d)] materials. We
observe SS (red curve) scales much more slowly compared to
FCD (blue curve). The full simulation (green dashed) more
closely follows SS at low powers and the FCD trend at higher
power. For the TPA case [Fig. 3(d)] the SS-induced delay is
noticeably smaller due to stronger nonlinear TPA loss which
caps the peak power more than the 3PA case. In Fig. 3(d)
we also show the 3PA curve for comparison, highlighting the
greater temporal shift in this case.

The striking similarity of the temporal advance and pulse
shapes from both SS and FCD-GVD are highlighted in recent
experimental results. The GaInP waveguides in both cases are
similar to that in Fig. 1(c), with relatively small values of τNL

compared to that highlighted in this work. In this 3PA-limited
system the temporal advances are attributed to FCD-GVD
supported with numerical modeling [22], however, with no SS
term. Similar results were shown in Refs. [40,41] in silicon. In
contrast, a pulse advance attributed to SS only was reported in
Ref. [23]. Critically that report did not include the important
contribution of the FCD-GVD term, but rather attributed it to
SS alone. As we have shown here, the FCD-GVD advance
plays an equally important role as SS and cannot be ignored.

The true physical situation is likely a combination of these
effects though the exact scaling would be challenging due
to soliton dynamics modulating the peak power and requires
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FIG. 4. (Color online) Role of instantaneous SS and nonlocal
FCD on pulse delay. (a) Contribution of SS alone (red) and FCD
alone (blue) to the total pulse delay (green) for propagation lengths
up to 1 mm. (b) Peak power evolution corresponding to the cases
presented in the upper panel. Note the low overall peak power after
500 μm of propagation. Legend: full model (green), no free carrier
effects (red), no SS (blue).

careful experiments and numerical modeling to discern the
effects. Nonetheless, one could use the moments method in
Ref. [42] to estimate the magnitude of the temporal shift from
FCD-GVD or the SS time-shift equation given above for order-
of-magnitude values.

One last important aspect to consider is the relative impact
of the instantaneous SS and nonlocal FCD effects on pulse
delay during propagation. The SS-induced delay depends
directly on the instantaneous peak power and hence will
eventually decrease due to linear and nonlinear loss. In
contrast, the effect of FCD on the group velocity persists even if
the pulse peak power decreases. Physically this results from the
spectral FCD frequency blueshift and accompanying change
in the group velocity experienced by the pulse [42].

Finally we show the evolution of the nonlinear dynamics
of the pulse propagating down the waveguide. Figure 4(a)

shows the change in pulse delay along the waveguide length
for the two mechanisms in the 3PA system at a peak power
of 8 W. The change in delay due to the SS effect (red,
FCD = 0 and FCA = 0) is strongest in the first 200 μm
and then tapers off due to loss. The FCD effect (blue, γ1 = 0)
continues to experience a change in delay right until the end
of the propagation with the full curve (green) more closely
resembling this case. Figure 4(b) shows the corresponding
peak power evolution, which gives insight into the dominant
nonlinear mechanism as the pulse evolves. We attribute the
initial increase in peak power to soliton compression.

V. CONCLUSION

We investigated the nonlinear self-steepening effect in
photonic crystal waveguides. Our first-principles derivation
in the nanostructured periodic waveguides revealed a self-
steepening term two orders of magnitude larger than typical
systems. Importantly the self-steepening coefficient τNL is
determined by the geometric parameters of the waveguide,
offering a large tuning range of both positive and negative
values. The origin of this giant τNL is the strong dispersion of
PhCWGs counterbalanced by a modal area contribution. We
considered the role of higher-order effects in practical systems
with our defined figures of merit, concluding that the nonlinear
loss quenches the dynamics. We showed that the principal
physical signature of the anomalous SS effect is a temporal
forward tilt and pulse advance in contrast to the delay observed
in normal SS media. In the semiconductor waveguides these
effects compete with FCD which also advances the pulse,
whereas the spectral signatures of self-steepening and FCD
are distinct. We suggest future experiments exploring the full
range of these dynamics be undertaken to reveal the full
dynamics of this giant tunable self-steepening mechanism,
especially in the supercontinuum regime.
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