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Abstract 15 

The land surface-atmosphere interaction is described differently in large scale surface schemes of regional 16 

climate models and small scale spatially distributed hydrological models. In particular, the hydrological 17 

models include the influence of shallow groundwater on evapotranspiration during dry periods where soils 18 

are depleted and groundwater is the only water supply. These mechanisms are analysed by combining a 19 

distributed hydrological model (MIKE SHE) and a regional climate model (HIRHAM) and comparing 20 

simulation results to the FIFE area observation data in Kansas, USA. The numerical experiments include five 21 

simulations. First MIKE SHE is forced by observed climate data in two versions i) with groundwater at a 22 

fixed uniform depth, and ii) with a dynamical groundwater component simulating shallow groundwater 23 

conditions in river valleys. iii) In a third simulation MIKE SHE is forced by HIRHAM simulated 24 

precipitation. The last two simulations include iv) a standard HIRHAM simulation, and v) a fully coupled 25 

HIRHAM-MIKE SHE simulation locally replacing the land surface scheme by MIKE SHE for the FIFE 26 

area, while HIRHAM in standard configuration is used for the remaining model area. 27 

The results show a clear correlation between depth to the groundwater and evapotranspiration with a distinct 28 

groundwater depth threshold at 0.5-3 m. During the dry summer period the two MIKE SHE simulations 29 

using distributed groundwater reproduced evapotranspiration better than MIKE SHE with unsaturated flow 30 

alone and the HIRHAM simulations. This indicates that including dynamic groundwater in a fully coupled 31 

climate-hydrological model may improve evapotranspiration fluxes from areas with shallow groundwater 32 

tables. 33 
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Introduction 38 

The hydrological cycle has traditionally been studied in two separate parts. The climate and meteorological 39 

communities have developed models describing the atmospheric part with redistribution of energy and 40 

moisture, while hydrologists have developed models for the terrestrial part including processes for river, soil 41 

moisture and groundwater (Shelton 2009). As a result hydrological impact studies of climate change have 42 

generally been carried out by simply forcing hydrological models with output from climate models (e.g. 43 

Graham et al. 2007; van Roosmalen et al. 2007). In this type of approach, feedback from the terrestrial part 44 

of the hydrological cycle to the atmosphere is neglected, which may result in significant errors (Seneviratne 45 

et al. 2010). 46 

In modelling the land surface energy balance, the representation of the soil moisture in particular is found to 47 

be crucial (Sellers and Hall 1992). Significant errors may arise if the spatial variability is not included, e.g. 48 

by use of simple averaging (Wood 1997). The spatial variability of soil moisture can be modelled in different 49 

ways. Giorgi and Avissar (1997) provided a description of different approaches of including surface 50 

heterogeneities in atmospheric models. In Kollet and Maxwell (2008) the land surface influence on surface 51 

fluxes is further investigated documenting a distinct correlation between groundwater depth and 52 

evapotranspiration. 53 

The effect of the feedback from soil moisture and land surface processes on the atmosphere has been studied 54 

in a range of studies. Miguez-Macho et al. (2007) showed that the inclusion of groundwater can lead to 55 

substantially wetter soils in some valley and coastal regions using the RAMS-hydro which is a non-56 

hydrostatic regional climate model including a groundwater component. Using the same model setup, Anyah 57 

et al. (2008) showed that for regions where the groundwater table produces wetter soils a direct improvement 58 

in the reproduction of evapotranspiration is seen for dryer areas in North America. The influence of land 59 

surface temperatures and spatio-temporal soil moisture distribution on the simulation of sensible and latent 60 

heat fluxes is highlighted by Zeng et al. (2003) using the RegCM2 regional climate model over Eastern 61 

China.  62 

To account for the feedback between the land surface and the atmosphere coupled hydrological-atmospheric 63 

models have emerged. Yuan et al. (2008) implemented a simple groundwater model into the regional climate 64 

model RegCM3. They found that the dynamical groundwater table affected the surface fluxes and hereby the 65 

boundary layers, the location of precipitation and the wind. Maxwell et al. (2011) coupled ParFlow to the 66 

Advanced Weather and Research model WRF (Skamarock et al. 2008) and highlighted the influence of soil 67 

moisture in predicting the boundary wind layer. Overgaard et al. (2007) investigated the coupling of MIKE 68 

SHE (Graham and Butts 2005) to ARPS (Xue et al. 2000; 2001). In a hypothetical land use change study 69 

they found significant differences between the results of the coupled model system and the traditional one-70 

way approach, where MIKE SHE was forced by ARPS. York et al. (2002) illustrated how a future change in 71 

groundwater may affect the future evapotranspiration; e.g. long continuous drying, like the 1930 dust bowl, 72 

might lower the groundwater table making less water available for evapotranspiration. York et al. (2002) also 73 

found that groundwater dynamics had to be considered for proper long term simulation of droughts. 74 
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Among regional climate models (RCMs) a general bias related to the representation of surface processes was 75 

found within the ENSEMBLES project (van der Linden and Mitchell 2009). In simulations forced by the 76 

ERA-40 reanalysis many models showed an increased warm bias with increasing monthly mean 77 

temperatures (Boberg and Christensen 2012; Christensen et al. 2008). A similar warm bias was reported 78 

within the PRUDENCE project (Jacob et al. 2007). Christensen et al. (2008) explained this bias in terms of 79 

the simulated soils in the warm dry summer months which become too dry and thereby created 80 

unrealistically high sensible heat fluxes. They argued that this is because of the simplistic land surface 81 

representation in many RCMs. Arguably, coupling the RCMs to a hydrological model may reduce the 82 

temperature bias as the hydrological model provides a comprehensive and perhaps more accurate surface 83 

flux calculation than the generally simpler schemes typically embedded in a RCM. 84 

The objectives of the present study are; 1) to analyse the importance of including groundwater dynamics in 85 

the estimation of land surface – atmosphere feedbacks, and; 2) to evaluate potential benefits and challenges 86 

in the hydrology-land surface response when applying a fully coupled climate-hydrological model with an 87 

advanced land surface flux scheme. The FIFE area in Kansas, USA, is used as a test case for evaluating the 88 

effects of replacing the land surface scheme in HIRHAM regional climate model with a high resolution 89 

MIKE SHE based hydrology and land surface model including groundwater. 90 

 91 

Methodology 92 

Observations /study area 93 

During the First International Satellite Land Surface Climatological Project (ISLSCP) Field Experiment 94 

(FIFE) (Sellers et al. 1992) an area of 15 x 15 km2 near Manhattan in Kansas, USA, was intensively 95 

monitored. The FIFE data set consists of a high number of meteorological station, soil and vegetation data 96 

and is therefore ideal for testing land surface models (Sellers et al. 1992). The FIFE land surface can be 97 

characterized as tallgrass prairie at an elevation between 350 – 450 m.a.s. The data used in the present study 98 

is monitored from May 26th to October 16th in 1987, with four intensive field campaigns of roughly two 99 

weeks duration (Betts and Ball, 1998). The soils are all either silty loam or silty clay loam (Huemmrich and 100 

Levine 1994; Kanemasu 1994). Below the soils there are layers of limestone and shale. Since FIFE is defined 101 

as a square and not a hydrological catchment, measurements of total discharge were not applicable. 102 

Discharge is therefore only measured in the 12 km2 King’s Creek catchment at 15 min intervals, when flow 103 

rates exceeded 3x10-4 m3/s (Wood 1994). 104 

  105 

Models 106 

MIKE SHE (Graham and Butts 2005) is an integrated distributed numerical modelling system. In this study 107 

the model is configured using the modules for overland flow (2D diffusive wave), unsaturated flow (1D 108 

Richards’ equation), saturated groundwater flow (3D Darcy equation) and evapotranspiration (two-layer 109 

Shuttleworth and Wallace scheme; Overgaard 2005). 110 

HIRHAM is a regional climate model (Christensen et al. 2006). It consists of the dynamical core of the 111 

synoptic scale weather forecast model HIRLAM (Undén et al. 2002) where the physical parameterisation 112 
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schemes are replaced by those from the global circulation model ECHAM (Roeckner et al. 2003). The land 113 

surface model has five layers for calculation of soil temperature and the water budget is formulated with four 114 

reservoirs: snow intercepted by canopy, snow at surface, rainwater intercepted by canopy and soil water.  115 

For the coupled simulations MIKE SHE and HIRHAM are linked using the OpenMI software (Open 116 

Modelling Interface) (Gregersen et al. 2007) facilitating data transfer across the operational platforms of 117 

Windows and a Linux high performance parallel computation system (HPC). The coupling approach is 118 

described in Butts et al. (2014). OpenMI also handles the data exchange timing, variable definitions, unit 119 

conversions and spatial interpolation.  The coupling is performed with each model operating at dedicated 120 

spatial scales: The RCM covers about half of the USA (Fig. 1), while the hydrological model only covers the 121 

15 x 15 km2 FIFE area corresponding roughly to a single RCM grid. Outside the FIFE area, the land surface 122 

processes in the coupled model are based on the HIRHAM scheme. Data are exchanged between the two 123 

models every hour. 124 

 125 

Hydrological model parameterisation and data processing 126 

The MIKE SHE setup in this study is an extension of the setup described in Rasmussen et al. (2012a), where 127 

modules for saturated groundwater flow and streamflow are now included. Parameterisation of the 128 

unsaturated zone is taken directly from field data from FIFE and literature (Rasmussen et al. 2012a). In 129 

contrast, no direct data are available for parameterisation of the saturated zone and streams. Therefore, these 130 

modules are parameterised by a combination of default or literature values or literature and calibration. 131 

Calibration has been performed against discharge measurements of King’s Creek (Fig. 1). 132 

When running MIKE SHE in uncoupled mode the atmospheric driving data are station based from the FIFE 133 

data base consisting of ten meteorological stations with half-hourly collection (Dabberdt 1994). The 134 

classification of vegetation is based on Davis et al. (1992). The classification includes a combination of 135 

either burned or unburned and either upland, bottomland, moderate slope or steep slope. Vertically, the soils 136 

are parameterised based on the five soil profile analyses in the FIFE data base (Huemmrich and Levine 1994; 137 

Kanemasu 1994). Horizontally, the classification is based on the soil map provided in the FIFE data base, 138 

where each type has been related to one of the five soil profile,  a mean soil profile or a coarser texture 139 

unknown profile (Rasmussen et al. 2012a). The unsaturated zone is initialized with soil moisture at 140 

equilibrium pressure; i.e. field capacity at the surface and full saturation at the top of the groundwater table. 141 

Layers of near-horizontal and relatively impermeable shale and thin limestone layers are underlying the 142 

surface soil (Davis et al. 1992). The hydraulic conductivity of the limestone is in the range 10-8 – 10-3 m/s 143 

(Macpherson 1996). The shale and limestone layers are assumed to be more fractured and porous near the 144 

surface, because of weathering. Therefore, the transport of water is assumed to only be important in the top 145 

of the shale and limestone layers. The aquifer is represented by a 2D model with the impermeable bed 146 

located at 10 m below the surface and a calibrated hydraulic conductivity of 5 x 10-6 m/s. Rapid localised 147 

run-off in sub-grid scale creeks and gullies on the hills and slope are represented conceptually as drains. The 148 

drain level is 1 m below the surface and the drain constant is calibrated to 10-5 s-1. The drains are activated, 149 
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when the groundwater table exceeds this level, and the water is then routed to the nearest stream based on the 150 

topography. 151 

The locations of streams are derived from a digital elevation model at a 25 m grid (Strebel et al. 1994). In the 152 

King’s Creek catchment streams have been inserted in the model for reaches with catchments larger than 1.5 153 

km2, while this limit has been set to 10 km2 for the remaining part of the FIFE area. Idealised V-shape cross 154 

sections are defined along the streams and interaction with the aquifer is only controlled by the hydraulic 155 

conductivity of the aquifer. 156 

The location of the groundwater table is unknown. The initial groundwater head conditions for the FIFE 157 

observation period have therefore been simulated by running the model for a sufficiently long warm-up 158 

period so that the given initial conditions do not influence the simulation results. This was achieved by three 159 

looped simulations of the period January 1st 1985 to December 31st 1987, each time saving the groundwater 160 

heads which were then used as an initial condition for the following run.  161 

 162 

HIRHAM setup 163 

HIRHAM (version 5; Christensen et al. 2006) is run over a domain covering the central US, forced by ERA-164 

40 reanalysis data (Uppala et al. 2005). The domain is 122 by 122 cells with a resolution of 0.125 degrees 165 

and 31 vertical levels (Fig. 1). HIRHAM uses a rotated longitude/latitude model grid. The origin in this setup 166 

is located at FIFE Lon. -96.5 Lat. 39.0. The HIRHAM simulation is started on January 1st 1987, yielding five 167 

month of spin up. In the coupling HIRHAM is started from an uncoupled restart file on May 1st. 168 

 169 

Experimental setup 170 

Five model runs were performed: 171 

• Run “MSHE-UZ-OBS” is taken from Rasmussen et al. (2012a). This MIKE SHE run represents a 172 

distributed 1D unsaturated zone (UZ) setup with a uniform stationary groundwater table at 3 m depth 173 

and distributed meteorological forcings, soils, vegetation and overland flow. The grid resolution is 174 

60 m. The simulation starts at May 1st 1987. 175 

• Run “MSHE-SZ-OBS” includes streamflow modelling and the saturated zone (SZ) as a single 176 

aquifer with uniform properties. The simulation is started at May 1st 1987. The initial groundwater 177 

table is taken from the final warm up run at May 1st 1987. 178 

• Run “MSHE-SZ-HH” is identical to MSHE-SZ-OBS but the simulated precipitation input from 179 

HIRHAM-STD (see below) is used. This allows a direct comparison between evapotranspiration 180 

schemes based on the same input.  181 

• Run “HIRHAM-STD” is a HIRHAM simulation with its own land surface model. The simulation is 182 

started on January 1st 1987. 183 

• Run “HIRHAM-MSHE” is a coupled run of HIRHAM and MIKE SHE (including groundwater and 184 

therefore coupling from the groundwater to the atmosphere over the FIFE area). The simulation is 185 

started May 1st 1987 from an uncoupled restart file of the HIRHAM-STD run and groundwater table 186 

as for MSHE-SZ-OBS and MSHE-SZ-HH. 187 
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 188 

Results 189 

Groundwater conditions and the influence of evapotranspiration and soil moisture 190 

A direct calibration of the groundwater model was not possible, since there are no observed groundwater 191 

head data. The data providing most relevant information on groundwater conditions are therefore the 192 

baseflow recession parts of the discharge hydrograph at King’s Creek (Fig. 2). The location of King’s Creek 193 

and the discharge station is seen in Figure 1. The simulated discharge corresponds well to the temporal 194 

pattern and magnitude of the observations and the recession parts of the simulated hydrograph have largely 195 

similar shape as in the observed hydrograph. The similar shape of the hydrograph recessions indicates that 196 

the baseflow conditions, and hence the overall stream-aquifer interactions, are represented by the model. A 197 

perfect match in the timing of peaks cannot be expected in the warm up period (before May 1st 1987) as the 198 

precipitation input is not recorded within the catchment. In the FIFE period only one peak occurs at the end 199 

of May to mid-June. 200 

Another indication of a plausible representation of groundwater by the model is the depth to the groundwater 201 

table, which is expected to be small in the bottom of the valleys and larger at the hill tops. Wood (1997) 202 

estimated the mean water table depth, based on the soil-topographic index of TOPLATS (Famiglietti and 203 

Wood 1994), to be 3.5 m in dry conditions and 2.0 m in wet conditions for the King’s Creek catchment. The 204 

simulated depth to the groundwater table at the beginning of the FIFE period is seen in Figure 1 where the 205 

mean depth to the groundwater is 3.6 m for the whole FIFE area and 4.3 m for the King’s Creek catchment. 206 

The simulated spatial distribution of depth to the groundwater is similar to the distribution of the soil-207 

topographic index by Famiglietti and Wood (1994). 208 

To illustrate the direct influence of the groundwater table on evapotranspiration, Figure 3 shows the 209 

simulated groundwater depths and evapotranspiration for three grid cells with the same vegetation, soil type 210 

and meteorological forcing. The three cells are selected as one of the highest and one of the lowest depths to 211 

groundwater table and one in between. The two cells with ~2 and 8 m depth to the groundwater table have 212 

similar evapotranspiration, while the cell with shallow groundwater table (0-0.5 m below the surface) has a 213 

much larger evapotranspiration. 214 

Figure 4 shows the depth to the groundwater table plotted against evapotranspiration on August 1st for cells 215 

of two selected soil types for the MSHE-SZ-OBS simulation. The greatest spread in evapotranspiration, in 216 

cells with groundwater depth greater than 2 m, is seen among the different classes of soil types; exemplified 217 

by the two shown soil types. The spread among vegetation types and meteorological stations is similar (not 218 

shown). The largest variation in the relationship between evapotranspiration and depth to groundwater is 219 

found among these soils for cells with groundwater depth less than 2 m. Each point on Figure 4 has been 220 

coloured according to meteorological forcing. The different meteorological stations result in different levels 221 

of evapotranspiration at groundwater depth greater than 2 m. Depending on the soil type, the depth where the 222 

groundwater table becomes unimportant varies from 1to 3 m (Soil type Silty loam to Silt - not shown). The 223 

results are to some extent influenced by the model setup: (i) as the drainage depth is located at 1 m below the 224 

surface in all grids, except at the bottomland vegetation in the low lying river valleys, the model may not be 225 
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able to correctly simulate shallow groundwater table of less than 1 m depth; and (ii) the vertical 226 

discretization in the unsaturated zone has some effect on the calculated groundwater table. 227 

Observed and simulated areal mean evapotranspiration and soil moisture changes in the unsaturated zone 228 

during the FIFE period are shown in Figure 5. The simulated evapotranspiration by MSHE-UZ-OBS and 229 

MSHE-SZ-OBS are largely similar, except for the dry period from mid-July to beginning of August, where 230 

MSHE-SZ-OBS has a higher evapotranspiration than MSHE-UZ-OBS. Also, the MSHE-UZ-OBS and 231 

MSHE-SZ-OBS simulations reproduce the observed evapotranspiration levels and temporal patterns whereas 232 

the MSHE-SZ-HH evapotranspiration is distinctly different. The soil moisture as simulated by MSHE-SZ-233 

OBS is continuously drier than MSHE-UZ-OBS but otherwise comparable (Fig. 5). Most of this difference 234 

can be explained by the differing groundwater table forming the lower boundary condition for initialisation 235 

of the unsaturated zone with equilibrium pressure condition, which results in different initial soil moisture 236 

contents. 237 

 238 

HIRHAM simulations and the effect of the land surface  239 

The influence of land surface scheme on the simulation of six meteorological variables is shown in figure 6. 240 

This compares the output from HIRHAM-STD and HIRHAM-MSHE with observations for the RCM grid 241 

cell covering 72 % of the FIFE area. For the entire period there is generally a reasonable match between 242 

simulations and observations. Some exceptions include overestimation of air temperature and discrepancies 243 

in incoming shortwave radiation. These are affected by differences in cloud cover between simulations and 244 

observations where spatial scale issues and cell averaging have a large effect. For the single HIRHAM cell 245 

over the FIFE area precipitation does not occur on the same days as observed and is generally over-246 

estimated, most notably for the HIRHAM-MSHE simulation. From May 1st to Oct 16th the observed 247 

precipitation is 495 mm whereas the HIRHAM-STD and HIRHAM-MSHE levels are 684 and 1523 mm 248 

respectively. The largest HIRHAM-MSHE overestimations occur during the first half of the FIFE period. 249 

This geographical region is subject to highly dynamic convective precipitation with a high degree of 250 

variability on spatial scales compared to the HIRHAM grid cell resolution of the present study. To illustrate 251 

this, precipitation output from the 5 RCM cells surrounding the FIFE grid cell (11x11 cell output size; 150 252 

km x 150 km area) are extracted and these vary between 420-1310 mm for HIRHAM-STD and 542-1777 253 

mm for HIRHAM-MSHE. 254 

The comparison between the uncoupled HIRHAM-STD and the coupled HIRHAM-MSHE shows that the 255 

difference between the two models is negligible for many meteorological variables, such as surface air 256 

pressure. This is not surprising, since the coupling is very localized, i.e. MIKE SHE is only replacing the 257 

HIRHAM-STD scheme in the local 15 x 15 km2 FIFE area. However, for some variables such as air 258 

temperature and precipitation there are notable differences (Fig. 6).  259 

 260 

Effect of meteorological forcing and land surface scheme on evapotranspiration and soil moisture 261 

The MSHE-SZ-HH simulated evapotranspiration show a distinctly different dynamics than the observation 262 

driven simulations (Fig. 5). This clearly shows the influence of precipitation on evapotranspiration. The 263 
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simulated daily variations in evapotranspiration do not appear to match and the main variations appear 264 

related to precipitation events (Fig. 6). For MSHE-SZ-HH the highest precipitation events occur around 27 265 

May – 2 June, 4-12 July and in mid-August. The general evapotranspiration level, and total period budget, is 266 

however reproduced with a sum of 531 mm compared to the observed 540 mm (Table 1). Similarly to the 267 

simulated evapotranspiration, MSHE-SZ-HH reflects positive soil moisture changes temporally related to 268 

precipitation events in, especially, early July and early August. 269 

Figure 7 shows simulated evapotranspiration and soil moisture change of the unsaturated zone by MSHE-270 

SZ-OBS, HIRHAM-STD and HIRHAM-MSHE. Firstly, it should be noted that the nature of the simulations 271 

resulted in substantial differences in precipitation input complicating the analysis (Table 1) and especially 272 

the HIRHAM-MSHE run is an outlier with approximately three times the observed precipitation during the 273 

period. These differences are also reflected in the evapotranspiration levels especially for June-July. 274 

The differences in the MIKE SHE and HIRHAM land surface schemes is seen to have a substantial effect on 275 

evapotranspiration and soil moisture (Fig. 7 and Table 1): The precipitation input for MSHE-SZ-HH and 276 

HIRHAM-STD is the same and differences are therefore due to energy flux schemes and the complexity in 277 

hydrological processes, and in particular groundwater. Comparing the MSHE-SZ-HH and HIRHAM-STD 278 

evapotranspiration, the latter shows a more dynamical behaviour and general higher levels (531 and 586 mm 279 

respectively, table 1). In the dry period, from 13 July to 12 August, MSHE-SZ-HH more closely resembles 280 

the observations than HIRHAM-STD, where the evapotranspiration is generally higher. For soil moisture 281 

MSHE-SZ-HH and HIRHAM-STD are more similar except in the dry mid-summer period where HIRHAM-282 

STD is depleted at a faster rate than MSHE-SZ-HH which also resembles the observations by having the 283 

same gradient. The high precipitation input in the HIRHAM-MSHE run is also reflected in overall higher 284 

evapotranspiration levels as well as peaks and the soil moisture change patterns resemble the HIRHAM-STD 285 

with variations related to differences in precipitation. The precipitation in HIRHAM-MSHE is around twice 286 

as high as in the HIRHAM-STD simulation, the runoff is nearly three times as high (Table 1) whereas the 287 

evapotranspiration is 1.3 mm/d higher. Thus, a high intensity precipitation event causes increased runoff due 288 

to exceedance of infiltration capacity, whereas the soil moisture and evapotranspiration is less affected. 289 

In HIRHAM-MSHE the general levels of simulated evapotranspiration are higher than the MIKE SHE based 290 

simulations and equal to the HIRHAM-STD simulation at all groundwater depths as seen for 1 August in 291 

figure 8a. The MSHE-SZ-OBS and MSHE-SZ-HH evapotranspiration levels are generally comparable 292 

although the latter is higher for depths to the groundwater lower than app. 1.75 m and vice versa. The 293 

groundwater depth at which there is an influence on the evapotranspiration diminishes at levels of 0.5-3 m, 294 

and evapotranspiration reaches levels of 6-11 mm/day for the highest groundwater levels. All three 295 

simulations with distributed groundwater have a peak in groundwater depths at the intervals of 0.5-0.75 m or 296 

0.75-1 m and there is a tendency for a positive correlation with precipitation amount input and share of lower 297 

groundwater depth grid cells (Fig. 8b).       298 

 299 

Discussion 300 
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The present study shows results from simulation with two different land surface schemes, varying 301 

groundwater conditions and varying precipitation input. It is shown that enhancements in the representation 302 

of groundwater improve the simulation of evapotranspiration (Fig. 5) and, not unexpectedly, that 303 

precipitation amounts as well as timing is equally important to reproduce evapotranspiration (Fig. 5 and 7). 304 

However, the 178 mm difference between observed and simulated (HIRHAM-STD) precipitation input 305 

results in negligible differences in evapotranspiration where instead the unsaturated storage and river 306 

drainage is affected. Evidence of the potentially added value of coupling an RCM to a hydrological model, 307 

especially in dry periods where evapotranspiration substantially exceeds the net precipitation is seen. In the 308 

dry period within the FIFE experiment (mainly July and start August) HIRHAM-STD overestimates the 309 

evapotranspiration, implying that the soil moisture is not a limiting factor. In contrast, MSHE-SZ-HH, using 310 

the same precipitation input, simulates a drying of the soil and a reduction in the evapotranspiration (Fig. 7). 311 

The MSHE-SZ-OBS simulation, including groundwater, shows how evapotranspiration is high during the 312 

dry period for the cells with shallow groundwater table (Fig. 3).The MSHE-UZ-OBS simulation with 313 

uniform groundwater table at 3 m does not have shallow groundwater in the valleys and cannot maintain 314 

evapotranspiration during the dry out period (Fig. 5), while it is able to represent evapotranspiration in areas 315 

with a groundwater depth >2 m (Fig. 8a). The simulations suggest that the area, where groundwater is less 316 

than 2 m deep, represents 35 % of the total FIFE area at the end of the dry out period. Resolving the 317 

groundwater conditions adequately requires a hydrological model with fine resolution, depending on the 318 

topography of the catchment and especially the width of the river valleys. Typically, the soil and vegetation 319 

may differ in the valleys compared to the surroundings. Therefore, a finer spatial resolution of the valleys 320 

may be required to simulate the effects of different soils (like Fig. 4). In our case grid sizes in the order of 321 

60-240 m are required (Rasmussen et al. 2012a). If, however, the effect of shallow groundwater is 322 

disregarded, the hydrological model can be run at much coarser resolution as long as the variation in 323 

vegetation and soil types are preserved (Rasmussen et al. 2012a). The mosaic approach used here for 324 

modelling the land surface with a high resolution hydrological model is computationally demanding. 325 

Running a coupled climate simulation with MIKE SHE at 60 m resolution for the whole HIRHAM domain is 326 

not feasible with the current computational capacity and would also require extensive validation of the MIKE 327 

SHE model. The local coupling approach allows the high resolution hydrological model to be applied only 328 

for areas of particular importance for the land surface atmosphere interaction or for areas where the 329 

hydrological effects of climate change are of interest. Computationally more efficient, statistical methods 330 

exist for handling subgrid variability in soil, vegetation, topography and groundwater depth, but they do not 331 

allow changes in groundwater table due to e.g. climate change. 332 

This study found differences in daily evapotranspiration rates of ~6 mm/day in the dry period between two 333 

similar cells with groundwater tables in 0.5 and 2 m depth, respectively. Likewise, Kollet and Maxwell 334 

(2008) and Maxwell and Kollet (2008) found strong correlation between depth to groundwater and 335 

evapotranspiration at groundwater depths, which they term the critical zone. In their study of the Little 336 

Washita in Oklahoma the critical zone is between 1 and 5 m below the surface, while the corresponding 337 

depths in our results are between 1 and 3 m below the surface. Considering that the two studies are from 338 
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different locations with differences in soils and vegetation, model codes with different conceptualisations of 339 

unsaturated zone flows and root water uptake and that none of the studies are validated against field data, our 340 

results support the overall conclusion of Kollet and Maxwell (2008) and Maxwell and Kollet (2008). This 341 

finding emphasizes the potential of using a fully coupled system for proper climate simulations as the 342 

accumulated difference in evapotranspiration rates under more extreme hydrological conditions may be large 343 

and hence determine whether the model will be able to represent a  hydraulic drought or not.  344 

In relation to the generally acknowledged warm bias in warm months among RCMs over Europe 345 

(Christensen et al. 2008), our study shows that inclusion of groundwater in a hydrological model coupled to a 346 

RCM can maintain a high evapotranspiration during dry summers; and, hence, better partition the available 347 

energy between sensible and latent heat fluxes. In view of this, coupled climate-hydrological models have a 348 

potential for improving the simulations of soil surface temperature. In this study it is found that the coupled 349 

HIRHAM-MSHE model has a slightly different mean bias of the simulated 2 m air temperature compared to 350 

the default HIRHAM-STD model, but none of the two models are found to be significantly better in their 351 

overall fit to the temperature observations. For the present study however, the precipitation bias for the 352 

coupled cell is clearly affected by the coupling which leads to a different water balance for the coupled area 353 

and, hence, surface energy balance.  354 

The coupled precipitation bias is likely to be caused by either: i) climate model variability as induced by the 355 

perturbation from introducing the coupling, ii) effect of land surface feedback or iii) numerical shock from 356 

overwriting HIRHAM-STD internal variable which feed into other physical equations and parameterisations. 357 

It is outside the scope of the present study to decide which combination of these, maybe in combination, is 358 

the most likely cause. Instead, the coupled simulation is simply used as an additional method of forcing the 359 

land surface calculations. Minor perturbations (or change in the model setup like the domain or resolution) 360 

are however known to cause two RCM simulations to differ even though the RCM setups otherwise are 361 

identical (Miguez-Macho et al. 2004; Rasmussen et al. 2012b; Larsen et al. 2014). Also, the region of the 362 

study in Kansas, USA, has previously shown high degrees of spatio-temporal variability related to 363 

convective precipitation (Rasmussen et al. 2012b). Another use of the same HIRHAM – MIKE SHE 364 

coupling is seen in Butts et al (2014) and Larsen et al. (2014) covering the 2500 km2 Skjern River catchment 365 

in Denmark featuring multiple one-year model runs and coupling 23 HIRHAM cells in 11 km resolution. As 366 

for the present, Larsen et al. (2014) found poorer precipitation results for coupled simulations as compared to 367 

uncoupled results when assessing hourly to daily dynamics. However, longer term precipitation was 368 

improved which more recently was further emphasized for a six-year simulation where the coupled 369 

precipitation bias was significantly diminished compared to uncoupled (Larsen 2014). 370 

 371 

Conclusions 372 

Our results show that evapotranspiration is highly dependent on the depth to the groundwater, especially 373 

during dry periods, and that a correct groundwater representation therefore is important. Further, and not to 374 

much surprise, the timing in precipitation input is highly influencing the timing of evapotranspiration, which 375 

is therefore highly dependent on the input source to obtain exact daily dynamics. Longer term 376 
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evapotranspiration as reflected here by the 144 day simulation period is simulated equally well using a 377 

precipitation input amount of additional 36%. The HIRHAM-STD evapotranspiration compares to observed 378 

data with only an 8.5% error, but in the dry period the evapotranspiration is too high, because it is not limited 379 

by the drier soil. This could be due to the wet bias of the RCM in the preceding period but may be caused by 380 

surface parameters that are not well adjusted to the local surface conditions. By the coupling the wet bias is 381 

even higher, which further change the water and energy balance from the observed. The hydrological model 382 

in contrast shows a reduction in evapotranspiration with soil moisture in the drying period, as expected.  383 

With this study improved results were obtained by improving the detail and process range in the land surface 384 

and groundwater hydrology and energy balance. The potential of coupling an RCM and a more complex 385 

hydrology model has therefore been demonstrated under the conditions found in the central USA. Additional 386 

studies where the catchment size and the simulation period are increased would further highlight the true 387 

benefits of the coupled model setup in the present region as has already been done in a study over a Danish 388 

catchment (Larsen et al. 2014).    389 
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 562 

 563 

Tables 564 

 565 

Tbl. 1 Water balance at FIFE over the FIFE period May 26th to October 16th 1987; accumulated mm. The 566 

difference in precipitation between HIRHAM-STD and MSHE-SZ-HH (using HIRHAM-STD precipitation 567 

as input) is due to the extraction from the central HIRHAM cell (72% of the FIFE area) and the FIFE 568 

weighted mean respectively 569 

 570 

Simulation Pre. ET UZ SZ
Drain to 

River

Drain to 

boundary 
Baseflow 

Obs. 495 540 -91* - 26 - - 

MSHE-UZ-OBS 495 508 -53 - - 35 - 

MSHE-SZ-OBS 495 542 -70 -25 36 11 1 

MSHE-SZ-HH 673 531 -50 6 121 34 2 

HIRHAM-STD 684 586 -68 - 207 - - 

HIRHAM-MSHE 1523 756 -74 62 620 158 2 

* Relative to May 30th or -41 mm assuming 50 mm on May 30th as for Fig 2. 571 
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Figures 573 

 574 

Fig. 1 (a) HIRHAM model domain and location of the FIFE study area. (b) Depth to groundwater table, 575 

simulated at the beginning of the FIFE period May 1987 by the third warm up run. The black solid line is the 576 

King’s Creek catchment with the discharge station at the black dot. Cell id labels of the three selected cells 577 

used in Fig 4 are shown to the right 578 

 579 

Fig. 2 Discharge of King’s Creek observed and simulated by MSHE-SZ-OBS (the third warm up run) 580 

 581 

Fig. 3 Evapotranspiration and groundwater table at three selected grid cells of MSHE-SZ-OBS. All cells 582 

have the same vegetation type (Burned Bottomland), soil type (Florence-Benfield) and meteorological 583 

station (4439). The locations of the three grid cells are shown in Fig 1 584 

 585 

Fig. 4 Groundwater depth against daily mean evapotranspiration simulated by MSHE-SZ-OBS for each cell 586 

within soil type Florence-Benfield and silty loam, respectively, at August 1st. Each point is coloured 587 

according to the meteorological station used for forcing 588 

 589 

Fig. 5 Evapotranspiration and soil moisture change in the unsaturated zone: Observed and simulated by 590 

MSHE-UZ-OBS, MSHE-SZ-OBS and MSHE-SZ-HH. The values are mean levels over the FIFE area 591 

 592 

Fig. 6 Atmospheric forcing simulated by HIRHAM-STD compared to FIFE observations and HIRHAM-593 

MSHE July 28th to August 4th for the one HIRHAM cell covering 72 % of the FIFE area (upper panels). 594 

Daily precipitation as mean over the FIFE area for the full FIFE period with HIRHAM-MSHE precipitation 595 

levels in text for two days exceeding the y-axis limit (lower panel) 596 

 597 

Fig. 7 Evapotranspiration and soil moisture change in the unsaturated zone simulated by MSHE-SZ-HH, 598 

HIRHAM-STD and HIRHAM-MSHE; area mean over the FIFE area 599 

 600 

Fig. 8 (a) Groundwater depths against daily mean evapotranspiration simulated by the five simulations at 601 

August 1st; the last day in a dry period for all three precipitation sources in the study (observations, 602 

HIRHAM-STD and HIRHAM-MSHE). Solid lines are running mean over 0.25 m intervals of depths to the 603 

groundwater. The grey diamond is the mean evapotranspiration by MSHE-UZ-OBS where the groundwater 604 

is prescribed uniform at 3 m depth. The black diamond is the mean evapotranspiration by HIRHAM-STD 605 

that does not specify the groundwater depth. (b) Percentage of grid cells within each 0.25 m interval of depth 606 

to the groundwater. 607 
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