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Abstract. Attacks on systems and organisations increasingly exploit
human actors, for example through social engineering, complicating their
formal treatment and automatic identification. Formalisation of human
behaviour is difficult at best, and attacks on socio-technical systems are
still mostly identified through brainstorming of experts. In this work we
formalize attack tree generation including human factors; based on recent
advances in system models we develop a technique to identify possible at-
tacks analytically, including technical and human factors. Our systematic
attack generation is based on invalidating policies in the system model
by identifying possible sequences of actions that lead to an attack. The
generated attacks are precise enough to illustrate the threat, and they
are general enough to hide the details of individual steps.

1 Introduction

Many attacks against organisations and how to prevent them are well under-
stood. Traditional and well-established risk assessment methods often identify
these potential threats, but due to a technical focus, often abstract away the
internal structure of an organisation and ignore human factors. However, an
increasing number of attacks do involve attack steps such as social engineering.

Attack trees [1] are a loosely defined, yet (or therefore) widely used approach
for documenting possible attacks in risk assessment; they can describe attack
goals and different ways of achieving these goals by means of the individual
steps in an attack. The goal of the defender is then to inhibit one or more of
the attack steps, thereby prohibiting the overall attack, or at least making it
more difficult or expensive. While attack trees for purely technical attacks may
be constructed by automated means [2], this is currently not possible for attacks
exploiting the human factors. Actually, only few, if any, approaches to systematic
risk assessment take such “human factor”-based attacks into consideration.

Our work closes this gap by developing models and analytic processes that
support risk assessment in complex organisations including human factors and
physical infrastructure. Our approach simplifies the identification of possible at-
tacks and provides qualified assessment and ranking of attacks based on the
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expected impact. Based on earlier work [3,4] we describe a systematic approach
for the generation of attack trees for attacks that may include elements of human
behaviour. These attack trees can be used as input to a traditional risk assess-
ment process and thereby extend and support the brainstorming results. System
models such as ExASyM [5] and Portunes [6] have been used to model and anal-
yse organisations for possible attacks [7]. The models contain both physical in-
frastructure and information on actors, access rights, and policies; consequently,
analysis of such models can include social engineering in the identified attacks.
The generated attack trees are complete with respect to the model, that is, our
method identifies all attacks that are possible in the model. This is achieved
by basing the attack tree generation on invalidation of policies; policies in our
model describe both access control to locations and data, as well as system-wide
policies such as admissible actions and actor behaviour.

The rest of this paper is structured as follows. After introducing our socio-
technical system model and a running example in the next section, we discuss
policies in Section 3. These policies are at the core of the attack generation,
which is described in Section 4. After evaluating our approach and discussing
related work in Section 5 and Section 6, we conclude the paper with an outlook
on future developments.

2 Modelling Socio-technical Systems

Our model represents the infrastructure of organisations as nodes in a directed
graph [5], representing rooms, access control points, and similar locations. A lo-
cation may belong to several domains, e.g., it can be part of the building and the
network. Actors are represented by nodes and are associated with behaviour. As-
sets model any data relevant in the modelled organisation, and can be annotated
with a value and a metric, e.g., the likelihood of being lost. Nodes also represent
assets that can be attached to locations or actors; assets attached to actors move
around with that actor. Actors perform actions on locations, including physical
locations or actors. Actions are restricted by policies that represent both access
control and the behaviour as expected by an organisation from its employees.
Policies consist of required credentials and enabled actions, representing what
an actor needs to provide in order to enable the actions in a policy, and what
actions are enabled if an actor provides the required credentials, respectively.

In contrast to Klaim [8], we attach processes to special nodes that move
around with the process. This makes the modelling of actors and items carried
by actors more intuitive and natural. The metrics mentioned above can represent
any quantitative knowledge about components, for example, likelihood, time,
price, impact, or probability distributions. The latter could describe behaviour
of actors or timing distributions.

2.1 Running Example

We use a running example based on actor Alice, who receives some kind of
service, e.g., care-taking, provided by actor Charlie. Charlie’s employer has a
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Fig. 1. Graphical representation of the running example. The small rectangles represent
locations, the big rectangles represent actors and contain the assets known or owned
by the actor, the round nodes represent assets, and the small squares represent process
nodes. Solid lines represent the physical connections between locations, while dashed
lines indicate containment of information and assets. The dashed rectangles in the
upper right part of some nodes represent the policies assigned to these nodes.

company policy that forbids him to accept money from Alice. Figure 1 shows
the example scenario, consisting of Alice’s home, a bank with a bank computer,
and an ATM. Alice has a card with a pin code to obtain money, and a pass-
word to initiate online transfers from her workstation. The policies in the model
require, e.g., a card and a matching pin to obtain money from the ATM.

Actor nodes can also represent processes running on the corresponding lo-
cations. The processes at the workstation and the bank computer represent the
required functionality for transferring money; they initiate transfers from Alice’s
home (PWS ), and check credentials for transfers (PC ).

3 Policy Language

Our model supports local policies for annotating elements with access control
polices, and global policies for annotating the model with organisational policies.
Local policies consist of a set of required credentials and a set of actions that
are enabled by the required credentials: LocalPolicies ⊆ ReqCred ×Actions with
Actions ⊆ {in,out,move, eval}. The actions come from the set of actions sup-
ported by the modelling formalism acKlaim [5]. To ease presentation, we treat
credentials as terms from the term algebra over a suitable signature, yielding a
flexible and expressive, yet simple, formalisation. The signature is chosen based
on a concrete system model, and contains enough structure to represent the
model’s important features. In our running example, we would expect the sig-
nature to at least contain such elements as cards, pin codes, locations, accounts,
and actor ids. As signatures depend on the model, we only assume the existence
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of relevant signatures Σ for assets and predicates, and define required credentials
as ReqCred = P (T (Σ)) where T (Σ) is the term algebra generated by Σ.

Checking whether an actor provides the required credentials of a policy is
based on the set of concrete credentials ProvCred = P (T (Σ)) that an actor
has. Using first order unification as defined by Robinson [9] we determine if a set
c ⊆ ProvCred of credentials is valid with respect to a given set r ⊆ ReqCred of
required credentials: if c and r can be successfully unified, then the credentials
c are sufficient to satisfy the required credentials r of a given policy.

Our policy language supports variables for generic policies; these are left
out for space reasons. The system model also supports predicates in credentials.
Predicates are used to establish facts about actors; in the example a predicate
isEmployee could express that the actor is an employee of the service provider,
and isCustomer could express that the actor is a customer of the company.
Predicates are specified in the model, and become part of the knowledge base
used in unification, and consequently the term algebra.

Global policies express organisational policies in the system model, de-
scribing a state or actions that are disallowed in the system and are to be en-
forced system-wide. We assume two basic kinds of organisational policies: action-
based global policies forbid actors to perform certain actions, and location-based
global policies forbid data to reach certain locations. Action-based global poli-
cies are specified like local policies with required credentials and a set of ac-
tions, and contain a component identifying the attacker: GlobalActionPolicies =
(Actors ∪Vars)×Credentials ×Actions. Of course, the set of actions here spec-
ifies the prohibited actions. Location-based global policies are considerably sim-
pler, since they only specify an asset and a location GlobalLocationPolicies =
Asset × Location.

In the rest of this paper we only consider action-based global policies, which
generalise location-based global policies: for data to reach a location it either
must be co-located with an actor, who must have input the data, or it must
have been output at that location, which in turn again requires that an actor
has input the data. Location-based policies can therefore be translated to an
action-based global policy that forbids inputing the data in question.

In the example from Figure 1, the global action-based policy could specified
to be not({X, isEmployee(X), card [(owner, Y )], isCustomer(Y )}, {in}), stating
that an actor X is not allowed to use a card as credential when performing an in
action, if the predicate isEmployee is true for X and the card is owned by an
actor Y , for whom the predicate isCustomer holds. In the example, the only
possible binding for X is Charlie, and the only possible binding for Y is Alice,
and the in action would represent obtaining money at an ATM.

4 Policy Invalidation and Attack Tree Generation

We are now ready to present the main contribution of our work, the generation
of attack trees by invalidating policies. We choose attack trees as a succinct way
of representing attacks; they are defined by
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Definition 1. AT := (Ni ∪̇Nl, n, E, L) is an attack tree with inner nodes Ni :=
N∧ ∪̇N∨ and leaf nodes Nl, a root node n ∈ Ni, directed edges E ⊆ Ni×Ni ∪̇Nl,
and a labelling function L := N → Σ?. Nodes in AT are conjunctions (N∧)
or disjunctions (N∨) of sub-attacks, or basic actions (Nl). Let N label be the
attack tree that only contains one node n that is mapped by L to label. For
AT 1 = (N1, n1, E1, L1) and AT 2 = (N2, n2, E2, L2), kind ∈ {∨,∧}, label being a
string, and n ∈ Nkind , we define the addition of attack trees as AT 1⊕label

kind AT 2 :=
(N1 ∪N2 ∪ {n}, E1 ∪ E2 ∪ {(n, n1), (n, n2)}, n, L1 ∪ L2 ∪ {(n, label}).

We assume an implicit, left to right order for children of conjunctive nodes.
For example, an attacker first needs to move to a location before being able to
perform an action.

On a high level, our approach for invalidating a policy consists of four basic
steps:

1. Choose the policy to invalidate, and identify the possible actors who could
do so; these are the potential attackers.

2. Identify a set of locations where the prohibited actions can be performed.
Since there might be several possible actions, this results in a set of pairs of
location and action.

3. Recursively generate attacks for performing these actions. This will also iden-
tify required assets to perform any of these actions, and obtain them.

4. Finally, move to the location identified in the second step and perform the
action.

It should be noted that all rules specified below either block if no valid result
can be computed, or return an empty attack tree, for example, if no credentials
are required. The rules take as input an infrastructure component I, which
represents the socio-technical security model described in Section 2, and an actor
component A, which stores identities, locations, and assets collected and reached
by an actor during an attack. Also note that we extend rules from working on
singular elements to sets by unifying the results of rule applications.
Identify Attackers. To start attack generation from a global policy (see Fig-
ure 2), we compute the unification of the global policy and the set of all actors,
identify the set of attackers by means of function getAttacker , which replaces a
variable with the identified bindings, or returns an explicitly specified attacker:

getAttackerI(a, σ) :=

{
{a} if a ∈ Na

σ(a) if a ∈ Vars

Identify Target Locations. We then compute all locations at which one of the
actions in enabled could be applied using the credentials specified in the policy.
The function applicableAt identifies all these locations in the system model and
returns goals as pairs of actions and locations.
Attack Generation. The rules in Figure 3 connect the identified goals with the
generation of attack trees. For each goal we generate two attack trees: moving
to the location and performing the action. While moving to the location new
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σ = unifyI(Actors, credentials)
attackers = getAttackerI(actor , σ) goals = applicableAtI(credentials, enabled, σ)

I, attackers, goals `goal trees T := ⊕“perform any actions”
∨ trees

I,not(actor , credentials, enabled) `P T

Fig. 2. Attack generation starts from the global action-based policy
not(actor , credentials, enabled). Attack trees are generated for all possible policy
violations. As every attack tree represents a violation of the policy, the resulting
attack trees are combined by an or node.

I,A, goto(location) ∧ perform(action) `GP T
I,A, (location, action) `goal T

I,A, goto(l) `goto Tgoto ,A′ I,A′, perform(a) `perform Taction ,A′′

I,A, goto(l) ∧ perform(a) `GP Tgoto ⊕“goto l and perform a”
∧ Taction ,A′′

Fig. 3. For each identified goal (consisting of a location and an action) an attacker
moves to the location and performs the action. The rules result in an attack tree and
a new state of the attacker, which includes the obtained keys and reached locations.

credentials may be required; as a result, the actor acquires new knowledge, which
is stored in the actor component A. The rules in Figure 4 and Figure 5 generate
attack trees for moving around, performing actions, and obtaining credentials,
resulting in attack trees for every single action of the attacker. The resulting
trees are combined in the overall attack tree. The function missingCredentials
uses the unification described above to match policies with the assets available
in the model. This implies that all assets that can fullfil a policy are identified;
the attack generation then generates one attack for each of these assets, and
combines them with a disjunctive node.

For space reasons we do not discuss the interaction between actors and pro-
cesses, and for the global policy chosen in this example, this is not necessary ei-
ther. Another global action-based policy could forbid in general to obtain money
that has been “owned” by a customer before. In this case, the processes defined
in Section 2.1 for the work station and the bank computer would become impor-
tant, as they allow to transfer money from Alice’s to Charlie’s account. When
invalidating this global policy one has to consider asset flow.

Post-Processing Attack Trees. The generated attack trees do not contain
annotations or metrics about the success likelihood of actions such as social
engineering, or the potential impact of actions. Also the likelihood of a given
attacker to succeed or fail is not considered. Computing qualitative and quanti-
tative measures on attack trees is beyond the scope of this work. The generated
attack trees also often contain duplicated sub-trees, due to similar scenarios be-
ing encountered in several locations, for example, the social engineering of the
same actor, or the requirement for the same credentials. This is not an inher-
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paths = getAllPathsI(A, l) I,A, paths `path trees,A′

T := ⊕“find path to l”
∨ trees

I,A, goto(l) `goto T ,A′

missing = missingCredentialsI(A, path) I,A,missing `credential trees,A′

T := ⊕“get credentials”
∧ trees

I,A, path `path T ⊕“get credentials and pass path”
∧ Npass path,A′

Fig. 4. Going to a location and performing an action results in two attack trees. The
function getAllPaths returns all paths from the current locations of the actor to the
goal location l, and the resulting attack trees are alternatives for reaching this location.

i 6∈ identities =⇒ T = Nobtain identity i

I, (identities, locations, assets), identity i `credential T , (identities ∪ {i}, locations, assets)

A = (identities, locations, assets) ∧ a 6∈ assets =⇒
goals = availableAtI(a) I,A, goals `goal trees,A′ T := ⊕“get a”

∨ trees

I,A, asset a `credential T ,A′

I,A, predicate p(arguments) `predicate trees,A′ T := ⊕“fullfil predicate p”
∨ trees

I,A, predicate p(arguments) `credential T ,A′

Fig. 5. Depending on the missing credential, different attacks are generated. If the actor
lacks an identity, an attack node representing an abstract social engineering attack is
generated, for example, social engineering or impersonating. If the missing credential
is an asset, the function availableAt returns a set of pairs of locations from which this
asset is available, and the according in actions. If the missing credential is a predicate,
a combination of credentials fulfilling the predicate must be obtained.

ent limitation, but may clutter attack trees. Similar to [2], a post-processing of
attack trees can simplify the result.

5 Evaluation

We now describe briefly the attack generation based on the results of a pro-
totype implementation. The attack tree shown in Figure 6 is generated from
the example scenario. As mentioned in the previous section, we assume the
global policy that an employee is not allowed to use a customer’s card to obtain
money: not({X, isEmployee(X), card [(owner, Y )], isCustomer(Y )}, {in}). Using
the rule from Figure 2, we compute the substitution σ = [X 7→ Charlie, Y 7→
Alice] for variables X,Y : Charlie has the role employee, and Alice has the role
customer. In the next step, the attacker is identified to be X, and based on the
system specification from Figure 1, the only location with a policy restricting
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perform all actions

goto A1 and perform in $$$

goto A1 perform in

get card pin and perform in

goto home and perform in card

goto home

goto door impersonate somebody Alice trusts goto home

get card

get card from Alice

goto home and perform in pin

goto home

goto door impersonate somebody Alice trusts goto home

get pin

get pin from card get pin from Alice

perform in $$$

hire more skilled attacker

Fig. 6. Attack tree generated by the prototype implementation for the example shown
in Figure 1.

the in action is the money location at the ATM A1. The location and action
pair {(A1, in) is therefore the only goal, and next `P from Figure 4 generates
the attack tree for moving to A1 and performing the in action.

Going to the location does not require additional credentials, but performing
the in action does. The missingCredentials function returns the card and the pin,
which combined with the requirement from the goal policy, that the owner of
the card must be Alice, implies that the attacker needs Alice’s card and pin. The
second rule `credential in Figure 5 identifies where they are: Alice has the card
and the pin, and the pin code is also stored in the card. Our approach generates
an attack tree for going to the location “home”, and in doing so the attacker
must fullfil the policy “trustedBy(Alice)”, meaning that he must impersonate
somebody trusted by Alice. Then the attacker can either “input” the card and
the pin, or only the card and try to extract the pin code from the card.

The stealing and the extraction of the pin code are not represented in the
model since they are context and technology dependent. In a given scenario, they
can be instantiated with the matching “real” actions. After the assets have been
obtained, the attacker moves to the ATM location and performs the action.

6 Related Work

System models such as ExASyM [5, 7] and Portunes [10] also model infrastruc-
ture and data, and analyse the modelled organisation for possible threats. How-
ever, Portunes supports mobility of nodes, instead of processes, and represents
the social domain by low-level policies that describe the trust relation between
people to model social engineering. Pieters et al. consider policy alignment to ad-
dress different levels of abstraction of socio-technical systems [11], where policies
are interpreted as first-order logical theories containing all sequences of actions
and expressing the policy as a “distinguished” prefix-closed predicate in these
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theories. In contrast to their use of refinement for policies we use the security
refinement paradox, i.e., security is not generally preserved by refinement.

Attack trees [12] specify an attacker’s main goal as the root of a tree; this goal
is then disjunctively or conjunctively refined into sub-goals until the reached sub-
goals represent basic actions that correspond to atomic components. Disjunctive
refinements represent alternative ways of achieving a goal, whereas conjunctive
refinements depict different steps an attacker needs to take in order to achieve a
goal. Techniques for the automated generation of attack graphs mostly consider
computer networks only [13,14]. While these techniques usually require the spec-
ification of atomic attacks, in our approach the attack consists in invalidating a
policy, and the model just provides the infrastructure and methods for doing so.

7 Conclusion

Threats on systems are often described by attack trees, which represent a possi-
ble attack that might realise the described threat. These attack trees are usually
collected by experts based on a combination of experience and brainstorming.
Earlier work has tried to formalise this approach for threats on technical sys-
tems. The increasingly important human factor is often not considered in these
formalisations, since it is not part of the model.

In this work we have formalizes attack tree generation including human fac-
tors using recent advances in system models. Our approach supports all kinds
of human factors that can be instantiated once an attack has been identified.
To the best of our knowledge this is the first formalisation of an approach to
generating attack trees including steps on the technical and social level.

The generated attacks include all relevant steps from detecting the required
assets, obtaining them as well as any credentials needed to do so, and finally
performing actions that are prohibited in the system. The generated attacks are
precise enough to illustrate the threat, and they are general enough to hide the
details of individual steps. The generated attacks are also complete with respect
to the model; whenever an attack is possible in the model, it will be found. Our
approach is also sound; all results of our generator do represent attacks.

The combination of system model and automated generation enables us to
trade in precision of the model for details in the attack trees. For example, the
modelling of the ATM is very imprecise in the example from Figure 1. A more
detailed formalisation would represent that an actor puts the card and the pin
code into the ATM and receives money after a check with the bank. In this
model, the attack tree generator is able to find out that one can obtain the pin
code from the ATM, since it is input into the system. Note that the first action
in the second line only verifies whether the pin code entered into the ATM is
the one stored on the card. To handle more general global policies that might,
for example, prohibit to own money obtained by some other actor, we can use
techniques such as tainting to trace which actor or credentials have been used to
obtain or handle an asset. In the example described in Section 2.1, using Alice’s
credit card would result in the withdrawn money being tagged with her id.
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We are currently working on further evaluations and domain-specific lan-
guages to extend the model’s expressivity, and are extending the attack genera-
tion to simplify the generated attack tree during generation.
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