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Summary (English)

The performance improvements in computer systems over the past 60 years
have been fueled by an exponential increase in energy efficiency. In recent
years, the phenomenon known as the end of Dennard’s scaling has slowed energy
efficiency improvements — but improving computer energy efficiency is more
important now than ever. Traditionally, most improvements in computer energy
efficiency have come from improvements in lithography — the ability to produce
smaller transistors — and computer architecture - the ability to apply those
transistors efficiently. Since the end of scaling, we have seen diminishing returns
from developments in lithography and modern computer architectures are so
complicated requiring significant programming effort to exploit efficiently —
software developers undertaking such a task will need all the help they can get,
in order to keep the programming effort down.

In this thesis we champion using software to improve energy efficiency — in par-
ticular we develop guidelines for reasoning and evaluating software performance
on modern computers, and a middleware that has been designed for modern
computers, improving computational performance both in terms of energy and
execution time. Our middleware consists of a new power manager, synchro-
nization libraries using hardware transactional memory (for locks, barriers, and
task synchronization), and two concurrent map data structures, which can be
deployed in computer systems with little to no effort. At a fundamental level,
we are improving computational performance by exploiting modern hardware
features, such as dynamic voltage-frequency scaling and transactional memory.
Adapting software is an iterative process, requiring that we continually revisit
it to meet new requirements or realities; a time consuming process which we
hope to simplify by analyzing the realities of modern computers, and providing
guidelines explaining how to get the most performance out of them.
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Summary (Danish)

De sidste 60 år er computere blevet drastisk hurtigere, takket være eksponentielle
forbedringer i deres energi effektivitet. Energi forbedringerne har sænket farten
de sidste år, pga. et fænomenet the end of Dennard’s scaling, på trods af at det
i dag er ekstremt økonomisk attraktivt at lave energi effektivitet. Traditionelt
set har de største forbedringer i beregningsmæssig energi effektivitet kommet
fra litografi, som har leveret mindre transistorer, og computer arkitektur, som
har anvendt det stigende antal transistorer effektivt. Desværre giver mindre
transistorer aftagende afkast, og forbedringerne i computer arkitektur har gjort
computere så komplekse at det ofte kræver en ekstrem programmerings indsats
at anvende dem effektivt. Hvis moderne software udviklere skal kunne udnytte
moderne computer arkitekturer effektivt, så behøver de al den hjælp de kan få.

I denne afhandling bruger vi software til at forbedre energi effektivitet, ved
(1) at udvikle retningslinjer til at optimere og evaluere software ydelse, ba-
seret op analyser af moderne computere, og (2) at optimere middleware mod
moderne computeres features, såsom dynamisk skift af spænding og frekvens
og transaktionel hukommelse. Vores middleware består af en ny strømstyring,
synkroniserings biblioteker som bruger hardware transaktionel hukommelse (til
låse, barriere, og tasks), og to parallelle data strukturer (maps). Alle delene
af middlewaren kan genanvendes med relativt lille arbejdsindsats. At tilpasse
software er i sig selv en iterativ proces, som kræver at vi genovervejer vores
fremgangsmåder, så vi kan optimere mod nye krav og nye realiteter. Det er en
tidskrævende proces, som vi håber på at forenkle igennem retningslinjer, som
forklarer hvordan vi bedst udnytter moderne computere.
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Chapter 1

Introduction

It seems to be popular opinion that writing efficient programs will be increasingly
difficult and expensive in the coming years, as programmers have to come up
with increasingly contrived ways of exploiting available hardware. With this
thesis I will show that it is possible to improve computational performance —
both in terms of energy and execution time efficiency — by adapting systems’
middleware layer to current workloads and hardware trends.

Improving energy efficiency is one of the main challenges for modern computer
systems. In 2012 computers were one of the main electricity consumers, repre-
senting an estimated 4.6% of the world’s electricity consumption [VHLL+14] —
a ratio which seems to be ever increasing [Koo08,LVHV+12,Mil13]. Reducing
computer energy consumption will not only reduce the economical and environ-
mental costs associated with computing, b½ut also allow for faster computers,
since most modern computers are designed to fit within a fixed power budgets.
Technologies which improve computational speed can also be applied to improve
computational energy efficiency, so from our perspective, both.

At a hardware level, computational speed is usually limited by feasible power
consumption. Increasing power consumption reduces battery life and generates
more heat. The heat generated in modern data centers results in expensive
cooling requirements, which typically consume as much energy as the computers
themselves. In short, improving energy efficiency makes computation cheaper,
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faster, less harmful to the environment, and easier to power by batteries.

Traditionally, computers have become exponentially more energy efficient, largely
thanks to improvements in computer architecture and lithography [KBSW11].
The improvements in lithography directly resulted in smaller and more energy
efficient transistors. The improvements in computer architecture have found
ways to apply the increasing number of transistors efficiently. Unfortunately
the improvements from both computer architecture and lithography have de-
creased over recent years, in a phenomenon known as the end of Dennard’s
scaling, which is characterized by slower performance improvements from the
technology for developing and producing smaller transistors (lithography), and
the technology for applying an increasing number of transistors (computer ar-
chitecture).

Developments in lithography have grown increasingly complicated and expen-
sive [M+11,HH08]. This trend is not new, but the developments have slowed
down in recent years, as the size of transistors’ gate oxide approximates the size
of atoms, making them more susceptible to quantum mechanical effects. The
lower limit viable transistor size has been adjusted several times with unexpected
technological breakthroughs [BMSMMA12], but at this moment even Intel ex-
pects transistor size reductions to be slower in the foreseeable future [Alp15].
Meanwhile, the energy efficiency benefits from smaller transistors have lessened,
because the power consumption of smaller transistors is more affected by leakage
power [Boh07].

Computer architectures have had difficulties in efficiently using the increasing
number of transistors available on computer chips. Since the 1980’s most com-
puter architecture improvements have come from exploiting parallel computa-
tions. Some computations can be performed in parallel implicitly, while other
computations must explicitly be made parallel by programmers. Implicit paral-
lelism is more attractive, because it does not require more programming effort,
but it has also yielded diminishing returns.

The end of scaling means that it has become increasingly difficult and expensive
to improve computational performance in terms of execution time and energy
efficiency, increasing the value of alternative approaches. From a software stand-
point, we can improve computation performance through (1) improved power
management, and (2) faster algorithms, particularly algorithms which expose
parallelism efficiently. All energy efficiency improvements in software require
some effort to apply, but reusable software components, or middleware, can im-
prove the energy efficiency of a wide range of applications relatively cheaply.
My main hypothesis is:
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(a) The adaptive procedure iterated three
times.

(b) An adaptive procedure nested within
an adaptive procedure.

Figure 1.1: The adaptive procedure.

Middleware adapted to current needs can improve computational
performance without being prohibitively expensive to deploy.

If the hypothesis holds, such middleware will become increasingly attractive
due to diminishing energy efficiency improvements from lithography and com-
puter architecture. We test the hypothesis by developing a series of such
½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½½, which require little to no de-
ployment effort. The middleware are all developed in a common adaptive mind-
set, illustrated by Figure 1.1a: We measure, reason about, and change our
programs to optimize them:

• Measuring their execution time, memory allocations, and general behavior.

• Reasoning about the programs bottlenecks, and how we can remove them.

• Changing the programs to remove the bottlenecks.

It is an iterative process, which can be repeated several times. The adaptive
process can also be automated, such that the computer dynamically measures,
detects bottlenecks, and changes its own behavior accordingly. Both automatic
and manual adaptivity can coexist in the same system, as illustrated by Fig-
ure 1.1b. For instance, we can manually adapt an algorithm in a program which
is running on a computer which automatically adapts to its workloads. Having
such nested adaptive processes will affect how they change and reason about
their bottlenecks, hopefully complementing each other. Manually adapting sys-
tems in the adaptive process mirrors the scientific model — stating a hypothesis
(reasoning), testing the hypothesis (measuring), and accepting or rejecting the
hypothesis (changing). Automatically adapting systems in the adaptive process
mirrors the general structure of control systems — consisting of sensors, which
measure the environment, actuators which change the environment, and control
logic which decides which changes to make (reasoning).
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1.1 Contributions

Through the adaptive approach — measuring, reasoning, and changing — we
have developed a series of new middleware which can significantly improve per-
formance:

1. A power management scheme pappeadapt, which reduces energy con-
sumption by adapting the processors voltage and frequency settings to
accommodate the current workload.

• On four benchmark suites, pappeadapt reduced energy consumption
by 41.5% (geometric mean), without requiring any changes to the
benchmarks.

2. New implementations of lock and barriers which minimize the amount of
time threads spend waiting for each other (blocking), by applying modern
computers support for Hardware Transactional Memory (HTM).

• The lock and barrier implementations enable applications to bene-
fit further from explicit parallelism, without requiring any changes
except that the applications link against our OpenMP library (Tur-
boBŁYSK).

3. BT-trees, a new efficient implementation of map data structures, providing
high sequential and parallel performance on modern computers with HTM
support.

• operations on BT-trees are up to 5.3 times faster than traditional
maps using HTM, and up to 3.9 times faster than state of the art
concurrent ordered maps.

4. ELB-trees, a new implementation of relaxed map data structures, pro-
viding high parallel performance in workloads which support its relaxed
semantics without requiring HTM support.

Our findings have contributed to deliverables in the PaPP project, as well as
the following publications:

• Lars Bonnichsen, Sven Karlsson, Christian Probst: “ELB-trees an efficient
and lock-free B-tree derivative” in the International Workshop on Multi-
/Many-code Computing Systems (MuCoCoS ) 2013, IEEE [BKP13]. This
paper introduces and evaluates ELB-trees.
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• Lars Bonnichsen, Christian Probst, Sven Karlsson: “Hardware Transac-
tional Memory Optimization Guidelines, Applied to Ordered Maps” in
the International Symposium on Parallel and Distributed Processing with
Applications (ISPA) 2015, IEEE [BPK15]. This paper derives a set of
guidelines for using HTM efficiently, applies the guidelines to develop the
concurrent map BT-trees, and evaluates BT-trees.

• Lars Bonnichsen, Artur Podobas: “Using Transactional Memory to Avoid
Blocking in OpenMP Synchronization Directives — Don’t Wait, Specu-
late!” in the International Workshop on OpenMP (IWOMP) 2015, Springer [BP15].
This paper illustrates our lock and barrier implementations, and evaluates
them through an OpenMP library, on a set of benchmarks and microbench-
marks.

1.2 Synopsis

The rest of this dissertation is organized into the following 6 chapters:

Chapter 2 reviews the theory and practice of modern computers power con-
sumption and capabilities, and relates it to our adaptive framework for
software development.

Chapter 3 presents a new power governor, pappeadapt, which improves en-
ergy efficiency by trading processor speed for lower power consumption
on workloads where the processor speed is not a performance bottleneck.
pappeadapt uses a variation of Amdahl’s law to predict the optimal trade-
off between speed and power consumption. The predictions are based on
performance counter measurements from online experimentation.

Chapter 4 presents speculative techniques which exploit HTM — allowing for
further parallelism. The techniques can reduce execution time and en-
ergy consumption significantly, but may increase power consumption. We
implement the speculative techniques in BLYSK, an OpenMP runtime,
replacing its traditional blocking synchronization, with speculative syn-
chronization. Speculation is not always beneficial, so we include mecha-
nisms which minimize the drawbacks of speculation, such as the lemming
effect [DLM+09]. The content of this chapter is based on a published
paper [BP15].

Chapter 5 explores how to further reduce execution time by designing and
manually rewriting code for HTM. We present five guidelines for optimiz-
ing code for speculative execution, and illustrate them on a new concurrent
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ordered map, BT-trees. BT-trees benefit significantly more from specu-
lation than traditional ordered maps — achieving high time and energy
efficiency, but they are still quite straightforward, unlike traditional con-
current ordered maps. Using the the lessons learned from BT-trees, we
present to a lock-free map design, ELB-trees, which can be used on com-
puters without HTM support. The lock-free design appears to scale as well
as the transactional design, but it is not as general or efficient, because
it does not have the strong ordering guarantees provided by TM. The
content of this chapter is based on two published papers [BPK15,BKP13].

Chapter 6 concludes the thesis by summarizing our findings, discussing their
implications, and outlining possibilities for future work.



Chapter 2

Background

In this chapter we first introduce the terminology for expressing computational
performance in Section 2.1, and before the background for reasoning about com-
putational performance in Section 2.2. Finally we describe how we adaptively
improve computational performance in Section 2.3.1

2.1 Power consumption

We consume energy for most activities: transportation (burning gasoline), phys-
ical activity (burning glucose), and computation (consuming electrical charge).
The consumed energy does not disappear, it is transformed into other forms
of energy, mainly heat: Consuming a lot of energy, typically produces a lot
of heat. We generally want computations to consume less energy, so we pro-
duce less heat, reduce the computation’s electrical cost, improve the computer’s
battery life, and potentially allow the computation to finish faster.

The energy required for an activity can be calculated from its power consump-
tion (P ) and its execution time (D, short for delay):

E = PD
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We can evaluate computational performance both in terms of execution time (D)
and energy consumption (E). Energy is a larger concern today due to stricter
requirements on battery life, heat emissions, and electricity bills in modern
systems such as mobile devices, low noise personal computers, and large scale
data centers. Simply measuring either energy consumption or execution time is
fine as longs the other does not change. Traditionally software developers have
preferred evaluating performance with execution time, because it is easy measure
and most computers we use have a fixed upper bound on power consumption,
making D a good approximation of E. However, given modern hardware trends,
we cannot generally assume that our power consumption is fixed, rather we
should whenever possible measure both energy consumption and execution time
when evaluating computational performance.

We can evaluate the combined energy and execution time cost with ED, ED2, or
another similar function. The cost ED puts equal emphasis on energy consump-
tion and execution time, valuating 10% execution time reduction, as equally
valuable as a 10% energy reduction. The cost ED2 puts additional emphasis
on execution time, valuating a 10% execution time reduction, as equally valu-
able as a 1 − (1 − 0.1)2 = 19% energy reduction. The cost functions can be
generalized to EDN , allowing us express the relative worth of time and energy
savings.

Unlike software development, hardware development has always been very en-
ergy aware: Consuming too much power heats up the hardware, increasing its
failure rate making high power consumption prohibitive. A processors power
consumption depends on its CPU frequency, or more accurately on its transis-
tors’ switching frequency (f). Transistor switching frequencies and voltages are
normally scaled together, traditionally satisfying the formula:

P ∝ f3 (A)

Many hardware developers traditionally used ED2 as their performance met-
ric, because it is independent of the transistor frequency when (1) Formula (A)
holds and (2) the transistor frequency is inversely proportional to execution time
(D ∝ f−1) [MNP02]. Formula (A) is a good rule of thumb for the majority of
CMOS transistors deployed from 1980 to 2004. Formula (A) does not hold for
entire computer systems, due to the power consumed by other components, such
as monitors and storage. Formula (A) does not hold for newer transistors, due to
static power consumption being a more dominant factor in their power consump-
tion [HSN04]. The static power consumption is caused by electric charged leaked
by the transistors, at a rate which is independent of the frequency, but depen-
dent on the voltage. Dynamic power consumption and CMOS short circuiting
represent the other components of transistor power consumption, components
which do depend on the frequency (P (f) = Pshort(f) + Pdynamic(f) + Pstatic).
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Figure 2.1: Mean processor power consumption as a function of instructions
and number of threads. The error bars indicate 95% confidence
intervals computed through bootstrapping.

In other words, the conditions do not hold, so we cannot assume that ED2 is
independent of the frequency.

A processors power consumption is not just a function of its processor voltage
and frequency, but also the code it is running and especially the amount of par-
allelism. For instance, Figure 2.1 shows the processor power consumption of the
machine listed in Table 2.1 operating at 3.6GHz while executing NOP instruc-
tions — doing nothing — vectorized XOR instructions — repeatedly inverting
256 bits — and vectorized multiplications. We would expect NOP instructions
to be cheaper than vectorized multiplications and bit flips, an expectation which
is especially true at high levels of parallelism. In the single threaded case, the

Processor Intel Xeon E3-1276 v3
CPU Frequency 3.6GHz, TurboBoost to 3.6GHz
Processor cores 4 cores, 8 threads
Processor caches 32KiB L1D, 8MiB L3
C/C++ Compiler GCC 5.2.0
Operating system Ubuntu Server 14.04.1 LTS
Kernel Linux 3.17.0-031700-generic
C library eglibc 2.19

Table 2.1: Experimental machine
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power consumption is fairly similar for all the instructions, while there is a larger
difference in the 8 threaded case. The difference is larger in the parallel case for
two reasons: (1) the higher CPU activity leads to a higher fraction of dynamic
power consumption and (2) the multiplications yield higher power consumption
at 8 threads than 4 due to underutilized ports at 4 threads (See 2.2.2.3), while
the NOP and XOR fully utilize their ports at 4 threads.

Modern Intel processors have a feature called TurboBoost, which allows the pro-
cessor to automatically — at a hardware level — increase the CPU frequency
and voltage when the power consumption is below safe thresholds. Modern
AMD processors have a similar feature called Turbo Core. These “Turbo” fea-
tures only increase the CPU frequency, when the processor power consumption
is significantly lower than their Thermal Design Power (TDP) — i.e. when the
processor can safely increase its power consumption [GBCH01]. Dynamically
increasing the CPU frequency has varying effects based on the computers work-
load and number of instructions executed, as illustrated by Figure 2.2. Enabling
TurboBoost, as indicated by going from 3.6 to 4GHz, does not increase the
processors frequency or clock frequency when executing instructions with high
power consumption, such as the vectorized multiplication. The NOP and XOR
instructions yield higher power consumption than the vectorized multiplications
in the single and two threaded cases, because the TurboBoost feature operates
at the highest frequency, while the effective CPU frequency is lower in the four
and eight threaded cases.

Computer hardware optimizes for power consumption adaptively — based on
what it is computing. To reason about software performance and power con-
sumption – and to adaptively optimize software performance – we need an un-
derstanding of how the hardware behaves.

2.2 Performant computers

Modern computers apply a lot of hardware cleverness to improve their perfor-
mance, both in terms of energy and execution time. This section aims to build
an intuition about computational performance by briefly reviewing (1) what pro-
grams are from a low level perspective, (2) how a modern processor operates,
and (3) how to quantify a processor’s performance.
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Figure 2.2: Median processor power consumption as a function of instructions
(color), number of threads (y-axis), and CPU frequency (x-axis).
The small dots indicate individual observations.
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Figure 2.3: From a low level perspective programs consist of functions, global
variables, and an entry point.

2.2.1 Instructions: The smallest program fragments

This section provides a brief introduction to what computer instructions are,
such that we can discuss program behaviors at a detailed level.

Processors execute programs. Programs consist of three things, as illustrated
by Figure 2.3: (1) a set of functions, (2) a set of global variables, and (3) an
entry point into the program, indicating where the program starts. The global
variables are essentially preallocated storage, while the functions describe what
the program can do. The functions are built from instructions, which are the
smallest unit of code available. Each instruction represents a small calculation
or operation, such as “add A and B”, “copy the value of A to B”, “divide A and
B”, “AND the bits in A and B” (bitwise and), “count the number of set bits in
A" (population count)”, etc.

Instructions are seemingly executed sequentially, one at a time. Processors can
change the flow of executed instructions with jumps and branches: Jumps, as
in “jump to A”, ensure that the instruction executed next is “A”, and branches,
as in “if A > B jump to C”, conditionally changes the instruction executed next.
Jumps and branches can be used to express conditional expressions, loops, and
recursion.

Instructions can operate on constants (immediates) and two kinds of variables
(1) directly accessed registers and (2) indirectly accessed memory locations.
Figure 2.4 outlines the main differences between registers and memory locations.
Memory locations can be addressed as arrays in instructions, for instance A[B],
or A[(B << C) + D], allowing memory locations to indirectly refer to different
variables depending on the values the other variables. Registers are faster to
access than memory locations, but also more limited: they cannot be addressed
as an array, and are in short supply, with most processors having 14, 31, or
63 generally usable registers, while memory locations are far more abundant —
most processors having memory address spaces of 232 or 264 bytes.
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Figure 2.4: Registers are fast but scarce. Memory locations are abundant but
slow.

Each processor supports a fixed set of instructions, called its Instruction Set Ar-
chitecture (ISA). The ISA does not only dictate which operations are directly
supported as instructions, but also how memory locations can be addressed,
and which combinations of memory locations and registers can be used for in-
structions. The limited set of instructions and the limited number of registers
available, make it difficult and time consuming to write larger programs directly
with instructions.

High level languages reduce the work required by programmers with compilers
which transform high level code into instructions; compilers which automatically
allocate registers for intermediate computations, and select instructions and
addressing modes which match the computation and the ISA.

Knowing how to read and write functions with instructions is useful to get a
mental model of what a computer does, as well as a means for understanding
compiler output. From a processor’s ISA you can estimate how many instruc-
tions and memory accesses a computation should take; If the compiler output
uses more instructions than you expected, then you can either solve the problem
by writing the instructions manually, or giving the compiler more information
(See Section 2.3 step 3).

2.2.2 Processor cleverness

This section gives a brief overview of some of the ways that modern computer
architectures accelerate execution of instructions, providing a background for
reasoning about program performance.

Inspecting the instructions of a computation only vaguely hints at the com-
putations execution time, because modern computers use a wealth of tricks to
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Figure 2.5: A typical cache hierarchy with 3 layers.

speed up common computations. Processors can execute instructions out of or-
der and in parallel, as long as the instructions are sufficiently independent that
the changed ordering does not change the outcome of the computation. In the
following paragraphs we will describe five such techniques: caching, prefetching,
pipelining. register renaming, and superscalar processing.

2.2.2.1 Caches

Caches provide quick — several orders of magnitude faster — access to cached
memory locations. Memory accesses which are in a cache (cache hits) have
lower latency, while memory accesses which are not in a cache (cache misses)
suffer the full memory latency. Currently most processors provide 2 – 3 layers
of caches, as illustrated by Figure 2.5, which dramatically reduce the average
memory access latency, and allow memory operations to proceed in parallel.

The cache layers range from small and fast, to large and slow, for instance the
Intel Haswell i7-4770 has an L1 cache latency of 4-5 cycles, L2 cache latency of 12
cycles, L3 cache latency of 36 cycles, and a typical RAM latency of 200 cycles [7-
c]. In most applications the majority of memory accesses are to locations cached
in in the L1 cache, which significantly speeds up the average memory latency.

Each cache layer tracks a fixed number of cache lines, which are typically 32, 64,
or 128 continuous bytes. The cache lines are automatically added to the cache
whenever they are used. Because caches have fixed sizes, adding a new cache
line also evicts an old cache line, but in typical use the most recently accessed
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data will be cached. Memory access through caches typically speed up access
to recently accessed data (temporal locality) — because that memory most still
in the cache, i.e. not evicted yet — and data adjacent to recently accessed data
(spatial locality) — because adjacent data is likely in the same cache line.

Caches are separate components in the processor, responsible for accessing mem-
ory. All of the cache layers can also keep multiple memory access in flight at any
time, providing a high memory bandwidth in spite of the memory latency. The
lowest layer of the caches are usually duplicated, providing a private L1 cache
for each processor core, while higher cache layers are shared between cores, in
order to use the caches efficiently, as illustrated in Figure 2.5.

The highest layer of the cache, or the Last Level Cache (LLC) as it is normally
called, is responsible for fetching memory from RAM. LLC’s typically fetch
multiple cache lines at a time, for instance two consecutive cache lines, because
the program is likely to need the memory — and fetching two consecutive cache
lines from RAM concurrently takes significantly less time than fetching two
cache, one at a time — further strengthening the benefit of spatial locality.

Most modern processors also include prefetchers, which further exploit spatial
locality, by predicting which memory locations are likely to be used next, and
fetching the memory before any CPU requests it. Prefetchers can dramatically
reduce memory access latency when there is a delay between each consecutive
memory access, and the spatial distance between consecutive memory accesses
is predictable. For instance, a program which processes consecutive cache lines
at a rate of one line per 1000 clock cycle will likely to benefit from a prefetcher,
because the prefetcher is likely to predict the memory access pattern, and fetch
the memory before it is used for the first time.

2.2.2.2 Pipelines

The processor can execute a series of instructions in parallel by executing sepa-
rate stages of the instructions in a pipeline. Pipelining splits instruction execu-
tion into several shorter stages, which allows the processor to operate at a lower
voltage — or a higher frequency. Instruction execution is often separated into
several stages — for instance stages for fetching instructions, decoding instruc-
tions, performing calculations, etc.— with typical modern processors having10-
20 pipeline stages. Pipelining works really well as long as the processor knows
which instruction is executed next, but it has a harder time handling branches
and indirect jumps.

A traditional pipelined processor has one instruction in flight for every pipeline
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stage. When a pipelined processor encounters a branch, it has to guess whether
the branch will be taken or not, because the instructions which determine the
outcome of branch may be in flight. The pipeline continues operating as usual
if the processor guesses correctly, but if the processor mispredicts the branch, it
has to stop the instructions currently in the pipeline, waiting for them to finish.
Mispredicting a branch means that the pipeline has to be flushed, i.e. a typical
cost of 10-20 cycles. Modern processors have branch prediction hardware, which
track the recent history of the most frequently encountered branches, to reduce
branch misprediction rates. Branch prediction hardware tend to be accurate
when the branches are easy to predict — for instance if they are mostly taken,
or taken every other time they are executed — and inaccurate when the branches
are seemingly random.

2.2.2.3 Out of order processing

Out of order processors apply register renaming and superscalar execution, to
exploit implicit parallelism and minimize latencies.

With register renaming, the processor does not immediately write to registers,
but to a temporarily allocated buffer. This scheme allows the processor to ex-
ecute instructions in parallel with instructions that use the old register value,
as well as instructions which use the new value. Register renaming allows the
processor to separate the start of an instructions execution (instruction issue),
from the end of an instructions execution (instruction retire), allowing instruc-
tions to be underway (in flight) for a long time. Having multiple instructions in
flight can hide the latency of memory accesses or slow instructions, by executing
other instructions concurrently, as well as permitting further parallelism such
as superscalar execution.

With superscalar execution, the processor has multiple functional units, also
known as ports, each of which can execute an in flight instruction. For instance,
Intel Haswell processors have 8 ports per core, each of which can execute a
subset the instructions in the ISA. The ports are rarely fully utilized, so modern
processors use simultaneous multi processing (SMT, or hyperthreading), letting
multiple CPUs operate on a single set of ports [TEL95]. Having multiple CPUs
allows the processor to execute multiple threads of the program in parallel, but
the CPUs which share ports will individually execute slower if the ports become
contended.

Modern out of order processors can issue several instructions per cycle — as
long as the instructions are aligned properly — and retire several instructions
per cycle, exposing a great deal of parallelism implicitly. Unfortunately, CPUs



2.2 Performant computers 17

occasionally have to stop issuing new instructions — an action known as a
frontend stall — due to two limitations in register renaming: (1) you can only
have a limited number of instructions in flight — due to the limited number of
temporarily allocated buffers — and (2) you can only issue a limited number of
instructions after the oldest in flight instruction — because you need to track
dependencies between instructions.

2.2.2.4 Alternate processor designs

When combined, caches, pipelines, branch prediction, register renaming, and
superscalar execution enable implicitly parallelizing instruction and memory
access. The hardware required all of the cleverness takes requires a lot of transis-
tors. Alternative processor designs, such as graphics processors (GPUs), deem-
phasize these forms of implicit parallelism, allowing them to fit more cores and
wider vector units in the same space and power budget. Alternative processor
designs tend to favor the energy efficiency through parallelism in applications
which have very regular memory access patterns. As a consequence, most sys-
tems use GPUs as a way to complement regular processors, rather than replace
regular processors: When GPUs can execute programs efficiently — when the
program is embarrassingly parallel and has a regular memory access patters —
GPUs are often significantly more efficient than regular processors, but graph-
ics processors are not always able to execute programs efficiently. Despite the
potential savings from applying GPUs, we believe the architecture of regular
processors will continue to be viable for the foreseeable future.

2.2.3 Performance counters

Modern processors include performance counters which count specific events in
the processor, such as:

• Executed instructions (retired instructions), which can be further classified
as branches, loads from memory, stores to memory, and computations.

• Mispredicted branches and CPU frontend stalls.

• Cache misses and cache hits at the various layers of the cache.

These performance counters can guide optimization efforts:
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Figure 2.6: Precise measurements have low variation. Accurate measurements
have little bias.

• If the workload causes many cache misses, then try to minimize them, by
reordering the data or the order of the memory accesses.

• If the workload executes many instructions, then look for a more efficient
algorithm or implementation, which will execute fewer instructions.

• If the workload causes many branches, or branch mispredictions, then try
to replace the branches with arithmetic, or make the branches easier to
predict.

The operating system Linux has a profiling tool perf, which uses the Linux
system call perf_event_open to access performance counters. perf can sample
the performance counters while applications are running to determine which
parts of the application causes most of the events. The performance counters are
managed by the operating system because they are a fixed hardware resource,
which applications must share. Most modern operating systems have similar
tools and system calls to Linux’s perf and perf_event_open.

Linux also provides APIs (sysfs) for reading the power controllers on modern
computers, such as those on Xilinx Zynq boards [Sri15] and Intel processors (In-
tel RAPL) [Int15a]. The measurement facilities for performance counters and
power consumption are not perfectly accurate due to hardware and software lim-
itations, but they are representative enough to identify and classify bottlenecks,
making it easy to direct optimization efforts.

The fundamental difference between intrusive and non-intrusive profilers is that
intrusive profilers are precise, while non-intrusive profilers are accurate, as illus-
trated by Figure 2.6. Intrusive profilers change the application under test, to
precisely detect whether there is anything wrong with the application. Intru-
sive profiler output is precise — repeating the experiments will yield the same
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results — but it is not accurate — the intrusive profilers change the applica-
tion, so it can be misrepresentative. Non-intrusive profilers accurately detect
how well the implementation performs: Their output is accurate because the
profiler does not change the function under test, but it is not precise because
of measurement errors. Measurement errors are caused by inaccurate perfor-
mance counters and external events, such as the room temperature, background
processes running on the computer, iterrupts, randomized memory layout, and
the operating systems state [WM+08,WTM13]. We can usually compensate
for poor measurement precision by repeating experiments, so we can look at
the distribution and median of the results, but we cannot compensate for poor
measurement accuracy.

2.3 Optimizing software performance

In this thesis, we adapt systems to improve performance by either: (1) lowering
the voltage and frequency level, increasing execution time, but lowering power
consumption, or (2) running more efficiently, reducing execution time. We take
the first approach in Chapter 3, and the second approach — exposing further
parallelism— in Chapter 4 and 5. Section 2.3.1 describes our adaptive procedure
for improving software performance, without exposing further parallelism.

2.3.1 Adapting software for performance

We optimize functions through an adaptive process — alternating between mea-
suring, reasoning and changing the function — in order to gain confidence in the
implementations correctness, ensure that it is efficiently compiled, and meassure
its performance. The procedure typically involves iterating over 5 steps:

1. Write an implementation of the function.

2. Test the implementation using:

(a) Static analysis tools (Frama-C, lint, etc.) and compiler options (See
Listing 2.1) to detect likely bugs.

(b) Tests that give random and valid input to function, while checking
that the function output is correct. Such tests follow a Hoare Logic
precondition / postcondition style, and are known as stress tests,
fuzzing, and quick checking.



20 Background

(c) Intrusive profilers (such as valgrind, gprof, and pin) to detect mem-
ory leaks and incorrect use of APIs.

3. Sanity check the implementation with an intrusive profiler, to ensure that
code is compiled efficiently.

4. Use a non-intrusive profiler (such as perf and oprofile) to detect and
minimize bottlenecks.

5. Go to step 1 if the implementation is not fast or energy efficient enough,
otherwise accept the implementation.

The following paragraphs illustrate step 2 to 4, showing the tools and methods
we use in each step.

Step 2.a: Testing with static analysis tools
Static analysis tools and compilers with additional warnings enabled can help
detect programming errors. These tools are especially useful in languages such
as C and C++ which operate under the motto “the programmer is always right”
letting programmers do strange things such as type casting, using unitialized
variables, and omitting return values in functions. Allowing the programmer
to do strange things often leads to errors; errors which compilers and static
analysis tools can detect.

Modern compilers, such as GCC, LLVM, and ICC, support a wealth of warning
options for detecting likely bugs, disallowing language features, and suggesting
improvements for the code. These compilers generally do not enable all of their
warning options by default, or even when using options such as -Wall, is of-
ten understood to mean “enable all warnings”, but actually means “enable all
warnings that most people care about”: We are not “most people”, in fact very
few people have the exact needs of “most people”, and could benefit from more
aggressive warnings from compilers and static analysis tools. To illustrate, we
generally use the warning options in Listing 2.1 when compiling with GCC, a
total of 23 for detecting issues such ranging from excessive stack usage, and
dangerous type casts, to memory accesses outsde array bounds. In our opinion,
using static analysis and compiler options to detecting likely bugs, and danger-
ous language constructs is important for all code, not just performance critical
code, but performance critical code may further benefit from compiler based
suggestions for optimizations.

Step 2.b: Testing with fuzzing
Fuzz tests are small programs which generate valid input for functions, call the
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1 gcc -c file.c -o file.o -O2 \
2 -W -Wpedantic -Wextra -Wall -Wno -unused -function -Wabi \
3 -Wstrict -aliasing =2 -Wstrict -overflow =1 -Wabi -Wcast -align \
4 -Wstack -usage =32768 -Wframe -larger -than =32768 -Wcast -qual \
5 -Wsync -nand -Wtrampolines -Wsign -compare -Wformat -signedness \
6 -Werror=float -equal -Werror=missing -braces -Werror=init -self \
7 -Werror=logical -op -Werror=write -strings -Werror=nonnull \
8 -Werror=array -bounds -Werror=char -subscripts -Werror=address \
9 -Werror=enum -compare -Werror=implicit -int -Werror=main \

10 -Werror=aggressive -loop -optimizations -Werror=sequence -point \
11 -Werror=parentheses -Werror=pointer -sign -Werror=return -type \
12 -Werror=uninitialized -Wno -error=maybe -uninitialized \
13 -Werror=volatile -register -var -Werror=ignored -qualifiers \
14 -Werror=missing -parameter -type -Werror=old -style -declaration \
15 -Wsuggest -final -types -Wsuggest -final -methods \
16 -Wsuggest -attribute=format -Wsuggest -attribute=pure \
17 -Wsuggest -attribute=const -Wsuggest -attribute=noreturn \
18 -Wsuggest -override

Listing 2.1: How we typically use the GCC compiler to detect likely errors
(bright highlights), forbid certain errors (medium highlights), and
suggest function annotations (dark highlights).

functions with the input, and check that the functions produce valid outputs.
We usually check the output by comparing it to the output of known good
functions, or by checking the function satisfies its postconditions.

Listing 2.2 illustrates fuzz testing for a logarithm base 10 function over the
integers from 1 to 99. The fuzz test (Line 13) tests the our function (Line 3) on
randomly generated inputs from 1 to 100 (Line 16) by comparing with the output
from a known good implementation (Line 19). Because the function is defined
over a small domain of inputs, we can use a simple implementation consisting
of two branches, where we expect most inputs only execute one branch, since
most values are presumably greater than 10. Having a simple implementation
often leads to faster code which the compiler can optimize more efficiently, In
other words, being aware of a functions input domain or preconditions is often
important for implementing functions efficiently.

Fuzz tests are trivial to write when you know the functions preconditions and
postconditions. In our example, we have a very strict precondition – the input
must be in the range [1; 99] small input domain, so we could also test the imple-
mentation exhaustively — over all valid inputs — but exhaustive tests are not
always feasible. Randomized tests can also be used to evaluate a function imple-
mentations performance, later in the adaptive development procedure. We can
usually generate representative random input much faster than the functions
being tested execute, by using state of the art pseudo random number genera-
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1 /** A log10 function over the
2 domain 0-99. */
3 int log10New(int val) {
4 if(val > 10)
5 return 2;
6 if(val > 1)
7 return 1;
8 return 0;
9 }

10

11 /** Compare log10New ’s output
12 with log10 over random input */
13 void log10Test () {
14 int i = 1000000;
15 while(--i) {
16 int in = random(1, 99);
17 int r1 = log10New(in);
18 int r2 = log10(in);
19 assert(r1 == r2);
20 }
21 }

Listing 2.2: Fuzz testing a logarith base 10 function

tors, such as Mersenne Twister [MN98] or lfib4 [Mar99]. Since fuzz testing can
improve our confidence in a function implementations correctness and perfor-
mance, we recommend fuzz testing any safety or performance critical functions
— fuzz testing may be overkill for trivial and non-critical code.

Step 2.c: Testing with intrusive profilers
We test whether uses APIs correctly with intrusive profilers, such as valgrind.
valgrind can count the number of times functions are called — indicating
whether they are used correctly — detect misaligned data access — indicating
invalid type casts, and memory leaks. These tests are useful both for safety and
performance critical code, because mistakes such as memory leaks often harm
both correctness and performance. The following command shows how to use
valgrind to detect misuses of APIs, in the program linear_search:

valgrind -v --fair-sched=yes --track-origins=yes \
--leak-check=full --show-leak-kinds=all "./linear_search"

Step 3: Sanity checking with intrusive profilers
After checking the correctness of the function implementation, we can use intru-
sive profilers to detect whether the implementation was compiled efficiently. We
need to check the quality of compiled performance critical functions, because
the compiler will sometimes produce inefficient code. Inefficiently compiled code
is usually caused by abstractions made in the program, abstractions which we
assume the compiler can optize. There are limits to how much a compiler can
optimize our programs automatically, because compilers are tools; not magic
wands. We can check the quality of compiled code with with intrusive profilers,
such as valgrind and pin, by asking them to count the number of instructions
executed or memory references. Poorly compiled code will often execute far
more instructions and memory references than neccessary, making them easy to
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1 // Running valgrind from a shell
2 valgrind --fair -sched=yes --tool=cachegrind --cache -sim=yes \
3 "./ linear\_search"
4 cg\_annotate --show=’Dw’ \$(ls -t cachegrind.out.* | head -n 1) \
5 --auto=yes --threshold =2
6 cg\_annotate --show=’Ir’ \$(ls -t cachegrind.out.* | head -n 1) \
7 --auto=yes --threshold =2
8

9 // Valgrind output showing the problem
10 Dw
11 . void linearSearch(int*i, int*array , int value , int n) {
12 33 ,000 ,000 for(*i = 0; *i < n; *i += 1)
13 0 if(array [*i] == value)
14 . return;
15 . }

Listing 2.3: Using valgrind to detect code paths which contribute to more
than 2% of the total number of memory writes and instructions
executed in the program linear_search.

detect.

Listing 2.3 illustrates how to use valgrind to look for poorly compiled code in
linear_search, an exaple program performing 1,000,000 linear searches over
an array of length 32. After running the code (Line 2) we ask valgrind to show
us the code which causes most writes (Line 4), and we are informed that the
linear search performs 33,000,000 writes (Line 12), whereas we would expect it
to perform 1,000,000 writes — one write per call to the function. The compiler
generated code which writes to memory whenever the code increments the index
i, because the compiler did not know whether i overlaps with the array — a
problem known as pointer aliasing, because it occurs when two pointers point
to the same data. Since the function linear_search does not indicate whether
the pointer alias the compiler has to assume that they can alias, generating code
which writes to memory whenever i is updated, rather than just at the end of
the function call. Pointer aliasing is a common problem, and in this case we
could solve the problem in three ways: (1) tell the compiler that array and i
do not overlap, by annotating them with the type qualifier restrict, (2) move
the function linearSearch to a header file, so it can be inlined from its call
sites and the compiler can determine if the array and i alias, or (3) ask the
compiler to perform whole program optimization or link time optimization, so
the compiler can determine if the array and i alias.

Intrusive profilers can also reveal problems such as redundant branches, which
were not optimized out because the compiler did not know the valid range of vari-
ables. Such problems can be fixed by restricting the valid range of variables, for
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instance: if(A < 1) __builtin_unreachable(); will inform compilers such
as GCC and LLVM that A cannot be smaller than 1.

Using intrusive profiler output often requires that we reason about performance
critical code using a mental model of what the code’s instructions should be.
The output makes it easy to filter away non performance critical code, saving a
lot of developer effort compared to manually inspecting the code’s instructions,
but it is still time consuming and it only makes sense for applications which are
performance critical.

Step 4: Detecting bottlenecks with non-intrusive profilers
After whether the function implementation is correct and properly compiled,
we can use non-intrusive profilers such as perf to measure the performance of
the function, and to detect its bottlenecks. To illustrate, we can use perf to
measure the performance of a program, such as linear_search, with the shell
command:

perf stat -e L1-dcache-load-misses -e L1-dcache-store-misses \
-e cache-misses -e cycles -e instructions -e cpu-clock \
-e task-clock -e page-faults -e minor-faults "./linear_search"

The measurement can be used to compare the performance metrics of different
implemntations, allowing us to shed some light on how they perform. We usually
supplement the performance metrics with measurements of energy consumption
through APIs like Intel RAPL.

perf to detect bottlenecks in programs — in this case linear_search — using
commands like:

perf record --call-graph dwarf -F 39 -e task-clock "./linear\_search"
perf report

The bottlenecks indicate where the program spends its time, allowing us to
direct further optimization efforts.

Discussion
Executing an iteration of the adaptive procedure, from step 1 to 4, gives us
confidence that the function implementation is correct, efficiently compiled, and
tells us how well it performs. The adaptive procedure contains nested adaptive
behavior; we repeatedly adapt the implementation in step 2.a, 2.b, 2.c, 3, and
4. We change the function implementation and measure its behavior until it
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satisfies the requirements that we expect from our reasoning. The process is time
consuming, but we have found it worthwhile, because it gives us a framework
for supporting development of performance and safety critical code.

The format that we have described only operates on a single function. The
adaptive process is normally nested in an adaptive process for optimizing all
performance critical functions in the whole program. To minimize the effort
required for implementing functions, we normally only use the development
procedure for performance and safety critical code. While the process requires
a good deal of effort, we have also outlined cases where the different steps can be
skipped, and we believe that it is the minimum required effort to be reasonably
confident that our implementations are efficient and correct.

We have used the development procedure while developing the middleware de-
scribed in the remainder of this thesis. In some cases, we use the adaptive
procedure was mostly to ensure correctness of the code, in other cases we use
the procedure to optimize the code. We have generally found that the the effort
required for the adaptive development procedure is lower than normal, unstruc-
tured, and ad-hoc program development. The main benefit from the procedure
came in the form of improved implementations, and understanding of errors in
early forms of the middleware, but in some places we also improved our designs
by repeatedly changing, measuring, and reasoning about it.
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Chapter 3

Workload Aware Energy
Management

In Chapter 2 we showed that setting CPU frequencies is a delicate tradeoff be-
tween execution time and power consumption. Reducing a processor’s frequency
and voltage trades a reduced its power consumption, for an increased execution
time: Reducing the processors dynamic power consumption is not always a vi-
able method for reducing the systems energy consumption due to the static
power consumption (current leakage) and the power consumption from other
components, such as memories and screens.

In this chapter we introduce pappeadapt (pronounced papp-e-adapt), a power
governor which automatically reduces the CPU frequency when reducing the
frequency does not significantly increase the execution time. pappeadapt re-
duces the processors geometric mean energy consumption by 41.5%, ED by
16.4%, and ED2 by 4.7%, on the benchmark suites NPB 3.3.1 [BBB+91],
SPEC2006 [Hen06], PARSEC 3.0 [Bie11], SPLASH-2x [WOT+95].

pappeadapt uses a combination of online experimentation and prediction to
adapt the CPU frequency. The predictions are based on Amdahl’s law, cheap
to calculate, and very precise.

This chapter introduces:



28 Workload Aware Energy Management

• Two microbenchmarks which exemplify compute-bound and memory-bound
workloads.

– The compute-bound microbenchmark can be used to identify good
fixed CPU frequencies which provide good energy costs (EDN ).

• The proposal and evaluation of a model, based on Amdahl’s law, for pre-
dicting the execution time of memory-bound workloads.

• An adaptive method for optimizing CPU frequencies to the systems cur-
rent workload.

This chapter is structured as follows: Section 3.1 illustrates why, when, and
how we can save energy by reducing CPU frequencies. Section 3.2 evaluates the
effects of statically or adaptive reducing CPU frequencies. Section 3.3 relates our
work to prior work, Section 3.4 suggests improvements to pappeadapt based the
evaluation and the related work, and finally Section 3.5 summarizes our findings.

3.1 CPU frequencies and workloads

We can reduce energy costs (E, ED, and ED2) by selecting the right CPU
frequency. The optimal CPU frequency is not necessarily the highest or lowest
supported CPU frequency, and the optimal frequency also depends on the sys-
tem’s workload. To illustrate this point Figure 3.1 shows the processor energy
consumption as a function of the CPU frequency in a memory-bound and a
compute-bound microbenchmark, on an Intel Xeon based server server dubbed
xeon (see Table 3.1.

The most energy efficient CPU frequencies on xeon are fhi = 2.2GHz and
flo = 1.6GHz in the compute and memory-bound workloads respectively. Fig-
ure 3.2 shows the relative energy consumption at flo fhi and the baseline (4GHz
and 3.6GHz). On xeon, restricting the CPU frequency to fhi saves 32% to 39%
energy, and restricting the CPU frequency to flo saves 25% to 45%. Simply
restricting the CPU frequency to fhi or flo can improve energy efficiency signif-
icantly.

We have made similar observations on a small Intel NUC dubbed snuc (see
Table 3.1), and when optimizing for energy delay products (ED), or energy delay
squared products (ED2): The optimal CPU frequency depends on the workload,
it is lower for memory-bound workloads (flo) and higher for compute-bound
workloads (flo). Optimizing for ED yields higher optimal CPU frequencies
than optimizing for E, and optimizing for ED2 yields the highest optimal CPU
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Figure 3.1: xeon’s processor relative energy consumption in two workloads.
Section 3.1.2 describes the workloads. Lower is better.
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Figure 3.2: Energy consumption at 1.6GHz, 2.2GHz, and the baseline. Lower
is better.

frequencies. The highest possible CPU frequency (the baseline) frequently yields
the optimal (lowest) ED2 in compute-bound workloads. Restricting the CPU
frequency to flo in the compute-bound workload increases ED by 41% and
ED2 by 181% on xeon. Simply restricting the CPU frequency to fhi may
slightly improve ED and ED2, while restricting the CPU frequency to flo may
dramatically harm ED and ED2.

Relationship between throughput and Frequency
Figure 3.3 explains why the optimal CPU frequency is workload dependent:
Throughput is workload dependent, growing linearly when compute-bound, and
sublinearly when memory-bound, while power consumption grows with the fre-
quency regardless of the workload. Compute-bound workloads maximize their
energy efficiency at higher CPU frequencies than memory-bound workloads,
because compute-bound workloads’ throughput benefit more from high CPU
frequencies.
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Figure 3.3: xeon’s processor power consumption and throughput in two work-
loads. Lower is better.

Memory-bound workloads spend the majority of their execution time off-chip
fetching memory from RAM, while most execution time in compute-bound work-
loads is spent on-chip, crunching numbers, branching, or fetching memory from
caches. On-chip activities speed up linearly with the CPU frequency, while
off-chip activities are independent of the CPU frequency, allowing us to model
execution time from the time spent on on-chip activities (Con) measured in clock
cycles, and the time spent on off-chip activities, measured in seconds:

D = Doff +
Con

f
, (1)

The model can be derived from Amdahl’s law
(
D(n) = D(1)

(
s+ 1−s

n

))
by sub-

stituting the speedup factor (n) with f , and the unimproved fraction (s) by
Doff

Doff +Conf−1
. The model assumes that on-chip and off-chip activities do not

overlap, simplifying the model, but it can still accurately predict relative exe-
cution time.

Name xeon snuc
Processor Intel Xeon E3-1276 v3 Intel Celeron N2820
CPU Frequency 3.6GHz, boost to 4GHz 2.13GHz, boost to 2.4GHz
Processor cores 4 cores, 8 threads 2 cores, 2 threads
Processor caches 32KiB L1D, 8MiB L3 ??? L1D, 1MiB L2
C/C++ Compiler GCC 5.2.0 GCC 5.2.0
Operating system Ubuntu Server 14.04.1 LTS Fedora LXDE 21
Kernel Linux 3.17.0-031700-generic ???
C library eglibc 2.19 glibc ???

Table 3.1: Experimental machines
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Figure 3.4: Difference between measured and predicted execution time from
formulae (2) and (3). Lower is better.

Predicting execution time
Based on two performance measurements at different CPU frequencies, we can
predict the performance at any CPU frequency, with the following relation,
derived from Equation (1):

D ∝ m+ f−1, (2)

where m represents how memory-bound the workload is. Given D1, the execu-
tion time at CPU frequency f1, and D2, the execution time at CPU frequency
f2 (with f1 6= f2) we have:

D1

D2
=

m+ f−11

m+ f−12

⇔ m =
D2f2 −D1f1
f1f2(D1 −D2)

(3)

We can predict the relative execution time at any CPU frequency with For-
mula (2) once we know m. Figure 3.4 shows the difference between the pre-
dicted and measured execution time in the memory-bound workload, where the
predictions are based on the execution times at the CPU frequencies 2.0GHz
and 3.4GHz. The predictions deviate at most 1.9% from the measurements,
indicating that the predictions are more than accurate enough. We can pre-
dict which CPU frequency is most energy efficient from the estimated execution
times and power consumption at every CPU frequency.
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3.1.1 The power manager

Our power manager pappeadapt optimizes energy costs (EDN ) by adapting
the CPU frequency to the current workload. We implemented pappeadapt as
a seperate program, which monitors all applications on the system as they are
running (online). pappeadapt experimentally uses the CPU frequencies flo —
the lowest potentially optimal CPU frequency — and fhi — the highest poten-
tially optimal CPU frequency — to identify how memory-bound the workload
using equation (3). Based on the estimate pappeadapt predicts which frequency
is optimal with formula (2). pappeadapt adapts to changing workloads by re-
peating the experiment and prediction approximately once per second. In order
to make the online adaptivity, pappeadapt requires a brief training step.

Ahead of time training
pappeadapt requires a training session before use: run the compute and memory-
bound microbenchmarks at each possible CPU frequency, while measuring the
systems power consumption, cache misses, and execution time. From the train-
ing data, we can determine:

flo The most efficient CPU frequency for the memory-bound workload.

fhi The most efficient CPU frequency for the compute-bound workload.
#»

P The relative power consumption at every CPU frequency. We measure this
for the compute-bound workload, and assume that proportional power
consumption is independent of the workload.

cm lo 10% of the cache miss rate of the memory-bound workload. We assume
workloads with fewer cache misses are compute-bound.

The training step takes less than 2 minutes on xeon. We conduct cache mea-
surements with Linux perf and power measurements using Intel RAPL, which
measures the energy consumed by the entire processor package (cores, caches,
integrated GPUs, etc.).

Online adaptivity
pappeadapt adapts the systems CPU frequency in real time with the 4 step
procedure in Listing 3.1:

1. Measure the performance of the frequency fhi for 0.1 seconds (see Line 3).
Repeat this step as long as the cache miss rate (cm) is very low (Line 4).
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1 while(true) {
2 do { // 1. Experiment with fHi
3 hi = measure(fHi , 0.1);
4 } while(hi.cm <= cmLo);
5 // 2. Experiment with fLo
6 lo = measure(fLo , 0.1);
7 // 3. Predict the best frequency
8 if (lo.ir >= hi.ir) {
9 best = F[0];

10 } else {
11 m = (fHi*lo.ir -fLo*hi.ir) /
12 (fHi*fLo*(hi.ir -lo.ir));
13 bestCost = P[0] *
14 pow(m + 1/F[0], N + 1);
15 best = F[0];
16

17 for (i = 1..nF -1) {
18 newCost = P[i] *
19 pow(m + 1/F[i], N + 1);
20 if(newCost < bestCost) {
21 bestCost = newCost;
22 best = F[i];
23 }
24 }
25 }
26 // 4. Use the best frequency
27 for(i=1..8) {
28 tmp = measure(best , 0.1);
29 if(tmp.cm <cmLo && best!=fHi)
30 break;
31 }
32 }

Listing 3.1: The pappeadapt’s energy saving procedure.

2. Measure the performance of the frequency flo for 0.1 seconds (Line 6) .

3. Predict the best CPU frequency, in two steps:

(a) Use the measurements to estimate how memory-bound the workload
is with Equation (3) (Line 11 – 12).

(b) Use the estimate to predict the cost of the different CPU frequencies
with Formula (2). Select the frequency with the lowest cost (Line 17 –
24).

4. Use the predicted best CPU frequency for 0.8 seconds (Line 27). Restart
the procedure early, if the system exhibits very few cache misses (Line 29).

The procedure uses the function measure(frequency, time), which sets the
CPU frequency to frequency, measures all applications on the computer for
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1 volatile int a = 0;
2 while(a < 512 << 20)
3 a++;

(a) Compute-bound micro-
benchmark

1 char array [256 << 20];
2 memset(array , 1, 256 << 20);
3 for(int j = 0; j < 16; j++) {
4 for(int i = 0; i < 256 << 20; ) {
5 char inc = array[i];
6 array[i] = inc * inc;
7 i = i + inc * 256;
8 }
9 }

(b) Memory-bound microbenchmark

Listing 3.2: The microbenchmarks

time seconds, and returns the cache misses per second (cm) and instructions
retired per second (ir). We estimate the workloads performance with the in-
struction retire rate (ir) — the number of instructions executed — implicitly
assuming that the instruction retire rate would be constant if we did not change
the CPU frequency. Generally we cannot assume that the instruction retire rate
will be constant — the workload can change while we were measuring, and it
can enter a different phase of computation — but because we are measuring in
short durations the workloads behavior is likely unchanged [SEH11]. As such,
our predictions are based on Equation (3), by substituting D = 1

ir .

3.1.2 The microbenchmarks

Listing 3.2 illustrates the two microbenchmarks. Both of the microbenchmarks
involve very little work from the operating system, the hot spots in the bench-
marks contain no system calls, and they cause very few page faults. We did
not investigate the impact of system calls and sleeping processes, because the
default Linux power governors already handle such workloads efficiently.

The compute-bound microbenchmark decrements a volatile counter 512 · 10242
times. The benchmarks causes almost no cache misses (INSERT TYPICAL
NUMBER), since the counter and the code fit in the processors cache. The
compute-bound microbenchmark represents an extreme case, where all activities
are on-chip.

The memory-bound microbenchmark iterates over an array of 256 MB bytes
16 times. The code uses the array contents as the stride, ensuring the reads
cannot run concurrently, and all array elements are initialized to 1, ensuring a
consistent stride of 256 bytes. We unrolled the innermost loop to 16 iterations
to minimize branching overheads. We also prevent the compiler from optimizing
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the code away by telling it that the arrays contents is replaced by an unknown
value after the memset (after Line 2), with GCC inline assembly.

The memory-bound workload represents an extreme case, where most activities
are off-chip. It is also an extreme case in that all of the data accesses are de-
pendent, preventing any form of memory level parallelism (MLP), which means
that each cache miss causes as much harm as possible. Low cache miss rates
are good indicators for compute-bound workloads, because workloads with lower
cache miss rates than the memory-bound benchmark cannot be memory-bound.

3.1.2.1 Other workloads

For our initial studies we also wrote a microbenchmark which iterates over an
array of 256 MB 64 times, reading and writing every 256 bytes, using indepen-
dent reads. On xeon this benchmark has a 9.4 times higher cache miss rate than
the memory-bound microbenchmark (on average 153.8 million cache misses per
second vs 16.4 million cache misses per second), and better throughput scal-
ing over frequency. The benchmark has a much higher cache miss rate than
anything we have observed in real single threaded applications, illustrating that
high cache miss rates are not a good indicators for memory-bound workloads.

Our initial studies also looked at the scaling of throughput over frequency for
SIMD instructions, expensive instructions (division and population count), TLB
misses and branch mispredictions, with a corresponding set of microbenchmarks.
We found that TLB misses scaled similar to the memory-bound workload when
they also cause cache misses, and similar to the compute-bound workload other-
wise. We found that SIMD instruction, expensive instruction, and branch miss
prediction throughput scales linearly with the CPU frequency, like the compute-
bound microbenchmark. We also found that expensive instructions like division
are often 50 times slower than normal instructions — which corresponds roughly
with Agner Fog’s findings [Fog14] on the same processor architecture (21–296
times slower) — with an instruction retire rate similar to the memory-bound
workload (0.04 vs 0.03 instructions retired per cycle) illustrating that low in-
struction retire rates are not good indicators for memory-bound workloads.

3.1.3 Implementation

This section describes the implementation details of pappeadapt for the pur-
poses of reproducibility and full disclosure.
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pappeadapt is implemented in C++. pappeadapt uses the Linux userspace power
governor, changing the CPU frequency by writing to the sysfs files /sys/-
devices/system/cpu/cpu*/cpufreq/scaling_setspeed. pappeadapt assumes
that enabling Turbo Boost will yield the same CPU frequency and power con-
sumption as the compute-bound microbenchmark — an assumption which does
not hold in general, since Turbo Boost by design does nothing on workloads with
high base power consumption, such as memory-bound workloads. pappeadapt
measures cache misses and instructions retired with Linux perf_-event_-open
as follows:

• Cache misses (PERF_COUNT_HW_CACHE_MISSES) and instructions retired
(PERF_COUNT_HW_INSTRUCTIONS) are measured in one group.

• All applications are measured (pid == -1).

• We measure each CPU separately.

pappeadapt requires super user permissions, for two purposes, (1) setting the
CPU frequency, and (2) measuring all applications.

3.2 Evaluation

This section evaluates the energy savings from using pappeadapt and statically
reduced CPU frequencies. This evaluation aims to answer 4 questions:

1. How well do the static and adaptive CPU settings perform in terms of
energy cost (E, ED, and ED2).

2. When do the settings perform well?

3. Do the microbenchmarks exemplify the most extremely compute and memory-
bound workloads?

4. How can we improve pappeadapt?

We evaluated the techniques on the machines in Table 3.1 with 54 benchmarks
from 4 benchmark suites:

SPEC2006 The premiere sequential benchmark suite using the “reference” in-
puts. This suite is frequently used to evaluate realistic system performance
and compiler optimizations impact.
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PARSEC 3.0 A set of parallel programs using the “native” input sets. We
excluded the benchmarks dedup, facesim, raytrace, and vips, either
because the benchmarks did not have the “native” input set, or because
they depended on libraries which were unavailable on our machines.

SPLASH-2x A set of highly optimized parallel programs maintained by the
PARSEC authors, using “native” input sets. We excluded fft, because it
requires too much memory, we also excluded lu_cb, lu_ncb, and radix,
because their execution times were below 10 seconds. The benchmark suite
was originally written in the 1990’s, and is frequently used in computer
architecture studies.

NPB 3.3.1 A set of parallel benchmarks written by NASA , using the “B” input
sets. We excluded ep, is, and mg, because their execution times were below
10 seconds. The benchmark suite was initially written in the 1990’s, but it
has been updated several times since, and it is frequently used to evaluate
the performance of enterprise machines and supercomputers.

We recorded the execution time with time and energy consumption with the
Linux sysfs interface for Intel RAPL. Each of the measurements was repeated
at least 5 times and all presented measurements are either median values, or
geometric mean of median values. We use medians, rather than arithmetic
means, because medians are more resistant to outliers.

3.2.1 Energy savings

Figure 3.5 and Table 3.2 show the relative cost of the different settings in terms
of E, D, ED, and ED2. The costs are relative to the cost at the 4GHz (4GHz
with Turbo Boost), the default behavior for most Linux power governors. Each
small dot represents the median cost for a benchmark, and the larger points
show the geometric mean of the median costs.

Adaptively and statically reducing xeon’s CPU frequency gave energy savings
above 40%. Statically reducing the CPU frequency to 1.6GHz and 1.8GHz
gave the best energy savings of 41.6%, while increasing the delay by 103 and
83% respectively. Adaptively optimizing for E gave the second best energy
savings at 41.5%, while increasing the delay by 62.5%. Statically reducing the
CPU frequency to 2.2GHz gave energy savings of 40.3%, larger savings than
we predicted possible from the microbenchmarks. The larger savings are caused
by the parallel benchmarks (see Section 3.2.2).

Adaptively and statically reducing xeon’s CPU frequency gave ED savings
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Figure 3.5: Energy costs for static CPU frequencies and adaptive settings.
Shows median energy costs (small dots) and geometric mean of
median energy costs (points). Lower is better.
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Setting D P E ED ED2

Adapt E 162.5% 36.0% 58.5% 95.2% 154.8%
Adapt ED 114.0% 64.4% 73.4% 83.6% 95.3%
Adapt ED2 107.6% 77.4% 83.3% 89.7% 96.5%
1.4GHz 230.0% 25.9% 59.7% 137.4% 316.3%
1.6GHz 203.0% 28.7% 58.4% 118.5% 240.5%
1.8GHz 183.4% 31.8% 58.4% 107.1% 196.5%
2GHz 170.0% 35.1% 59.7% 101.4% 172.3%
2.2GHz 155.1% 38.4% 59.6% 92.5% 143.5%
2.4GHz 147.5% 42.8% 63.1% 93.2% 137.5%
2.6GHz 136.0% 48.1% 65.4% 88.9% 121.0%
2.8GHz 129.0% 52.5% 67.7% 87.4% 112.7%
3GHz 121.1% 57.1% 69.2% 83.8% 101.5%
3.2GHz 115.6% 62.1% 71.8% 83.0% 96.0%
3.4GHz 110.3% 68.9% 76.1% 83.9% 92.6%
3.6GHz 105.7% 76.6% 81.0% 85.7% 90.6%
4GHz 100.0% 100.0% 100.0% 100.0% 100.0%

Table 3.2: Geometric mean of median energy and delay products normalized
for adaptive and static CPU frequencies, relative to the cost at
4GHz. Lower is better.

above 14%. Statically reducing the CPU frequency to 3.2GHz gave the best ED
savings of 17%. Adaptively optimizing for ED gave the second best ED savings
at 16.4%. Statically reducing the CPU frequency to 3.6GHz (fhi) gave ED sav-
ings of 14.3%, while reducing the CPU frequency to 1.8GHz (flo) increased ED
by 7.1%. The poor performance of flo corresponds to our expectations from the
microbenchmarks; statically optimizing the CPU frequency for memory-bound
workloads increases the delay prohibitively in compute-bound workloads. In
other words, if you want to optimize for ED, and do not know which workload
you have, either optimize adaptively or optimize statically based on a mostly
compute-bound workload.

Adaptively and statically reducing xeon’s CPU frequency gave ED2 savings
below 10%. Statically reducing the CPU frequency to 3.6GHz gave the best
ED2 savings of 9.4%. Statically reducing the CPU frequency to 1.8GHz (flo)
increased ED2 by 96.5%, approximately half of the worst case performance we
saw in the memory-bound microbenchmark. Adaptively optimizing for ED2

saved 3.5%, while adaptively optimizing for ED saved 4.7%. The performance
gap between the techniques is largest in parallel benchmarks and smallest in se-
quential benchmarks (SPEC2006). We believe that optimizing for ED performs
better than optimizing for ED2, because of the cost of the experimental steps.
The former technique experiments using fhi = 3.6GHz, which is 9.4% better
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Figure 3.6: Distribution of optimal static CPU frequencies for individual
benchmarks. Higher is better.

on average than the latter technique’s fhi = 4GHz. This indicates that our
technique should select experimental CPU frequencies more carefully, to reduce
the cost of experimenting.

Reducing the CPU frequency adaptively or statically can dramatically improve
(>40 percent) energy efficiency, somewhat improve (>14%) energy delay prod-
ucts (ED), and slightly improve (<10%) energy delay squared products (ED2),
as we expected from the microbenchmarks.

3.2.2 Sequential and parallel performance

Figure 3.6 shows how frequently the settings are optimal. Based on the mi-
crobenchmarks we would expect all optimal CPU frequencies should be between
1.6GHz and 2.2GHz when optimizing for E, between 1.8GHz and 3.6GHz when
optimizing for ED, and between 1.8GHz to 4GHz when optimizing for ED2. It
turns out that parallel workloads can benefit from lower CPU frequencies than
we expected.
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Figure 3.7: Power consumption and execution time relative to 3.6GHz. Shows
median energy costs (small dots) and geometric mean of median
energy costs (points). Lower is better.

Our initial expectations hold for the sequential benchmarks: All sequential
benchmarks, with one exception, reach optimal energy efficiency in the ex-
pected range, with 2.2GHz being the most frequently optimal. The excep-
tion is 401.bzip2, which saves 36.8% energy at 2.4GHz compared to 36.4%
at 2.2GHz, a small difference which could be a fluke. All of the sequential
benchmarks reach an optimal ED and ED2 efficiency in the ranges 2.2-3.6GHz
and 3.0-3.6GHz, respectively. The statically optimal CPU frequencies for ED
and ED2 fit in a considerably smaller ranger than we predicted from the mi-
crobenchmarks, presumably because realistic benchmarks are not as compute
or memory-bound as our microbenchmarks.

The parallel benchmarks generally benefit more from using low CPU frequencies:
1.6GHz is the most frequently optimal CPU frequency, and 6 of the benchmarks
reach optimal energy efficiency at 1.4GHz. Figure 3.7 illustrates that parallel
benchmarks are more sensitive to the CPU frequency, both in terms of power
consumption and execution time: increasing the CPU frequency reduces execu-
tion time less, and increases power consumption more, than increasing the CPU
frequency in sequential workloads. Both of these observations can be explained
easily:

• In a parallel workload, the CPUs consume more power relative to shared
components, such as caches, increasing the dynamic power consumption.
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• In a parallel workload, the shared components, such as caches and memory,
are more likely to be limiting resources, decreasing the speedup from higher
CPU frequencies.

The most frequently optimal CPU frequencies for ED and ED2 are 3.2 and
3.6GHz respectively, for both parallel and the sequential benchmarks. The se-
quential benchmarks tend to benefit more from CPU frequencies above 3.2GHz
than the parallel benchmarks.

3.2.3 Comparison of benchmarks and microbenchmarks

Our initial assumptions about workloads appear to hold for the sequential bench-
marks, indicating that the microbenchmarks represent extreme cases of compute
and memory-bound workloads: The optimal static CPU frequencies for E, ED,
and ED2 are in the ranges we predicted based on the benchmarks.

Our initial assumptions about workloads do not hold for the parallel bench-
marks, since several of the benchmarks perform better at lower CPU frequencies
than we predicted. Increasing the CPU frequency in the parallel benchmarks in-
creases power consumption more, and generally reduces execution time less than
increasing the CPU frequency in the sequential benchmarks (see Figure 3.7).

3.3 Related work

In this section we will give a brief review — and relate to — prior works on
(1) workload aware power governors, (2) studies of CPU frequencies, and (3)
techniques for optimizing for energy efficiency. We only include power governors
for fully utilized systems, since they are significantly different from other power
governors, and we focus mostly on recent works, because the power-performance
tradeoffs have changed significantly over time.

3.3.1 Power Governors

As far as we know, there are currently only 3 power governors with published
papers — Koala, Green Governors, and eDVFS — all of which are implemented
for Linux.
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Koala by Snowdon et al. adaptively optimizes energy efficiency according to
a generalized EDN energy cost [SLSPH09]. Koala predicts power consumption
and delay with a linear regression model based on performance counters. The
performance counters are selected by training on SPEC2000 benchmarks, which
took them approximately 18 days. The resulting models are individual for each
processor, but they generally used cache activity and miss rates, together with
the number of stalled CPU cycles, similar to Green Governors.

Koala generally yielded significant ED and E savings on SPEC2006 relative
to using the highest CPU frequency, but on some benchmarks it performed
significantly worse than the highest CPU frequency. The most extreme case is
the LBM benchmark, where they over approximated execution speed by 25%,
and under approximated energy use by 20%. As a result Koala used a higher
CPU frequency than it should have.

Green Governors by Keramidas et al. [KSK10] adaptively predicts optimal
CPU frequencies based one of two models: (1) a stall based model which re-
quires a count of the number of stalled CPU cycles due to cache misses and (2) a
miss based model, which requires a count of non-overlapping cache misses. Both
of the required performance counters do not exist for common processors, but
they later proposed [SKK11] another model which only used commonly avail-
able performance counters: Estimate the stall cycles due to cache misses as the
minimum of (1) the number of CPU stall cycles and (2) the average cache miss la-
tency multiplied by the number of cache missesmin(frontendStalls, cacheMisses ·
avgcacheMissLatency).

They used the updated performance model together with power consumption
models of Goel et al. [GMG+10] to implement Green Governors, which opti-
mizing ED or ED2. The Green Governors generally yielded significant ED
and ED2 savings on SPEC2006 relative to using the highest CPU frequency,
but on some benchmarks it performed significantly worse than the highest CPU
frequency.

eDVFS by Kim et al. [KEYM14] adaptively optimizes energy efficiency. They
model execution time as the maximum of the memory’s execution time — es-
timated from bandwidth requirements — and the processor’s execution time
— estimated from an equation system which involves memory latency, cache
misses, and CPU frontend stall cycles. eDVFS approximates a solution to the
equation system by evaluating it iteratively 10 times, or until the values con-
verge. The equations in the system state three relations (1) the number of cache
misses increases with fewer CPU frontend stalls, because then the processor can
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make more memory accesses, (2) the number of CPU frontend stalls increases
with lower memory latencies, and (3) the memory latencies increase with higher
cache miss rates.

They model power consumption as the sum of the memory’s power consump-
tion, as a linear function of the cache miss rate, and the processor’s power
consumption, as a function of CPU utilization and frequency. The power con-
sumption and the execution time models need to know how memory latency and
bandwidth relate processor frequency and cache misses, which eDVFS detects
through a training step. eDVFS yielded significant E savings on SPEC2006
compared to the highest CPU frequency, but the savings were often signifi-
cantly worse than the power savings achieved by statically optimizing the CPU
frequency.

pappeadapt fundamentally differs from the prior workload aware power gover-
nors in two ways:

1. Tool uses online experimentation, instead of making predictions directly
from performance counters

2. Tool prunes the set of possible CPU frequencies based on static training,
to minimize poor choices of CPU frequencies.

The differences were designed to improve the robustness of pappeadapt — to
reduce the number of cases where pappeadapt performs poorly — a goal which
we largely achieved, since pappeadapt always yields energy delay product sav-
ings near the static optimal frequencies. Robustness is important because it
increases our confidence in the power governor; if it performed horribly in a few
of the benchmarks we evaluate on, then how can we be sure it will behave nicely
in general?

The less robust power governors — Koala and Green Governors — essentially
predict execution time by assigning a weight to each performance counter. In our
initial studies (Section 3.1.2.1), we pointed out that the individual performance
counters are poor indicators of how execution time will scale with the CPU
frequency. An application A can literally cause 10 times as many cache misses
as an application B, while B is more memory-bound than A. eDVFS’s evaluation
showed more robust results, possibly its execution time model is very non-linear,
or possibly because only used the training step to tune fundamental metrics —
memory bandwidth and latency — rather than performance counter weights.

In our quest for a robust power governor, we have also made some conservative
decisions which limit our potential savings, in three ways: (1) our model of
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power consumption is very simple and conservative — the power models used by
eDVFS could probably improve our predictions, (2) pruning the set of possible
CPU frequencies based on sequential training applications is disregards low CPU
frequencies which are optimal for some parallel workloads.

Our online experimentation is heavily inspired by Mars et al.’s Shutter tech-
nique [MVHS10]. The Shutter technique adaptively sets the number of threads
used parallel batch applications based on periodic experiments in 3 repeating
steps:

1. Use 1 thread for 0.1 s, while measuring throughput.

2. Use as many threads as possible for 0.1 s, while measuring throughput.

3. Either use 1 thread, or as many threads as possible for 0.8 s, based on
which solution performed best.

Our technique, illustrated in Listing 3.1, follows the same basic outline, but it
has 2 domain specific improvements: (1) We predict the optimal setting based
on a variation of Amdahl’s law, and (2) we avoid experimenting when we are
confident that the highest setting is optimal.

3.3.2 Studies in CPU frequencies impact on power and
performance

Le Sueur and Heiser investigated the potential energy savings from reducing
CPU frequency on 3 computers with AMD processors produced in 2003, 2006,
and 2009 [LSH10]. They found that the computers from 2003 and 2006 could
save approximately 10 and 30 percent energy respectively by reducing their
CPU frequencies by 400 MHz, on the SPEC2000 benchmark 181.mcf, while
the 2009 computer was most energy efficient at its highest CPU frequency.
They argued that the 2009 computer did not benefit from using lower CPU
frequencies for three reasons: (1) the lower feature size in the 2009 computer
means that it has a higher static power consumption, (2) the new computer has
better memory performance, due to faster RAM, larger caches, and hardware
prefetching, which effectively makes the benchmark less memory-bound, and
(3) the new computer has 4 cores, which complicates voltage scaling. Another
possible reason for the low benefits on the newer machine, is that the processor
consumed a smaller fraction of the entire computers power consumption, than
on the older computers.
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Le Sueur and Heiser later performed a similar survey [LSH11] with three pro-
cessors from 2009: an OMAP4430 (ARM A9), an Intel Atom Z550, and an Intel
i7-870. The latter survey investigated two workloads with low CPU utilization
— a video player and web server workload — as well as a workload with high
CPU utilization —SPEC JBB2005 with 4 warehouses. Reducing the CPU fre-
quency in the workloads with low CPU utilization significantly reduced the Intel
Atom and OMAP4430 based computers’ energy consumption, but marginally
increased the Intel i7 based computer’s energy consumption. Meanwhile, re-
ducing the CPU frequency in SPEC JBB2005 significantly improved its energy
efficiency.

Schöne et al. [SHM12] studied 7 different high end computers’ memory and
L3 cache bandwidth at various CPU frequencies on a parallel microbenchmark.
They found that the relationship between both memory bandwidth and CPU
frequency is machine specific, as well as the relationship between L3 bandwidth
and CPU frequency. On most of the computers the cache bandwidth grew
linearly with the CPU frequency in the single threaded case, but sublinearly
in parallel case because the cache bandwidth was nearly exhausted, even at
low CPU frequencies. Schöne et al.’s findings highlight that different machines
become memory-bound at different cache miss rates and cache access rates; a
further motivation for using training steps in power governors.

Etinski et al. [ECLV12] performed a study of how the CPU frequency influences
execution time of the MPI version of the NAS benchmark suite on a cluster of
30 computers with 24 cores each. They found that universally — for all the
benchmarks — the had execution times depended less on the CPU frequency
when using more parallelism, because CPU frequency scaling does not affect
communication time, which is significant in parallel workloads. Their findings
illustrate that reducing the CPU frequency is a more viable approach in highly
parallel workloads.

Kambadur and Kim [KK14] studied the impact of various compiler optimiza-
tions, manual optimizations, parallelism, processor idle states, CPU frequencies,
and power governors. On the optimization front they found that parallelizing
code could save 50% energy, while other manual optimizing only improved en-
ergy efficiency in one benchmark out of eight. On the power governor front,
they found that (1) reducing operating frequencies increased energy consump-
tion, while disabling TurboBoost reduced energy consumption in some cases
— especially on parallel code — (2) the Linux power governors ondemand and
performance are approximately equally energy efficient when the CPU is fully
utilized, and (3) processor idle states saves 10 − 19% energy — the largest
savings occur when TurboBoost is enabled.

Our results have shown a larger benefit from using lower CPU frequencies than
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the findings of Kambadur and Kim, as well as the findings of Le Seur and Heiser,
a difference which we believe is caused by two factors:

1. Our evaluation only measures processor power consumption, not the power
consumption of the entire computer.

2. We evaluated on different machines.

Overall, both our findings and those of prior work two things: (1) parallel
workloads benefit more reducing CPU frequencies than sequential workloads and
(2) the benefits from reducing CPU frequencies are very machine dependent.
The machine specific features energy features is the fundamental reason why
pappeadapt and the other workload specific power governors have a training
step.

3.3.3 Optimizing software for energy efficiency

Power-Sleuth is a power consumption profiler by Spiliopoulos et al. [SSK12] ca-
pable of predicting applications power-performance characteristics at different
CPU frequencies based on a single profile run. The predictions are made for
individual phases of the program’s execution, by first identifying phases with
the application ScarPhase [SEH11]. Power-Sleuth predicted the performance of
each phase with the execution time model of Green Governors, and the power
consumption with a trained linear regression model based on performance coun-
ters similar to Koala’s power model.

3.4 Future work

pappeadapt is a promising power governor which has not yet reached its poten-
tial, in its current form. Adaptively setting CPU frequencies with pappeadapt
does not outperform the best static assignments of CPU frequencies, but we
believe that goal is reachable with a few improvements. Reaching that goal
would make pappeadapt an attractive means for reducing energy consumption
in a wealth of computer systems, from data centers to personal computers and
smart phones. However, the model for predicting memory-bound workloads ex-
ecution times is very precise, in its current form. We believe that the model
could be used for workload characterization, to aid in selecting the right system
configurations for different workloads, in data centers and embedded devices.
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We have identified 5 means for improving pappeadapt’s performance:

1. Train for parallelism.

2. Improve training robustness.

3. Reduce experimentation cost.

4. Improve measurement precision.

5. Improve prediction accuracy.

Out of these potential improvements, we believe that improving training robust-
ness, reducing experimentation cost, and improving measurement precision will
give the largest benefit, and require the least effort.

Train for parallelism. We could improve pappeadapt’s performance in par-
allel workloads by detecting parallel workloads and training with parallel mi-
crobenchmarks. pappeadapt uses estimates of relative power consumption from
the sequential microbenchmarks, which are not representative of power con-
sumption in parallel workloads. pappeadapt actually performed better in par-
allel workloads, despite being trained in sequential workloads, indicating that
our current approach is more profitable in parallel workloads. We believe the
best way of detecting parallel workloads is either:

1. Tracking the number of threads spawned for computation by instrument-
ing the systems threading libraries.

2. Tracking the number of active threads (loadavg) by querying the operat-
ing system.

We believe that instrumenting the systems threading library is the better option
here, since operating system statistics are normally accumulated over several
minutes, making them poor indicators of current parallelism.

Training output reliability. The accuracy of the training output is vital for
our pappeadapt’s performance. Inaccurate training output skews the estimated
power consumption — causing pappeadapt to optimize based on wrong esti-
mates — and changes the CPU frequencies that pappeadapt will experiment
with and predict performance for. We can improve the training outputs reli-
ability by running the traning phase repeatedly, until the mean of all output
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variables coverge: This will increase the training phase’s length from approxi-
mately 2 minutes, to perhaps 20 minutes, which we consider to be worth the
effort.

We know that the training output is not sufficiently accurate, because we re-
ceived significantly different training output when repeating the training phase
after the experiments: In our preliminary experiments on the microbenchmarks,
we found that the lowest optimal CPU frequency was 1.8GHz when optimizing
xeon for ED or ED2, but the repeated experiments found that 2.0GHz and
2.2GHz were optimal. The error in the training output meant that pappeadapt
experimented with CPU frequencies which were lower than necessary, when op-
timizing for ED and ED2.

Reducing experimentation cost. The adaptive procedure experiments with
the CPU frequencies fhi and flo 20% of the time. Experimenting with flo is
particularly expensive when optimizing for ED2 on compute-bound workloads,
because it increases execution time significantly. We can reduce the cost by (1)
experimenting with CPU frequencies near the predicted optimal frequency, and
(2) deriving a smallest possible optimal CPU frequency based on the cache miss
rate.

Improving measurement precision. We predict which CPU frequency is
optimal based on measurements of instruction retire rates of all applications on
all CPUs. Unfortunately, the measurements are rather imprecise: Measuring
the instruction retire rate with a static CPU frequency at 0.1 second intervals,
should show phase behavior [SEH11] — extended periods of time where the
measurements do not change significantly, because the workload does signifi-
cantly when it is in a phase. We found that successive measurements typically
varied with 20 %, never showing phase behavior. If the instruction retire rate
typically varies with 20 % when we are not changing the CPU frequency, then
the impact of changing the CPU frequency will be less visible — reducing the
signal to noise ratio of the measurement we use for our predictions.

We can improve measurement precision by (1) increasing measurement dura-
tions, sacrificing the ability to quickly adapt to changing workloads, or (2)
finding more accurate ways to measure throughput. We previously spawned
the benchmarks from pappeadapt, and measured their instruction retire rates
through inherited perf_event handles, which seemed more accurate, but would
be an impractical to use in real systems. We believe that a significant por-
tion of the measurement errors are caused measuring with grouped perf_event
counters for all processes on each individual CPU. Measuring on each individual
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CPU may be deferred to context switches. If that is the case, we should either
measure after context switches, or compensate for the unmeasured execution
time.

Improving prediction accuracy. Our prediction model is accurate (see Fig-
ure 3.4) but simplistic. We could improve prediction accuracy by modelling
overlapping of on-chip and off-chip activities, modelling that that the CPUs can
hide a number of cycles of latency. Improving prediction accuracy seems like
overkill for the current setup, where prediction accuracy is significantly better
than the measurement precision, but it may be necessary if we experiment with
a smaller range of CPU frequencies, extrapolating from the model.

We believe these potential improvements could the adaptive techniques more
attractive, hopefully outperforming the static optimal CPU frequencies. Even
though we rarely outperform the static optimal CPU frequencies in individual
benchmarks, we believe our adaptive technique is an attractive alternative to
prior work on optimizing CPU frequencies for memory-bound workloads, and
we believe our model of execution time in memory-bound applications could be
applied in other situations.

3.5 Concluding remarks

Tuning CPU frequencies can save a lot of energy. We have experimentally shown
that we can save 41.6%, and 40.3% energy by statically restricting the CPU
frequency to the CPU frequencies to the CPU frequencies which are optimal for
compute and memory-bound microbenchmarks, respectively. Statically using
those CPU frequencies is an easy way to reduce energy consumption (See Sec-
tion 3.2.1). It is harder to optimize ED and ED2 by statically reducing the CPU
frequency, because they exhibit a larger difference in which CPU frequencies are
optimal. With pappeadapt — a power governor which adaptively experiments
with CPU frequencies, measures how the computer performs, and adjusting the
CPU frequency accordingly — we reduced the processors geometric mean energy
consumption by 41.5%, ED by 16.4%, and ED2 by 4.7%, on the benchmark
suites NPB 3.3.1, SPEC2006, PARSEC 3.0, SPLASH-2x. By adaptively ex-
perimenting and optimizing CPU frequencies, pappeadapt achieves consistent
energy product savings for a wide range of workloads.

pappeadapt differs from prior power governors by making predictions from ex-
periments, rather than models driven by cache miss rates and CPU frontend
stall cycles. Predicting directly from performance counters is attractive because
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it is essentially free — unlike our experiments with the CPU frequency — but
the predictions cannot be accurate for all workloads, because the performance
counters can misrepresent how memory-bound workloads are by an order of
magnitude (See Section 3.1.2.1). Performing the experiments has a cost, but it
allows pappeadapt to work consistently.

pappeadapt predicts execution times by modelling and estimating the propor-
tions of on-chip activities, which speed up linearly with the CPU frequency, and
off-chip activities, which are independent. The model allows us to accurately
predict the execution time at any CPU frequency from execution time measure-
ments at two different CPU frequencies. Such predictions are not just valuable
for power governors, but could also be used to select a computers processor or
CPU frequency, based on the throughput requirements and the workload it is
have.

Overall, pappeadapt illustrates how we can adaptively improve energy efficiency
for the current workload by reducing CPU frequencies — increasing execution
time and decreasing power consumption. In the next chapters we will investigate
the opposite approach, improving energy efficiency by reducing execution time,
even if that means increasing power consumption.
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Chapter 4

Minimizing Blocking with
Transactional Memory

In the previous chapter we saved energy by reducing the processors voltage,
with a middleware solution exploiting DVFS and performance counter present
in modern computers. In this chapter we extend the energy saving efforts by
reducing execution times of parallel application, with a middleware solution
exploiting transactional memory support present in modern computers.

Parallel applications use synchronization to coordinate asynchronous threads.
Synchronization is not free. Depending on the structure of the parallel applica-
tion, how much parallelism it exposes, and how the work is distributed, threads
may spend much time blocked while synchronizing — time that should be spent
on useful work.

Transactional Memory (TM) can be used to reduce blocking: Rather than wait-
ing for a lock to be acquired, the thread enters a transaction and attempts to
execute the protected code without a lock. Should a data-race occur between
transactions, some of them will be aborted — reverting all of the transactions
writes to memory, hiding the data-race — such that the transaction can safely
be restarted. Individual transactions have a higher performance overhead than
regular locking schemes, but transactions allow for parallel executions of critical
sections, potentially reducing execution time [BCKT14, SATH+06] and energy
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consumption [MBH05].

Hardware Transactional Memory (HTM) has recently been adopted by hardware
manufacturers in architectures such as Intel Haswell and IBM Power8 [CMF+13,
Int14b]. Hardware supported transactions have relatively low overhead, but they
can fail both spuriously and deterministically, even without data-races. Using
HTM requires a backup plan for all transactions, in case they fail repeatedly.

This chapter introduces:

• HTM based methods for executing barriers, critical sections and taskwait
without blocking or extra programmer intervention:

– The speculative method for critical sections is more resistant to con-
tention than prior work.

– Unlike existing speculative methods for barriers, our methods do not
require non-transactional memory accesses within transactions.

• An evaluation of aforementioned methods on a series of microbenchmarks
and the Barcelona OpenMP Task-Suite, explaining why and when they
work.

This chapter is structured as follows: Section 4.1 describes how to speculate crit-
ical sections, taskwaits and barriers, and Section 4.2 evaluates the performance
of the methods. Section 4.3 describes limitations of the methods, and how they
relate to prior work and extension proposals for OpenMP. Finally Section 4.4
summarizes our findings.

4.1 Avoiding Blocking in OpenMP

This section describes how we use HTM to minimize blocking time in locks,
barriers, and taskwaits. We access HTM capabilities through three functions:

tbegin(LABEL) Start a transaction. If the transaction fails, it will roll back all
its changes and go to the label LABEL.

tend() Commit the transaction, atomically revealing its changes to all other
threads.

tabort() Force the transaction to fail.
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1   #pragma omp parallel num_threads(3)
2   {
3      #pragma omp critical
4          work ();
5   }

Time-line
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Figure 4.1: Code and timelines for computation with 3 threads using a critical
section, illustrating the difference between the existing OpenMP
approach and our speculative version.

The functions correspond to the subset of TM capabilities in IBM Power8 and
Intel Haswell processor architectures.

4.1.1 Critical sections

Critical sections are typically used to update shared variables in parallel code,
for instance updating counters or data structures. Critical sections acts as a
serialization point, where only one thread can execute the protected region at
any one time. Figure 4.1 shows an example where three threads encounter a
critical section. The threads acquire the critical section’s lock before entering
the critical section. Thread0 acquires the lock first, which traditionally means
that Thread1 and Thread2 will have to block until the lock is released. With
lock elision, threads can speculatively ignore the lock acquisition, and avoid
blocking.

Listing 4.1 illustrates our lock implementation, which supports lock elision, and
truncated exponential backoff [And90]. To avoid blocking, lock elision attempts
to use transactions rather than regular locks: Instead of acquiring a lock, we
start a transaction (Line 4), and commit the transaction instead of releasing the
lock (Line 21). If the transaction fails three times in a row, we fall back to using
a test-and-set lock (Lines 8 and 23), and do not let any transactions commit if
the lock is held (Line 20). Lock elision follows normal lock semantics: successful
transactions appear to execute atomically while the lock is released and failed
transactions have no visible side effects.
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Multiple transactions can execute a single critical section in parallel as long as
the transactions succeed. Unfortunately, transactions do not always succeed.
Transactions are less likely to succeed if the lock is held frequently. When
transactions fail repeatedly, they fall back to using the underlying traditional
lock, creating a harmful feedback loop known as the lemming effect [DLM+09]:
once a few lemmings jump off a cliff (transactions fail), the other lemmings will
follow suit. If a few consecutive transactions fall back to the underlying lock,
then all concurrent transactions will most likely fail, and possibly fall back to
using the underlying lock.

We mitigate the lemming effect by (1) not counting aborted transactions (Line 5)
and (2) using a truncated exponential backoff variant, which is highlighted green
in Listing 4.1. The lemming effect occurs when the lock is contended. Truncated
exponential backoff adaptively avoids the lemming effect, by backing off when
the lock is contended, and the transaction is unlikely to succeed.

We use a truncated exponential backoff with a slot size a = 1024 processor
cycles, and a truncation of b = 28+blog2 tc, where t is the number of threads.
Each thread has a delay variable (Line 14), which indicates how contended the
lock is. Before acquiring the lock, threads must backoff (wait) for a number
of clock cycles sampled randomly from 0 to 2delay, unless delay is 0 (Line 2).
Our lock implementation is largely based on another form of lock elision called
Speculative Lock Removal (SLR) [ALM14]. Our technique differs from SLR in
how we mitigate the lemming effect.

1 void acquireLock(lockVar) {
2 backoff ();
3 for(int a=0; a<3; a++) {
4 FOR:tbegin(ERR); return;
5 ERR:if(tAborted ()) goto FOR;
6 if(tCannot ()) break;
7 }
8 if(tryLock (& lockVar ))
9 return;

10 delay = min(delay + 1, 0);
11 acquireLock ();
12 }
13

14 __thread unsigned delay;
15 // Wait U(0;a<<delay) cycles
16 void backoff ();
17

18 void releaseLock(lockVar) {
19 if(isInTransaction ()) {
20 if(isLocked ()) tabort ();
21 tend ();
22 } else {
23 unlock(lockVar );
24 }
25 delay = max(delay - 1, b);
26 }

Listing 4.1: Lock with lock elision (bright orange) and exponential backoff
(green).
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1 #pragma omp parallel num_threads(3)
2 {
3
4 pre_barrier();
5
6 #pragma omp barrier
7
8 post_barrier();
9 }

Time-line
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Figure 4.2: Code and timeline illustrating the benefits of speculative execution
over existing approaches for barrier synchronization.

4.1.2 Barrier/Taskwait

Barriers are typically used to orchestrate parallel computations with multiple
stages, computations such as linear algebra solvers or image processing with
multiple stages or filters. A thread that reaches a barrier must block until all
threads arrive at the barrier. Figure 4.2 illustrates a computation with three
threads (Thread0. . . 2) using a barrier. Thread2 is the last thread to reach the
barrier, which traditionally means that the other threads (Thread0 and Thread1)
have to wait. With barrier elision, threads can optimistically speculate beyond
the barrier to avoid blocking.

Listing 4.2 illustrates the barrier elision: Instead of blocking for the arrival of
the remaining threads (Line 3), we start a transaction (Line 6). At the next syn-
chronization point, we check if the other threads arrived after the barrier (Line

1 void barrier_wait(count) {
2 fetch_and_add (&count , 1);
3 while(count!= num_threads) {
4 while(task_schedule ()) {}
5 spec_val = num_threads;
6 tbegin(RETRY );
7 spec_adr = &count;
8 return;
9 RETRY: {}

10 }
11 }

12 __thread unsigned* spec_adr;
13 __thread unsigned spec_val;
14

15 // Called by synchronization
16 void handle_spec () {
17 if(spec_adr == 0)
18 return;
19 if(* spec_adr != spec_val)
20 tabort ();
21 tend ();
22 }

Listing 4.2: Single use barrier with speculative support (highlighted lines).
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1   #pragma omp parallel
     #pragma omp master
2   {
3

4      #pragma omp task
5             T0();
6

7      #pragma omp task
8             T1();
9
10     #pragma omp taskwait
11
12      after();
13  }
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Figure 4.3: Code and timelines illustrating the benefits of speculative execu-
tion existing approaches for taskwait synchronization.

19); committing the transaction if all threads arrived (Line 21), and aborting
otherwise (Line 20).

The transaction will commit only if it was data-race free and all threads reached
the barrier. This ensures that the transaction will appear to execute atomically
after all threads reach the barrier.

The barrier in Listing 4.2 is simplified to emphasize barrier elision. The listing’s
barrier is usable only once and does not synchronize with tasks, whereas our
implementation uses sense reversing barriers preceded by taskwait synchroniza-
tion.

Taskwait synchronization cause threads to block until all children tasks finish,
as illustrated by Figure 4.3. We elide taskwait synchronization in the same
way as barriers: Attempt to speculate beyond a taskwait if the thread cannot
fetch a ready task, and either commit or abort the transaction at the next
synchronization.

Our mechanism can speculate across one barrier or taskwait. Ideally, the critical
path before the synchronization can run in parallel with critical path after the
synchronization, which would halve the makespan.
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Table 4.1: Experimental machine

Processor Name Intel Xeon E3-1276 v3
Processor Configuration 4 cores, 2 hyper-threads/core, 3.6 GHz
Processor Caches 4x32 kB L1D, 4x256 kB L2, 8 MB L3
Compiler GCC 5.1.0
Operating System Ubuntu Server 14.04.1 LTS
Kernel 3.17.0-031700-generic

Table 4.2: Task-parallel benchmarks and inputs. We used default cutoffs.

Benchmark Input-Set
Alignment prot.100.aa
Fibonacci 48
Floorplan input.20
Health large.input
nQueens 13x13 chessboard
Sort 134,217,728 elements

Strassen 4096x4096 matrix size
SparseLU 50x50 matrix, 100x100 submatrix

UTS tiny.input

4.2 Evaluation

This section describes the evaluation methodology we used and the results
achieved using our proposed implementation.

4.2.1 Experimental Setup

We implemented our speculative methods, described in Section 4.1, in the
OpenMP runtime TurboBŁYSK [PBV14]. We evaluated our implementation
on the Intel Haswell-based system outlined in in Table 4.1.

Speculative execution across taskwaits in task-parallel benchmarks was eval-
uated using the Barcelona OpenMP Task Suite (BOTS) [DTF+09] with tied
tasks and the input sets given in Table 4.2. All benchmark were executed 30
times, and all our results show the median execution time. Cache-statistics were
obtained using Linux perf, while only counting L3 cache misses outside aborted
transactions. BOTS is a benchmark suite where all benchmarks use OpenMP
several tasks, and a few taskwait directives. This suite was initially written in
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#pragma omp parallel
  {
    #pragma omp for
    #pragma omp critical
       map->insert();

    #pragma omp barrier

    start_timer_thread(&done, 2);
    
    #pragma omp barrier

    while(!done)
    {
      char map_insert = random();
      if (map_insert)
         #pragma omp critical
            map->insert(random());
      else
         #pragma omp critical
            map->remove(random());
    }
}
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Figure 4.4: Source code and performance for the critical section microbench-
mark.

the late 2000’s, and it is frequently used to evaluate the performance of OpenMP
libraries on systems with tens or hundreds of cores.

Speculation across OpenMP critical directives was evaluated with a micro-
benchmark that randomly inserts or removes elements from a shared map. We
compared the traditional OpenMP critical implementations that use locks, a
generic software lock elision technique and our improved software-elision tech-
nique with and without backoff. The performance metric is the number of map
modifications successfully completed per second.

Speculation across OpenMP barrier directives was done using a microbench-
mark that alternates between barrier synchronization and computation. The
microbenchmark is a stress test for barrier synchronization, to illustrate the
potential performance improvements from using speculation. The performance
metric is the improvement (decrease) in execution time.

4.2.2 Results

4.2.2.1 Critical section performance

Evaluation of our proposed critical section implementation (see Section 4.1.1)
was performed using a common map microbenchmark, which has been used
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#pragma omp parallel
{

int tid = omp_get_thread_num();
for (int i=0; i<1000000; i++) {

volatile int
for (j=0; j!=10000*((tid + i) % 2); j++) { }
#pragma omp barrier

}
}

 j;

(a) Barrier microbenchmark
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Figure 4.5: Source code and performance for the barrier microbenchmark.

in related work [BER14, DVY14, NM14], illustrated in Figure 4.4:a. A team
of threads concurrently operate on a left-leaning red-black tree (GCC’s STL
map), which initially contains 217 key-value pairs. Half of the operations are
insert operations and the other half are remove operations, both using uniformly
random keys from [0; 218 − 1]. After the threads have operated on the tree for
2 seconds, we record how many operations completed in that time. The tree is
protected by a critical section.

Figure 4.4:b shows the sum of the threads throughput for different lock im-
plementations. We evaluate the lock implementation used in GOMP, plain
SLR [ALM14], our SLR variant without backoff, and finally our SLR with back-
off.

Traditional locking will suffer from a serialization bottleneck because all work
in the benchmark is contained within the critical sections. Using lock elision
enables the benchmark to scale, but it suffers from the previously mentioned
lemming effect: When a few transactions fail, more transaction will quickly
follow. Our SLR variant reduces the lemming effect somewhat by not counting
failed transactions (Listing 4.1 line 5) and by combining it with exponential
backoff the performance degrades more gracefully than the other approaches.

Other variations of this microbenchmark, with different map implementations
or distributions of operations, can scale significantly better than this evalua-
tion. We chose this evaluation because it illustrates that there are both benefits
(scaling) and disadvantages (the lemming effect) to lock elision.
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Figure 4.6: Speed-up on the BOTS benchmarks with and without speculation.

4.2.2.2 Barrier/taskwait elision

We evaluate elision of barrier and taskwait synchronization on BOTS, as well
as a microbenchmark which illustrates the best case scenario for barrier elision.
The microbenchmark is illustrated in Figure 4.5. A team of threads repeatedly
enter a barrier. Only half of the threads have any work to do in between the
barriers, each thread alternates between having work to do and not.

Figure 4.5 illustrates the performance improvement from speculating across the
barriers, and the success rate of the speculations, i.e. the ratio of successful
transactions to attempted transactions. The highest performance improvement
is 41% at 2 threads and the highest success rate is 45% at 4 threads. The perfor-
mance improvements reduce significantly when using more than 4 threads, pre-
sumably because the additional threads are SMT based hyperthreads. Threads
which speculative the barrier presumably use more execution resources than
threads which wait at the barrier, leaving less resources to their siblings, effec-
tively slowing down the threads which have work to do. The lowest success rate
occurs at 3 threads, possibly due to scheduling constraints and TurboBoost:
One of the threads is likely running at higher CPU frequency than the other
threads, which reduces its chance of specularing successfully.

Figure 4.6 shows the speed-up performance with and without speculation en-
abled for the BOTS benchmarks. Both the speculative and non-speculative
versions follow the trend of linearly scaling up to the number of cores in the
system. The performance is degraded when hyper-threading is in use due to
the contention for each core’s resources. There are no significant differences
between the two versions in terms of absolute performance. SparseLU is the
only benchmark which showed consistent — although marginal — performance
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Figure 4.7: Speculation and performance deviation statistics on the BOTS
benchmark suite with four-threads (a,c) and eight-threads (b,d).

improvements from speculative execution.

Figure 4.7:a-b show memory characteristics and performance of the specula-
tive cases normalized against the non-speculative version. Enabling speculation
across taskwaits thrashes the l1 cache significantly — all benchmarks under
test experiences this to some extent. Marginal improvements in the last-level
cache performance can be seen for the four-thread scenario, where the SparseLU
benchmark experiences up to 7% decrease in last-level cache misses. Overall,
compute-bound benchmark that uses heavy divide-and-conquer strategies (e.g.
nQueen and Fibonacci) seem to most receptive to negative memory effects when
speculating — fortunately, these are benchmarks that cause few last-level cache
misses.

Figure 4.7:c-d shows the total number of taskwaits encountered and the to-
tal number of taskwait speculations that successfully committed or failed. The
divide-and-conquer compute-bound benchmark rarely offers any chance for spec-
ulation. For example, even though the nQueen benchmark offers around 1200
barriers and taskwaits, most of them will fail — only 1 speculation managed
to successfully retire. Strassen is the most generous application and manages
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1 void (* functionPtr )();
2 #pragma omp parallel
3 {
4 #pragma omp master
5 functionPtr = puts;
6 #pragma omp barrier
7 functionPtr ();
8 }

Listing 4.3: A potentially uninitialized function pointer.

successfully speculate more than it fails but with no benefits on execution time.
SparseLU is also well behaved, allowing between 10% (4 threads) to 20% (8
threads) of speculations to succeed, yielding marginal performance improve-
ments up to 1%.

The impact on execution time is well below 1% in most of the BOTS bench-
marks. BOTS is a benchmark suite for evaluating of OpenMP run-time systems
on systems with tens or hundreds of cores, whereas we our evaluation is limited
to a 4 core system. As a consequence, all of the benchmarks expose plenty of
parallelism, and the threads hardly ever block. Future system will likely benefit
more from speculating over taskwaits and barriers, as threads will be less likely
to find work.

4.3 Limitations and Related Work

Our synchronization elision techniques operate on the following principle: Con-
tinue executing speculatively when you would traditionally block for events,
but check that the event occurred before committing. In other words, we defer
blocking until the transactional commit.

This principle is also used for prior work on lock and barrier-elision [ALM14,
SON00,MT02], but it is not entirely correct: The principle assumes that the
application code does not commit transactions started by the OpenMP runtime,
or change the OpenMP runtimes data. This may seem like a small and reason-
able limitation, but seemingly innocent application code, such as Listing 4.3,
can violate the requirement.

Threads which elide synchronization risk calling uninitialized function pointers
(Line 7). An uninitialized function pointer can point to anything, including the
OpenMP library code, data or unmapped memory. If the function pointer points
to a transactional commit instruction, then the user code will commit transac-
tions started by the OpenMP runtime, which will violate the synchronization,
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and may cause the application to crash.

Similar problems can occur when executing C++ virtual methods, or JIT com-
piled code, or when writing to uninitialized pointers. We have been able to
reproduce the problem in a controlled setting, but we have not seen it occur in
the wild. The problem could be avoided by extending OpenMP with clauses
which indicate whether synchronization directives can be speculated.

Recently, a lot of effort has gone into proposals for extending OpenMP with TM
support. Bae et al. [BCKT14] proposed clauses which specify locking strategies,
as hints: The hints include specifying that locks and locks and critical sec-
tions should use lock elision if possible. For our purposes, their hints could be
extended to all OpenMP directives.

Wong et al. [WAG+14] proposed two new directives: synchronized, a transac-
tional version of critical sections, and transaction. The transaction directive
provides transactional execution, with defined semantics for C++ exceptions, for
transaction-safe code. Transaction-safe code must follow some mild restrictions,
such that it can be executed speculatively by both HTM and STM implemen-
tation.

OpenTM [BMT+07] is a programming interface that extends OpenMP with
speculative capabilities. They propose (primarily) three new directives that
support speculation: transfor and transsection and speculation. They
also support nested speculations.

Pyla et al. [PRV11] provides a framework for exploiting coarse-grained paral-
lelism in OpenMP. They introduce regions where speculations take place (specu-
lative regions), which can also be nested (speculation within speculation). They
propose a directive (speculate) to simplify using them.

Miloš et al. [MFU+08,MFG+08] gives an overview where in OpenMP specu-
lations can be used. They introduce a new clause, transaction, which can
be coupled with existing directives to provide speculation. They show how to
proposed directives would interact with Nebelung (a STM-based run-time sys-
tem) and Mercurium [BDG+04] and evaluate their strategy on a set of synthetic
benchmarks and a Gauss-Seidel application.
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4.4 Concluding remarks

In this chapter, we have shown how to apply HTM to execute some of the
most frequently used directives in OpenMP speculatively —minimizing blocking
time. We use HTM to speculatively avoid blocking in critical sections, barriers,
and taskwaits, transparently to the programmer. Minimizing blocking time can
improve execution time in parallel applications that need to synchronize.

Our speculative execution of critical sections handles contention better than
Speculative Lock Removal (SLR) without sacrificing scaling. Avoiding blocking
of taskwaits and barriers can improve performance by up to 41% on a micro-
benchmark which traditionally blocks most of the time, but it does not signifi-
cantly improve the performance of our 4 core system on the Barcelona OpenMP
Task Suite (BOTS). We expect that future systems with more cores will benefit
further from our approach, since they are more likely to have contended critical
sections.

Overall, this chapter presents new synchronization techniques applying HTM
efficiently — minimizing blocking and contention — without requiring program-
mer intervention. In the next chapter we will investigate how to write parallel
code — requiring programmer intervention — to further optimize for HTM.



Chapter 5

Optimizing for Lock-Elision

In the previous chapter we developed speculative synchronization methods which
can reduce execution time and energy consumption. Using a new form of lock-
elision — i.e. speculative execution of critical sections — we were able to execute
concurrent operations on a shared map data structure with reasonable scalabil-
ity, while avoiding a traditional downside in lock-elision, the Lemming effect.

In this chapter we attempt to reduce energy consumption and execution time
from a different angle: Rather than developing new synchronization techniques
that further exploit transactional memory, we present five guidelines for design-
ing code and data layout to minimize the risk of transactional conflicts. We
illustrate these guidelines, by applying them to the design of BT-trees, a new
ordered map. Evaluating BT-trees on standard benchmarks shows that they
are up to 5.3 times faster than traditional maps using lock-elision, and up to 3.9
times faster than state of the art concurrent ordered maps.

In this chapter we further illustrate that writing code and data structures specif-
ically for HTM can yield faster and simpler implementations, than writing code
and data structures for traditional fine-grained synchronization, by developing a
new lock-free map ELB-trees, which applies the lessons learned from the BT-tree
design. Operations on ELB-trees have weaker semantics than regular maps, to
maintain most of the speed and scalability benefits of BT-trees without HTM.
The lock-free design appears to scale as well as the transactional design, but
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it is not as general or efficient, because it does not have the strong ordering
guarantees provided by TM.

5.1 Designing for HTM

In this section we provide general guidelines for designing parallel data structures
and algorithms that benefit from lock-elision. The main goal of these guidelines
is to illuminate the benefits and pitfalls of HTM, so we can reason about them
up front.

There are 3 primary causes of HTM transactions failures:

1. Limitations in the hardware support.

2. Conflicts in the transactions read set — i.e. another thread wrote to the
transactions read set.

3. Conflicts in the transactions write set — i.e. another thread read or wrote
to the transactions write set.

The hardware limitations cause transactions to fail on false sharing, too large
transactions, system calls, and page faults. These limitations can largely be
avoided by (1) optimizing spatial locality, i.e. packing data tightly, and (2)
avoiding system calls and page faults in the critical section. Traditional
synchronization also benefits from avoiding system calls, page faults, and opti-
mizing spatial locality, but failure to do so is less dramatic: system calls, page
faults, and poor spatial locality cause transactions to fail, while with traditional
synchronization it just causes cache line evictions and slightly longer critical
sections. Even without hardware limitations on HTM, page faults, system calls,
and large transactions would still reduce transaction’s probability of succeeding,
because they increase the sizes of the transaction’s read and write sets.

To avoid conflicts in the read set you should, (3) use data structures and
access memory such that the memory which is most frequently writ-
ten is least frequently read. Guideline (3) is similar to saying avoid true
sharing, which is also a good idea with traditional synchronization, as it will
minimize the amount of synchronization. To avoid conflicts in the write set you
should, (4) minimize the time from the first visible write to the trans-
action’s commit: Try to write as late as possible in the transaction, and prefer
copy-on-write to long in-place writes. Guideline (4) is specific to transactional
memory which use eager conflict resolution, i.e. detect conflicts in transactions
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before they commit. With eager conflict resolution, a transaction can fail from
a conflicting write after the write has executed. Delaying the write will reduce
the time that the transaction is exposed to such conflicts. Current HTM imple-
mentations from Intel and IBM presumably use eager conflict resolution because
it can be built on top of existing cache coherency protocols [Lev13,BMV+07].

Our guidelines can also be used to estimate if using HTM will be beneficial: If
you can follow the guidelines — i.e. have a very short duration from the first
write to commit, avoid writing to frequently read data, and avoid limitations
in HTM — then you are likely to benefit, because most transaction should
succeed. If most of the transactions succeed, then the size of the critical section
is no longer important. As a consequence you should (5) worry less about
the size of critical sections: lock-elision on a single coarse-grained lock can
scale well if most transactions succeed. Coarse grained locking simplifies writing
parallel code to the point where it is hardly any more difficult than writing
sequential code.

Using several locks per data set, or another kind of fine-grained synchroniza-
tion, would not be efficient use of HTM: Starting a transaction with HTM on
Intel Haswell processors is 3 times more expensive than acquiring a lock and
coarse-grained synchronization with HTM already permits parallelism within
critical sections. Fine-grained synchronization will rarely benefit from the in-
creased scalability of HTM, it multiplies the overhead of starting transactions,
and it causes new challenges, such as providing safe memory reclamation (See
Section 5.4.2). Typical safe memory reclamation solutions imply a hefty per-
formance and space penalty, and may limit which memory locations can be
accessed in parallel algorithms. If you really need fine-grained synchronization,
then you should use regular locks or atomic operations — not HTM.

To illustrate the relative merits of HTM for coarse grained synchronization, and
atomic operations for fine grained synchronization, we have developed a map
data structure optimized for HTM in Section 5.2, and a lock-free map data
structure optimized for atomic operations in Section 5.4.

5.2 BT-trees

In this section we present the design of BT-trees, a design which is largely driven
by the guidelines in Section 5.1. BT-trees are ordered maps supporting the
operations search, insert, and remove, for querying, updating, or removing
key-value associations. BT-trees are search trees, where the root node represents
the entire range of keys, and each of its children represents a smaller subset of
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Figure 5.1: Illustration of a BT-tree and BT-trees general features.

the keys. The children are ordered from lowest (child 0) to highest, so that the
lowest child can hold the lowest keys, and the highest node can hold the highest
keys. The guidelines mostly influence the BT-trees data layout, how BT-trees
are balanced, and how they manage memory.

Figure 5.1 illustrates the 3 main features of BT-trees’ data layout:

1. Internal nodes can have more than two children and keys. This reduces
the height of the tree while improving spatial locality to key references
(recall Guideline 1).

2. All key-value associations are stored in leaf nodes. This ensures that most
reads are to internal nodes, which rarely change, reducing true sharing
(Guideline 3).

3. Leaf nodes store multiple key-value associations in an unordered array.
This allows most insert and remove operations to only write to the
actual key-value association, and only at the very end of transactions
(Guideline 4).

BT-trees classify as external search trees, and multiway search trees because of
feature 1 and 2 respectively. As a result of the BT-tree data layout features, all
BT-tree operations consist of 3 steps:

1. Finding the leaf node l representing the key.

2. Inspecting l’s keys.

3. Balancing l or operating on l based on its keys.



5.2 BT-trees 71

1 class E<K, V> {K key; V value; }; // Key -value pairs
2

3 class alignas (64) L<K, V> { // Leaf nodes
4 E<K, V> e[L_C]; // Unordered key -value pairs
5 };
6

7 class alignas (64) I<K> { // Internal nodes
8 I* child[I_C]; // Pointers to children
9 int size; // Number of children

10 K key[I_C - 1]; // Internal node keys
11 };
12

13 class BT { // BT trees
14 int height; // The tree’s height
15 I* root; // Pointer to the tree’s root
16 Lock lock; // The tree’s lock
17 };

Listing 5.1: Type definitions for BT-trees.

The operations only write to internal nodes when balancing BT-trees, making it
important to reduce the frequency of balancing. BT-trees’ operations rarely bal-
ance the tree, because of their balancing scheme: unbalanced nodes are balanced
in a top down fashion while searching through the tree.

• Full nodes are split into two nodes, and nodes with 2 elements are merged
with their siblings;

• If balancing would merge the two only children of the root, we instead
replace the root reducing the trees height; and

• If balancing would split the root, we introduce a new root node increasing
the trees height.

From an algorithmic point of view, this scheme ensures that all leaf nodes have
the same depth, and that all non-root nodes have at least 2 elements, giving a
worst case height of log2(n/2) + 1 = log2n. Given that the nodes have capacity
C, the expected height is log 2+C

2

n
2 + 1. The scheme also provides a control

knob for the frequency of balancing: increasing C reduces the frequency of node
balancing, reducing the frequency of write to internal nodes, and ultimately
reducing true sharing and the number of writes.

When balancing BT-trees, we replace the entire parent of the unbalanced nodes
— rather than replacing the unbalanced nodes by changing their parent’s child
pointers. Replacing the parent node means that balancing has to copy the
old parent node, which is more expensive, but it reduces the number of writes
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to internal nodes. Perhaps more importantly, it ensures that the write to the
internal node is the last thing in the transaction, minimizing the time from the
first visible write, to the transactions commit, as per Guideline 4.

Memory allocation typically involves both page faults and system calls. BT-
trees operations avoid performing system calls and page faults in the critical
section (Guideline 2), by preallocating 6 nodes before entering a critical section.
Preallocating 6 nodes ensures that no additional memory allocation is needed
in the critical section. The allocated nodes are stored on a stack created from
the allocated memory, thereby touching the page of the allocated nodes, causing
the page fault before the transaction starts.

Listing 5.1 illustrates how BT-trees, key-value pairs, and nodes are represented
in pseudocode resembling C++. The classes I and L represent internal and leaf
nodes respectively, while E represents key-value pairs. Internal nodes have other
internal nodes or leaves as children. Leaf and internal nodes are aligned to cache
line boundaries by using the C++11 alignas keyword, and allocating with new.
Each leaf node can store up to LC key-value pairs, and internal nodes have up
to IC children, where LC , IC ≥ 6. The lower bound node capacities of 6 ensure
that we can split a full node into two nodes with at least 3 children or key-value
pairs.

We normally use BT-trees with up to 32 children for each internal node, and 32
key-value pairs for each leaf node. When using 64 bit pointers and 32 bit keys
and values, this corresponds to 384 bytes for internal nodes and 256 bytes for
leaf nodes, or exactly 6 and 4 cache lines respectively.

Listing 5.2 summarizes how the Remove operation works. The Remove oper-
ation first traverses the tree from its root to the leaf node which may hold k,
while balancing any unbalanced node on the path (Step 1). Upon arriving at a
leaf node, the Remove operation balances the leaf if it is unbalanced. Other-
wise, the operation iterates over the keys in the leaf node, looking for a match
(Step 2). If it finds a match, it returns the keys value and removes from the
tree. Otherwise there was no match, and Remove returns no_match (Step
3).

Listing 5.2 is a summary, and it glosses over some technical details. The follow-
ing section describes how Insert, Search, and Remove actually operate.
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Remove(T, k)
1 // Step 1: Find the leaf node l representing the key k
2 repeat
3 prealloc6Nodes()
4 Lock()
5 l = Find-Leaf(T.root , T.height , k)
6 until l 6= restart
7 // Step 2: Inspect l’s keys (l.key [0 . .LC -1 ])
8 u = 0 // Used key-value pairs
9 m = −1 // Matching key-value pair index
10 for i = 0 to LC − 1
11 if l.element [i ].key 6= empty
12 u = u+ 1
13 if l.element [i ].key == k
14 m = i
15 // Step 3: Balance l or remove k from l
16 if m == −1
17 return no_match
18 if T.root == l or u > 2
19 v = l.element [m].value
20 l.element [m].key = empty
21 Unlock()
22 return v
23 Balance(l)
24 Unlock()
25 return Remove(T, k)

Find-Leaf(x, h, k)
1 if h == 0
2 return x // x is the leaf
3 if ¬Is-Balanced(x)
4 Balance(x)
5 Unlock()
6 return restart
7 for i = 0 to x.size − 2
8 if x.key [i ] ≥ k
9 return Find-Leaf(x.child [i ], h− 1, k)
10 return Find-Leaf(x.child [x .size-1 ], h− 1, k)

Listing 5.2: BT-tree remove operation pseudo code.
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1 bool remove(const K& k, V& res , BT* t) {
2 I* p, **pp; // Parent of leaf node
3 int ci; I* c; // leaf node
4 while (true) {
5 // 1. Find the leaf node
6 findNode(k, pp, p, ci, c, t);
7 // 2. Operate on the leaf node
8 switch(remL(k, (L*) c, res)) {
9 case SUCCESS:

10 release(lock);
11 return true;
12 case FAILURE:
13 release(t->lock);
14 return false;
15 case MERGE: // 3. Merge if near empty
16 mergeL(pp, p, ci, c, t);
17 release(t->lock); break;
18 case SPLIT: // 3. Split if near full
19 splitL(pp, p, ci, c, t);
20 release(t->lock); break;
21 }
22 }
23 }

Listing 5.1: Remove operation. Insert and search operations have the same
structure

5.2.1 Implementation

In this section we describe how Insert, Search, and Remove actually work,
including technical details, such as tracking the parent of the visited node, cre-
ating balanced nodes, and some implementation optimizations which improve
performance significantly.

All BT-tree operations follow the same template, as illustrated by Listing 5.1:

1. Find the leaf node which may hold the key (Line 6).

2. Perform the operation on the leaf node (Line 8 – 14).

3. If the leaf node is full or almost empty, split or merge it and try again
(Line 15 – 22).

Listing 5.2 illustrates how we search, insert, and remove from leaf nodes. BT-
trees split full leaf nodes when inserting into them (Line 30), and merge non-root
leaf nodes if they only have 3 key-value pairs when removing from them (Line 47
– 48). The operations iterate over up to LC key-value pairs in very simple loops,
which can easily be unrolled manually, or by a compiler. We found that fully
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unrolling the loops in srchL and insL is very beneficial, while remL benefits
more from specializing the loops in two ways: (1) after the remove operation
finds a match it should enter a new loop which only tracks the size of the node,
and (2) stop counting the number of used key-value pairs after 3 have been
found. We arrived at these implementations by optimizing and stress testing the
implementations on generated leaf nodes, in the adaptive development procedure
described in Section 2.3.1.

Listing 5.3 illustrates how we find the leaf node which may hold a given key k:
Preallocate six nodes, begin the critical section, and iteratively traverse from
the root to the child which may hold k until we reach a leaf node. The internal
nodes are traversed by performing a linear search over the keys in the internal
nodes (Line 19 and 34). Any node with fewer than 3 children is merged (Line 23
– 27), and any full node is split (Line 13 – 17 and 28 – 31). After balancing
nodes, we commit the transaction and restart the function. In order to balance
nodes we keep track of the current node c, its parent p, and the pointer to
the parent, pp. By only tracking the pointer to the parent, rather than the
grandparent, we can simplify balancing nodes which do not have grandparents,
specifically balancing of the root node and its children.

Splitting and merging nodes is handled by the same balancing function given
different arguments. We split one node to produce two nodes (in = 1, out = 2),
and we merge two nodes to produce one or two nodes (in = 2, out = 1∨out = 2).
Merging produces one output node when the two input nodes have a combined
size less than or equal to b = 2

3 (C + 2), where C is the capacity of the output
node type, that is LC or IC . We decide between merging to one or merging to
two nodes like this, because it maximizes the number of operations required to
bring the new nodes out of balance: if we produce one node, it will take at least
C−b operations to fill it, and at least b−2 operations to reduce a merged node’s
size to 2 — i.e. it will take at least min(C− b, b−2) operations to unbalance the
new node. if we produce two nodes, it will take at at least C − b

2 operations to
fill one of them, and at least b

2 − 2 operations to reduce one of the nodes’ sizes
to 2 — i.e. it will take at least min

(
C − b

2 ,
b
2 − 2

)
operations to unbalance the

new nodes. We minimizing the number of operations it takes to unbalance the
new node(s) by solving min(C − b, b− 2) = min

(
C − b

2 ,
b
2 − 2

)
Listing 5.4 illustrates how we balance internal nodes are balance two internal
nodes c1 and c2, with the parent p and c1 == p.c[i] && c2 == p.c[i+1].
The balanced internal node’s children are produced in Line 6 – 9 by copying
the first s = d(c1.size + c2.size)/oute children from the unbalanced node(s)
to the first balanced node, n1, and then copying the remaining children to the
second balanced node, n2, if out = 2. We produce the keys of the balanced
internal nodes in Line 10 – 14, retaining the order of the keys in the unbalanced
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1 Res srchL(const K& k, L* l, V& res) {
2 for(int i = 0; i < L_C; i++) {
3 E<K, V> e = l.e[uf32(i)]; // Look at all keys
4 if (e.k == k) { // If we have a match
5 res = e.v; // Return the matching value
6 return SUCCESS;
7 }
8 }
9 return FAILURE; // No matches in the leaf node

10 }
11

12 Res insL(const K& k, const V& v, L* l) {
13 bool unused = false;
14 int j; // Look at all keys
15 for(int i = 0; i < L_C; i++) {
16 E<K, V> e = l->e[i];
17 if (e.k == 0) {
18 unused = true;
19 j = i; // Remember unused key -value pairs
20 }
21 if (e.k == k) {
22 l->e[i] = {k, v}; // Replace any match
23 return SUCCESS;
24 }
25 }
26 if (unused) {
27 l->e[j] = {k, v}; // Otherwise , replace any
28 return SUCCESS; // empty key -value pair
29 }
30 return SPLIT; // Otherwise split the leaf node
31 }
32

33 Res remL(const K& k, V& res , L* l) {
34 bool match = false;
35 int m, n = 0; // Look at all keys
36 for(int i = 0; i < L_C; i++) {
37 E<K, V> e = l->e[i];
38 if(e.k != 0) {
39 n++; // Track unused keys
40 }
41 if(e.k == k) {
42 m = i; // Remember matching key
43 res = e.v; // and value
44 match = true;
45 }
46 }
47 if(n <= 2 && !isRoot(l))
48 return MERGE; // Merge nearly empty nodes
49 if(match) {
50 l->e[m].k = 0; // Remove matching key
51 return SUCCESS;
52 }
53 return FAILURE; // No matching key
54 }

Listing 5.2: Operations on leaf nodes
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1 void findNode(K k, I**& pp, I*& p, int& ci,
2 I*& c, BT* t) {
3 start: // Allocate nodes before transactions
4 ensureCapacity (6);
5 pp = &(t->r);
6 p = 0; // The root has no parent
7 acquire(t->lock);
8 c = r; // Start at the root
9 int h = t->h;

10 if (h == 0)
11 return; // The root is a leaf node
12 int size = c->size;
13 if (size == I::C) { // Split the root
14 splitRoot(pp , c, h, size , t);
15 release(t->lock);
16 goto start;
17 }
18 p = c; ci = 0; // Traverse to child
19 while(p->k[ci] <= k && ++ci != size - 1) {}
20 c = p->c[ci];
21 while (--h > 0) {
22 size = c->size;
23 if(size == 2) { // Merge small nodes
24 mergeI(pp, p, ci, c, );
25 release(t->lock);
26 goto start;
27 }
28 if(size == I_C) { // Split full nodes
29 splitInternal(c, p, pp, ci, size , t);
30 release(t->lock); goto start;
31 }
32 pp = &p->c[ci]; // Traverse to child
33 p = c; ci = 0;
34 while(p->k[ci] <= k && ++ci != size - 1) {}
35 c = p->c[ci];
36 }
37 }

Listing 5.3: Finding the leaf node which may hold the key k.
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nodes, and the key which the parent node used to separate the unbalanced node
(p->k[i]): First we order p->k[i] and the keys from the unbalanced nodes,
and then copy the nodes into the balanced nodes such that the first balanced
node receives the first d(c1.size+c2.size)/oute−1 keys, and the second balanced
node receives the last b(c1.size+c2.size)/outc−1 keys. Finally, If out = 2 we set
the new parent node’s i’th key to the d(c1.size+ c2.size)/oute − 1’th key from
the ordering (Line 18). The actual implementation uses more complicated code
than Listing 5.4 to avoid copying the keys and child pointers into intermediate
arrays, but is functionally equivalent.

The key-value pairs of balanced leaf nodes are produced the same way child
pointers are produced for balanced internal nodes, except the key-value pairs
have to be partially sorted: We partially sort the key-value pairs into two evenly
sized and balanced leaf nodes, such that all keys in the first leaf node are smaller
than the smallest key in the second leaf node. We implemented the partial sort-
ing with Hoare’s quick-select algorithm [Hoa61], after experimenting with Floyd
and Rivest’s algorithm [FR75], because quick-select showed higher throughput.

5.3 Evaluation of BT-trees

5.3.1 Experiment setup

We evaluate BT-trees, Chromatic trees, and Java ConcurrentSkipListMap on
the machine described in Table 5.1. Chromatic trees are a state of the art lock-
free ordered map, implemented as a relaxed red-black tree, which we acquired
from Brown’s homepage [Bro]. Java ConcurrentSkipListMap is a well estab-
lished lock-based ordered map, implemented as a skip list. We also evaluate
GCC’s STL implementation of map and unordered_map (v4.9.1) where we syn-
chronize using SLR lock-elision. The C++ map implementations all use the

Table 5.1: Experimental machine

Processor Intel Xeon E3-1276 v3@3.6GHz
Processor specs 4 cores, 8 threads
Processor specs(2) 32KB L1D cache, 8 MB L3 cache
C++ Compiler GCC 4.9.1
Java Compiler/Runtime Oracle Server JRE 1.8.0_20
Operating system Ubuntu Server 14.04.1 LTS
Kernel 3.17.0-031700-generic
libc eglibc 2.19
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1 void balanceI(I* c1, I* c2, I* p, I** pp,
2 int i, int in, int out , BT* t) {
3 I* n1 ,*n2, I* p1; // The new nodes
4 int s = ceiling ((c1 ->size + c2->size) / out);
5 // Fill the new nodes
6 auto ccomb = concatenate(c1->c, c2->c);
7 memcpy(n1->c, ccomb , s * sizeof(void *));
8 memcpy(n2->c, &ccomb[s],
9 (c1 ->size + c2.size - s) * sizeof(void *));

10 auto kcomb = in == 2 ? c1->k :
11 concatenate(c1->k, p->k[i], c2->k); // Gather the keys
12 memcpy(n1->k, kcomb , (s - 1) * sizeof(K));
13 memcpy(n2->k, &kcomb[s],
14 (c1 ->size + c2.size - s - 1) * sizeof(K));
15 p1.c[i] = (L*) n1; // Insert the balanced nodes
16 if(out == 2) {
17 p1.c[i + 1] = (L*) n2;
18 p1.k[i] = n2.e[0].k;
19 }
20 int pSize = 0;
21 if(p != 0) {
22 pSize = p->size;
23 ... copy p’s other children and keys
24 if(isRoot(p) && pSize == 2) {
25 t->h--; // Merging the root
26 }
27 } else {
28 t->h++; // Splitting the root
29 }
30 p1 ->size = pSize + out - in;
31 *pp = p1; // Replace the parent
32 dealloc(c1 , c2 , p);
33 }

Listing 5.4: Balancing internal nodes.
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memory allocator provided with Intel TBB v4.3_20141023.

We use the experiment from Brown et al. [BER14], and port the experiment
to C++ to evaluate the C++ maps. The experiment has been reproduced
in several recent papers [NM14, DVY14]. The Java were tested with the test
infrastructure hosted on Brown’s website.

In the experiment up to 8 threads operate in parallel on one map for 5 seconds,
after pre-filling the map with n key-value pairs. After the 5 seconds, we record
how many operations the threads completed. The C++ implementations also
record several performance metrics, such as cache misses. The operations’ keys
are 32 bit integers, uniformly sampled from 1 to k, where k is either 100, 10,000,
or 1,000,000. We evaluate 3 workloads with different proportions of insert,
remove, and search operations:

1. Update, with 50% insertion, 50% removal (n = k/2);

2. Mixed, with 70% searches, 20% insertion, and 10% removal (n = 2k/3);
and

3. Constant, with 100% searches (n = k)

Each experiment is run in separate processes, which repeat the trial 50 times.
We pre-fill the map with n key-value pairs, because it is the expected number
of elements in a map after infinitely many operations.

To minimize any overhead in Java implementations we use an up to date Java
Server runtime, which compiles early, and allow the Java virtual machine to
consume up to 3 GB memory. By comparison, all of the C++ implementations
consumed less than 80 MB memory. It might seem strange to compare the per-
formance of data structures implemented in Java with other data structures im-
plemented in C++, but it is in fact quite commonplace [BER14,NM14,DVY14].
The experimental machine has an Intel Haswell processor which officially only
supports HTM “for software development”, because the processor has a bug such
that “software using the Intel TSX (Transactional Synchronization Extensions)
instructions may result in unpredictable system behaviour” [Int14a]. Newer In-
tel processors officially support HTM: At the time of writing (July 17th, 2015),
TSX instructions are supported by all released Broadwell desktop and server
processors, by 6 out of 8 released Broadwell embedded processors, and by 6 out
of 34 released Broadwell mobile processors [Int15b] (See Appendix B).
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Figure 5.2: Mean map throughput as a function of threads for 3 workloads
and 3 key ranges.

5.3.2 Results

Throughput
Figure 5.2 shows the throughput of maps as a function of the number of threads
under 9 different workloads and key ranges. The plots are labeled with their
workloads and key ranges (k). Figure 5.3 shows the number of L1 cache misses
per operation, peak memory consumption, and energy consumption per oper-
ation, respectively, as measured by PAPI, version 5.40, getrusage, and Intel
RAPL. We were only able to measure this data for the C++ map implementa-
tions because the measurement interfaces have APIs in C.

BT-trees have the highest peak throughput out of the ordered maps in all
workloads. BT-trees advantage is particularly high on large workloads (k =
1,000,000). The traditional concurrent maps are competitive with BT-trees on
small workloads (k = 100), and even have higher throughput at 8 threads in the
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Figure 5.3: Instructions retired, L1 cache misses, and processor power con-
sumption as a functions of the number of threads for the Mixed
workload on 3 key ranges.

"Mixed; k = 100" and "Update; k = 100" workloads.

BT-trees do not scale well to more than 3 threads in the Update and Mixed
workloads for the smallest key range k = 100 because the data structure is
highly contended, as can be seen in Figure 5.3. The number of instructions
per BT-tree operation increases when scaling beyond 3 threads. The increase
is caused by two factors (1) the map operations are retried transactionally, and
(2) acquiring the underlying lock executes more instructions when the locks are
contended. By comparison, STL maps and unordered maps using lock-elision
are contended on all of the Update and Mixed workloads. For instance the
number of instructions executed per STL map operation triples when using 8
threads in the Mixed workload with k = 1,000,000 and the results are worse for
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Figure 5.4: Peak memory consumption when k = 1,000,000.

the Update workloads and lower values of k.

The lock-elision based maps scale poorly when contended because of the lem-
ming effect [DLM+09]: When operations fail to execute transactionally, they fall
back to using the underlying lock. Using the underlying lock increases the risk
that the following transactions fail. Once most operations use the lock, their
combined throughput performance will decrease below that of single-threaded
execution.

When k > 100 BT-trees achieve a 2.9-3.4 speedup with 4 threads, and a 4.3-
5.6 times speedup with 8 threads. Using more threads does not significantly
increase the number of executed instruction or L1 cache misses per BT-tree
operation, indicating (1) transactions are rarely retried, and (2) there is little
cache contention, hence BT-trees are not contended. We believe the sublinear
scaling is caused by two factors: (1) BT-trees yield higher power consumption,
which means that they will benefit less from Intel TurboBoost and (2) BT-trees
have higher instruction retire rates than the STL-map operations, reducing its
benefit from SMT (hyperthreading), since each thread can consume a larger
fraction a core’s ports.

Compared to STL map operations, BT-tree operations execute 2-3 times as
many instructions, but cause 1/4 as many cache misses, in the sequential case.
In summary, BT-trees are not significantly affected by contention when k >=
10,000, but they do not scale linearly when using SMT because of hardware
constraints.

Cache performance
BT-trees perform well when k = 1,000,000 compared to Chromatic trees and
STL maps, because it benefits from being an external multiway trees, helping
its cache performance. Cache performance is more important for larger maps,
which cause more cache misses per instruction. Figure 5.3 illustrates the cache
performance for the Mixed workloads, where STL maps cause 3 times as many
L1 cache misses as BT-trees, when k > 100. STL maps also cause 6 times as
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many L3 cache misses when k = 1,000,000, while the number of L3 cache misses
are insignificant for lower k.

STL maps, and binary trees in general, cause more cache misses than mul-
tiway trees, because they are higher, and do not fit as well into the cache.
Sedgewick [Sed08] observed that the average successful search in left-leaning
red-black trees, such as STL maps, traverses log2(n) nodes, corresponding to
20 nodes in the Constant workload when k = 1,000,000. Our results show
such operations cause approximately 21 L1 cache misses, which is higher than
the expected number of nodes traversed, indicating that traversing red-black
tree nodes references more than 1 cache line. By comparison the expected
height of BT-trees is h = log17.5(

n
2 )+ 1, corresponding to 5.7 nodes in the Con-

stant workload when k = 1,000,000, because the expected non-root node has
b = 3+32

2 = 17.5 elements. Assuming that traversing BT-tree internal and leaf
nodes both cause 2.5 cache line references ( 1+2

2 + 1 = 2.5, 1+2+3+4
4 = 2.5), a

successful search operation will reference 4.7 · 2.5 + 2 = 13.75 cache lines. Our
results show that a successful search operation on such a BT-tree causes 8 cache
line misses. BT-trees have a lower cache line miss to cache line reference ratio
than red-black trees because they benefit from hardware prefetching and have
better temporal locality. Internal BT-tree nodes change rarely, so they are less
likely to be evicted, and more likely to stay cached by the cores.

We expect that Chromatic trees cause approximately as many cache misses as
STL maps, but we do not have the infrastructure for fine grained measurement
of Java code cache performance. STL maps and Chromatic trees have very
similar structures, and as such they have similar sequential throughput, but
chromatic trees have far better scalability. They mainly differ in how they are
balanced: Chromatic trees are less balanced, and are more expensive to balance,
but require less synchronization. Chromatic trees have a constant running time
balancing, and the red-black tree property is violated for at most 6 nodes on
any path. As a consequence, the sequential performance of the data structures
mostly differs for small data sets.

Power consumption
Figure 5.3 shows the processor’s power consumption. in the Mixed workload.
Uncontended maps tend to be more energy efficient when using more threads.
In the sequential case, BT-trees are more energy efficient than STL maps when
k >= 10,000, and almost as energy efficient as STL unordered_maps when
k = 1,000,000. Generally BT-trees are slightly more attractive in the Update
workload, and slightly less attractive in the Constant workload. When using
8 threads and k > 100, BT-trees generally consume 25% more power than
STL maps, while still being far more energy efficient. BT-trees’ higher power
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Table 5.2: Evaluated unordered maps

Data structure name Details
ConcurrentHashMap [Ora14] Java (v1.8.0_20)
TrieMap [PBBO12] Scala-library (v2.11.2)
concurrent_hash_map [Int14c] Intel TBB (v4.3_20141023)

consumption comes from the cores, while the memory controller power con-
sumption is lower. This is as expected, because operations on BT-trees execute
many instructions, but incur few L3 cache misses.

Memory consumption
Figure 5.4 shows the peak memory consumption we measured in the bench-
marks. BT-trees’ peak memory consumption is approximately 40MB lower
than that of STL maps, which is approximately 25% lower than that of STL
unordered_maps. When k < 1,000,000 all of the C++ maps have similar peak
memory consumption, varying from 6MB to 15MB. We believe the maps have
similar peak memory consumptions because most of the memory is consumed by
factors other than the maps. Theoretically we would expect the binary trees use
at least 32,000,000 bytes to represent 1,000,000 key-value pairs, as representing
each key-value pair takes up to 32 bytes: 8 bytes for key-value pair, 16 bytes
for child pointers, and 8 bytes for memory allocator data structures and 16 byte
alignment. The estimate closely resembles 37 MB, the lowest memory consump-
tion we observed for STL map in the Constant workload with k = 1,000,000.
We would expect BT-trees to use 17,000,000 bytes to represent 1,000,000 key-
value pairs: Every leaf node represents 3+32

2 = 17.5 key-value pairs, and there
are approximately 17.5 times as many leaf nodes as internal nodes, giving the
estimate n

384+16
17.5 +(256+16)

17.5 ≈ 16,800,000. The estimate closely resembles 18MB,
the lowest memory consumption we observed in the Constant workload with
k = 1,000,000.

5.3.3 Comparison with unordered maps

This section evaluates BT-trees in comparison to the unordered maps listed in
Table 5.2, on the same experimental setup. The benchmark’s design is ideal
for hash maps, because the keys have a very dense distribution. A dense key
distribution implies that most common integer hash functions are perfect hash
functions. In particular, the hash functions of the hash maps in Table 5.2 are
perfect hash functions even when truncated to the least significant log2(n) bits.
As a consequence, we expect the hash maps to have lower conflict rates, and
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Figure 5.5: Mean map throughput as a function of threads for 3 workloads
and 3 key ranges.

higher throughput, than they would have for realistic inputs. Despite being
somewhat unrealistic, the benchmark is useful as a stress test, and a best case
evaluation for hash maps.

Figure 5.5 shows the throughput of each map implementations on the bench-
mark. The map implementations single threaded throughput fit the follow-
ing trend: ConcurrentHashMap is always faster than, BT-trees, TrieMap, and
concurrent_hash_map, which are usually faster than Chromatic6, which in turn
are usually faster than ConcurrentSkipListMap. There are 2 deviations from
the usual trend: (1) Chromatic6 are faster than concurrent_hash_map in the
Constant workload when k = 100, and (2) ConcurrentSkipListMap achieves
higher performance than Chromatic6 in the Update workload when k = 100.
The traditional ordered maps are especially slow compared to BT-trees and the
unordered maps on large data structures (large k). The increasing gap is caused
by two factors: (1) BT-trees and TrieMap being more cache efficient than tra-
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Figure 5.6: The mean number of L1 cache load misses per opera-
tions for BT-trees (solid black line) and Intel TBB concur-
rent_hash_map (dashed grey line).

ditional ordered maps, (2) hash maps have constant asymptotic running time,
while skiplists have logarithmic asymptotic running time O(1). To illustrate the
performance gap, BT-trees are 1.75, 2.84, and 4.71 times faster than Chromatic6
in the single threaded Update workload for k = 100, 10,000, and 1,000,000, re-
spectively. In summary, BT-trees are slower than ConcurrentHashMap, similar
to TrieMap, and concurrent_hash_map, and faster than the traditional ordered
maps.

The relative performance of the map implementations is similar in parallel cases
and the single threaded case. Therefore we will focus on the gray area — the
performance of BT-trees when compared to TrieMap and concurrent_hash_-
map.

BT-trees compared with TrieMap
BT-trees are typically faster than TrieMap in the Update workloads, except
when k = 100, and slower in the Constant workloads. We believe that this is
because the relative cost of insert and remove operations compared to search
operations: Insert and remove operations in BT-trees are performed in place
on leaf nodes, and have similar costs to searching, while the TrieMap insert
and remove operations use copy-on-write, which increases their cost relative to
search operations.

BT-trees compared with concurrent_hash_map
BT-trees and concurrent_hash_map have similar performance, except when
k = 100. BT-trees scale poorly to multiple threads in the Mixed and Update
workloads when k = 100, but still achieves higher throughput than Concurrent-
SkipListMap and Chromatic6. BT-trees poor scalability when k = 100 is a side
effect of using lock-elision; a side effect known as the Lemming effect [DLM+09].
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Threads acquire the underlying lock when transactional execution of the critical
section fails repeatedly. Acquiring the lock makes concurrent transactions more
likely to fail: Once a few transactions fail, many will transactions follow suit.

Meanwhile, concurrent_hash_map scales poorly in the Constant workloads.
When k = 100, concurrent_hash_map is the slowest map in the Constant work-
load. Figure 5.6 illustrates cache performance of BT-trees and concurrent_-
hash_map in the constant workloads. When going from 1 thread to 8 threads
in Constant k = 100, concurrent_hash_map execute more instructions per op-
eration, and cause up to up to 2.3 L1 cache load misses per operation. By
comparison no other data structure we measured caused more than 0.01 L1
cache load misses per operation in the Constant workload with k = 100. The
TBB concurrent_hash_map scales poorly in this case because it uses a read-
write lock per hash bucket. search operations acquire and release read locks by
executing a fetchAndAdd atomic instruction. The fetchAndAdd instructions, as
well as any write instructions, invalidates the cache lines of the other cores. By
comparison the other maps’ search operations do not write to the data struc-
tures memory. The TBB concurrent_hash_map is not significantly contended
for larger values of k, because then the hash map has more buckets, reducing
the risk of multiple threads searching adjacent buckets.

5.3.3.1 Summary

In general, BT-trees have excellent space, time and energy performance com-
pared to state of the art concurrent ordered maps, despite using much simpler
coarse-grained synchronization. BT-trees also have low memory requirements,
and comparable time and energy performance compared to most state of the
art concurrent unordered maps, but its performance is not competitive with
ConcurrentHashMap — the fastest concurrent unordered map we know of.

5.4 ELB-trees

In this section we present the design of ELB-trees, an efficient lock-free map im-
plementation, using a structure similar to BT-trees, but optimized for computer
without HTM.

In a fine grained synchronized map, all operations should ideally only synchro-
nize with other operations on the same key. ELB-trees partially achieve that
goal: most operations only synchronize on the key-value pair; synchronizing with
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1 struct Entry {
2 unsigned value : 32;
3 unsigned key : 31;
4 unsigned ro : 1;
5 }
6

7 struct LeafNode {
8 Entry e[L_C];
9 }

10

11 struct InternalNode {
12 Status status;

13 Node* c[I_C];
14 Entry s[I_C -1];
15 uint64_t size;
16 uint64_t height;
17 }
18

19 struct Status {
20 Entry key;
21 ptr32_t parent;
22 int16_t cHeight;
23 int16_t type;
24 };

Listing 5.3: C++ code for the data structures for ELB-trees. Leaf nodes store
up to LC unordered entries in the array e. Internal nodes store IC
child pointers in array c and IC − 1 separating entries in array s.

a single CAS operation. Listing 5.3 illustrates the ELB-tree data structures. In-
ternal nodes can have up to IC children and IC − 1 keys, where IC ≥ 6. Leaf
nodes store all the key-value associations represented by the tree and the key-
value are not ordered within leaf nodes. In many ways the design of ELB-trees
mirrors that of the design of BT-trees, described in Section 5.2.

The main differences between ELB-trees’ data layout and BT-trees’, are differ-
ences which enable the coordination balancing without transactions: To coor-
dinate balancing, ELB-trees have an additional status field for every Internal
node, and an additional ro flag for every key-value association. The key-value
associations — including the ro flag — must be small enough for a CAS oper-
ation. ELB-trees’ use of status fields requires that every non-root node has a
grandparent. We ensure that all non-root nodes have a grandparent by adding
an internal node whose only child is the tree’s actual root — i.e. we add an
additional “fake root node” — and by ensuring the tree’s actual root is always
an internal node. Specifically, when the tree is empty — i.e. it represents no
key-value pairs — it will consist of the fake root node, the root node, and one
leaf node with no key-value associations.

Operations on ELB-trees typically consist of 3 steps:

1. Find the leaf node l representing the key.

2. Inspect l’s keys.

3. Balance l or operate on l based on its keys.

The operations on leaf nodes are similar to those for BT-trees. Listing 5.4 illus-
trates the remove operation on leaf nodes; the other operations are similar. The
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1 remove ( keyMin , keyMax) {
2 s t a r t :
3 entry = {keyMin , 0}
4 // 1 . Find "node " , the l e a f node r ep r e s en t i ng "keyMin"
5 while ( ! s earch ( entry , 0 , &node , &parent , &gParent ) )
6 r eba lance ( entry , 0 , &node , &parent , &gParent )
7 r e t r y :
8 // 2 . In spec t "node " ’ s keys
9 sma l l e s t = keyMax

10 for ( i = 0 , used = 0 , index = −1; i != L_C; i++)
11 i f ( node−>e [ i ] . ro ) // 3 . Balance "node"
12 r eba lance ( entry , 0 , &node , &parent , &gParent )
13 goto s t a r t
14 i f ( node−>e [ i ] != 0)
15 used = used + 1
16 i f ( keyMin <= node−>e [ i ] < sma l l e s t
17 index = i
18 sma l l e s t = node−>e [ i ]
19 i f ( root . c [0]−> s i z e != 1 && used <= L_S) // 3 . Balance "node"
20 r eba lance ( entry , 0 , &node , &parent , &gParent )
21 i f ( index == −1) // 3 . Nothing r e l e van t in Leaf node
22 i f ( successorKey > keyMax)
23 return 0
24 keyMin = successorKey
25 goto s t a r t // successorKey i s t racked in search
26 // 3 . Operate on the key−value pa i r
27 i f ( cas (&node−>e [ index ] , sma l l e s t , 0 ) )
28 return sma l l e s t
29 goto r e t r y // Someone removed the sma l l e s t f i t
30 }

Listing 5.4: Pseudo-code for remove operations. It searches for leaf nodes
that may have a relevant entry, and attempts to remove one such
entry. The start label is used to look for successor nodes, when
no relevant entries are found. The retry label is used to look for
other candidates for the leaf operation.
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1 rebalance(key , node , parent , gParent) {
2 // Rebalance the highest unbalanced node
3 while ((root != gParent && parent ->size >= KI) ||
4 parent ->size <= I_S)
5 if (! search(key , parent ->height , &node ,
6 &parent , &gParent ))
7 return // Someone finished rebalancing
8 helping(STEP1 , key , parent ->height -1, node ,
9 getSibling(node , parent), parent , gParent)

10 }

Listing 5.5: Pseudo-code for balancing based on helping. The highlighted lines
find the highest unbalanced node.

main difference with respect to BT-trees, is that ELB-trees use CAS operations,
rather than transactions, to atomically change key-value associations.

ELB-trees are balanced in a top-down manner, i.e. we balance any unbalanced
node encountered while searching the tree. We balance nodes by replacing them
with split or merged nodes. Merging produces one output node when the two
merged nodes have a combined size less than or equal to b = 2

3 (C + 2), where
C is the capacity of the output node type, that is LC or IC . We split lnternal
nodes in ELB-trees when they have IC children, similarly to BT-trees, but
unlike BT-trees we split ELB-tree leaf nodes that have more than LD key-value
associations, where 4 < LD < LC . We allow splitting leaf nodes which are not
entirely full, because balancing nodes is no longer atomic: After encountering a
full leaf node, and deciding to balance the node, another thread could remove
a key-value association from it, which means it is no longer full. If we did not
split nearly full leaf nodes, then splitting may become a rare occurrence.

The two main challenges the ELB-tree design are:

1. Balancing nodes in a lock-free manner with regular CAS operations

• CAS operations only change a single field atomically, while balancing
updates multiple nodes.

2. Safely accessing nodes which other threads can deallocate at any time.

5.4.1 Balancing

This section describes the ELB-trees synchronization scheme when balancing.
We create the balanced nodes for ELB-trees the same way we create balanced
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1 helping(op , key , cHeight , node , sibling , parent , gParent) {
2 start:
3 switch (op)
4 case NOP:
5 return
6 case STEP1: // Set gParent status field
7 ... get hazard pointer to sibling
8 cas(&gParent ->status , 0,
9 {key , parent , cHeight , STEP2})

10 if(gParent ->status != {key , parent , cHeight , STEP2})
11 oldStatus = gParent ->status
12 break // Help gParent
13 oldStatus = {key , parent , cHeight , STEP2}
14 if (!gParent ->hasChild(parent ))
15 cas(&gParent ->status , oldStatus , 0)
16 return // Someone rebalanced the parent
17 // Otherwise continue
18 case STEP2: // Set parent status field
19 cas(&parent ->status , 0, {key , parent , cHeight , STEP3 })
20 if (parent ->status != {key , parent , cHeight , STEP3})
21 oldStatus = parent ->status
22 break // Help parent
23 case STEP3: // Set unbalanced nodes status field
24 if (cHeight == 0)
25 ... rebalance leaf nodes , no more helping
26 cas(&gParent ->status , oldStatus , 0)
27 return
28 cas(&node ->status , 0, {key , parent , cHeight , STEP4})
29 if (node ->status != {key , parent , cHeight , STEP4 })
30 oldStatus = node ->status
31 break // Help node
32 case STEP4: // Set the nodes siblings status field
33 if (node ->size >= KI - 1)
34 ... split the node
35 return
36 cas(&sibling ->status , 0, {key , parent , cHeight , STEP5})
37 if(sibling ->status != {key , parent , cHeight , STEP5})
38 oldStatus = sibling ->status
39 break // Help sibling
40 case STEP5:
41 ... even out the entries in the node and its sibling
42 cas(&gParent ->status , oldStatus , 0)
43 return
44 // Find and help the preventing operation
45 ... find nodes involved in operation of oldStatus ,
46 ... updating node , sibling , parent , and gParent
47
48 if (gParent ->status.matches(oldStatus ))
49 return // Someone finished the operation
50 if (parent != oldStatus.parent)
51 cas(&gParent ->status ,
52 {key , parent , cHeight , STEP2}, 0)
53 return // Someone rebalanced the parent
54 op = oldStatus.type
55 key = oldStatus.key
56 oldStatus = {key , parent , cHeight , STEP2}
57 ... get hazard pointer to sibling , return if unable
58 goto start
59 }

Listing 5.6: Pseudo-code for helping balancing. The highlighted lines imple-
ment recursive helping and can be ignored on the first reading.
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nodes for BT-trees (See Section 5.2.1).

We balance nodes in a lock-free manner as illustrated by Listing 5.5 and 5.6.
Listing 5.5 starts the balancing, by identifying the highest unbalanced nodes,
and Listing 5.6 balances the nodes in such a way that any other thread can help
finish the balancing. We first prevent concurrent modification by making the the
node, its parent, and its grandparent read-only — preventing concurrent changes
to the nodes — before actually balancing the node. We make Leaf nodes read-
only by setting each of their key-value associations’ ro fields. We make Internal
nodes read-only by setting their status fields with CAS operations.

We make the nodes read-only in the following order: The grand parent (List-
ing 5.6 line 6–17), the parent (Line 18–22), the node (Line 23–31), and, if we are
merging, the node’s sibling (Line 32–39). The parent node can disappear from
the tree while we a balancing, because of concurrent balancing, in which case
we clear the grand parent’s status field (Line 15). If we successfully set all the
internal nodes’ status fields, then we balance the nodes (Line 25 and 41) and
clear the grand parent’s status field. If we fail to set any internal node’s status
field then we have to help finish the balancing operation on that internal node.
The status fields encode which nodes are being balanced, allowing any thread
to help finish balancing (Line 45–57). Leaf nodes do not have status fields,
but their parents do, allowing any thread to help finish balancing. Allowing any
thread to finish the balancing operations, whether they started them or not, is
important for showing that the operations are lock-free.

5.4.2 Safely accessing nodes

We use a mechanism known as hazard pointers [Mic04] to safely access nodes
which can be deallocated at any time. Threads must acquire hazard pointers to
nodes before accessing them. A thread acquires a hazard pointer by publishing
that they are going to access the node, and then checking that the node is
still reachable from the root node. We acquire hazard pointers while searching
through the tree, as illustrated by the highlighted lines in Listing 5.7, and when
merging nodes (see Listing 5.6 Line 7 and 57). The node is reachable if its parent
points to it, and both the parent node and its children are not being balanced,
which we can tell from the status field. If the parent’s status field indicates
that it, or one of its children, is being balanced, then the thread must help finish
the balancing, and restart the threads operation. Threads must execute full
memory barriers after publishes that it will access a node, since most platforms,
including AMD64, do not guarantee memory ordering for independent memory
reads and writes. In other words, threads have to execute a memory barrier for
each node they visit, which is quite expensive.
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1 search(key , height , *node , *parent , *gParent) {
2 retry:
3 *gParent = &root // The fake root is permanent
4 *parent = root.c[0]
5 hp[0] = *parent // Acquire HP to real root
6 memoryBarrier ()
7 if (!* gParent ->hasChild (* parent ))
8 goto retry
9 *node = *parent ->findChild(key)

10 ... Keep track of successor/predecessor
11 hp[1] = *node // Acquire HP to first child
12 memoryBarrier ()
13 if (!* gParent ->hasChild (* parent) ||
14 !*parent ->hasChild (*node))
15 goto retry
16 i = 1
17 while (*parent ->height - 1 > height)
18 *gParent = *parent
19 *parent = *node
20 *node = parent ->findChild(key)
21 ... Keep track of successor/predecessor
22 i = i == 2 ? 0 : i + 1
23 hp[i] = node // Acquire HP to child
24 memoryBarrier ()
25 if (!* gParent ->hasChild (* parent) ||
26 !*parent ->hasChild(node) ||
27 !* gParent.status.matches (* parent.status ))
28 goto retry
29 if (* parent.status.type >= STEP4)
30 return false
31 return true
32 }

Listing 5.7: Pseudo-code for the search function. The highlighted lines are not
neccessary on your first reading; they check whether the nodes are
reachable using hazard pointers.
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Each thread can publish up to live 4 hazard pointers: the current node, its
parent, and its grandparent, all acquired in the tree search function, and a
reference to the sibling of an unbalanced node, being acquired when balancing,
for the purpose of merging. Before deallocating nodes, threads must remove
the node from the tree, and check that no other thread has published that they
have access to the node. Each thread can defer deallocation of up to 8P nodes
— where P is the number of threads — by storing the node pointer in a thread
local array. When the array is full, the thread deallocates nodes which are not
in use, by comparing against a hashmap of nodes used by the other threads.
The only use of hazard pointers which is specific to ELB-trees is the check for
whether nodes are reachable.

5.4.3 Extensions

We have extended ELB-trees to support priority queue and multimap opera-
tions. Priority queues require an operation which removes the key-value associ-
ation with the lowest key, which we implement by searching for a key-value pair
with the key 0, and removing the lowest key-value pair we find.

Multimap operations require the capacity to insert multiple keys with different
values, which we support by extending the internal nodes’ key fields into full
key-value associations, and directing internal node search with both the key and
value. Remove and search operations initially search for a given key, and the
value 0, while tracking the lowest key-value association which can be stored in
the successor to the leaf node. If the operations initially only find key-value
pairs with lower keys than desired, they restart their operation with the lowest
key-value pair which can be stored in the successor to the leaf node.

5.4.4 Semantics

ELB-trees contain an initially empty set of entries Er. ELB-trees offer 3 main
operations:

• Search(e1, e2) returns e from Er satisfying e1 ≤ e ≤ e2, if such an entry
exists. Otherwise it returns 0.

• Remove(e1, e2) removes and returns e from Er satisfying e1 ≤ e ≤ e2, if
such an entry. Otherwise it returns 0.

• Insert(e) adds e to Er, if e was not in Er before. If e was Er before the
behavior is undefined.
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The restriction on insert operations, means that it is the programmers respon-
sibility to ensure that there are no duplicate entries. This is given if the entry
is unique, for instance if the value is a memory address. The operations cannot
generally be expressed as atomic operations; rather they occur over a time in-
terval. Specifically the operations may not read entries that are not in Er at all
times during the operation. As a consequence, series of concurrent operations
cannot generally be expressed as occurring serially, that is the semantics are not
linearizable.

Appendix A proves the operations’ semantics. The following paragraphs presents
a a sketch of the proof: Search operations consists of a tree search through inter-
nal nodes and linear search of leaf nodes. Internal node search can be reduced
to regular tree search through 3 invariants:

1. Rebalancing does not change Er, and produces the same balanced nodes,
regardless data races.

2. The permitted range of entries in nodes is permanent.

3. The search tree invariant (s[i−1] < v ≤ s[i]) is maintained for all reachable
nodes.

Due to memory barriers, the linear search through leaf nodes must read every
entry in the node for the duration of the operation, ensuring that semantics hold
for leaf nodes as well. The correctness of remove and insert operations follow
from the semantics of searches. Remove and insert can be summarized as search
operations followed by a value based CAS operation. The operations continue
until they successfully write to the entry. CAS operation can only succeed when
writing to entries in reachable nodes, as old nodes that are no longer reachable,
must be read-only.

Lock-freedom is proven by showing that operations eventually restart or com-
plete, and some operation has made progress whenever a node is rebalanced, or
any part of an operation is restarted.

5.5 Evaluation of ELB-trees

We use two different PCs to evaluate ELB-trees. Some key parameters
are summarized in Table 5.3. Both PCs support CAS operations of up
to 128 bits, and both run Linux; PCA runs Debian 6.0.6 with kernel
2.6.38.6, while PCB runs Scientific Linux 6.1 with kernel 2.6.32. We
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Table 5.3: Platforms used for the experiments. PCA supports hyper-
threading.

Microprocessor and speed Cores L1 Size L3 Size
PCA 2x Intel Xeon X5570 2.933 GHz 2x 4 8x 32 KB 2x 8 MB
PCB 2x AMD Opteron 1.9 GHz 2x 12 24x 64 KB 4x 6 MB

Table 5.4: Mean sequential running times in seconds.

Platforms
Experiment PCA PCB

n = 104 n = 105 n = 106 n = 104 n = 105 n = 106

ELB-wide multimap 0.0064 0.0717 0.8386 0.0113 0.1231 1.6070
STL-multimap 0.0013 0.0295 0.5737 0.0020 0.0539 1.0952
ELB-multimap 0.0019 0.0243 0.3910 0.0026 0.0343 0.6446

STL-priority queue 0.0006 0.0060 0.6100 0.0008 0.0086 0.0909
ELB-priority queue 0.0016 0.0194 0.2502 0.0020 0.0250 0.4429

compile with GCC (Ubuntu/linaro 4.6.1-9-ubuntu3) using the flags: -m64
-std=gnu++0x -Ofast -flto -fwhole-program -fno-align-functions
-fno-align-labels -fno-align-loops -fno-align-jumps -s -DNDEBUG
-fopenmp.

We run with up to 16 threads, in some cases 24 threads, and preallocate all
memory in all experiments to avoid the overhead of memory allocations from
influencing the results. Each data point is the average of 160 runs and we present
95% confidence intervals. Table 5.4 shows the mean sequential running time for
all the experiments.

5.5.1 Wide multimap

To emulate use in data bases, we evaluate the performance of ELB-trees when
used as wide dictionaries. B-tree variants are often used in data bases, where
they have large nodes, suitable for storage on hard drives. The experiment is
laid out as follows: p threads each perform n/p operations on a multimap with
n entries. 20% of the operations are insertions, 20% are removals, and 60% are
searches. The keys used for the operations and the initial entries are sampled
from the discrete key distribution U(1, 2d1+log2(N)e). Every node takes up 4096
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Figure 5.7: Wide multimap runtime and speedup of using n threads relative
to 1 thread. Solid line is from PCA, dashed is PCB .

bytes. For our implementation, this corresponds to internal nodes with 252
child pointers and leaf nodes with 512 entries. Fig. 5.7 shows the results with
n = 104, n = 105, and n = 106, corresponding to tree heights of 1, 2, and 2,
respectively. The relative speedup is at most 8.1 for PCA, and 16.1 for PCB .

Contention prevents ELB-trees from achieving linear speedup on PCB . When
multiple threads attempt to change the same entry, only one of them can suc-
ceed [PK11,Bon12]. To properly synchronize when modifying a value, the cache
line of the variable is evicted from other processors. This effect can be seen
as observed as a 55% increase in the number of L2 data cache misses when
increasing the number of threads from 1 to 16 on PCB . Contention is less of an
issue for large n, as threads are less likely to modify the same nodes.

Rebalancing introduces serialization of threads, because even with helping all
the threads perform the same operation. This affects performance and is an
issue in all the experiments. The impact is more significant for larger values of
n. This is because the leaf nodes contain more entries, resulting in more time
spent in the rebalance operation.
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Figure 5.8: multimap runtime and speedup relative to STL multimap. Solid
line is from PCA, dashed is PCB .

5.5.2 Multimap

Next, we evaluate the performance of ELB-trees, when using node sizes opti-
mized storage in RAM, rather than on hard drives. The only notable difference
is that nodes have 32 entries or child pointers, and are considered sparse when
containing 4 or fewer entries or child pointers. Leaf nodes are considered dense
when they have more than 26 entries. Allowing nodes this sparse may seem
space inefficient, but we found that the ELB-trees used significantly less mem-
ory than the competing data structure, similar to our findings for BT-trees. This
is due to the multiway search structure, which reduces the number of nodes and
pointers in the tree.

We compare this with the multimap from GCC’s STL implementation libstc++-
v3. Fig. 5.8 displays the results of this experiment with n = 104, n = 105, and
n = 106, corresponding to tree heights of 3, 3, and 4, respectively. When
compared to the single-threaded case, PCA achieves a peak speedup of 9.9,
10.9, and 12.1 for n = 104, n = 105, and 106, respectively. On PCB the figures
for the same values of n are 8.8, 13.7, and 17.6. ELB-trees is up to 29.9 times
faster than the STL multimap on PCB .

ELB-trees are approximately 25% slower in the single-threaded case than the
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Figure 5.9: Priority queue runtime and speedup relative to STL multimap.
Solid line is from PCA, dashed is PCB .

multimap for n = 104, but roughly 60% faster for n = 106. The performance at
n = 104 can be explained from the overhead of atomic operations, and ELB-trees
executing 5.9 times as many instructions per operation. The STL-dictionaries
cause 6.9 times as many L1 cache misses as ELB-trees, which helps explain why
ELB-trees are only 25% slower. The improved performance in the n = 106

case is due to ELB-trees only executing 3.4 times as many instructions, and
the STL-dictionaries causing 5 times as many TLB misses. The difference in
the number of executed instructions can partially be explained by operations on
ELB-trees having to search through unordered leaf nodes. The cost of such a
search is independent of the number of entries in the tree, and is therefore most
noticeable for small trees.

5.5.3 Priority queue

Finally, we evaluate the performance of ELB-trees when used as a priority queue.
We conduct the following experiment: p threads each perform n/p operations
on a multimap with n entries. Half of the operations are insertions, and the
other half removes the smallest entry. The keys used for the operations and the
initial entries are sampled from the discrete key distribution U(1, 2d1+log2(n)e).
We compare this with the compiler’s default STL priority_queue.



5.6 Related work 101

We found that using nodes with 16 entries or child pointers was the most ef-
ficient. ELB-trees are 60-80% slower in the single threaded case than the pri-
ority_queue, and ELB-trees does not achieve any speedup relative to the STL
priority_queue, see Fig. 5.9.

GCC’s priority_queue makes use of highly optimized heaps [TDK]. Heaps make
excellent priority queues, whereas ELB-trees are primarily designed for dictio-
naries although they can be used as priority queues. Hence, the poor perfor-
mance when compared to STL’s priority_queue is not necessarily surprising.

In the experiment, contention is high and there is little opportunity for paral-
lelism. Insertions can proceed in parallel, like in the multimap experiments, but
all removals attempt to modify the same entry. Few versatile lock-free prior-
ity queues exist, and so ELB-trees, even with low performance, constitute an
important design point.

5.6 Related work

In this section we will review some of the prior work studying transactional
memory and map data structures. These are two huge fields, so unfortunately
we have to omit omit many interesting works.

Studies of transactional memory
Transactional memory has been quite a hot topic in computer science since its
introduction in 1993 [HM93]. Most of the research has focused either on the
programming model for transactional memory, or its implementation, either in
hardware or software [CMF+13,DLM+09,DFGG11, ST97, Fra04]. There have
also been a several studies of the impact on software which applies transactional
memory. Recently, empirical studies confirmed that transactional memory is
easier to use than traditional fine-grained synchronization methods [RHW10,
PAT11], but not necessarily simpler than coarse grained synchronization.

Our work differs from prior work on transactional memory, by focusing on how
to design software, in order to apply HTM efficiently. Our general approach is to
apply simple coarse grained synchronization based on SLR lock-elision [Lev13]
and redesign data layout to avoid limitations in HTM. Bobba et al. conducted
a very related study; a study of performance pathologies for different simu-
lated HTM implementations [BMV+07]. They found that different implemen-
tations of HTM will pathologically degrade performance under different work-
loads. Transactional memory implementations with requester-wins policies, sim-



102 Optimizing for Lock-Elision

ilar to the current Intel and IBM implementations, showed a property they called
Friendly Fire: transactions which conflict with other transactions are likely to
fail themselves. We use HTM in the form of lock-elision, which suffers from the
Lemming Effect, giving poor performance in the same situation [DLM+09].

Map data structures
Maps, concurrent or otherwise, have been studied for decades, so we have to
omit many interesting maps, and mostly focus on search trees.

Bayer et al. [BM70] introduced B-trees, which are balanced multiway search
trees. B-trees are balanced by splitting nodes when they are full and merging
nodes when they are half empty. Splitting and merging nodes may recursively
split or merge their parents. B-trees have spawned many related search trees,
including B+trees, which are external trees, B* trees which have stricter balanc-
ing guarantees, and recently B-slack trees, which have even stricter balancing
guarantees than B* trees.

B+trees have been adapted into parallel versions, such as the PO-B+trees by
Mond et al. [MR85]. PO-B+trees use fine-grained synchronization, with a read-
write lock for every node in the tree. Operations on PO-B+trees only hold the
lock of the node they are accessing and the node’s parent. They avoid holding
more locks by relaxing the balancing requirements of B+trees, and instead merge
and split nodes while searching.

Braginsky et al. presented a lock-free B+tree, also using relaxed balanc-
ing [BP12]. The tree is lock-free because it provides progress guarantees, which
cannot be provided when using locks. Lock-free B+trees use atomic operations
on individual memory locations instead. They represent node contents with
linked lists, and coordinate operations through per-node fields, which track the
operations progress.

The idea of coordinating large lock-free operations on trees through per-node
fields was popularized by Ellen et al., with their non-blocking binary search
tree [EFRvB10]. This paper led directly to the non-blocking k-ary search
tree, a multiway search tree, and the lock-free chromatic trees by Brown et
al. [BH11,BER14]. Chromatic search trees were originally presented by Nurmi
et al. [NSS91] as a highly parallel variation of red-black trees with relaxed bal-
ancing. The original chromatic trees use a separate thread for balancing to avoid
balancing in normal operations, simplifying synchronization. SF-trees [CGR12]
take this one step further, using a separate thread to balance and remove nodes,
to minimize conflicts when using software transactional memory.
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Red-black trees and their balancing scheme were introduced by Bayer [Bay72]
as an optimized special case of B-trees with 4 children. Each node in a B-tree
corresponds to one black and up to two red nodes in a red-black tree. The
left-leaning red-black trees by Sedgewick [Sed08] restructure and simplify the
balancing of red-black trees. Left-leaning red-black trees are used in GCC’s
implementation of STL maps.

Pugh presented skip lists as alternative ordered maps [Pug90]. Skip lists are
linked lists with additional skip links which are used to skip over parts of the
list. The skip links are updated pseudo randomly, maintaining an expected
O(log(n)) node depth with simple synchronization. Fraser [Fra04], Fomitchev
et al. [FR04], and Sundell et al. [ST04] independently developed lock-free skip
lists with map operations. Recent studies have found that skip lists scale worse
than search trees [BER14].

Briandais and Fredkin independently presented tries [DLB59,Fre60], which are
trees, but do not compare node keys when traversing. Trie operations are less
computationally expensive than balanced search tree operations, but lead to
less balanced trees. Litwin et al. [Lit84] presented hash tries, where children
are indexed based on key hashes, and later presented concurrent implementa-
tions [LSV89]. Prokopec et al. [PBBO12] presented Ctries, a lock-free multiway
hash trie, inspired by the multiway hash trie of Bagwell [Bag00]. The hash tries
digest keys to 32 bit integers, so they are only ordered maps if the key is an
integer and the hash function is the identity function.

Hash maps are a very popular unordered map implementation. They are typ-
ically implemented as an array of linked lists, where the array is indexed by a
hash on the key. As the map grows, operations periodically resize by moving the
map’s contents into new linked lists and arrays keeping the linked lists short. Op-
erations that do not resize are mostly independent, which has enabled efficient
concurrent implementations, such as the lock-free hash maps by Maged [Mic02]
and by Shalev et al. [SS06]. Mainstream frameworks, such as the Java runtime
and Intel TBB, offer efficient lock-based hash-maps [Ora14, Int14c].

The balancing scheme of ELB-trees and BT-trees can be seen as a simplification
of that used by B+trees, or a further relaxation of PO-B+trees. BT-trees allow
internal nodes to have fewer children than PO-B+trees to further reduce balanc-
ing. The attempt to reduce balancing is seen in other concurrent data structures
such as chromatic trees, skip lists, Ctries, and concurrent hash maps. SF-trees
also try to reduce balancing and optimize for transactions, but with different
means for avoiding conflicts: BT-trees and ELB-trees reduce the frequency of
balancing, whereas SF-trees defer balancing to another thread; SF-trees defer
removing nodes from the tree to avoid conflicts near the root, while we use
multiway external search trees, making writes near the root infrequent. The
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main similarity of BT-trees and SF-trees is that they both use individual trans-
actions for balancing, rather than allowing an operation and balancing in the
same transaction.

5.7 Concluding remarks

Modern multi core processors offer increasing parallel power, but writing efficient
parallel code is still difficult. In this chapter we illustrated a simple way of
writing efficient parallel code applying hardware transactional memory: Reason
about how the code affects the synchronization, rather than custom tailoring
new synchronization schemes.

We presented 5 guidelines that can help detect scalability pitfalls, and applied
the guidelines to the design and implementation of BT-trees, a new ordered
map. BT-trees are 3 times faster and twice as space efficient as state of the art
concurrent ordered maps. Unlike other state of the art ordered maps, BT-trees
use very simple synchronization. Using the same synchronization on traditional
maps — which were not designed according to our guidelines — results in mas-
sive synchronization contention, and limited scalability.

We also used the lessons learned from BT-trees to design and implement ELB-
trees, a lock-free data structure, which does not require hardware transactional
memory. When used as a multimap, ELB-trees scales well with up to 24 pro-
cessors, but its sequential performance is lower than BT-trees. ELB-trees are
slower in the sequential case because their operations have to use safe memory
reclamation, which incurs a heavy penaly on every node accessed. The more
serious disadvantage of ELB-trees, is that their operations semantics are relaxed
and non-linearizable, which make them unsuitable for some use cases.



Chapter 6

Conclusion

In this dissertation we have explored how computer performance, both in terms
of energy and execution time, can be improved by adaptively optimizing appli-
cations. We initially claimed the hypothesis:

Middleware adapted to current needs can improve computational
performance without being prohibitively expensive to deploy.

In the following sections, we will illustrate how our developments support this
hypothesis — summarizing the contributions of this dissertation — before sug-
gesting fruitful avenues for future work.

6.1 Contributions

Our main contributions come in the form of reusable software middleware, li-
braries, and programming guidelines, ranging from easily deployable and appli-
cation agnostic, to application specific. The following paragraphs review the
contributions in the same order we presented them in the thesis:
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pappeadapt, a workload aware power governor. A power governor which
trades longer execution times for lower power consumption, when doing so re-
duces the energy consumption. The technique saves energy by adapting the
processor’s voltage and frequency settings to accommodate the current work-
load, without requiring any code changes or recompilation. pappeadapt detects
whether the current workload will benefit from a lower CPU frequency by con-
tinually experimenting with CPU frequencies and predicting the performance at
all possible CPU frequencies. The predictions are derived from a model based
on Amdahl’s law, which can accurately predict performance at different CPU
frequencies — an attractive property which could also be applied to select pro-
cessor models or frequencies capable of satisfying a fixed workload’s throughput
requirements. The execution time prediction model improves on those used in
prior power governors, by not assuming that the workloads’ performance scaling
is a function of the number of cache misses it causes — an assumption which
we show does not hold in general.

Speculative execution of OpenMP directives. A group of synchroniza-
tion techniques which use hardware transactional memory to synchronize while
minimizing blocking and the weaknesses inherent in hardware transactional
memory, while only requiring that the application is linked against our OpenMP
library — permitting further parallelism with little effort, potentially increasing
power consumption but decreasing execution time sufficiently to reduce energy
consumption. The techniques expand on prior works, by handling contention
better and only requiring the subset of transaction memory capabilities offered
by current Intel Haswell and IBM Power 8 processors.

Optimization guidelines for hardware transactional memory. An anal-
ysis of the properties of current hardware transactional memory implementa-
tions, yielding five guidelines for writing code which applies hardware transac-
tional memory efficiently — permitting further parallelism with some program-
mer effort.

Concurrent data structures. BT-trees are a concurrent maps which apply
our guidelines for hardware transactional memory to provide a highly scalable
and efficient ordered map implementation — often increasing power consump-
tion, but reducing execution time sufficiently that we can achieve significant
energy savings.

ELB-trees are lock-free relaxed maps, which apply the lessons we learned from
BT-trees to a concurrent map without requiring hardware transactional mem-
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ory — offering the same highly scalable performance as BT-trees, but at a lower
single threaded performance. ELB-trees are more complicated than BT-trees
— and have a lower single threaded performance — because ELB-trees cannot
rely on the strong ordering guarantees provided by transactional memory. In-
stead ELB-trees struggle with the complexities of safe memory reclamation —
safely deallocating tree nodes which may be accessed concurrently — and pro-
viding progress guarantees, issues which are not present for BT-trees. The dual
development of BT-trees and ELB-trees also provides a thorough illustration
of the potential advantages and disadvantages of using hardware transactional
memory versus using atomic operations for synchronization.

6.1.1 Discussion

When viewed as a whole, we have shown that reusable middleware — in the
form of libraries and power governors — can dramatically improve computa-
tional performance, both in terms of energy and execution time efficiency. Our
developments build on top of prior techniques, adapting them to current hard-
ware capabilities and requirements, providing great benefits while arguably re-
quiring little deployment effort. We argue that our middleware require little
deployment effort, as they only require that one runs our power governor, links
against our library, considers the implications of transactional memory, or uses
our data structures. While we have by no means solved the problems posed by
the end of Dennard’s scaling, we believe that our contributions are a clear sign
that:

Middleware adapted to current needs can improve computational
performance without being prohibitively expensive to deploy.

The middleware approach to combatting the end of Dennard’s scaling is highly
attractive because it has a low deployment effort. The low deployment effort
means that the middleware can be deployed in realistic scenarios, without re-
quiring that we rewrite all of our software: Ideally, one can get the benefits
without switching programming language, applications, operating system, or
hardware.

While there is an upper bound on the potential benefits from using an improved
middleware, we were able to get significant performance improvements, even
though we are only scratching the surface of what is possible: Our middleware
only optimizes power management and synchronization, two areas which rep-
resent a tiny fraction of the middleware in common use today. Middleware
covers an enormous body of software, and we are not the only ones working
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on adapting and improving their performance and energy efficiency. Adapting
all middleware to their current needs may dramatically improve computational
performance, but it will also require a significant development effort from mid-
dleware developers. An which will we believe is only feasible through better
training in performance evaluation and better tool support for debugging and
optimization.

While the gargantuan task of adaptively optimizing all middleware is beyond
the scope of this thesis, we can still illustrate how to extend and improve on our
work.

6.2 Future directions and limitations

In this thesis we have shown how to predict execution time from CPU fre-
quency with Amdahl’s law, and we have shown how to apply and optimize code
for hardware transactional memory. We have demonstrated the usefulness of
these techniques in our middleware. We can improve the individual middleware
components, as described in their respective “Future work” sections, but this
section focuses on where we how we further expand on the fundamental tech-
niques. We believe that the prediction model and the optimization guidelines
could be applied in far more diverse scenarios.

Our execution time model could be applied to when selecting hardware for a
given task, or for task scheduling — ensuring that the least amount of effort is
used for each task. By extended the model to incorporate the level of parallelism,
we could also schedule tasks efficiently in data centers.

While our optimization guidelines resulted in efficient concurrent code, it is
still somewhat uncertain how general they are, and how much the average pro-
grammer would benefit from the guidelines. Prior studies have found that the
development effort required for transactional memory is lower than the devel-
opment effort for traditional synchronization. We hope that giving the average
programmer some guidelines for how to optimize their code for transactional
memory, will further improve their productivity, but so far we have not studied
the effects of such guidelines. The guidelines could also be applied automati-
cally, through compiler feedback and optimizations — in fact, Sun Microsystems
have patented a compiler optimization pass for moving memory writes to the
end of transactions.

This thesis represents one approach for improving computational performance
with software, but there are several other reasonable approaches, especially
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within compiler optimizations: Static analysis and compiler optimizations have
been improving computational performance since the inception of high level lan-
guages, and there continues to be several possibilities for improvement. Develop-
ments in autoparallelization and high level synthesis — generation of hardware
from code in a high level language — have shown that it is possible to greatly im-
prove computational performance and energy efficiency, with little deployment
effort. As long as hardware capabilities and software requirements keep evolv-
ing, there will be a need to invent new compiler optimizations, or for adapting
old optimizations.

Our work has only focused on shared memory systems, although the power
governor would likely work as well in a distributed memory setting. Research
in computer architecture is increasingly focused on distributed memory systems
and highly heterogeneous systems, which can improve computational energy
and time efficiency. The computational performance and increasing prevanlence
of GPUs and FPGAs make it more attractive to run code on what was once
considered accelerator devices. Current computers, especially smart phones,
have many of these accelerators, and future computers will likely have even
more accelerators, because they represent the most energy efficient way of using
an ever increasing number of transistors.

Software, including middleware, will have to adapt to the changing hardware
capabilities and consumer requirements — possibly assisted by new program-
ming models, or old programming models adapted for new realities. Software
development never really ends, because there will always be new requirements
and challenges. Our best bet is to stay alert, stay critical, and stay up to date;
measuring, reasoning about, and changing our software and our approaches to
keep up with the current needs.
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Appendix A

Proof of ELB-tree
semantics

This appendix proves correctness of the ELB-trees operations’ semantics and
that the operations are lock-free.

The following is a brief summary of the design of the data structure, which is
detailed in section 3 of the paper. All ELB-trees have a permanent root node r
with a single child. ELB-trees are k-ary leaf-oriented search tree, or multiway
search trees, so internal nodes have up to k children and k − 1 keys. An ELB-
trees contain a set Er of integer keys in the range (0; 263). The key 0 is reserved.
Keys have an additional read-only bit: when the read-only bit is set, the key
cannot be written to. ELB-trees offer 3 main operations:

• Search(e1, e2) returns a key e from Er satisfying e1 ≤ e ≤ e2, if such a
key exists. Otherwise it returns 0.

• Remove(e1, e2) removes and returns a key e from Er satisfying e1 ≤ e ≤ e2,
if such a key exists. Otherwise it returns 0.

• Insert(e) adds e to Er, if e was not in Er before. If e was in Er before the
behavior is undefined.
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ELB-trees can also be used as dictionaries or priority queues by storing values
in the least significant bits of the keys.

The operations of ELB-trees cannot generally be expressed as atomic opera-
tions, as they occur over a time interval. As a consequence, series of concurrent
operations cannot generally be expressed as ocurring serially, that is the seman-
tics are not linearizable. However, the set Er is atomic. Er is the union of the
keys in the leaf nodes of the ELB-tree. The keys in internal nodes guide tree
search.

Section 2 provides formal definitions for terms used throughout the proof. The
proof starts in Section 3 by proving that ELB-trees are leaf-oriented search
trees. We prove through induction, that ELB-trees are leaf-oriented search
trees initially, and that all operations maintain that property. The inductive
step is assisted by two significant subproofs:

1. Rebalancing does not change the keys in Er.

2. The keys in leaf nodes are within a permanent range.

These properties hold due to the behavior of rebalancing. The first subproof
shows that rebalancing is deterministic, even when concurrent. The second
shows that leaf nodes have a range of keys they may contain and it never changes.

Given these properties, Section 4 derives the operations’ semantics. Section
5 follows up by proving that the operations are lock-free. First we prove that
some operation has made progress whenever a node is rebalanced. Next we prove
that some operation has made progress whenever any part of an operation is
restarted.

Section 6 concludes the technical report with a summary.

A.1 Definitions

This section introduces definitions used in the following proofs of the ELB-
trees’ properties. The definitions start with the terms used, before moving on
to the contents and properties of nodes. Finally the intitial state of ELB-trees
is formally defined.

Let L be the set of leaf ndoes, I the set of internal nodes, and T the set of points
in time. The sets are disjoint.
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Nodes contain:

Ci(t) list of children of internal node i at time t

Si(t) list of keys in internal node i at time t

En(t) keys represented by the node n where at time t:

En(t) =

{
Non-zero keys in l n ∈ L⋃

c∈Ci(t)
Ec(t) : n ∈ I

The following node properties can be derived from their content:

Dn(t) the descendants of node n at time t:

Dn(t) =
{
∅ : n ∈ L
Cn(t) ∪

⋃
d∈Cn(t)

Dd(t) : n ∈ I

n is reachable when reachablen(t) ≡ n ∈ ({r} ∪Dr(t))

parentn(t) the parents of node n:
parentn(t) = {i ∈ reachabler(t)|n ∈ Ci(t)}, t ∈ T

Initially r has one child Cr(0) = 〈ic〉, and one grandchild Cic(0) =
〈ln〉. The grandchild is an empty leaf node Eln(0) = ∅ ∧ Er(0) = ∅.

A.2 Search tree proof

This section proves that ELB-trees are k-ary leaf-oriented search trees. In such
a tree, all nodes except the root have one parent, and all internal nodes have
strictly ordered keys. Specifically the i’th key in a node provides an upper bound
for the i’th child of the node, and a lower bound for the i+ 1’th child. The key
ordering is formally expressed as:

Wi(t) ≡ ∀j ∈ [0;Ci(t)).ECi(t)t
⊆ (0;Sij ] ∧ ECi(t)t

⊆ (Sij ; 2
63)

The tree property is formally expressed as:

∀n ∈ reachablen(t). |parentn(t)| = 1 ∨ n = r
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The properties are proven inductively, but doing so requires several intermediate
steps. To begin with, we will show that the behavior of rebalancing of search
trees is deterministic, and does not change Er.

Lemma A.1 Unbalanced nodes and their parent are read-only while rebalanc-
ing.

Proof. While finding the nodes involved in rebalancing, they are made read-
only: internal nodes are made read-only by setting their status field, and leaf
nodes are made read-only by setting the read-only bit of all their keys, see
Figure 16 in the paper.

Lemma A.2 If Wr holds and the unbalanced nodes’ parent is still reachable,
all threads can find the nodes involved in a rebalancing from the status field of
the unbalanced nodes grandparent, .

Proof. The status field stores the key of the unbalanced node and its par-
ent. Since Wr holds, the nodes can be found by searching for the key in the
grandparent and parent of the unbalanced node.

Lemma A.3 Rebalancing completes deterministically exactly once, if Wr

holds.

Proof. Rebalancing finds the involved nodes (Lemma A.2) and decides how
to rebalance (Lemma A.1) deterministically. The parent is replaced, and the
grandparent’s status field is cleared using ABA safe CAS operations, see Sec-
tion 3b of the paper. The grandparent has the status field {*,*,*,STEP2} when
replacing the parent, ensuring that the grandparent is reachable when replacing
the parent node.

Lemma A.4 Er(t) does not change when rebalancing, if Wr holds.

Proof. The content of balanced nodes and their new parent is copied from the
old nodes, while their content is read-only (Lemma A.1).

The preceding lemmas show that rebalancing is well-behaved in search trees.
The following lemmas will show that all operations maintain the tree property
and Wr.

Lemma A.5 All operations maintain the tree property, if Wr holds.
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Proof. descendantsn only changes when rebalancing. Specifically,
descendantsn changes when replacing an internal node op with a new node
np. The children of op had op as their only parent, so all the children np and
op share, will have np as their only parent after rebalancing. The new children
have np as their only parent, because they have just been introduced, and the
descendants of the new nodes have their parents replaced. Formally:

(∀c ∈ Cop(t1).parentc(t1) = {op})⇒ ∀c ∈ Cnp(t2).parentc(t2) = {np}

Lemma A.6 Leaf nodes l have a permanent range Rl of keys they may contain,
if Wr holds.

Proof. The lower bound is given by the keys of its ancestors. The ancestors
change deterministically when Wr holds (Lemma A.3). Although the ancestors
may change, their replacements use the same keys. Internal node keys are only
introduced or removed when splitting and merging nodes, which results in two
or three new nodes. When rebalancing results in two new nodes, the new parent
has one less key. When rebalancing results in three new nodes, the new parent
has one updated or additional key, which the old parent did not have. The
updated or new key is copied from its the unbalanced nodes, so it only affects
the new nodes.

Lemma A.7 If Wr holds, the leaf node l reached by Search(e, e) satisfies:
Wr ⇒ e ∈ Rl.

Proof. Search visiting a node n where ¬reachablen(t) eventually restarts, so a
terminating search only visits reachable nodes in the tree (Lemma A.5). Search
of reachable nodes when Wr holds is regular k-ary tree search.

Lemma A.8 If Wr holds, searching the leaf node l from tl1 to tl2 must read
the keys O(tl1, tl2) ∩Rl.

Proof. l is read after a memory barrier, ensuring that O(tl1, tl2)∩Rl are read.

Lemma A.9 All writes to the tree maintain Wr. Formally:

∀t1, t2 ∈ T.(t1 ≤ t2 ∧Wr(t1))⇒Wr(t2)

Proof. Writes to the tree can be classified into: key insertion, key removal,
and rebalancing. Rebalancing maintains Wr (Lemma A.6). Key removal and



116 Proof of ELB-tree semantics

insertion only affects the keys in the tree. remove(e1, e2, t1, t2) removes an key
from a leaf node l, which maintain Wr. insert(e, t1, t2) inserts into leaf nodes
for which ∀t ∈ T.Wr(t)⇒ e ∈ Rl (Lemma A.7), which maintain Wr.

Theorem A.10 ELB-trees are leaf-oriented search trees.

Proof. ELB-trees are trees and Wr holds initially. All operation on ELB-trees
maintains the tree property (Lemma A.5) and Wr (Lemma A.9).

This section proves that ELB-trees are leaf-oriented search trees. Such proofs
are sufficient to derive the semantics of concurrent searches and serial insertions
and removals. The next section will derive the semantics of the concurrent
operations, which requires a few additional lemmas.

A.3 Correctness

This section derives the semantics of the operations. But first we will introduce
some terms to reason about the results of such operations. Let:

search(e1, e2, t1, t2) be the result of a search operation matching against keys
e ∈ [e1; e2] starting at t1 and ending at t2;

remove(e1, e2, t1, t2) be the result of a remove operation matching against keys
e ∈ [e1; e2] starting at t1 and ending at t2;

insert(e, t1, t2) be an insert e operation starting at t1 and ending at t2;

O(t1, t2) be the keys that were in Er at all times during [t1; t2):

O(t1, t2) = {e|∀t ∈ [t1; t2).e ∈ Er(t)}; and

U(t1, t2) be the keys that were in Er at some time during [t1; t2):

U(t1, t2) = {e|∃t ∈ [t1; t2).e ∈ Er(t)}.

We first prove properties of search operations, then derive the operations’ se-
mantics:

Lemma A.11 Searching a set of leaf nodes RL from t1 to t2 reads the keys⋃
l∈RL Rl ∩O(t1, t2).
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Proof. The search reads the keys
⋃

l∈RL Rl ∩ O(tl1, tl2) (Lemma A.8). ∀l ∈
RL.O(tl1, tl2) ⊆ O(t1, t2) holds, as any key in the tree during t1 to t2 must have
been in the tree for all fragments of that duration.

Theorem A.12 search(e1, e2, t1, t2) can only return 0 (fail) if there are no
matching entries in Er at all times during [t1, t2):

search(e1, e2, t1, t2) = 0⇒ [e1; e2] ∩O(t1, t2) = ∅

Proof. search(e1, e2, t1, t2) = 0 implies that a set of leaf nodes RL have been
searched, where [e1; e2] ⊆

⋃
l∈RL Rl. If there was an key in [e1; e2] ∩O(t1, t2) it

would have been read (Theorem A.10, Lemma A.11).

Theorem A.13 Successful searches return a matching key that was in Er at
some point in time during [t1; t2):

e = search(e1, e2, t1, t2)⇒ (e ∈ U(t1, t2) ∧ e ∈ [e1; e2])

Proof. Successful searches return a key e that was read from a leaf. Since e
was read it must have been in Er (Lemma A.11).

Theorem A.14 Remove can only return 0 (fail) if there are no matching
entries in Er at all times during [t1, t2):

remove(e1, e2, t1, t2) = 0⇒ O(t1, t2) ∩ [e1; e2] = ∅.

Proof. Terminating remove operations that return 0 have searched a set of leafs
RL satisfying [e1; e2] ⊆

⋃
l∈RL Rl (Lemma A.11), so any keys in O(t1, t2)∪[e1; e2]

would have been read.

Theorem A.15 Successful remove operations remove matching a key e from
Er that was in Er at some point in time during [t1; t2):

e = remove(e1, e2, t1, t2) 6= 0⇒
(e1 ≤ e ≤ min(O(t1, t2) ∩ [e1; e2]) ≤ e2 ∧ e ∈ U(t1, t2))

Proof. Terminating remove operations have searched a set of leafs RL
satisfying [e1; e] ⊆

⋃
l∈RL Rl (Lemma A.11). Any keys smaller than e in

O(t1, t2) ∪ [e1; e2] would have been read.
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Theorem A.16 insert(e, t1, t2) adds e to the Er, if e /∈ U(t1, t2).

Proof. Insert operations terminate when they use a successful CAS operation
to write the key into an empty key of a leaf node l where e ∈ Rl (Lemma
A.7). The CAS operations success implies the key is not read-only, and hence
reachablel(t2).

Theorem 2-6 can be summarized as:
e = search(e1, e2, t1, t2)⇒

{
O(t1, t2) ∩ [e1; e2] = ∅ : e = 0
e1 ≤ e ≤ e2 ∧ e ∈ U(t1, t2) : e 6= 0

e = remove(e1, e2, t1, t2) ⇒


O(t1, t2) ∩ [e1; e2] = ∅ : e = 0
e1 ≤ e ≤ min([e1; e2] ∩O(t1, t2))

∧e ∈ U(t1, t2)
: e 6= 0

insert(e, t1, t2) adds e to Er, if e /∈ U(t1, t2).

A.4 Lock-freedom

Lock-freedom guarantees that as long as some thread is working on an operation
o1, some operation o2 is coming closer to terminating. In this case we say o1
is causing progress, and o2 is making progress. The operations o1 and o2 can
be different. For ELB-trees, this means that whenever a thread is searching,
inserting, or removing, some thread must be making progress. The following is
proof that the operations are lock-free:

Lemma A.17 Operations eventually terminate or restart part of their opera-
tion.

Proof. The operations’ algorithms have loops in for: node search, tree search,
rebalancing, and updating keys in leafs. The algorithms are given in the paper.
Without concurrency, they iterate up to k, h, h, and 1 times, where k is the
capacity of leafs, and h is the height of the tree. With concurrency, tree search,
rebalancing, and key update loops may restart part of their operation.

Lemma A.18 Rebalancing leaf nodes cause progress.

Proof. Threads start rebalancing when visiting nodes with sizes size ≤ S∨D ≤
size. If the nodes are written to between deciding to rebalance and rebalancing,
some operation has made progress. If there are no writes, the size of the first
node is either D or S, resulting in balanced nodes of size ∈ [min(2S, 0.5D);D−
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1]. Such nodes can be removed from and inserted into at least once before
requiring additional rebalancing. As such, every time a rebalancing completes,
one operation has made progress.

Lemma A.19 Rebalancing internal nodes cause progress.

Proof. Rebalancing internal nodes leads to child nodes that can be rebalanced
at least one. Each leaf rebalancing cause progress (Lemma A.18), hence each
internal rebalancing cause progress.

Theorem A.20 Search causes progress.

Proof. Search eventually terminates, similar to k-ary tree search, or restarts
part of their operation (Lemma A.7, Lemma A.17). In the first case the search
operation is making progress. In the second case some operation is making
progress (Lemma A.18, Lemma A.19).

Theorem A.21 Remove and insert operations cause progress.

Proof. The operations proceed as searches, which are lock-free (Theorem
A.20), followed by writes to leaf nodes. The leaf node write eventually termi-
nates or restarts (LemmaA.17). The write may restart part of the operation
either due to rebalancing, or other insertions and removals terminating. In the
first case, some operation is nearing termination, and in the second case some
operation terminated (Lemma A.18, Lemma A.19).

A.5 Conclusion

This technical report has introduced, proved, and derived properties of ELB-
trees. ELB-trees have been proven to be leaf-oriented search trees. Their oper-
ations’ semantics have been derived as:
e = search(e1, e2, t1, t2)⇒

{
O(t1, t2) ∩ [e1; e2] = ∅ : e = 0
e1 ≤ e ≤ e2 ∧ e ∈ U(t1, t2) : e 6= 0

e = remove(e1, e2, t1, t2) ⇒


O(t1, t2) ∩ [e1; e2] = ∅ : e = 0
e1 ≤ e ≤ min([e1; e2] ∩O(t1, t2))

∧e ∈ U(t1, t2)
: e 6= 0

insert(e, t1, t2) adds e to Er, if e /∈ U(t1, t2). Finally the operations have been
proven to be lock-free.
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Appendix B

TSX Support in Broadwell
Processors

This chapter shows which Intel Broadwell processors support TSX as of Juli
17th 2015. In particular, we show how frequently the different Intel brands
(Xeon, i5, Celeron, etc.) support TSX, and list the processor models which do
not support TSX.

B.1 Desktop Broadwell TSX coverage by brand-
ing

Branding Coverage
i5 3 / 3
i7 2 / 2
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B.2 Server Broadwell TSX coverage by branding

Branding Coverage
Xeon D 2 / 2
Xeon E3 3 / 3

B.3 Mobile Broadwell TSX coverage by branding

Branding Coverage
Core M 2 / 7
Celeron 0 / 4
Pentium 0 / 2
i3 0 / 5
i5 2 / 7
i7 2 / 9
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B.3.1 Mobile Broadwell without TSX

Model Branding
5y10 Core M
5y10a Core M
5y10c Core M
5y31 Core M
5y51 Core M
3205U Celeron
3215U Celeron
3755U Celeron
3765U Celeron
3805U Pentium
3825U Pentium
5005U i3
5010U i3
5015U i3
5020U i3
5157U i3
5200U i5
5250U i5
5257U i5
5287U i5
5350H i5
5500U i7
5550U i7
5557U i7
5700HQ i7
5750HQ i7
5850HQ i7
5950HQ i7

B.3.2 Mobile Broadwell with TSX

Model Branding
5y70 Core M
5y71 Core M
5300U i5
5350U i5
5600U i7
5650U i7
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B.4 Embedded Broadwell TSX coverage by
branding

Branding Coverage
Celeron 0 / 1
i3 0 / 1
i5 1 / 1
i7 3 / 3
Xeon 2 / 2

B.4.1 Embedded Broadwell without TSX

Model Branding
3765U Celeron
5010U i3

B.4.2 Embedded Broadwell with TSX

Model Branding
5350U i5
3650U i7
5700EQ i7
5850EQ i7
1258L v4 Xeon E3
1278L v4 Xeon E3
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