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Abstract 

This paper describes an aptamer-based optomagnetic biosensor for detection of a small 

molecule based on target binding-induced inhibition of magnetic nanoparticle (MNP) 

clustering. For the detection of a target small molecule, two mutually exclusive binding 

reactions (aptamer-target binding and aptamer-DNA linker hybridization) are designed. An 

aptamer specific to the target and a DNA linker complementary to a part of the aptamer 

sequence are immobilized onto separate MNPs. Hybridization of the DNA linker and the 

aptamer induces formation of MNP clusters. The target-to-aptamer binding on MNPs prior to 

the addition of linker-functionalized MNPs significantly hinders the hybridization reaction, 

thus reducing the degree of MNP clustering. The clustering state, which is thus related to the 

target concentration, is then quantitatively determined by an optomagnetic readout technique 

that provides the hydrodynamic size distribution of MNPs and their clusters. A commercial 

Blu-ray optical pickup unit is used for optical signal acquisition, which enables the 

establishment of a low-cost and miniaturized biosensing platform. Experimental results show 

that the degree of MNP clustering correlates well with the concentration of a target small 

molecule, adenosine triphosphate (ATP) in this work, in the range between 10 µM and 10 

mM. This successful proof-of-concept indicates that our optomagnetic aptasensor can be 

further developed as a low-cost biosensing platform for detection of small molecule 

biomarkers in an out-of-lab setting. 

 

Keywords: Aptamer, Magnetic nanoparticles, Inhibition assay, Blu-ray, Optomagnetic 

readout 
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1. Introduction 

Magnetic nanoparticles (MNPs) have been widely used in biosensing for detection of 

various biomolecules such as nucleic acids (Göransson et al. 2010; Josephson et al. 2001; 

Liong et al. 2013; Zhang et al. 2013b), proteins (Aurich et al. 2006; Liang et al. 2011; 

Ranzoni et al. 2012; Zhang et al. 2013a), enzymes (Bamrungsap et al. 2011), cells (Herr et al. 

2006) and small molecules (Sun et al. 2006; Wu et al. 2011; Yigit et al. 2007; Zhang et al. 

2009). Due to the low magnetic susceptibility of biological compounds, the manipulation and 

detection of MNPs in biological media are not susceptible to interference from magnetic 

background, and this allows for the efficient and sensitive detection of biomolecules without 

the need for sample purification steps. 

MNP-based detection of biomolecules has been applied to both surface-based (Bruls et al. 

2009; Mani et al. 2009; Nash et al. 2012; Tekin et al. 2013; Wang et al. 2010; Wang and Gan 

2009) and volume-based assays (Aurich et al. 2006; Bamrungsap et al. 2011; Chun et al. 

2011; Göransson et al. 2010; Josephson et al. 2001; Liang et al. 2011; Liong et al. 2013; 

Ranzoni et al. 2012; Sun et al. 2006; Zhang et al. 2013a). The latter typically employs 

sandwich binding-induced clustering where a molecule of interest is bound to multiple 

receptors tethered onto MNP surfaces, resulting in the agglutination of MNPs. Accordingly, 

the addition of a target triggers clustering of MNPs, leading to changes in the size and the 

number of agglomerated particles with the analyte concentration, which is referred to as a 

clustering assay (Aurich et al. 2006; Baudry et al. 2006; Castañeda et al. 2007; Göransson et 

al. 2010; Josephson et al. 2001; Koh et al. 2009; Liang et al. 2011; Ling et al. 2010; Perez et 

al. 2002; Ranzoni et al. 2012; Zhang et al. 2013a). Such a volume-based MNP clustering 

assay is particularly appealing since it allows simple mix-and-read type measurements and 

reduced reaction time by use of external magnetic fields (Baudry et al. 2006). 

Despite these advantages, the extensive use of MNP clustering assays has been impeded 

by the following limitations:  
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First, the typical clustering assay is applicable only to a target molecule with multiple 

binding sites, but not feasible for small molecules due to their limited number of binding sites. 

Therefore, target binding-induced cluster disassembly strategies have been pursued using a 

competitive binding assay format (Sun et al. 2006) or structure-switching signaling aptamers 

(Wu et al. 2011; Yigit et al. 2007; Zhang et al. 2009). However, in the competition-based 

approach, the formation of target-functionalized MNPs via a covalent bond is not always 

viable because of lack of functional groups within such small molecules, and the binding 

affinities of aptamers in the structure-switching approach are frequently reduced by 

competition, blocking (Nutiu and Li 2003) and allosteric inhibition (Ricci et al. 2012) effects, 

thus lowering the detection sensitivity.  

Second, current technologies to detect MNP clusters typically measure properties such as 

transverse relaxation time (Bamrungsap et al. 2011; Eberbeck et al. 2009; Kaittanis et al. 

2011; Liang et al. 2011; Ling et al. 2010; Min et al. 2012; Perez et al. 2002), total sample 

magnetization (Michael et al. 2012), or light scattering (Chun et al. 2011; Michael et al. 2012). 

However, since these methodologies do not resolve signals with respect to the distribution of 

particle sizes, quantitative measurements of clusters in a mixture are readily interfered by 

background signals from a large amount of single MNPs or clusters of different sizes, thus 

lowering the accuracy and sensitivity.   

Third, existing readout techniques require bulky and sophisticated electronic equipment 

such as nuclear magnetic resonance (NMR) spectroscopy, magnetometers equipped with 

accurate temperature control, or dynamic light scattering equipment, which in turn limit their 

applicability in an out-of-lab setting.  

In this study, we develop an aptamer-based MNP clustering biosensor for detection of 

small molecules via particle size-selective measurements on a compact, simple, and 

inexpensive optomagnetic readout system. A conventional inhibition assay configuration is 

employed (Crowther 2000), where two types of MNPs are prepared, one tagged with an 
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aptamer (apt-MNPs), a single stranded oligonucleotide receptor (Ellington and Szostak 1990), 

and the other with a sequence partially complementary to the aptamer (linker-MNPs), called a 

DNA linker. When a sample containing a target small molecule is incubated with apt-MNPs 

prior to the addition of linker-MNPs, the aptamer is folded into a three-dimensional structure 

stabilized by the target, referred to as adaptive binding (Da Costa et al. 2013; Gilbert et al. 

2009; Hermann and Patel 2000). From a thermodynamic viewpoint, such a stabilization 

implies that in the presence of its cognate target, the overall free energy of the hybridization 

reaction between an aptamer and its complementary DNA sequence becomes less negative 

(Da Costa et al. 2013). Thus, the small target molecule behaves like an inhibitor, and the 

resulting affinity constant Keq' of the aptamer for its complementary strand (DNA linker) is 

reduced and can be expressed as Keq'=Keq/(1+[T]×Ka), where [T] is the target concentration 

and Ka is the affinity constant for the aptamer-target binding. Consequently, since MNP 

clusters are formed by the aptamer-linker hybridization reaction, the degree of MNP 

clustering decreases with increasing target concentration. This target binding-induced particle 

clustering inhibition approach facilitates the detection of diverse small molecules by 

designing the linker strands to hybridize with known binding sequences of aptamers.  

To determine the degree of MNP clustering, i.e., the cluster sizes and respective amounts, 

we implemented an optomagnetic readout system that collects transmitted light, which is 

modulated by rotating MNPs under the actuation of an external magnetic field (Donolato et al. 

2015a). The optical signal is found to be closely related to the rotational dynamics of MNPs, 

which is linked to their hydrodynamic sizes. As a result, this optomagnetic measurement 

enables us to effectively detect optical signals with respect to cluster sizes, allowing an 

accurate and quantitative determination of the clustering state.  

Furthermore, to simplify and miniaturize the readout platform, we utilize a Blu-ray optical 

pickup unit (OPU) that incorporates a laser diode and a photo detector costing less than 10$ 

(Donolato et al. 2015b). By integrating such a compact and reliable optical element with a 
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cuvette for simple sample loading (Fig. S1), we establish a robust and miniaturized 

optomagnetic readout system.  

In this proof-of-concept study, adenosine triphosphate (ATP) is chosen as a target small 

molecule. ATP is an intracellular energy transporter that regulates cell metabolism and 

signaling pathways. ATP is also used as an important indicator of cell viability (Leist et al. 

1997) and its intracellular concentration ranges from 0.1 to 3 mM (Traut 1994). Thus, it is 

important to detect ATP in the range for clinical and biomedical research. Combining the 

aptamer-based inhibitive MNP clustering strategy with size-selective measurements on a low-

cost and miniaturized platform, we demonstrate in this proof-of-concept study that our 

optomagnetic aptasensor can achieve the detection of ATP in the concentration range from 10 

µM to 10 mM. 

 

2. Materials and methods  

2.1. Chemicals and materials 

Streptavidin-coated cross-linked iron oxide (CLIO) nanoparticles with hydroxyethyl 

starch and nominal sizes of 80, 250 and 500 nm were acquired from Micromod 

Partikeltechnologie GmbH (Rostock, Germany). Biotinylated ATP-specific aptamer (5’-ACC 

TGG GGG AGT ATT GCG GAG GAA GGT AAA AAA A-3’), DNA linker (5’-CAA TAC 

TCC CCC AGG TAA AAA AA-3’) and control aptamer (5’-ACC TGG GGG AGT ATT 

AAA AAA AAA AAA AAA AAA A-3’) were obtained from Integrated DNA Technologies, 

Inc. (Coralville, IA). Other chemical reagents including ATP, CTP, GTP, UTP, PBS buffer, 

MgCl2 were purchased from Sigma-Aldrich (St. Louis, MO).  

2.2. MNP surface functionalization 

MNPs with a nominal diameter of 80 nm were repeatedly washed with PBS buffer four 

times using centrifugation followed by magnetic separation and re-suspended at a 

concentration of 1 mg/ml. The MNP suspension was then mixed with the aptamer or the 
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linker solution (2 µM) with a 1:1 volume ratio, and incubated for 30 min under shaking at 

room temperature. After the incubation, the oligonucleotide-functionalized MNPs were 

washed with PBS with 5 mM MgCl2 (PBSM, pH 7.4) three times, and re-suspended at a 

concentration of 1 mg/ml for subsequent experiments. The number of DNA oligos (aptamer 

or DNA linker) on a MNP surface is estimated to be about 18 based on the information 

provided by the MNP vendor.  

2.3. Experimental procedure 

Standard ATP samples at various concentrations were prepared in PBSM buffer solution 

(pH 7.4). An apt-MNP solution (1 mg/ml, 6 µl) was first mixed with a 6 µl of ATP sample (or 

with a PBSM buffer for blank experiments), and incubated for 1 h at room temperature. A 

linker-MNP solution (1 mg/ml, 6 µl) was then added into the sample followed by placing the 

sample tube in the magnetic rack for 5 min to accumulate MNPs together. 15 min after 

removing the tube from the rack, 42 µl of PBSM buffer was added to make the final volume 

as 60 µl, which fills up the measuring chamber of the optical cuvette. 

2.4. Optomagnetic measurement 

Once the sample was ready to measure with a volume of 60 µl, the cuvette was mounted 

on the sample loading stage located between the adjustable mirror and the Blu-ray OPU (Fig. 

S1). Each spectrum consisted of optomagnetic measurements for magnetic field excitation of 

amplitude 2 mT at 26 logarithmically spaced frequencies f from 1928 to 0.33 Hz. The 

acquisition time for a single spectrum was about 2 min. The Blu-ray OPU had a wavelength 

of 405 nm. The light passed through the sample solution was reflected on the mirror and 

returned to the photo detector of the OPU through the sample. The collected optical signals 

were analyzed using lock-in technique in order to extract the second harmonic signal 

(Donolato et al. 2015b). 

 

3. Results and discussion 
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3.1. Design and principle of MNP clustering 

The principle of ATP detection using MNPs is illustrated in Fig. 1. A part of the linker 

sequence (CAA TAC TCC CCC AGG T) is designed to hybridize with the ATP-recognition 

site (ACC TGG GGG AGT ATT G) of the aptamer. Without ATP, apt-MNPs and linker-

MNPs agglomerate through successive DNA hybridization processes between aptamers and 

linkers on respective MNP surfaces (Fig. 1a). However, in the presence of ATP, the aptamer 

changes its conformation to form a loop like structure that incorporates two ATP molecules 

(Lin and Patei 1997), thereby making the complementary aptamer sequence inaccessible to 

the linker sequence. Hence, when apt-MNPs are first incubated with an ATP sample followed 

by addition of linker-MNPs, aptamers preoccupied by ATP molecules do not hybridize with 

the linkers (Fig. 1b). Consequently, MNP clustering is less likely to occur, andthus a higher 

ATP concentration in a sample results in the formation of smaller and fewer MNP clusters. 

 

Fig. 1. Principle of ATP detection using oligonucleotide-conjugated MNPs. (a) When two 

types of MNPs (apt-MNPs and linker-MNPs) are mixed without ATP, hybridization between 

ATP-specific aptamers and linker DNA molecules induce agglutination of MNPs resulting in 

MNP clustering. (b) When apt-MNPs are first incubated with ATP samples followed by 

addition of linker-MNPs, aptamers pre-bound to ATP molecules do not hybridize with linkers 

and reduce the likelihood of cluster formation. 
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3.2. Image-based characterization of target binding-induced MNP clustering   

We first demonstrated the aptamer-based inhibition mechanism for ATP detection by 

taking images of the clustering state of MNP samples. Fig. 2 shows images of (a) a single 

type of MNPs (either apt- or linker-MNPs), (b) apt-MNPs mixed with an equal amount of 

linker-MNPs, and (c) apt-MNPs incubated with 10 mM ATP followed by addition of an equal 

amount of linker-MNPs. The top and bottom images in Fig. 2 were obtained by fluorescence 

microscopy of fluorophore-labeled MNPs in suspension and scanning electron microscopy 

(SEM) of unlabeled MNPs after drying a sample droplet, respectively. 

Fig. 2. Images of MNP samples prepared at different conditions. The top row shows 

fluorescence microscopic images acquired on suspensions and the bottom row shows SEM 

images acquired on dried spots of samples of (a) a single type of MNPs, (b) a 1:1 mixture of 

apt-MNPs and linker-MNPs, and (c) apt-MNPs incubated with 10 mM APT followed by 

addition of linker-MNPs. The white and black scale bars indicate 20 µm and 5 µm, 

respectively. 
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The two techniques showed consistent results. For a single type of MNPs, the MNPs were 

uniformly dispersed with some small clusters (<1 m) formed by non-specific interaction 

between MNPs (Fig. 2a). For the mixture of apt-MNPs and linker-MNPs, large (>10 m) 

clusters were observed (Fig. 2b). When the apt-MNPs were incubated with a high 

concentration of ATP prior to addition of the linker-MNPs, only intermediate-sized (<5 m) 

clusters were observed (Fig. 2c). From the results, it is noted that MNP clustering is 

significantly suppressed in the presence of a high ATP concentration, confirming that ATP 

acts as an inhibitor and prevents aptamers from hybridizing with linkers. This inhibition 

mechanism is additionally verified using dynamic light scattering (Fig. S3). 

 

3.3. Characterization of the optomagnetic readout   

To quantitatively determine the clustering state of MNPs, we implemented an 

optomagnetic readout system, which can measure the size and the relative amount of 

MNPs/clusters (Fig. 3a). In the system, a sinusoidal uniaxial magnetic field of frequency (f) is 

applied to an MNP suspension while laser light (405 nm wavelength) passes through it along 

the axis of the applied magnetic field and is reflected back to the Blu-ray unit by an adjustable 

mirror. The MNPs have a small remnant magnetic moment and are irregularly shaped 

(Ludwig et al. 2014). In the absence of an external magnetic field, the thermal energy is 

sufficiently large to prevent the formation of particle clusters due to magnetic interactions. 

However, in an applied magnetic field, MNPs/clusters align preferentially with the magnetic 

field due to their remnant magnetization, resulting in a modulation of the intensity of the 

transmitted light (Donolato et al. 2015a). Upon changing the sign of the magnetic field, the 

MNPs/clusters physically rotate to minimize their energy in the applied magnetic field. The 

time scale for these alternate processes is given by the Brownian relaxation dynamics of the 

MNPs/clusters. The rotation of the MNPs and MNP clusters during a cycle of the magnetic 
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field causes the modulation of the transmitted light intensity at twice the excitation frequency. 

The transmitted light modulation vs. applied magnetic field frequency reflects the dynamic 

behavior of MNPs in suspension. In our previous work, it was demonstrated that the 2
nd

 

harmonic component of analyzed optical signals is closely related to the Brownian relaxation 

dynamics of MNPs/clusters, which in turn gives information about the size of the particles in 

suspension (Donolato et al. 2015a; Donolato et al. 2015b). More details are given in 

Supplementary Information Section S1. 

To demonstrate the optomagnetic detection principle, we first characterized the readout 

system using bare MNPs with various sizes. Spectra of the complex 2
nd

 harmonic photo 

detector signal  with in-phase component  and out-of-phase component  

were recorded at 26 logarithmically equidistant frequencies from f = 1928 Hz to 0.33 Hz. Fig. 

3b shows frequency spectra (  vs. f) for three different particle sizes with nominal diameters 

of 80, 250 and 500 nm, which have peaks at distinct frequencies (fp) of 170, 10 and 1.9 Hz, 

respectively. These peak frequencies are related to the Brownian relaxation frequency, i.e., the 

frequency with the maximum out-of-phase magnetic response with respect to the external 

magnetic field excitation (Donolato et al. 2015a; Donolato et al. 2015b). Consequently, the 

peak frequency varies depending on the hydrodynamic size of particles as larger particles tend 

to rotate out-of-phase at lower frequency compared to smaller nanoparticles. Interestingly, 

and consistent with our initial work (Donolato et al. 2015a), the peak for 250 nm MNPs has 

opposite sign compared to the other particle sizes, indicating that the dynamics of the particles 

modulate the 405 nm light with an opposite sign compared to the particles with nominal sizes 

of 80 nm and 500 nm. We are currently characterizing and modeling this effect by varying the 

particle size and the light wavelength. We also demonstrated the use of the method to quantify 

relative amounts of respective MNP sizes in a mixture by examining peak ratios using MNPs 

with two different sizes, 80 and 250 nm (Fig. S2).  

222 iVVV  2V 
2V 

2V 
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Fig. 3. (a) A photo of the Blu-ray OPU-based optomagnetic readout system. (b)  spectra 

measured for MNP sizes of 500, 250 and 80 nm showing peaks (vertical dashed lines) at fp  

1.9, 10 and 170 Hz, respectively.  

3.4. Verification of the target binding-induced MNP clustering inhibition via optomagnetic 

readout   

We then utilized the optomagnetic readout system to test the aptamer-based inhibition 

mechanism for ATP detection using 80 nm MNPs. First, we obtained the characteristic 

spectrum from a blank sample of a 1:1 mixture of apt-MNPs and linker-MNPs without ATP 

(Fig. 4a, black squares). The spectrum exhibits three distinct peaks indicating that different-

sized clusters are present in the suspension. Based on the results shown in Fig. 3b, we infer 

that the three peaks at 0.47, 2.67 and 170 Hz represent large clusters, intermediate-sized 

clusters and individual MNPs, respectively. Upon pre-incubation of apt-MNPs with 10 mM 

ATP followed by the addition of linker-MNPs (Fig. 4a, red circles), the peak occurring at 0.47 

Hz nearly disappeared, showing that the formation of large clusters is dramatically suppressed 

by high aptamer occupancy with ATP molecules. However, when only apt-MNPs are present 

in a sample, no appreciable difference is observed between the spectra with or without 

addition of ATP (Fig. 4b). Both spectra show the peak due to single MNPs with a shoulder 

appearing at around 10 Hz. This shoulder is attributed to small clusters generated from non-

specific interactions between MNPs. The results are consistent with the images presented in 

2V 
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Fig. 2 and also verify the cluster-size selectivity of the optomagnetic readout. The specificity 

of ATP detection in our aptasensor was confirmed by conducting aptamer- and analyte-

control experiments (Fig. S4). The results show that the inhibition of MNP clustering is due to 

specific binding of aptamers to ATP. More details are given in Supplementary Information 

Section S2.   

Fig. 4. Verification of inhibition-based ATP detection via optomagnetic readout. (a)  

spectra obtained for a mixture of apt-MNPs and linker-MNPs and for apt-MNPs incubated 

with 10 mM ATP prior to mixing with linker-MNPs. (b) Spectra obtained for apt-MNPs with 

and without addition of 10 mM ATP. 

 

3.5. ATP concentration-dependent signals 

Several experiments were carried out to evaluate the applicability of our optomagnetic 

aptasensor for ATP quantification in the range from 0 to 10000 M. Apt-MNPs were 

incubated with suspensions of varying concentration of ATP followed by addition of linker-

MNPs as described in the experimental section. For a more precise quantification of ATP 

2V 
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concentration based on the signals, the spectra were divided into two regions (low- and high-

frequency regions) containing the peaks representing the clustered (large and small clusters, 

see Fig. 4a) and single MNPs, respectively. We observed the following behavior for the 

frequency and magnitude of the peaks in the two regions vs. ATP concentration, cATP:  

(1) Low-f region in Fig. 5a: The magnitude of the negative peak at 0.47 Hz is observed to 

decrease with increasing cATP between 0 and 500 M, indicating that more ATP results in 

fewer large clusters in this concentration range. However, the effect on the dominating lowest 

frequency peak reaches saturation for cATP ≥ 500 M, implying that the formation of large 

clusters is significantly impeded by high aptamer-occupancies. Instead, we observe that the 

peak at intermediate frequency at 2.67 Hz decreases in magnitude for cATP ≥ 500 M. This 

clearly indicates that even the formation of intermediate-sized clusters is progressively 

hindered although at a lower rate. Further investigation and analysis of the shift of the 

dominating peak frequency is a topic for future work.      

(2) High-f region in Fig. 5a: The magnitude of the negative peak at 127 Hz attributed to 

single MNPs increases with cATP. This indicates that more ATP results in higher aptamer 

occupancies, hence impeding agglutination between apt-MNPs and linker-MPNs. 

Based on the above qualitative observations, we conclude that the degree of MNP 

clustering sensitively depends on the ATP concentration and is reflected in the optomagnetic 

spectra. In order to derive a quantitative relationship between the measured optomagnetic 

spectra and the ATP concentration, we assumed that the intensity integral of the peaks in low- 

and high-f regions is proportional to the amount of clustered and single MNPs, respectively. 

The validity of this assumption has been proven for magnetic susceptibility measurements and 

the results for mixtures of different particle sizes (Fig. S2) support its applicability also to our 

case. We define the relative fraction Rfree of the signal due to free MNPs as  
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𝑅free =  
Free MNP signal

Total MNP signal
=

∑ |𝑉2
′ |high−𝑓

∑ |𝑉2
′ |all 𝑓

            (1) 

where the numerator and denominator are total sums of magnitudes of peaks located in the 

high frequency region (1928 to 30 Hz) and the whole region (1928 to 0.33 Hz), respectively. 

Applying Equation (1) to the spectra in Fig. 5a, we found that Rfree monotonically increased 

with cATP (Fig. 5b), confirming that the MNP clustering was reduced with increasing ATP 

concentrations in agreement with the aptamer-based inhibition mechanism. All experiments 

were carried out in triplicate. For blank samples, we obtained Rfree = 0.037  0.005, where the 

uncertainty indicates one standard deviation (s.d.). The horizontal red line in Fig. 5b shows 

the blank signal + 3 s.d. corresponding to a limit of detection (LOD) of 74 M. A dynamic 

range of at least 2 orders of magnitude was observed in the range between 0.1 and 10 mM, 

where Rfree linearly depends on log(cATP) according to Rfree = 0.072 ln(cATP) - 0.2739. This 

detection range covers the intracellular ATP concentration range (0.1-3 mM). Our detection 

capability is comparable to those of previously reported aptasensors for ATP detection (Chen 

et al. 2008; Song et al. 2012; Wang and Liu 2008; Wang et al. 2008; Zhou et al. 2012). Other 

aptasensors have shown ATP detection in the low nanomolar range (Lu et al. 2015; Wang et 

al. 2015; Xu et al. 2014) to demonstrate their capabilities for highly sensitive detection of 

small molecules. A further lowering of the detection limit may be achieved in our aptasensor 

by reducing the surface coverage of oligonucleotides (aptamer and/or DNA linker). It is also 

noted that the clustering is not fully inhibited even at mM ATP levels. This monotonic 

behavior in quantification is in accordance with the above qualitative observation on low-f 

region in Fig. 5a that the inhibition effect grows with cATP as it continues on clusters with 

smaller size.  
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Fig. 5. (a)  spectra obtained for the indicated ATP concentrations, where apt-MNPs (1 

mg/ml) were incubated with the indicated concentrations of ATP followed by addition of 

linker-MNPs (1 mg/ml). The spectra are divided into two sections, low- and high-f regions. 

The inset graph shows the magnified view of high-f region Red arrows indicate changes of the 

spectra for increasing ATP concentration. (b) Relative signal fraction Rfree from free MNPs as 

a function of ATP concentration. Error bars show one standard deviation (s.d.) obtained from 

triplicate experiments. The red solid line shows the blank signal + 3 s.d. 

 

  The error bars obtained from three replicates of the experiment are found to be large at 

low concentrations because large clusters tend to sediment out of the light path during a 

measurement in the current readout configuration (Fig. S5). This can be mitigated by using a 

vertical measurement configuration such as that presented in (Donolato et al. 2015b). The 

results presented in this proof-of-concept study using a model small molecule, ATP, 

demonstrate the potential of the optomagnetic aptasensor as a biosensing tool that can be 

widely applied to diverse small molecules by simply designing a DNA linker partially 

complementary to a specific known aptamer sequence. In addition, use of the compact Blu-

ray OPU as an optical readout component allows the miniaturization of the setup and 

significantly reduces the total cost, showing its potential use as a point-of-care diagnostic tool 

that measures small molecule biomarker levels.            

2V 
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4. Conclusion 

We have developed an aptamer-based low-cost and simple optomagnetic biosensor for 

small molecule detection, and successfully demonstrated the detection of ATP in the 

biologically relevant range. A simple aptamer-based MNP clustering inhibition mechanism 

was employed for detection of ATP, wherein ATP binding to aptamers modulates the degree 

of MNP clustering. The clustering state was quantitatively measured with respect to the ATP 

concentration using an optomagnetic readout system, which collects the 2
nd

 harmonic optical 

transmission signal vs. frequency of an applied magnetic field. The acquired frequency 

spectra offer information regarding cluster sizes and relative amounts from peak frequencies 

and magnitudes, respectively. The accurate optomagnetic measurements of the size of 

MNPs/clusters enabled us to correlate optical signals to states of MNP clustering, from which 

ATP concentrations can be quantitatively and precisely estimated. We also demonstrated that 

the optomagnetic readout setup can be miniaturized by implementing compact and low-cost 

Blu-ray OPU. In conclusion, this was the first demonstration of a simple optomagnetic 

biosensing system for quantitative detection of small molecules on a low-cost Blu-ray optical 

readout platform. Our ongoing work includes a systematic study of the effect of the 

oligonucleotide coverage on the MNPs, which will allow us to lower the detection limit, as 

well as the application of the aptasensor to other small molecule biomarkers.  
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