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Tool-based Risk Assessment of
Cloud Infrastructures as Socio-Technical Systems

Michael Nidda, Marieta Georgieva Ivanovab, Christian W. Probstb, Axel
Tannera

aIBM Research Zürich
bTechnical University of Denmark

Abstract

Assessing risk in cloud infrastructures is difficult. Typical cloud infrastructures
contain potentially thousands of nodes that are highly interconnected and dy-
namic. Another important component is the set of human actors who get access
to data and computing infrastructure. The cloud infrastructure therefore con-
stitutes a socio-technical system. Attacks on socio-technical systems are still
mostly identified through expert brainstorming. However, formal risk assess-
ment for systems including human actors requires modelling human behaviour,
which is difficult at best. In this chapter we present a modelling exercise for
cloud infrastructures using the socio-technical model developed in the TRES-
PASS project; after showing how to model typical components of a cloud in-
frastructure, we show how attacks are identified on this model and discuss their
connection to risk assessment. The technical part of the model is extracted auto-
matically from the configuration of the cloud infrastructure, which is especially
important for systems so dynamic and complex.

1. Introduction

Assessing risk in cloud infrastructures is difficult. While a singular node is
not so difficult to configure and analyse, a typical cloud infrastructure contains
potentially thousands of nodes that are highly interconnected and dynamic.
Studies by ENISA [1] as well as CSA [2] highlight the risks and threats in such
environments.

In this chapter we present a modelling exercise of a process developed in
the TRESPASS project. The model captures details of cloud infrastructures
at several levels – from the overall structure over network communications to
services running on a single node – and can represent typical artefacts. Using
this model, one can perform security analyses of the modelled infrastructure to
then deliver an assessment of risk.
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A typical cloud environment comprises multiple access domains, including
systems that share a host, wired network connections, and physical proxim-
ity. While simple cloud infrastructures may be limited to one such host and a
few virtual systems, a complex infrastructure often incorporates myriad virtual
systems running on many different, often widely spread physical servers with
a complex mix of real and virtual networking, routing, and control points be-
tween them. This dynamic and flexible structure is one of the major success
criteria for cloud infrastructures. At the same time the flexible interconnections
between virtual and real machines make risk assessment in cloud infrastructures
so difficult.

If risk assessment in complex technical infrastructures already is difficult, it is
even more complicated when adding human factors and physical infrastructure
into the setup, which therefore often are ignored [3]. The goal of the TRES-
PASS project is to develop models and processes that support risk assessment
in complex organisations including human factors and physical infrastructure.
The goal of this support is to simplify the identification of possible attacks and
to provide qualified assessment and ranking of attacks based on factors such as
the expected impact.

For cloud infrastructures, the TRESPASS model distinguishes components
at a level of abstraction that corresponds well to security-relevant control points
in these domains, enabling the discovery and analysis of potential attacks that
exploit their connectivity. Using the model, one can formalise typical compo-
nents in cloud infrastructures and their interrelationships. These include net-
work components like switches, routers, firewalls; virtual and physical servers;
actors, including administrators, users, and attackers; location details that rep-
resent rooms, doors, and other physical consideration. Because these component
models show how actions on one element influence other elements, they can be
combined with the connectivity relations to form an implicit search-space of all
possible activity paths in the system. Based on the formal model, the TRES-
PASS analyses then identify interesting action sequences by walking through
this search-space and intelligently pruning paths as they are constructed.

The attacks identified on a modelled infrastructure then form the basis for
risk assessment, including the overall likelihood of certain actions to occur, the
skills, resource, and abilities of attackers, and the structure of the underlying
infrastructure.

The rest of this chapter is structured as follows. We start by setting the
scene in Section 2 with a more detailed description of the structure of a typical
cloud environment as outlined above. After introducing the TRESPASS project
and the TRESPASS model in Section 3, we demonstrate the development of a
formalisation of the cloud infrastructure in Section 4, including human factors
and physical infrastructure. Using this model, we then outline how to identify
attacks in Section 5 and discuss its application to risk assessment in Section 6.
Finally, Section 7 concludes the chapter with an outlook on future work.
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2. Structure of a Typical Cloud Infrastructure Scenario

Cloud infrastructures are potentially complex and span many different layers
of an organisation. The first layer is obviously the technical infrastructure and
relevant data, applications, and services; these constitute the actual computing
infrastructure. Closely related to the actual machines connected through the
technical infrastructure is the physical environment, which represents the second
layer; on this layer we consider buildings, rooms, and ways of controlling access
to them. Finally, to obtain a complete view of the infrastructure, and especially
for performing a complete risk analysis, it is important to also capture and
model both social/human and organisational/procedural aspects of running a
cloud environment. This results in a third layer, which models risk stemming
from elements such as human factors, social engineering, and insider attacks, to
name a few.

2.1. Levels of Abstraction

In the technical infrastructure layer, a cloud environment consists of the
physical compute hardware, which includes servers, storage, and internal and
external network connections. This infrastructure enables the virtualisation in-
frastructure, consisting of concepts such as hypervisors, virtual machines, net-
work and storage components together with their configurations and manage-
ment applications, and the software layers of operating systems, middleware,
applications, and services.

The second layer, the physical environment layer, consists of the building
infrastructure that contains the hardware portion of the first layer, including
server rooms and the buildings they are contained in.

On the third layer we then consider the social and human side, where we
have to capture the different roles of the actors involved in providing the services
of the cloud environment, such as system administrators and support staff with
their respective access to the computing system (first layer) or the physical envi-
ronment (second layer). This layer should ideally include profiles of (potential)
behaviour.

Also on the third layer we consider organisational/procedural aspects of the
modelled infrastructure. This is an important component of the model because
aspects such as typical workflows in the organisation often can be exploited in
attacks will influence the usefulness of many attack components.

2.2. Attacker Goals

The goals of adversaries are difficult to identify beforehand, and the more
complex an environment, the more difficult this goal identification becomes. In
an environment as complex and dynamic as a cloud environment, adversaries
can have many different goals, such as to steal sensitive data, corrupt business
operations, or achieve financial gains. Each of these goals coincides with one or
numerous possible paths of attacks within or across the different layers identified
above.
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In the following we list some examples for elements of attack paths on the
layers:

• On the technical infrastructure layer:

– Physical attacks (e.g., to steal harddisk, get logical access through
placing a device, dump of memory);

– Access data on compute nodes (e.g., hypervisor, VM dumps), storage
(e.g., VM data at rest), network (e.g., migration attacks);

– Use of software bugs (e.g., hypervisor software exploitation and break-
out);

– Side-channel attacks due to colocation and data-processing in virtual
machines;

– Backdoors in software or virtual machine images; or

– Changing configuration (e.g., access control settings).

• On the physical environment layer:

– Get access to a server room;

– Place wiretap on internal network connections; or

– Get access to backup or boot media.

• On the social/human and organisational/procedural layer:

– With social engineering, bribing or through targeted attack (e.g., of
system administrators);

– Convince other users to use a backdoored image (VM image security);

– Change of procedures; or

– Changes of compliance legislation on a political or organisatorial
level.

Most often, attacks will involve a combination of these different possibilities.
For example, normal operating procedures may be exploited, possibly through
social engineering, to get access to stepping stones in terms of physical or tech-
nical infrastructure, to finally use technical means to gain illegitimate access. It
should also be noted that the goal of attack steps on the second and third layer
is usually to facilitate an access on the first layer.

2.3. A Cloud Scenario

As a scenario for demonstration, we focus for simplicity on the goal of gaining
access to a confidential document fileX in a highly simplified private cloud
environment, as shown in Figure 1.

On the physical layer, this scenario is comprised of two rooms, RoomInternal
and RoomDatacenter, and a Hallway, where controlled access is possible from
the outside to the Hallway and from the hallway to RoomInternal and from
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there to RoomDatacenter. Both rooms have a window each, WindowInternal
and WindowDatacenter, which are usually closed and locked.

On the technical infrastructure layer, the actual cloud infrastructure is ex-
emplified by a physical server Server1, on which three virtual machines VM1,
VM2, VM3, a virtual switch SW1 and a virtual firewall VFW are running on
top of a Hypervisor. These virtual components are connected to physical net-
work components, namely another switch SW2 and a Gateway. Through this
connection it is possible to reach the physical and virtual infrastructure from
the Laptop.

The confidential document fileX is located in the storage of VM1. Its right-
ful owner is Ethan, working in the organised crime department. Other actors
include Finn, a member of the finance department, using VM2 for their work,
Terry, a technician of the IT support group, and Sydney, a system administra-
tor in IT support. Terry has physical access to the datacenter, whereas Sydney
has full logical access to all elements of the cloud infrastructure.

Additional details like power supply, cooling, and so on have been omitted
in order to keep the scenario simple, but could be modelled as resources in a
real environment, as they may facilitate alternative attack scenarios.

3. The TRESPASS Project

Current risk management methods provide descriptive tools for assessing
threats by systematic brainstorming. Identifying and consequently preventing
attack opportunities in this approach is heavily based on the defenders being

Figure 1: Highly simplified scenario of a private cloud environment with various actors.
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able to conceive those opportunities. In a not too volatile world, this reactive
approach has proven to work.

However, in today’s dynamic attack landscape, this process is often too slow
and exceeds the limits of human imaginative capabilities. Emerging security
risks demand tool support to predict, prioritise, and prevent complex attacks
systematically.

The TRESPASS project [4] aims at supporting the identification of attack
opportunities by building an “attack navigator”. Like a navigator in the real
world, an attack navigator works on a map (of an organisation) and computes a
route (an attack) for reaching a goal (an asset), taking the mode of transporta-
tion (the attacker) and the road network (the infrastructure) into account.

Such a navigator would indicate which attack opportunities are possible,
which of them are the most threatening, and which countermeasures are most
appropriate. To this end, the project combines knowledge from technical sci-
ences, for example, how vulnerable are protocols and software, social sciences,
for example, how likely are people to succumb to social engineering, and state-
of-the-art industry processes and tools.

One of the goals in TRESPASS is to develop models that capture the es-
sentials of an organisation and its structure, namely the map for the attack
navigator. This map represents an organisation on three core levels: the phys-
ical, digital, and social domains. The model thus contains entities, attributes,
and relations that are relevant for analysing the organisation’s security. For
validating the results from the TRESPASS project, one of the case studies used
is based on a cloud environment similar to the one described in this chapter.

The layers described in Section 2 map to the domains just mentioned. The
physical and digital domain represent the technical infrastructure (first layer)
and the physical environment (second layer), and the social domain represents
the third layer.

The socio-technical security models are at the heart of the technical part of
TRESPASS, and constitute the interface between the organisation being mod-
elled and the processes and tools developed in other parts of the project, such
as the analysis tools, and the visualisation tools. For the integration into risk
assessment frameworks, the models developed in TRESPASS are the entry point
into the TRESPASS process.

Models of organisational infrastructures have been used before, for example,
for identifying insider threats and attacks on organisations [5, 6, 7]. An impor-
tant aspect of these models is modularity, not only to support modular model
development and maintenance, but also to support compositional analysis of
the models being developed. The modularity of the TRESPASS socio-technical
security models allows features to be added on demand; features such as de-
tective components, for example, are optional and only added when needed for
modelling the organisation.
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4. Modelling the Scenario for Analysis

In this section we give an introduction to how to model organisational in-
frastructures in the TRESPASS model. For space reasons we only cover the
example introduced in Section 2 and discuss some of its peculiarities; more
general discussions can be found in related work [6, 5].

Modelling the scenario from Section 2 and Figure 1 turns all infrastructure
locations, independent of their kind, into nodes in a graph. For the physical
infrastructure, this results in the graph shown in Figure 2.

As is usual in modelling, the TRESPASS model offers multiple dimensions
along which granularity can be adjusted. For example, dealing with virtual
connectivity vs. physical connectivity quickly leads to difficult questions with
respect to the modelling of intermediate nodes and steps in establishing a con-
nection. If connectivity were to be modelled as end-to-end, then every computer
would be a room with a door for every other computer in the system. Apart
from the obvious connectivity problem, it would be prohibitively difficult to
discover vulnerabilities that involve a compromised intermediate node.

Also, different classes of vulnerabilities require different levels of detail in
modelling; if redundant paths between two components are available then all
nodes on either path are potential sources of data leaks, but denial-of-service
attacks will need to involve some combination.

Server1

Door 
Internal

Door 
Datacenter

Room 
Datacenter

Room 
InternalHallway

GatewayLaptop

Outside

Door 
Hallway

SW2

SW1

VFW

VM1 VM2 VM3

Figure 2: The model for the physical infrastructure of the scenario shown in Figure 1. The
different kind of boxes and edges show different kinds of elements and connections; ellipses
represent elements in the building infrastructure and boxes represent elements in the (real or
virtual) computing infrastructure. The solid and dashed edges represent connectivity between
these kinds of nodes, and the dotted edges represent access from the one part to the other.
The double lines represent that the windows may permit observation of what is happening on
either end of the edge.
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The TRESPASS model unifies the representation of building infrastructure
and compute infrastructure. Nodes in the model of a building represent rooms
or control points such as card readers; nodes in the model of a computer net-
work represent computers, firewalls, switches; edges in both models represent
connectivity; actors in the model of a building represent employees; actors in the
model of a network represent programs; nodes can be annotated with policies
that limit accessibility based on credentials that an actor provides.

When modelling cloud infrastructures these considerations lead to models
that represent Layer 2 connections as “doors”; in this view, connections between
computers are abstracted as connections between nodes with communicating
processes, with access on each door controlled with checks on the identity and/or
actions of the actor. There is an important difference between a person in a
building and the way we model network connections: the person is free to make
decisions in the rooms, while the connection is not. In the model this means
that the person is “just” a node, while the connections are a predetermined
process that realises the functionality in question.

The model of a physical environment might permit an actor to pass a door if
the actor is in possession of the necessary credentials, but it would not restrict
the actions of that actor once access has been granted.

A firewall, on the other hand, may allow incoming connections from any user
over port 80 on a web server, and also from authorised users to port 21 on an
FTP server. However, after gaining entrance, a web connection cannot change
into an FTP connection to a different server; the actions permitted for an actor
depend on how that actor gained access to the room.

Modelling network connectivity requires further modelling artefacts; the
routing and automatic forwarding of packets as encountered in network commu-
nication can be represented by processes in the TRESPASS model [8]. In the
most simplistic case in a physical model, processes trigger direct actions; for ex-
ample, an actor who knows a password and has physical access to the computer
can access a file that is known on the computer. In general, and especially when
modelling network connectivity, we use a more complex configuration in which
actions trigger other processes.

Consider the case of two systems, A and B, connected through a firewall
router R. If A sends a message to B then the message passes through R without
A being aware of that. When A’s message to B is received by R, the processes
implemented in R may decide to send a message to B that contains the request
from A. By implementing this in processes, the contents of the message sent
to B depends completely on the actual message for which R allowed A to have
access.

Compare this approach to modelling the firewall by granting A access to R,
and then allowing a new process to start from location R. Such a model would
find false positives (i.e., attacks that are consistent with the model, but not ac-
tually possible) in which a stream arrives at the router as “https” but continues
as “ssh.” Attacks where traffic is admitted with one destination address but
then continues with a different destination would also be possible within the
constraints of such a model, although these would not normally be practical on
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an actual router.
While the automated processes avoid false positives in which a network de-

vice becomes a staging point for a two-phase attack, they do still permit the
detection of attacks in which a device is controlled by the remote attacker. In
the cloud model, R might allow any “ssh” traffic destined for B. If the user
U at A knows an ssh password for B, then the processes would respond with
success, adding an attribute to A that from this location user U can control
B via “ssh.” If another server, C, allowed anonymous HTTP connections from
internal servers only (i.e., any user with control access to B can retrieve some
file from C ) then an attack would exist in which a user with physical access
to A could get the credentials and could access the content on C although A
would not have been able to connect with C directly.

In the TRESPASS model, state information can be retained for actors and
locations. In the example above, access permission for U from location A to
location C is stored at A. Alternatively (or additionally) it could have been
stored at U that access is available to C from A. By convention, we store
location-bound information in the location, even if it is also bound to an actor.

On a technical level, the TRESPASS model stores state information and
access policies in tuple spaces [5], which are part of the underlying process
calculus Klaim [9], as are the process components mentioned above.

4.1. High-Level Model

When modelling the cloud scenario as shown in Figure 1, we need to repre-
sent the different entities from the layers introduced above.

4.1.1. Infrastructure

As discussed above, infrastructure is essential to both the model and identi-
fying attack vectors; it represents both physical locations and network locations;
the actual hardware enabling data connections can reasonably be modelled in
the same way as a host, that is, as a location, but with fewer actor-initiated
processes. The virtual equivalents to physical routers, switches, firewalls, and
so on are also modeled as locations that are co-located with a host.

A server (virtual or otherwise) is therefore modelled as a location object. In
the case of a virtual machine, it is co-located with a host that is also a location.
In the example in Figure 2, Server1 is an example for a host that serves three
virtual machines.

In practice, many infrastructure devices are extremely sophisticated and
flexible, and could easily be used as an entry-point to an attack if an actor were
to have access to their console and knowledge of the administrative password.
By modelling them as described here, the user of the model is free to incorporate
this behaviour.

4.1.2. Actors

Actors represent attackers, defenders, victims, collaborators and any other
human factor relevant to the scenario modelled. The concept of actor in the
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TRESPASS model is however quite general, in that it also represents processes
such as an ssh service as an actor; this is natural since processes perform actions
in the model and can roam the model.

4.2. Middle-Level Model

In the high-level model many internal details are hidden from the modeller.
For example, the handling of network packets is implicit; a process at a location
only sends a packet with a destination address, and as in real life does need to
consider the connection with that destination. The middle-level model realises
the sending and actual routing of packets.

The benefit of hiding this from the high-level model is two-fold. On the one
hand, the actor does not have the possibility to access and change packets, so
on this level a man-in-the-middle attack that changes packet contents cannot
be crafted. On the other hand, this attack is of course still possible and can be
identified in this middle-level model.

It is important to notice that many of the functionalities modelled in the
middle-level model can be extracted from the actual network and cloud infras-
tructure, or from access-control configurations in the infrastructure.

4.2.1. Routing

The routing processes model and reproduce IP forwarding by automatically
generating the outgoing action when the incoming action is accepted. These
processes are instantiated based on network masks, and cannot be changed by
actors in the network.

For modelling network connection in a general model, IP is an appropriate
choice not only because it is a good solution for carrying out hierarchical routing,
but also because it is the protocol actually in use in cloud infrastructures and
networking in general.

4.2.2. Network Traffic Set-Up

By implementing network access as a chain of processes, and by using pes-
simistic routing of the traffic (c.f. Section 4.4.3), any side effects of network
access will be detectible as a side effect of incorporating it in an attack path.

If in the example shown in Figure 1 a goal of the system is that the user
at Laptop should have access to VM1, then the attack generator, trying to
invalidate this goal, will be able to identify processes that disable intermediate
nodes (such as the firewall VFW ) as an attack. Similarly, if another goal is that
this access must be private, then other systems to which the network traffic of
that access may be visible will be able to use it to trigger interception processes
that would qualify as an attack.

4.2.3. Flow-Based Access Control

Routing connections through intermediate nodes allows flow-based access
control, such as may be provided by firewalls, to be implemented with rules
that correspond to the actual configuration of the corresponding physical de-
vices. The data in and out of a model component that represents a firewall
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can be altered, redirected, or dropped without explicitly incorporating these
possibilities in how the endpoints are modelled.

As mentioned above, the initial configuration of flow-based access control
will usually be extracted from the actual devices in the network or cloud infras-
tructure.

4.3. Low-Level Model

Finally, at the lowest layer we need to model the actual services running
on nodes in the network. This can for example be used to link services to
vulnerability databases.

As outlined at the beginning of this section, and detailed below in Section 4.4,
network traffic is modelled by triggering processes on the various nodes along
a route. The service at the destination is again represented as a process that
triggers some computation and the return message.

For example, an SSH connection request from the Laptop to VM1 in Fig-
ure 1 will trigger a series of repetitions along the chain of intermediate nodes
between the source and the destination. If permitted by the intermediate nodes,
eventually this will trigger a process at the destination node VM1 that triggers
a connection acceptance message. That result is then returned to Laptop by
a series of triggered processes back to the initiator. The process that will be
waiting to be triggered at the initiator upon receipt of the acceptance message
will register the connection.

4.4. Modelling Typical Network Components

Using the different modelling levels just introduced, we will now show how
typical components found in networks can be represented.

4.4.1. Routers and Routing

Data routing follows the same general method as IP routing, matching des-
tination networks and replicating traffic to the next hop. Where more than one
path would be possible, traffic will be sent over all available (acyclic) paths.
Although the routing uses IP addresses, it is implemented on a layer 2 net-
work topology. This will ignore potential data leaks via ARP broadcasts, but
is generally a sound model for how the packet will travel.

For example, assume VM1 and VM2 in Figure 1 to have IP addresses
192.167.1.1 and 192.167.1.2, respectively. Both nodes are part of network
192.167.1.0/24, and are connected by switch SW1 with a default gateway on
VFW. The resulting basic model is part of Figure 2 and the textual represen-
tation of the involved processes and policies is shown in Listing 1.

Each node is annotated with its kind and its domain, and has a policy and
processes. The policies specify which other nodes are allowed to communicate
with this node, and which form of messages are allowed to be sent; policies
basically realise the network infrastructure and the kind of protocol supported.
For example, SW1 accepts packages from VM1, VM2, or VFW in the form of
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1 locations
2 VM1 kind = host domain = network
3 policies = { [SW1] : {out("IP",,,,,,) } };
4 processes = {
5 in("IP", !dstAddr , !dstPort , !srcAddr , !srcPort , !req , !usr)
6 .out("IP", dstAddr , dstPort , srcAddr , srcPort , req , usr)@SW1
7 };
8 VM2 kind = host domain = network
9 policies = { [SW1] : {out("IP",,,,,,) } };

10 processes = {
11 in("IP", !dstAddr , !dstPort , !srcAddr , !srcPort , !req , !usr)
12 .out("IP", dstAddr , dstPort , srcAddr , srcPort , req , usr)@SW1
13 };
14 SW1 kind = host domain = network
15 policies = { [VM1 | VM2 | VFW] : {out("IP",,,,,,) } };
16 processes = {
17 in("IP", !srcAddr , !srcPort , 192.167.1.1 , !dstPort , !req , !usr)
18 .out("IP", srcAddr , srcPort , 192.167.1.1 , dstPort , req , usr)@VM1
19 in("IP", !srcAddr , !srcPort , 192.167.1.2 , !dstPort , !req , !usr)
20 .out("IP", srcAddr , srcPort , 192.167.1.2 , dstPort , req , usr)@VM2
21 in("IP", !srcAddr , !srcPort , !dstAddr ~0.0.0.0/0 , !dstPort , !req , !usr)
22 .out("IP", srcAddr , srcPort , dstAddr , dstPort , req , usr)@VFW
23 };
24 edges
25 VM1 -> SW1;
26 VM2 -> SW1;
27 SW1 -> VM1 , VM2 , VFW;
28 VFW -> SW1;

Listing 1: Example model for a part of the scenario from Figure 1 with the two virtual
machines VM1 and VM2, the switch SW1 and the firewall VFW. The policies at the nodes
specify, which nodes are allowed to send data, and which format the data is required to have.
The processes describe how the data is handled.

IP packages. Policies thus specify the trigger points introduced above, through
which communication can happen.

The processes specify how the node reacts to triggers, basically by describing
how to react to different kinds of messages received. This is similar to pattern
matching. For example, the node SW1 defines three processes that are all
triggered by receiving an IP message. For the sake of simplicity we assume that
all packets have the form of 7 tuples consisting of the tag “IP”, the source address
and source port, the destination address and destination port, the request, and
a user name. Depending on the scenario in question this can be adjusted. Each
routing process consists of inputing a tuple based on a pattern, and routing
the tuple to the correct next hop. Processes use the exclamation mark for
binding variables to values and the ∼ operator for matching addresses. Processes
are ordered by mask size, so the first match is the route taken. Empty tuple
elements are wildcards, so ("TAG", 192.167.1.1, "Content1", "Content2")

would match ("TAG", !addr∼192.167.0.0/16,,) while binding the variable
addr to the address 192.167.1.1.

For the specification in Listing 1 the switch SW1 sends packets for VM1
and VM2 directly to them, and packets for any other address to VFW.
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4.4.2. Defining a Service

Once we can route packets to the correct location, we need to be able to
consume (or refuse) the operation. As mentioned before, the constant "IP" in
the first parameter of the routing processes is used to differentiate the events
in transit from services. When a packet reaches its end destination and if that
particular location has a service listening on the destination port, then the
packet is consumed. Whether the service is available to a specific user can then
be determined with a policy for that service. In this way, the access control for
the network is separated from the access control for services.

For example, if VM1 is running an FTP daemon on port 20, then we can
define a receiver as shown in Listing 2. These processes describe terminating
the request to port 20 by passing it to an FTP process, retrieving the file, and
giving it to the requesting user. Access to that service can then be controlled
with the policy for in("FTP", , , , ).

The user is changed to the constant value "REPLY" for the return traffic.
This allows firewall rules to emulate normal firewall behaviour, allowing return
traffic for existing connections.

In this case, if anonymous FTP is available on VM1 for the asset fileX, the
policy on VM1 would look like this

{ [ VM1 ] : { out("FTP", , , , , "fileX", ) } }

If the asset fileX was protected by a password secret, then this could be
modelled as:

{ [ VM1, has(USER, "secret") ] : { out("FTP", , , , ,"fileY", USER) } }

where USER is a free variable that is bound when evaluating policies and secret

is the password of the file being protected.

Generic Service Access. Adding a generic IP process to each host allows IP
traffic that reaches the host to be identified even if it does not reach any specific
service. For example, host 192.167.1.1 might have policies as shown in Listing 3.

This additional process does not need any additional policies, as it matches
the normal IP tuples. It returns a constant value "CONNECT", which can be used
to model basic connectivity.

Administrator Access. Differentiation of access rights based on knowledge of
passwords can be modelled through policies, granting the actor the ability to
directly access data stored on the machine. Note that this does not interfere

1 in("IP", !srcAddr , !srcPort , 192.167.1.1 , 20, !request , !user)
2 .out("FTP", srcAddr , srcPort , 192.167.1.1 , 20, request , user)
3 in("FTP", !srcAddr , !srcPort , 192.167.1.1 , 20, !filename , !user)
4 .read(" FileSystem", filename , !content)
5 .out("IP", 192.167.1.1 , 20, srcAddr , srcPort , content , "REPLY ")

Listing 2: Modelling of FTP daemon on port 20.
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1 //
2 // ftp service process definition here
3 //
4 in("IP", 192.167.1.1 , !dstPort , !srcAddr , !srcPort , !request , !user)
5 .out("IP", srcAddr , srcPort , 192.167.1.1 , dstPort , "CONNECT", "REPLY"),

Listing 3: Generic service process for a host 192.167.1.1.

1 processes = {
2 in("IP", !srcAddr , !srcPort , !dstAddr ~192.167.1.0/24 , !dstPort , !req , !usr)
3 . out("IP", srcAddr , srcPort , dstAddr , dstPort , req , usr)@VM1
4 | out("IP", srcAddr , srcPort , dstAddr , dstPort , req , usr)@VM2
5 | out("IP", srcAddr , srcPort , dstAddr , dstPort , req , usr)@VFW ,
6 in("IP", !srcAddr , !srcPort , !dstAddr ~0.0.0.0/0 , !dstPort , !req , !usr)
7 . out("IP", srcAddr , srcPort , dstAddr , dstPort , req , usr)@VFW
8 };

Listing 4: Modelling of a hub. Compare this with the switch processes introduced in Listing 1.

with the defined services, but covers direct physical access or from a login shell;
therefore the policy for this access does not use the "IP" tuples. A policy line
with the following form is added to all servers:

policies = { [has(ACTOR, "admin_password")] : {read}}

where ACTOR is a free variable that is bound when evaluating the policy and
admin password represents the actual administrator’s password. This allows
requests for any non-destructive read from the server location itself that are
initiated by an actor who knows admin password.

4.4.3. Switch versus Hub

Technically, a switch does normally behave as described in Section 4.4.1.
Once it sees IP traffic to a particular address being accepted by a directly-
connected device, further traffic to that address is sent to that device only. In
practice, however, it is possible for devices to alter their own IP address to
conflict with another device on the same subnet, and generally to interfere with
the normal flow of data.

Although hubs, which repeat all incoming traffic to all other interfaces, are
not used much in the 21st century, modelling their behaviour allows for a more
conservative security assessment. This is achieved by changing processess im-
plementing the switch shown above to the ones shown in Listing 4.

Another approximation of reality is that switches (and hubs) are not specif-
ically aware of their subnet mask so, by the argument above, they should echo
all packets to all neighbours. In our actual modelling, they echo to all neigh-
bours for local traffic only. This is meant to reflect the relative difficulty of
intercepting traffic from a server to a router, or between two routers.

If we classify an attack that is able to intercept traffic to a router as a
compromise of the router, then attacks on this traffic are staged attacks that
first require the router to be compromised, and then intercept the traffic to that
router.
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4.4.4. Firewalls

Firewalls play an integral role in network security. Normal best-practices
deployment of firewalls separates not only inside from outside, but also separates
sections of an internal network. This deployment philosophy is very similar
to the use of their original namesake in building design, limiting the scope of
damage likely to result from a single incident.

In modern network appliances, a firewall is just one aspect of a “Unified
Threat Management” appliance that offers various services, including NAT,
load balancing, and routing. The functionality of the actual firewall goes be-
yond simple allow/deny rules based on protocol, address, and port; deep-packet
inspection, protocol validation, external black-lists, and HTTP header filtering
are all useful and common firewall services. While these other services have
implications on network security, the present analysis focuses on the traditional
allow/deny for a given protocol on a given source and destination address and
port. Adding more extensive checking can be modelled by processes in a way
similar to routing described above.

As mentioned above, routing is implemented on a worst-case assumption
that any acyclic path might be used. This can be determined from the network
topology without internal configuration details of the routers. The firewall be-
haviour cannot be guessed in this way, since it’s behaviour even in the simplest
case goes beyond routes. The analysis therefore requires a read-only interface
to the extract the configuration from whatever firewall model is in use. In the
current tools, we are supporting Cisco ASA firewalls, both physical and virtual.

After parsing, the firewall model is an extension of a basic router. For
example, Listing 5 shows a layer-3 switch. In this example, all traffic received
for either of the attached networks will be repeated to the destination network.
If this appliance were acting as a firewall that allows no incoming connections
to 10.0.1.0/24, this could be built as in Listing 6. Notice that returning traffic,
which will have the user set to the constant “REPLY” is still routed, but new
connections will be ignored.

One approach to modelling firewall behaviour would be to build what amounts

1 fwExample kind = host domain = network
2 policies = {
3 { [ Sys1 , Sys2 , Sys3 , Sys4 ] : { out("IP",,,,,,) } },
4 { [ has(ACTOR , AdminAccess_fwExample) ] : { read(,,) } }
5 }
6 processes = {
7 in("IP", !dstAddr ~10.0.0.0/24 , !dstPort , !srcAddr , !srcPort , ←↩

!request , !user)
8 . out("IP", dstAddr , dstPort , srcAddr , srcPort , request , user)@Sys1
9 | out("IP", dstAddr , dstPort , srcAddr , srcPort , request , user)@Sys2 ,

10 in("IP", !dstAddr ~10.0.1.0/24 , !dstPort , !srcAddr , !srcPort , ←↩
!request , !user)

11 . out("IP", dstAddr , dstPort , srcAddr , srcPort , request , user)@Sys3
12 | out("IP", dstAddr , dstPort , srcAddr , srcPort , request , user)@Sys4
13 };

Listing 5: Layer-3 switch on 10.0.0.0/24 (Sys1 and Sys2) and 10.0.1.0/24 (Sys3 and Sys4)

15



1 fwExample kind = host domain = network
2 policies = {
3 { [ Sys1 , Sys2 , Sys3 , Sys4 ] : { out("IP",,,,,,) } },
4 { [ has(ACTOR , AdminAccess_fwExample) ] : { read(,,) } }
5 }
6 processes = {
7 in("IP", !dstAddr ~10.0.0.0/24 , !dstPort , !srcAddr , !srcPort , ←↩

!request , !user)
8 . out("IP", dstAddr , dstPort , srcAddr , srcPort , request , user)@Sys1
9 | out("IP", dstAddr , dstPort , srcAddr , srcPort , request , user)@Sys2 ,

10 in("IP", !dstAddr ~10.0.1.0/24 , !dstPort , !srcAddr , !srcPort , ←↩
!request , "REPLY")

11 . out("IP", dstAddr , dstPort , srcAddr , srcPort , request , "REPLY")@Sys3
12 | out("IP", dstAddr , dstPort , srcAddr , srcPort , request , "REPLY")@Sys4
13 };

Listing 6: The switch from Figure 5 blocking incoming connections to 10.0.1.0/24. Differences
to Listing 5 have been highlighted by underlining.

1 fwExample kind = host domain = network
2 policies = {
3 { [ Sys1 , Sys2 , Sys3 , Sys4 ] : { out("IP",,,,,,) } },
4 { [ has(ACTOR , AdminAccess_fwExample) ] : { read(,,) } }
5 }
6 processes = {
7 in("IP", !dstAddr, !dstPort, !srcAddr, !srcPort, !request, "REPLY")
8 .out("APPROVED", dstAddr, dstPort, srcAddr, srcPort, request, "REPLY"),
9 in("IP", !dstAddr, !dstPort, !srcAddr 10.0.0.0/24, !srcPort, !request, !user)

10 .out("APPROVED", dstAddr, dstPort, srcAddr, srcPort, request, user),
11 in("APPROVED", !dstAddr ~10.0.0.0/24 , !dstPort , !srcAddr , !srcPort , ←↩

!request , !user)
12 . out("IP", dstAddr , dstPort , srcAddr , srcPort , request , user)@Sys1
13 | out("IP", dstAddr , dstPort , srcAddr , srcPort , request , user)@Sys2 ,
14 in("APPROVED", !dstAddr ~10.0.1.0/24 , !dstPort , !srcAddr , !srcPort , ←↩

!request , !user)
15 . out("IP", dstAddr , dstPort , srcAddr , srcPort , request , user)@Sys3
16 | out("IP", dstAddr , dstPort , srcAddr , srcPort , request , user)@Sys4
17 };

Listing 7: Two-phase flow approval and routing to forward all reply traffic, and any traffic
originating from 10.0.1.0/24. Differences to Listing 5 have been highlighted by underlining.

to a custom routing table for every permitted flow. In a normal firewall with
one interface on each connected network, this would build a correct model, but
tying the routing to the flow rules will make it difficult for a human to read,
especially if some subnets are connected to more than one interface.

In order to separate routing from flow rules, we have introduced a layer of
indirection in the firewall processes relating to IP traffic, as shown in Listing 7.

4.4.5. VPNs

Not every switch is a router, and not all traffic arriving at a layer-3 switch is
routed. If half of the ports on a particular layer-3 switch are assigned to VLAN
10, and the other half to VLAN 20, then that switch represents two broadcast
domains. If it also defines an interface in each of these domains, then it may
route traffic between them, but it does not need to.

VLANs are assigned to ports, which correspond in this model to the identity
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of the device being communicated with. This is difficult to model because the
identity of the partner is referenced in the policies section, but not where routing
is implemented in the processes section. At least two solutions are available:
anti-spoofing and greater partitioning.

Anti-spoofing can be implemented by including a source address mask in the
policy for each partner system in a particular VLAN. Messages can be accepted
if and only if their source address is from an address known to be local to (or
reachable from) that VLAN. If this is in place, then the source addresses can
be used to filter traffic in the policy, preventing communication to leak between
VLANs.

The problem with the anti-spoofing solution is that it may not be how the
actual device is implemented. If the device itself doesn’t have an anti-spoofing
service, then including it in the model of that device may be trading potential
false positives for potential false negatives. For example, the example in Listing 7
would allow a device in 10.0.0.0/24 to spoof a source address in 10.0.1.0/24 to
successfully send a packet to 10.0.1.0/24. It would not receive the reply, but
some attacks don’t need to receive a reply.

An alternative to including anti-spoofing in the policies would be to imple-
ment each VLAN on a switch as a separate device. Logically, this is close to
an accurate representation of the topology, but it may make it difficult to place
firewall rules, and will certainly make it difficult to model trunking.

The best solution for modeling any particular topology will depend on how
the switch is being used in that installation.

4.5. Modelling Actors

Like locations, actors have knowledge stored in tuple spaces and defined
processes that may be triggered when operations are performed on those tu-
plespaces. Actions will most often be associated with the transfer of knowledge
or physical objects, but the tuplespace itself will also hold information about
the actor.

4.5.1. Actor processes

One of the most basic actions for an actor would be to transfer knowledge to
another actor. This action needs an initiator, and there is no strong argument
for which party (the giver or the receiver) that should be, so let’s arbitrarily
decide that the action is initiated by the receiver making a request. In Listing 8,
Sydney is capable of telling his password to others.

The “initialize” block in Listing 8 initializes the contents of the tuplespaces
of Sydney and Terry (discussed more below in Section 4.5.2). The assets block
also implicitly populates the initial tuplespace of Sydney with a tuple of the
form ("knows", SydneyPassword, "SydneyPasswordValue").

4.5.2. Non-Process Attributes

In the example of Listing 8, the tuplespaces of actors Sydney and Terry hold
the information that these two actors are mutual friends. This information does
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1 actors
2 Sydney
3 policies = {
4 { [ ANY ] : { out(" Request",) } },
5 };
6 processes = {
7 in(" Request", !object)
8 . read(" knows", object , !value).
9 . out("knows", object , value)@ACTOR

10 };
11 initialize = {
12 (" friends", Terry)
13 };
14 Terry
15 initialize = {
16 (" friends", Sydney)
17 };
18 assets
19 SydneyPassword kind = know at = Sydney;

Listing 8: If Sydney knows a password, he is able to tell it to other actors.

not directly affect any processes, but can be used during the attack generation to
annotate attack scenarios. In this case, it may be that the action of transferring
a knowledge asset from one actor to another is more likely if those two actors
are friends.

4.6. Process Library

The possibility of transferring a knowledge asset from one actor to another
(people telling other people things that they know) is generally present. It
may be more difficult for some assets (knowledge of a floor plan is harder to
communicate than knowledge of a password), and more likely for some actors
(depending on security training level, relationship status, etc.), but the basic
operation is generally possible. Technically, repeating the definition for every
actor is a possible solution, but it would clutter the model and greatly reduce
the model’s readability and auditability.

To circumvent this, a process library of standard processes and policies is
therefore used to capture common standard behaviour. This standard behaviour
is applied wherever relevant.

5. Identifying Attacks

The goal of formalising the model of an organisation and its IT infrastruc-
ture as shown above is to guide attack generation and, based on those attacks
and their impact, risk assessment (c.f. Section 6). From the viewpoint of this
chapter, attack identification is a black box; we briefly discuss its working for
completeness (for alternative approaches, see, e.g. [10] or [11]).

Based on the model of the organisation, we use “policy invalidation” [12]
to identify paths by which a system-wide policy can be broken in the modelled
organisation. An important property of the attacks we want to find is that they
span the social, physical, and virtual domain; an attacker can use actions in all
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three domains to reach their goal, and the attack generation should be able to
identify and generate these steps.

Policies have surfaced several times before; in our model they are either
associated with the overall system or with individual nodes. Policies at a node in
the graph represent access control points; they are also used to trigger processes
as described in the previous section.

The policy to invalidate can be specified as part of the model, or we can try to
invalidate all policies in the model. The former approach results in a relatively
targeted set of attacks, while the latter, though exhaustive, may contain many
attacks that are not of interest. In parallel with the invalidation, one can also
generate attack trees [13] for the identified attacks.

In the example from Figure 1, the attack considered is that an adversary is
able to access the confidential file fileX. A typical organisational policy could
be that confidential files are not allowed to leave the organisation’s perimeter,
here identified by the organisation’s building infrastructure. In the model of the
scenario shown in Figure 2, the area outside of the organisation’s perimeter is
represented by the node Outside. The goal policy would then be translated to

goal = not fileX@Outside

Goal policies can be more complex; they can contain first order logical formulae
with predicates, but for space reasons we limit ourselves to this rather simple
example. Therefore the goal function above abstracts from reality; it can be
seen as a representative for policies such as that non-employees are not allowed
to know the file contents. This would require a more detailed model containing
employees and non-employees, as well as the actual content of the file. The
latter would also support modelling encrypted files.

On a high level, the attack generation performs four major steps:

• First, identify a policy to invalidate; this results in actors who might
perform the attack, along with a series of pairs that identify actions to
perform and locations at which to do so;

• Next, identify the required assets to perform this action; and

• Generate attacks for obtaining these assets.

• Finally, the attacker moves to the location identified for the first step and
performs the action.

This attack generation starts from a goal policy and works iteratively until
the prohibited action can be performed. For the organisational policy in the
example scenario described above, the attack generation identifies a number of
possible attacks:

• The rightful owner Ethan takes the file outside.

• The system administrator Sydney uses his access rights to make a copy of
the file.
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• The technician Terry removes the server from the server room.1

• The financial accountant Finn accesses the file from VM2.

• Sydney or Terry place a wire tap on the network to observe the traffic.

• Ethan, Sydney, or Terry are social engineered to perform any of the above
actions.

• Terry is being social engineered to let an adversary into the server room.
This requires that somebody let the adversary into the building and into
the internal room.

• An adversary observes Sydney’s password being typed into the laptop and
uses it to get access.

• An adversary breaks a combination of the doors and the windows to get
physical access to the server room.

The attack generation will result in an attack tree representing all these
attacks as options in the tree. In the TRESPASS project we are currently
developing techniques for generating attacks for socio-technical systems. For
technical systems similar approaches exist [14].

6. Risk Assessment

The previous sections have introduced a model for cloud infrastructures as
socio-technical systems and a process for identifying attacks in those systems.
The attacks identified on the model together with the model form the basis for
risk assessment of the system. Being based on both the model and the attacks,
the risk assessment can take a number of factors into account. These factors
can originate from either the model or the attacks, or from a combination of
both [3, 15].

All the approaches to risk assessment presented here benefit from the au-
tomatic extraction of the cloud infrastructure part of the model, which makes
dynamic updates of the risk assessment straight forward and easy to automate.
This automatic extraction and auditing of infrastructure information from cloud
infrastructures will become increasingly important in risk assessment [16, 17].

Besides the model and the attacks, the risk assessment is based on additional
information similar to traditional risk assessment approaches; for example, it
requires a valuation of assets and ideally also of the estimated likelihood of
certain events to happen. The valuation is used in computing the potential
impact of an identified attack. The estimated likelihood can be used for sanity
checking of results of the risk assessment and the attack generation. If the
predicted numbers differ significantly from the observed numbers this difference
should trigger an examination.

1In practice he could remove the hard disk, which is not part of the current model.
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6.1. Model-based Risk Assessment

When taking only the model into account, risk assessment can be based on
the reachability of assets that should be protected or that occur in organizational
policies such as the one presented in the previous section. On this level, the
risk assessment is mostly based on paths through the system graph as shown
in Figure 2 for the example scenario.

Being graph based, identifying paths and computing metrics on them is
straightforward [15]. Basing the risk assessment exclusively on the model will
result in imprecise results at best; nevertheless the results will support a very
quick identification of problematic or areas at risk in an organisation to pinpoint
further, more detailed investigations.

6.2. Attack-based Risk Assessment

Risk assessment can also be based exclusively on the identified attacks. Sim-
ilar like the model-based risk assessment the results will only be indicative; they
do not relate an attack and its impact to infrastructure, actors, and assets, nor
to policies.

Attack-based risk assessments computes likelihood and impact for the iden-
tified attacks, taking the valuations of assets and the estimated likelihoods for
events into account. Other properties of attacks that can be of interest include
minimum and maximum time to perform an attack, required resources or skill
level, or likelihood of detection. The result of this assessment is a list of attacks
ranked on any of the computed properties of the attack.

The attack-based risk assessment supports identification of endangered as-
sets and policies that are likely to be violated; it also provides additional metrics
as described above. Since the attack tree will be based on actors in the model,
their actions, and locations in the model, the attacks can also be combined with
the model; this approach results in the third kind of risk assessment.

6.3. Combined Risk Assessment

The attacks described in Section 5 consist of sub-attacks by actors that
obtain necessary assets such as keys to perform actions, and of these actions
being performed. Consequently there is a direct relation between the model,
providing the actors, locations, and assets, and the generated attacks plus their
computed properties as described above.

The combined approach to risk assessment utilizes the model-based evalua-
tions [15] and extends them with the computed attack properties. This approach
provides a more detailed insight into the contribution of parts of the model to
different attacks, and thus supports a better understanding of the risk that ar-
eas of the modelled organisation either are exposed to or pose by contributing
to attacks.

Mapping the attack properties to the model often results in common areas of
a model to have a very high risk of contributing to attacks; in the model shown
in Figure 2, the hallway will contribute to all attacks that require physical access.
This kind of result will often represent unwanted artefacts that can be ignored.
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On the other hand, most attacks identified in Section 5 involve network-
based access through at least the switch SW1 or also other nodes in the network
infrastructure. This will result in SW1 getting a high contribution to potential
attacks; this node or the traffic through it might be subjected to additional
logging. The only attacks not involving the network infrastructure are the ones
where the hardware storing the file is physically removed.

7. Conclusion

Assessing risk in cloud infrastructures is difficult. Cloud infrastructures can
be very big, are highly interconnected, and very dynamic. They contain network
infrastructure nodes and computing nodes, and they also are integrated in some
way into organisations; this integration can be directly, that is, the cloud being
operated by the organisation and being accessed through the local network,
or indirectly, that is, the cloud being operated by a cloud provider and being
accessed remotely. In either of these scenarios human actors become an essential
part of the whole system.

In this chapter we have presented a modelling exercise for socio-technical
systems, introducing a process developed in the TRESPASS project. The model
for the cloud infrastructure captures details at several levels and can represent
typical artefacts. Using this model, we have discussed how to identify potential
attacks and how to integrate them into risk assessment.

One attack possibility that is not covered in our approach yet are attacks
on policies or processes, where an actor with administrator rights maliciously
or by accident changes parts of the system to give access to adversaries. We are
currently working on extending our system with such meta-rules.

If risk assessment in complex technical infrastructures already is difficult, it is
even more complicated when adding human factors and physical infrastructure
into the setup, which therefore often are ignored [3]. Using automated extraction
of network infrastructure configurations, our approach not only supports on-
the-fly risk assessment of cloud infrastructures; it also supports analysing the
combined soco-technical system consisting of the organisation, its employees,
and assets, including for example staff at a remote cloud operator.
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