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Multiple electrode (Ne ≥ 1) support in the DFT+NEGF code TranSIESTA
Nick Papior & Mads Brandbyge

DTU Dept. of Micro- and Nanotechnology & Center for Nanostructured Graphene, DK-2800 Kgs. Lyngby, Denmark

Introduction
Density functional theory based non-equilibrium Green function methods (DFT+NEGF) are by now standard for calculation of transport properties in nanostructures. In the TranSIESTA code [1, 2]
the NEGF implementation is currently scaling with N3 which limits the number of orbitals used, N being number of orbitals. In this work we present a re-implementation of TranSIESTA which scales
linearly in system size (order-N) and allowing for multiple electrodes (Ne ≥ 1) in a flexible manner [3].
In conjunction with TranSIESTA we report on an optimised tbtrans code which enables, 1) Ne ≥ 1 electrodes, 2) interpolation of Hamiltonian between bias’, 3) projection of molecular Hamiltonians,
4) custom tight-binding and 5) phonon transport.

Efficiency of improved TranSIESTA DFT-NEGF method

The non-equilibrium Green function equations

ρeq ∝ −
1
π

∫∫
BZ
dεdk

[
Gk(ε)−G†k(ε)

]
nF (ε)

ρneq ∝ −
1
π

∫∫
BZ
dεdk

{[
Gk(ε)−G†k(ε)

]
nF ,e1(ε)−Gk(ε)

E∑
e∀µe 6=µe1

Γe,k(ε)
[
nF ,e(ε)− nF ,e1(ε)

]
G†k(ε)

}
I Different inversion algorithms, 1) Block-tri-diagonal (BTD), 2) MUMPS, 3) LAPACK

I Efficient pivoting to obtain good scalability on BTD inversion

I Example of possible geometries
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I The different available algorithms provides a very versatile NEGF code

I Hybrid parallelisation to reduce memory requirements for very large calculations
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Figure: Pristine graphene calculation of differing lengths. An impressive
speedup of > 40 is found for simple equilibrium calculations while > 20 for
non-equilibrium calculations. The memory use is but a fraction of the full
matrices which also enables much larger calculations.

Figure: Performance gain when using
threading for a very large system of 12,000
orbitals.

Example — NEGF calculation of graphene T-junction

I NEGF calculation of 3 (Left-Right-Top) electrode, periodic in the arm-chair direction.

I Compared against pristine graphene transmission spectrum
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I Spectral density, GΓG†, of states on atom closest to basal graphene plane in T-junction
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I Versatile tbtrans enables DOS from Green function, spectral function and bulk electrode DOS,
everything is orbital resolved

Example — Interpolation of bias calculations

I Interpolation of the transmission function based on distinct bias calculations.

I Makes I-V curves feasible with a good compromise between throughput and precision.
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I Interpolation using 5 NEGF calculations with steps {−2,−1,0,1,2}V interpolated to −1.5V
I Spline interpolation is far superior than linear interpolation

Example — Molecular projection transmission

I Full spectroscopic analysis using molecular (Löwdin) projected Hamiltonians to attribute transport to
molecular levels

H{M}S
−1/2
{M} |Di〉 = εiS

1/2
{M}|Di〉, {I}, {J} ∈ {M}

T{J},{I} = Tr
[
G
{J}∑

j

|Dj〉〈Dj|ΓL

{J}∑
j

|Dj〉〈Dj|G†
{I}∑
i

|Di〉〈Di|ΓR

{I}∑
i

|Di〉〈Di|
]
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I k resolved projections retains better Lorentzian width⇒ dispersion in Brillouin zone

Example — Tight-binding calculations using tbtrans

I Transmission of bow-tie
graphene junction

I Flexible transport
calculator, DFT and
custom tight-binding
models

I Ne-electrode available in
highly optimised code

I Bond-currents for
orthogonal basis sets
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github.com/zerothi/sids

import sids , s ids . geom as gdef , numpy as np
sq3h = 3. ∗∗ 0.5 ∗ 0.5
a l a t = 1.42
C = s ids . Atom (6 ,R= a l a t ∗sq3h ∗2.01)
gr = gdef . graphene ( a la t ,C, square=True )
# Create a 100x100x4=40000 atom graphene f l a k e
f l a k e = gr . repeat (100 , ax is =0 ) . t i l e (100 , ax is =1)
HS = s ids . T igh tB ind ing ( f l a k e )
# Create neighbor dis tances , next−nearest
# U t1 t2
dR = np . ar ray ( [ 0 . 1 , 1 .1 , 2∗sq3h + 0 . 1 ] ) ∗ a l a t
for idx , idxs in f l a k e . i t e r b l o c k ( ) :

for i a in i dx :
i dx a = f l a k e . c lose ( ia , dR=dR, idx= idxs )
HS[ ia , i dx a [ 0 ] ] = ( 2 . , 1 . )
HS[ ia , i dx a [ 1 ] ] = ( −1 . ,0 . )
HS[ ia , i dx a [ 2 ] ] = ( − . 1 ,0 . )

HS. w r i t e ( ’DEVICE . nc ’ )

Example — Phonon transport using phtrans

I Phonon transport

Gq(ω) =
[
ω2I− Dq −

∑
e

Σe,q(ω)
]−1

Ξqee′(ω) = Tr
[
Gq(ω)Γe,qG†q(ω)Γe′,q

]
I Full Ne electrode support with all capabilities of

tbtrans
I Graphene phonon transport along zig-zag

direction
I Bulk Silicon phonon transport along 100

direction
I Reads GULP [4] output to create Hessian

(dynamical) matrix, easily extendable to other
formats
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Conclusion

I Full Ne ≥ 1 NEGF calculations in TranSIESTA

I Huge performance improvement for higher throughput and larger systems
I Huge memory reduction due to implemented sparse algorithms
I Versatile transport calculator tbtrans/phtrans

. Interpolating bias calculations

. Molecular projected transmission spectrum

. Implicit tight-binding calculations using simple scripting language (Python)

. Bond-currents in orthogonal basis sets
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