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On the application of the Jensen wake model using a
turbulence-dependent wake decay coefficient: the
Sexbierum case
Alfredo Peña, Pierre-Elouan Réthoré and M. Paul van der Laan
Department of Wind Energy, Technical University of Denmark, Risø campus, Roskilde, Denmark

ABSTRACT

We present a methodology to process wind turbine wake simulations, which are closely related to the nature of wake obser-
vations and the processing of these to generate the so-called wake cases. The method involves averaging a large number of
wake simulations over a range of wind directions and partly accounts for the uncertainty in the wind direction assuming
that the same follows a Gaussian distribution. Simulations of the single and double wake measurements at the Sexbierum
onshore wind farm are performed using a fast engineering wind farm wake model based on the Jensen wake model, a lin-
earized computational fluid dynamics wake model by Fuga and a nonlinear computational fluid dynamics wake model that
solves the Reynolds-averaged Navier–Stokes equations with a modified k-" turbulence model. The best agreement between
models and measurements is found using the Jensen-based wake model with the suggested post-processing. We show that
the wake decay coefficient of the Jensen wake model must be decreased from the commonly used onshore value of 0.075
to 0.038, when applied to the Sexbierum cases, as wake decay is related to the height, roughness and atmospheric stabil-
ity and, thus, to turbulence intensity. Based on surface layer relations and assumptions between turbulence intensity and
atmospheric stability, we find that at Sexbierum, the atmosphere was probably close to stable, although the stability was
not observed. We support these assumptions using detailed meteorological observations from the Høvsøre site in Denmark,
which is topographically similar to the Sexbierum region. © 2015 The Authors. Wind Energy published by John Wiley &
Sons Ltd.
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1. INTRODUCTION

The Jensen wake model1 is popular as an engineering wind turbine wake model for the quantification of the reduction of
the wind speed downstream a wind turbine. This is because it was formulated in the early 1980s when only a few wake
models were available and is simple, very fast and easy to implement. It is also the base of the Park model2 that was
developed for wind farm calculations for the Wind Atlas Analysis and Application Program (WAsP),3 which is widely
used for the estimation of wind resources. Because of the simplicity of its physical considerations, it is not recognized to
be very accurate at predicting wake losses under specific atmospheric inflow conditions, e.g. when compared with wind
farm power and meteorological (met) data averaged over a narrow range of wind speeds and directions. It is nevertheless
considered to be fairly accurate for predicting wake losses on an annual energy production basis.4

Under such specific conditions, the differences between wake simulations and observations can partly be explained
by the post-processing methodologies used to reproduce the observed results with a set of model simulations, as pointed
out by Gaumond et al.5 and Peña et al.6 A ‘wake case’ is usually constructed by narrowing the wind speed to its most
observed value, often within a range of˙1 m s�1. Then, different ranges of wind directions are considered, e.g.˙5ı,˙10ı

or ˙15ı, and either the observed wind speed or the power deficits are averaged and compared with model simulations.
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Now, the question that arises is how does one perform the set of model simulations that can be fairly compared with
measured averages? Until recently, we have only been concerned about the improvement of wake models to account for
the physics of the turbine–atmosphere interaction, e.g. through computational fluid dynamics (CFD). When a new model
or parametrization is developed, it is normally tested against some classic wake cases and generally shows better results
compared with those from other known and in many cases simpler models (usually, the Jensen wake model is also used for
such purpose). We do not find this tendency very appealing as some of the simulations are still far from being carried out
and post-processed in a similar manner as that used when analyzing the wake observations.

The results from Gaumond et al.5 using a wind farm model based on the Jensen wake model, compared with a number
of standard wake cases at the offshore wind farm Horns Rev I, were as agreeable as those obtained using more advanced
wake models, such as that by Fuga,7 which is a linearized CFD model that uses the actuator disc (AD) approach, when
the post-processing of the results took into account the uncertainty in the wind direction. Gaumond8 actually showed that
for the single and double wake cases at the Sexbierum wind farm, the results from Fuga’s model and from a CFD solver
of the Reynolds-averaged Navier–Stokes (RANS) equations (EllipSyS)9 that uses the AD approach and a standard k-"
model are nearly identical; those from the Jensen wake model were not properly post-processed, i.e. the uncertainty in the
wind direction was not taken into account, and so the other models seem to a priori achieve better results. Further, a wake
decay coefficient of 0.075 was used with the Jensen wake model, which is the WAsP-recommended value for onshore wake
modeling. Here, we show for the first time

� that this value is nearly two times larger than that obtained for the Sexbierum cases based on a stability-based
parametrization of the wake decay and

� that in case information on stability is lacking, one may use the turbulence intensity (TI) instead, as we show, using
high-quality observations from Høvsøre (a similar site to Sexbierum in terms of topography), that turbulence and
stability are closely related. The stability-based wake decay approach was already successfully evaluated at the Horns
Rev I wind farm for a row of 10 turbines and a range of stability conditions.6

But why do we try to improve simple engineering wake models? A number of wind farm flow models have been
developed over the years using various physical assumptions. While the Jensen wake model represents one of the most
simple ‘low-fidelity’ models, it also remains to be popular in the research and industry wind communities because it can
be recalibrated due to its simple wake parametrization. There is always a risk of overfitting while recalibrating models;
however, it is important to point out that in wind energy (as an applied science), what ultimately matters is the predictive
capability of the wind farm flow models and not the amount of physics or complexity added to them. Simple engineering
models offer the possibility of carrying out simulations orders of magnitude faster than higher fidelity ones, allowing us to
perform wind farm analysis and optimization. With the advance of probabilistic methods offering ensemble aggregation of
models or even multi-fidelity, low-fidelity models can be combined with higher fidelity ones (an example of the latter is
CFD RANS) to perform fast and accurate prediction of annual energy production or even wind farm layout optimization.

Here, we first describe the Jensen wake model and a simple method to estimate the wake decay coefficient based either
on the height, roughness and atmospheric stability conditions or TI values at a given site (Section 2.1). In Sections 2.2 and
2.3, we briefly introduce the two other wake models used in this study, Fuga and a RANS-based model that uses a modified
k-" turbulence model. Section 3 illustrates the different ways of post-processing the results from the Jensen wake model,
e.g. by taking into account the uncertainty in the wind direction. The Sexbierum wake cases are presented in Section 4 and
the results of the comparison between these and the wake models in Section 5, followed by the conclusion and discussion.

2. WAKE MODELS
Here, we describe the basics of the three wake models used in this study. For the Jensen wake model, we show the relations
between the wake decay coefficient and TI, and the relation between TI and atmospheric stability at the Høvsøre site in
Denmark.

2.1. The Jensen wake model

Jensen1 devised a mass-conserving engineering wake model to estimate the hub height wind speed downstream of a turbine
at a distance x, u2, when subjected to a hub height inflow wind speed u1 as

1 �
u2

u1
D

1 �
p

1 � Ct

.1C kw x=rr/
2

(1)

where Ct is the thrust coefficient, rr is the rotor radius and kw is the wake decay coefficient. Figure 1 illustrates that the
Jensen wake model assumes the radial speed to be constant within the wake, which expands radially at the rate kw x. The
term on the left of equation (1) is referred to as the local speed deficit, ı. This model (i.e. the top-hat wake profile shown in
Figure 1) is deficient for the far wake but a good approximation in the near wake, e.g. at two rotor diameters downstream.10
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Figure 1. The Jensen wake model concept.
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Figure 2. Wind speed ratio of the Jensen-based wind farm model as a function of the relative wind direction. Two cases are illus-
trated: a wake generated by a turbine and observed by a mast (turbine–mast) and a wake generated by a turbine and observed by a

second turbine (turbine–turbine).

2.1.1. Wind farm model.
Within a wind farm, the local wakes are superposed to estimate the speed deficit at the nth turbine, ın, and thus, we
implement a quadratic sum of the square of the local speed deficits from the Jensen wake model, each represented with the
subindex i, as suggested by Katic et al.2 and used in WAsP

ın D

 
nX

iD1

ı2
i

!1=2

(2)

The speed at the nth turbine, un, is then given as un D u1 .1 � ın/.
When the distance between the local and an upstream turbine is not aligned with the wind’s direction, the local turbine

could experience a partial wake interaction. The local speed deficit thus needs to be reduced by a factor that depends on
the crosswise distance between the wake’s center and the local turbine’s center, the local turbine’s radius and the wake’s
radius at the downstream position as described by Wan et al.11 This is illustrated in Figure 2, where the wind speed ratio
u2=u1 from the wind farm model is plotted as the function of the relative wind direction for two cases: first, assuming one
turbine only and so u2 is ‘observed’ by a point measurement (e.g. a cup anemometer on a met mast) and second, assuming
two turbines and so u2 is ‘observed’ by the downstream turbine. The simulations are performed at a downstream distance
of 5D, D being the rotor diameter of 30 m using u1 D 8 m s�1, kw D 0.038 and Ct D 0.75 for a wide range of relative
wind directions with a resolution of 0.1ı.

Wind Energ. 2016; 19:763–776 © 2015 The Authors. Wind Energy published by John Wiley & Sons Ltd.
DOI: 10.1002/we

765



On the application of the Jensen wake model A. Peña, P.-E. Réthoré and M. P. van der Laan

For the ‘turbine–mast’ case, the downstream wind speed sharply decreases at a given angle and so the ratio u2=u1 is
similar to the profile of u2 in Figure 1. Within the wake, u2=u1 is not completely constant (u2 is slightly lower at relative
directions other than 0ı) because the relative downstream distance decreases slightly with increasing relative direction. For
the ‘turbine–turbine’ case, u2=u1 decreases at larger magnitudes of relative direction (compared with the ‘turbine–mast’
case, u2=u1 decreases at � j14ıj) and reaches the maximum deficit at a narrow relative direction range, its size depending
on the diameter of the second turbine. When compared with specific wake cases, results from the Jensen wake model might
look like those in Figure 2. However, as will be shown in Section 3, such results are misleading, since the characteristics of
the processing of the observations are not met by these ‘direct’ simulations.

2.1.2. The wake decay coefficient.
Until recently, the wake decay was the only adjustable parameter in the Jensen wake model. Peña and Rathmann12 sug-
gested the relation kw D u�free=uhfree, where u�free is the free friction velocity and uhfree the free hub height wind speed, for
the estimation of the value of the wake decay coefficient in models based on the Jensen wake model, based on Frandsen’s
findings.13 The results of such a relation are much smaller kw values compared with those commonly used (e.g. WAsP’s
default kw value for an onshore site is 0.075). Therefore, we believe that most of the work carried out so far using Jensen’s
approach tends to underestimate the wake losses when performed over terrain with low roughnesses. Further, assuming
that the aforementioned relation for kw is correct, we can relate kw to atmospheric stability and TI. Using the surface layer
theory,14 one can find that within the surface layer over flat and homogeneous terrain, the following holds,

uhfree D
u�free

�

�
ln

�
h

zo

�
�  m.h=L/

�
(3)

where � is the von Kármán constant (� 0.4), h the hub height, zo the surface roughness length and  m.h=L/ the local
atmospheric stability correction, which is estimated at a given height (in this case at hub height), for the specific stability
condition (measured by the Obukhov length L15).

The surface layer diabatic wind profile in equation (3) is only valid within the surface layer accounting for the lowest
�10% of the atmospheric boundary layer. Therefore, its ability to accurately predict winds at turbine operating heights
depends on the boundary layer height (BLH); for unstable and neutral conditions in middle latitudes, the BLH is about
500 m or higher, thus, equation (3) is valid at least for the first 50 m from the ground. On the other hand, under stable
conditions, the BLH might be as low as 100 m for such latitudes; thus, equation (3) might be valid within the first 10 m
only. This means that surface layer expressions can be used within a broad range of stability conditions for small to medium
size wind turbines, but should carefully be applied for large turbines or extended to account for other parameters such as
BLH.16, 17 Equation (3) has however been found to be valid over nearly flat and homogeneous terrains up to �40–60 m in
very stable conditions and at heights above 100 m in neutral and unstable conditions.17, 18

Assuming equation (3) is valid at the turbine height, kw can be expressed as

kw D �

�
ln

�
h

zo

�
�  m.h=L/

��1

(4)

The standard deviation of the free stream flow (in this case at hub height), �uhfree , can be assumed as a function of the
free friction velocity of the form, �uhfree � A u�free.19 The parameter A depends on atmospheric stability and BLH.
Here, we assume that it is constant (A � 2.5) for practical reasons as A � � 1. Such value is close to the average of
estimates of A reported by Panofsky and Dutton19 based on a number of campaigns over flat terrain under neutral condi-
tions .A D 2.39˙ 0.03/.* We test our assumption regarding A with data from a wide range of stability conditions in the
next section.

Defining the TI as TI D �u=u, it is easy to demonstrate

TI �

�
ln

�
z

zo

�
�  m.z=L/

��1

(5)

kw � 0.4 TIh (6)

where z is the height above ground and TIh the hub height TI, which can be found by evaluating equation (5) with
z D h. These two relations are only valid for flat and homogeneous terrain and within the surface layer, thus, under stable
conditions, in particular when z=L � 1, large deviations can occur when estimating wind and turbulence characteristics
outside of this layer.20 Unfortunately, it is difficult to observe, account for and estimate the BLH because of the dynamics
of the atmosphere. Further, there are other phenomena, such as baroclinity, influencing the wind profile higher up.21

*In Panofsky and Dutton,19 A is related to the along-wind speed component that we assume equal to the magnitude of the wind speed,
which is a fair assumption within the surface layer only.

Wind Energ. 2016; 19:763–776 © 2015 The Authors. Wind Energy published by John Wiley & Sons Ltd.766
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2.1.3. Turbulence intensity and atmospheric stability—onshore observations.
In Section 2.1.2, kw and TI were related to atmospheric stability through assumptions about the behavior of the vertical
wind profile and the turbulence close to the ground. The question is whether these assumptions can be tested and validated.
We first illustrate the relation between u� and �u in Figure 3. The data are from met observations from an onshore mast
located at Høvsøre, a flat farmland area in western Denmark, where atmospheric stability and turbulence have continuously
been monitored over the last � 9 years. Details about the mast, the measurements and the site are provided in many
studies.17, 20, 22–25 We select 10 min cup and sonic anemometer observations of the mean and standard deviation of the
wind speed and of the friction velocity at 40 m recorded over the last 8 whole years. The data are for easterly winds, where
the upstream conditions are nearly homogeneous, under all conditions of atmospheric stability and when wind speeds
are within the range of 4–25 m s�1 that enables most wind turbines to extract energy from the wind. It is observed that
�u � 2.5 u� with a rather high linear correlation. Similar results are found when using data from the instruments at a height
of 10 m.

Equation (5) indicates how the TI relates to the height, roughness and atmospheric stability. Figure 4 illustrates its
validity and that of the related assumptions using the observations at 40 m from the Høvsøre site within a wide range
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Figure 3. Observations (in markers) of the standard deviation of the wind speed (�u) as function of the friction velocity (u�) at a
height of 40 m at Høvsøre, Denmark. The lines correspond to the relation �u D A u�; the solid black line for A D 2.5 and the gray

dashed line for the linear regression through the origin of the observations. R2 is the Pearson’s linear correlation coefficient.
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Figure 4. Observations (in markers) of the turbulence intensity (TI) as function of atmospheric stability at a height of 40 m from
Høvsøre, Denmark. A moving average of the observations is shown with the solid line and the estimate using equation (5) with the

dashed line.
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Figure 5. Near-neutral observations (in markers) of turbulence intensity (TI) as a function of wind speed at 40 m at Høvsøre, Denmark.
A moving average of the observations is shown with the solid line and the estimate using equation (5) with the dashed line.

of stabilities, �0.1 m�1 � 1=L � 0.1 m�1. On a long-term basis,� the roughness at Høvsøre for easterly upstream
conditions is about 0.015 m (it slightly increases and decreases in summer and winter, respectively) and so we use this
value to estimate TI from equation (5). To estimate  m, we use the form in Gryning et al.26 for unstable conditions, i.e.
 m.z=L/ D .3=2/Œ.1C aC a2/=3� �

p
3 arctanŒ.1C 2a/=

p
3�C �=

p
3, where a D .1 � 12z=L/1=3, and  m D �4.7z=L

for stable ones. Both forms were previously used at Høvsøre in Gryning et al.26 for evaluating wind profile models.
The TI estimation using equation (5) clearly follows the behavior of the moving average of the observations, i.e. higher

and lower TIs are found for unstable and stable conditions, respectively. However, the observations are scattered, partic-
ularly under near-neutral and unstable conditions. This is partly due to the scatter of the observations in Figure 3 and to
the accuracy of the diabatic wind profile in equation (3) in predicting the wind speed at this height at Høvsøre. The dif-
ferences between the moving average and the TI estimation are partly due to the  m forms used and the accuracy of the
estimations of L.

The estimate of TI under neutral conditions 1=L � 0 m�1 agrees well with the value from the observations. From the
same data, we select near-neutral conditions (jLj � 1000 m) to analyze the dependency of TI on wind speed. Figure 5
illustrates the measurements of TI as function of the wind speed for the height of 40 m, where it is shown a nearly constant
behavior with wind speed as expected from the observations. The average TI for the applied moving window is 12.22%
for the height of 40 m, which is nearly the same value as that estimated theoretically using equation (5) with  m D 0 and
zo D 0.015 m, i.e. 12.68%. Similar agreement is found when using observations from the instruments at the height of 10 m.

2.2. Fuga’s model

Fuga is a linearized flow solver based on the steady-state RANS equations, currently only applicable to flat and homoge-
neous terrain. In this model the flow is assumed to be incompressible and lid driven at the chosen inversion height. It uses
a simple eddy viscosity turbulence closure and the AD approach. The description of the model and its evaluation with a
number of wind farm datasets can be found in Ott et al.7

2.3. RANS using a modified k-" turbulence model

The AD RANS simulations are carried out in EllipSys3D9 using a modified k-" turbulence model, namely, the k-"-fP
model.27 The k-"-fP model delays the wake recovery compared with the standard k-" model by introducing a variable
eddy viscosity coefficient C�. The variable part of C� is described by a simple scalar function fP that depends on the
local velocity gradients. Typically, fP is unity in the logarithmic solution, while it is smaller than one for regions with high
velocity gradients. The AD RANS setup including the k-"-fP model has been successfully tested for single wakes,27 double
wakes28 and complete wind farm simulations.29

�Here, long term refers to measurements performed for at least 1 year.
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Figure 6. Wind speed ratio from the Jensen wake model as a function of the relative wind direction for the ‘turbine–mast’ case
at three downstream distances. Dashed, dash dotted and solid lines show the results from the ‘direct’, ‘average’ and ‘uncertainty’

simulation results, respectively (see corresponding text for details).

3. COMPARING WAKE SIMULATIONS WITH OBSERVATIONS

How do we simulate an observed wake condition? Ideally, we should aim to simulate each condition that was observed dur-
ing the particular wake experiment/dataset. However, most wake measurements, as most met measurements, are normally
stored as averages (of different types of parameters) over 10 min intervals (hereafter referred to as means). In a nearly ideal
situation, one could try to simulate each mean condition, as shown in Peña et al.,6 and then the evaluation could be per-
formed by estimating the difference between simulations and observations, e.g. through the mean square error. However,
this is a computationally expensive approach for advanced models, particularly those based on CFD.

Unfortunately, most wake cases are ‘constructed’ by averaging such means based on a specific range of wind directions,
wind speeds, turbulence intensities and atmospheric stabilities (the last two in the best of the cases).� This is rather prob-
lematic as wake data are either scarce or of poor quality and so the means do not distribute equally within such ranges and
the wake datasets do not normally provide parameters, such as the standard deviation of the wind direction or that of the
atmospheric stability, with which we can discern such distributions.

Further, within the 10 min interval, the wind speed follows a distribution that we normally ignore as we can somehow
characterize it through the TI. Also, and most important, is that the wind direction is inherently uncertain. This uncer-
tainty can be divided into two parts: the natural variability of the wind direction due to atmospheric turbulence and the
measurement error uncertainty. A part of the wind direction variability is taken into account by the wake expansion in the
model (the wake decay coefficient) but another important part is related to the spatial and temporal de-correlation of the
wind direction between the measurement and the turbine locations, large-scale phenomena such as meandering and sen-
sor inaccuracy and uncertainty among others. Gaumond et al.5 assumed these additional sources of uncertainty to follow a
Gaussian distribution and found a dramatic change in the ensemble results.

Using the same parameters as those in Section 2.1.1, we perform simulations using the Jensen wake model of the
‘turbine–mast’ case at different downstream distances: 2.5D, 5.5D, and 8D. Figure 6 illustrates three different results
for each downstream distance, and as expected, the further the downstream distance the higher the ratio u1=u2 and the
narrower the wake. The first set of results are ‘direct’ simulation outputs (with a direction resolution of 0.1ı) without further
post-processing and so their shape is the same as that in Figure 2 for the ‘turbine–mast’ case. The second set (referred to
as the ‘average’ result) is found by assuming that the observed wake deficits (i.e. the mean observation over a 10 or 30 min
interval) actually have a resolution of 0.5ı and so the wake case is produced by averaging them over directions between
˙2.5ı (assuming they are equally distributed over such size, thus 11 deficits are averaged within ˙2.5ı relative wind
directions). The third set (referred to as ‘uncertainty’ result) is similar to the second one, except that before averaging them
within the˙2.5ı range, we partly account for the uncertainty in the direction by assuming that within the interval used for
estimating the mean, the direction is Gaussian distributed with a standard deviation � (in this case 5ı). Thus, a Gaussian
distribution is constructed for each of the 0.5ı wake observations and the wake deficits are Gaussian-weighted within the
range ˙3 � using the simulations with a resolution of 0.1ı. The third approach is equivalent to a forward propagation of

� The result of this average will here be referred to as ensemble mean.
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Figure 7. Power and thrust coefficient curves of the Holec WPS-30 wind turbine.30,31

the uncertainty of the wind direction that is Gaussian distributed. Another way to account for the uncertainty of the wind
direction (but computationally more expensive) is to perform an ensemble of Monte-Carlo simulations, where the wind
direction can be sampled from a normal distribution and subsequently averaging the result.

The ‘average’ result is already different from the ‘direct’ one. It shows a wind speed ratio that closely follows a tapered
shape with wind speed deficits (for the three downstream distances) as large as those from the ‘direct’ outputs. The ‘uncer-
tainty’ result is, as the Gaussian distribution, bell-shaped with wind speed ratios less than 1 at higher absolute relative
directions (since some part of the Gaussian-weighted wind direction is still wake affected). The maximum wind speed
deficits become close to those of the direct outputs the closer the distance to the turbine.

4. THE SEXBIERUM CASE

Sexbierum is, as the region, the name of an onshore wind farm about 4 km from the Dutch North Sea. It consists of 18
pitch-regulated, variable speed, Holec WPS-30 wind turbines with a hub height of 35 m, a rotor diameter of 30.1 m and a
rated power of 310 kW. The thrust coefficient is constant (Ct D 0.75) within the range 6.8–10 m s�1. The terrain around
the wind farm is flat and rather homogenous characterized by grassland. The layout is a 6�3 array and for our purpose, we
are going to use the experimental data from the single and double wake measurements reported by Cleijne.30, 31 Figure 7
shows the power and thrust coefficient curves of the turbines at Sexbierum.

In the single wake case, the wind speed was measured during six months at masts located 2.5D, 5.5D and 8D downstream
of a turbine, when this was facing free stream conditions. For the double wake case, the measurements were performed
during three months based on the power of a third turbine (P36) downstream of two others at 5D and 10D (P38). Data
were analyzed when the ‘first’ turbine faced free stream conditions. The details on the mast and turbine instrumentation,
data and averaging methods are given in Cleijne.30, 31 There is no information related to the error or uncertainty of the
recorded data. Both cases present data of either observed wind speed (single case) or power ratios (double case) as function
of the observed relative wind direction within a range of ˙30ı at a resolution of 2.5ı. The wind speed observations were
distributed within the range of 5–10 m s�1.

4.1. Turbulence intensity and atmospheric stability

Cleijne30, 31 provided the values of the observed free stream TI (9.5% for both cases) and the upstream roughness (0.049 and
0.045 m for the single and double wake cases, respectively) at Sexbierum. However, no information related to atmospheric
stability is provided.

As shown in Section 2.1.3, for a flat and nearly homogenous site, equation (5) reasonably predicts the TI for a given
height and roughness under neutral conditions. Assuming at first that the topographical conditions of the Sexbierum area
are ‘similar’ to those of Høvsøre (both sites are nearly flat and based on the Corine Land Cover database§ the two areas
correspond to the arable land and permanent crops category) and that the conditions of the experiments at Sexbierum were

§http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-3
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nearly neutral, the TI is estimated as � 15% using equation (5) for both wake cases, i.e. close to twice the value from the
aforementioned reports. A very possible explanation for the mismatch between observed and estimated TI is the influence
of atmospheric stability; from equation (5), the conditions should have to be stable in order to be close to the observed TI.
Using the form  m D �4.7z=L14 and equation (5) with z D 35 m, TI D 9.5% and zo D 0.049 m, L is estimated to be 42 m.
Another possibility is an inaccurate roughness length estimation in Cleijne’s analysis and so there is a range of stabilities
and roughnesses that can produce the same TI following equation (5). Because of the mismatch and range of possibilities,
for the model simulations based on the atmosphere-dependent wake decay coefficient, we use equation (6) to determine kw

from the observed TI at Sexbierum (kw D 0.038/.

5. RESULTS

For both wake cases, we assume the influence from the nearby turbines at Sexbierum to be negligible. So only one and three
turbines are modeled, respectively (this is why the layout of the wind farm is not important). Also, for both cases, simu-
lations are performed using a hub height wind speed uh of 8 m s�1, since Cleijne30, 31 reported that the wind speeds were
mostly within the range of 7–9 m s�1. Simulations are carried out using the wind farm model described in Section 2.1.1
with kw D 0.038, 0.061 and 0.060 (the last two are derived using equation (4) assuming neutral conditions and the rough-
ness values from the single and double wake experiments reported earlier, which are close to the default WAsP value) and
for a broad range of relative wind directions (˙60ı) with a resolution of 0.1ı. The observations are reported every 2.5ı,
and thus, we post-process the results following the steps described in Section 3 related to the ‘uncertainty’ result. We also
show the ‘direct’ results, i.e. those without any post-processing for completeness.

Results using Fuga’s model and RANS using the k-"-fP model are also presented. Fuga’s inputs are uh D 8 m s�1,
roughness length (the values from Cleijne30, 31 are used) and inversion height (we choose 200 m, and the model results
are rather insensitive to this input for the Sexbierum wind farm as the flow is lid driven). For the RANS-based one, we
need uh D 8 m s�1 and TI D

p
2=3k=uh D 0.095 and, zo is set so that we obtain the same TI at hub height using

TI D �
p

2=3=
h
ln.h=zo/C

1=4
�

i
, i.e. zo D 0.009 m. Note that C� is 0.03 and cannot be adapted to obtain the desired TI

in the k-"-fP model because the behavior of the fP function changes in an unphysical manner with C�, as discussed in
van der Laan et al.27

5.1. Single wake

Observations and simulation results of the Sexbierum single wake case at the three different downstream distances are
shown in Figure 8. ‘Direct’ and ‘uncertainty’ simulation results are shown for two wake decay coefficients, and the
post-processing is carried out using two � values.

Results from ‘direct’ simulations show different shapes for the wind speed ratio when compared with the observations.
Those using the lowest kw-value show the highest speed deficits and the narrowest wakes, as expected. It is important to
point out that the results based on Jensen’s approach have traditionally been close to the simulations shown with the black
dotted lines as uncertainty in the wind direction was not usually considered, and the kw was often assumed to be close to
the WAsP-recommended onshore value of 0.075. With the ‘direct’ simulation results, it is possible to isolate the decrease in
wind speed ratio and wake width due to the decrease in the kw-value; for the three downstream distances, u2=u1 is reduced
by 7–8% and the wake width (given by 2 tan.kw/) by 2.63ı.

Simulation results using � D 2ı (left frames) show lower wind speed ratios compared with those using � D 5ı (right
frames), as expected. So, they are generally closer to the observations. The shapes between the simulations and observations
are also closer to the results obtained using the lower � value. These results, particularly those using � D 5ı, are closer in
shape to the results using Fuga’s model. However, the maximum speed deficit predicted by Fuga’s model is clearly much
lower than that of the observations, any of the Jensen-based simulations and the k-"-fP model for the three downstream
distances. Neither the results from Fuga’s model nor those from the k-"-fP model are post-processed to account for the
uncertainty in the wind direction, and by doing so, we will obtain even lower speed deficits with regard to the Sexbierum
measurements.

Simulation results using � D 2ı nearly reach the wind speed ratio of the ‘direct’ result for the three downstream
distances, and the wake width of the ‘uncertainty’ results is � 14ı wider than that of the ‘direct’ ones. For � D 5ı at
5.5D and 8D, u2=u1 is lower and the wake� 32ı wider than the results of the ‘direct’ simulations. The difference between
the Jensen-based simulations and observations at 2.5D is either due to the ability of the wake model itself (not due to the
validity of the assumptions in equations (3)–(6)) or due to the quality of the observations. Assuming that the observed wind
speed was actually 8 m s�1, kw needs to become 0 in order to get such a low wind speed ratio.

Unfortunately from the Sexbierum campaigns, there is no information with which we can derive � or approximate the
spread of the additional uncertainty in wind direction, which was not taken into account by the wake expansion. However,
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Figure 8. Single wake for three downstream distances at Sexbierum: 2.5D (top frames), 5.5D (middle frames) and 8D (bottom
frames). Model results are shown with lines and data from Sexbierum with markers. ‘Uncertainty’ results from the Jensen-based

wake model are post-processed using � D 2ı (left frames) and � D 5ı (right frames).

we can use wind direction observations from the Høvsøre site to obtain an idea of the variability of the wind direction
within a 10 min interval for conditions ‘similar’ to those at Sexbierum.

We select fast measurements (20 Hz) from a sonic anemometer located at 40 m on the Høvsøre mast (the closest to
the hub height at Sexbierum) that are close to the wind conditions at Sexbierum in terms of wind speed, the suggested
atmospheric stability (i.e. L D 42 m that is derived by estimating  m.z=L/ from equation (5) using the observed values
of TI and zo observed at Sexbierum), and TI (derived using equation (5) using the roughness at Høvsøre and the stability,
L D 42 m, at Sexbierum). We restrict the analysis to the east sector.
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Figure 9. Normalized probability distribution (NPD) of the relative direction observed at Høvsøre for a typical 10 min interval similar
to the conditions at Sexbierum. The observations are shown in the histogram with the gray bars, the normal distribution with a solid

black line and with dashed lines the ˙� values (3.5ı/.

Table I. Root mean square error of the wind speed ratio (for the single wake cases)
and of the power ratio (for the double wake cases) when comparing model results

with the data from Sexbierum.

Model Single 2.5D Single 5.5D Single 8D Double

Jensen (� D 0ı, kw D 0.038) 0.108 0.059 0.049 0.060
Jensen (� D 0ı, kw D 0.060) 0.110 0.048 0.049 0.085
Jensen (� D 2ı, kw D 0.038) 0.091 0.035 0.041 0.067
Jensen (� D 2ı, kw D 0.060) 0.111 0.045 0.045 0.095
Jensen (� D 5ı, kw D 0.038) 0.094 0.039 0.041 0.105
Jensen (� D 5ı, kw D 0.060) 0.117 0.052 0.048 0.128
Fuga 0.187 0.073 0.056 0.136
k-"-fP 0.115 0.053 0.050 0.131

Figure 9 shows an example of such variability within a 10 min interval where the normal distribution is a least squares
fit of the histogram of observed relative directions resulting in � D 3.5ı (this is the typical value found from the analysis
performed for about eighty 10 min histograms of wind direction recorded by the sonic anemometer). As expected, the
observed variability is larger than the value that correlated better with the wake observations at Sexbierum (� D 2ı)
because the observed variability should be close to that obtained when adding the effect of the wake expansion and the
simulated additional uncertainty in wind direction.

Table I summarizes the results of comparing quantitatively the Sexbierum data with the models in terms of the wind
speed ratio. For the three single wake cases, the Jensen-based wake model using � D 2ı and kw D 0.038 shows the lowest
root mean square error, whereas Fuga’s model the highest.

5.2. Double wake

Observations and simulation results of the Sexbierum double wake case are shown in Figure 10. ‘Direct’ and ‘uncer-
tainty’ simulation results are shown for two wake decay coefficients, and the post-processing is also carried out using two
values of � .

Similar to the single wake case, ‘direct’ simulation results do not show the bell-shaped characteristic of the observations,
although in this case, the power ratio does not sharply decrease but follows a close to tapered shape due to the superposed
wakes. The lowest power deficit is found when using a value of kw close to that of WAsP and the highest when using kw D

0.038, which matches well that of the observations. Again, results of models using Jensen’s approach have traditionally
resembled these ‘direct’ outputs, particularly the case with kw D 0.060. The effect of decreasing kw is a decrease in the
power ratio by 39% with nearly no change in the wake’s maximum width.
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Figure 10. Double wake at Sexbierum. Model results are shown with lines and data from Sexbierum with markers. ‘Uncertainty’
results from the Jensen-based wake model are post-processed using � D 2ı (left frame) and � D 5ı (right frame).

Also, similar to the single wake case, the simulation results using � D 2ı show the lowest power ratio compared with
those using � D 5ı, as expected. Thus, they are generally closer to the observations and to the ‘direct’ result using the
low kw-value. In this case, one clearly sees the effect of the uncertainty in relative wind directions other than zero because
wakes are simulated between ˙20ı for the � D 5ı case. No wake is shown at similar relative wind directions for the
� D 2ı case. The power ratio curve of the simulation using � D 2ı is very close to that of the observations. Results based
on the Jensen model are much closer to the observed power ratio when compared with those of Fuga’s model and those of
the k-"-fP model, which clearly underpredict the maximum power deficit as for the single wake cases. Table I shows that
all in all, the best results for the double wake cases are obtained when using the ‘direct’ result from the Jensen-like model
with the lowest wake decay coefficient.

In the single wake case, there is a large difference between the results from Fuga’s model and RANS using the k-"-fP
model, while both models show a similar power deficit in the double wake case. This can be explained as follows. The
employed turbulence model in Fuga is not valid in the near wake, where velocity gradients are high. On the contrary, the
k-"-fP turbulence model can handle the high velocity gradients because the fP function locally limits the eddy viscosity.
Further downstream, the difference between the models reduces because the turbulent kinetic energy is increased, and the
velocity gradients are not as high as in the near wake of the first wind turbine. Hence, the third wind turbine in the double
wake case observes a similar inflow velocity for both models, which translate to a comparable power deficit. A similar
observation is made by van der Laan et al.,29 where a near wake invalid turbulence model (the standard k-" model) only
shows differences in terms of the power deficit with the k-"-fP model for the first wind turbines in a row of a wind farm.

The neutral RANS simulations underpredict the measured velocity and power deficits because the wake measurements
were most likely conducted in a stable atmospheric boundary layer, as discussed in Section 4.1. The comparison with the
measurements can be improved if stability is modeled in the RANS simulations, i.e. a Bouyant production/destruction
term is added to the transport equation of turbulent kinetic energy that suppresses wake turbulence in stable conditions and
increases the velocity and power deficits.

6. CONCLUSIONS AND DISCUSSION

It has been shown that the wind speed deficits obtained from the Jensen wake model for a single wind turbine, as function
of the relative wind direction, depend on how we observe wakes. Results are different when considering that the deficits
are observed by a point measurement, say a mast, compared with those when observed by a second turbine due to partial
wake interaction. Therefore, for the ‘turbine–turbine’ case, the shape of the wind speed ratio is different compared with the
original shape of the wind speed deficit obtained with the Jensen wake model.

Based on a simple relation between the TI and the mean wind speed of the free inflow, the wake decay coefficient of the
Jensen wake model was expressed as a function of the height, roughness and atmospheric stability and, thus, of atmospheric
turbulence. The relation between the TI, height and roughness (used to parameterize the wake decay coefficient) was shown
to hold when analyzing met observations over a flat and nearly homogeneous terrain up to a height of 40 m and for a range
of atmospheric stability conditions.
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Although the ‘direct’ wind speed (or power) deficit from the Jensen wake model is constant across the width of the
wake, it was shown that the wake deficits can become Gaussian with the maximum wind speed deficits lower and wakes
wider than those from the ‘direct’ Jensen-like wake results. This is achieved through averaging of the simulation’s output
in a similar fashion to that in which the wake cases are observed, while partly accounting for the uncertainty in the wind
direction using a Gaussian distribution that resembles the observed variability in the wind direction. For a typical wind farm,
we should aim at measuring not only the distribution of the wind direction within the averaging period (which is typically
10 min, but as turbines react to wind changes much faster, then perhaps 1 min average will be even more appropriate) but
also the distribution of wind direction changes between the averaging periods and that between turbines. van der Laan et
al.29 shows how to account practically for the uncertainty in the wind direction.

Further, we demonstrated the ability of an engineering wind farm wake model based on the Jensen wake model to
simulate the single and double Sexbierum wake cases outperforming (for these particular cases) two more advanced ones:
a linearized CFD model, Fuga, and a nonlinear CFD RANS wake model that uses a modified k-" turbulence model. It was
shown that the wake decay coefficient for these simulations should be lower (kw D 0.038) than the value recommended
by WAsP (kw D 0.075) when accounting for atmospheric stability during both campaigns, as the observed TI is too low
compared with that estimated from surface layer parameters assuming a neutral atmosphere.

The wake decay coefficient is the only adjustable parameter of the Jensen-based wake models (wind direction variability
and uncertainty, which are also adjustable, can be accounted for as part of the post-processing). We show that this coefficient
can be parameterized within the surface layer over a flat and homogeneous terrain. Although these conditions are rather
‘ideal’, results from the model described here using the parameterizations in equations (4) and (6) agree well with the
WakeBench benchmark cases at Horns Rev I,32 an offshore farm comprising turbines with a hub height of 70 m. We expect
that it can also be used to accurately predict large turbine wake deficits, particularly under unstable and neutral conditions,
as under these regimes, the surface layer can easily extend up to � 100–200 m in middle latitudes. Also, atmospheric
stability was accounted for in the kw value in Peña et al.6 for data from the Horns Rev I wind farm. A recent study showing,
indirectly, the dependency on TI of kw is that of Nygaard.33 He showed very good agreement between a Jensen-like wind
farm wake model and data from a northwest-southeast row with up to 20 turbines within the London array wind farm. He
used a wake decay coefficient of 0.04, filtered data with wind speeds about 9 m s�1 and showed that at this wind speed,
the observed TI was about 7%. He showed poorer agreement of the model (the simulated power ratios are not that low as
those of the data) for a southwest-northwest row with up to 12 turbines using kw D 0.04, although he showed that for that
particular row, the observed TI was lower than 5%. Following our approach, a lower wake decay should be used for this
second case, which will result in deeper deficits.

Jensen-based wake models are inherently not suited to study the wake characteristics in detail, for which more advanced
models should be used. Here, we show that simple models can predict wake deficits accurately, now in a more transparent
fashion as the wake coefficient can be parameterized. This is very important to address current challenges in wind farm
optimization, as such simple models can be used during the first phase of wind farm layout design due to their efficiency,
perhaps followed by a detailed CFD-based analysis. The model here described takes �74 s to estimate the annual energy
production of an 80 turbine wind farm based on met data collected hourly over 1 year.
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