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Abstract

Timely recuperation of energy through regenerative braking is crucial in order to ensure
energy efficient railway timetables. This requires a careful synchronisation of train depar-
tures such that high energy peaks, as a result of simultaneously accelerating trains, can be
avoided. In this report we consider a variant of this problem as presented in the FAU Open
Research Challenge in Discrete Optimization. We propose a mixed integer linear program-
ming formulation (MILP) together with a number of heuristics based on this model. We
show that the MILP can obtain optimal solutions to most of the instances proposed as part
of the challenge, and that the matheuristics can find good solutions in short computation
times.

1 Introduction

Rail is one of the major consumers of energy, and there is a desire for railway operators to be
energy-efficient in their daily operations. Towards this aim a significant component of a train
operating company’s electricity bill usually depends on the highest peak of energy usage within
a given period, a measure imposed to encourage operators to maintain a balanced distribution
of power consumption throughout their operations [2].

Compared to the case where, for example, trains are billed individually based on their power
consumption, this measurement results in more complex timetabling problems since the en-
ergy peaks are highly dependent on the interactions between trains. Synchronisation becomes
important in order to ensure that energy regenerated (when trains are braking) is efficiently
recuperated by accellerating trians.

In this report we consider the Energy-Efficient Train Timetables Problem (EETTP), which
comprises the construction of a timetable such that the period with the highest peak power us-
age is minimised. The problem was presented and instances were provided by the Chair of Eco-
nomics, Discrete Optimization and Mathematics at Friedrich-Alexander-University Erlangen-
Nürnberg (FAU), in the Discrete Optimization part of their Open Research Challenge1.

In this paper we present a mixed-integer programming formulation (MILP) together with a
number of heuristic approaches based on this formulation. Our approach is based on dwell time
control, i.e. deciding only the departure times of trains at stops while assuming fixed running
times. Albrecht [1], for example, considers the same problem, but uses an approach for train
running time control instead of train dwell time control. Sansó & Girard [6] considers the
problem with dwell time control within the context of the Montreal metro system, and present
a formulation in some ways similar to the one presented in this paper. However, due to the
fact that we consider a more complex network structure, we model safety (headway) constraints
differently and also include constraints for maintaining passenger connections which they do

1See https://openresearchchallenge.org/discreteOptimization/ChairofEconomics/The+Challenge.
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not. A general overview of energy efficiency in railways is given by Albrecht [2]. For a general
overview of railway timetabling see Cacchiani & Toth [4].

We note that the problem under consideration in this report is similar to the Resource Level-
ling Problem (RLP) in project scheduling [5]. Arrivals and departures of trains may be viewed as
project activities, while headway, runtime, dwell time and connection constraints may be viewed
as precedence relations between activities. Moreover, electricity may be viewed as a single re-
source, the usage of which needs to be flattened out (levelled) over the scheduling horizon. The
RLP and EETTP differ mostly with respect to the objective function, since resource levelling
problems usually focus on specific objective functions that differ from the one considered in this
paper. The RLP has been well studied in the literature, and an overview of exact methods for
both continuous and discrete time variants is given by Rieck & Zimmermann [5].

The presented problem has a nice structure that can easily be modelled using a linear program
with binary variables. We therefore investigate the potential of solving such a model with
existing state-of-the-art solvers. The problem is fairly constrained, and our intuition is that
variable/constraint preprocessing and constraint propagation may be key in solving the problem.
Furthermore, an exact approach may provide bounds on optimality that can be used to evaluate
the effectiveness of heuristic approaches. Finally, we also investigate matheuristic approaches as
they are able to combine strengths of both worlds (exact and heuristic approaches).

This paper is organised as follows. In Section 2 we give an informal problem description,
followed by a more formal description in terms of a MILP in Section 3. We propose a number of
matheuristics in Section 4 and we compare all methods with respect to the provided instances
in Section 5. We conclude the report with a summary in Section 6 and ideas for future research
in Section 7.

2 Problem description

In input we are given a set of trains and a railway network. For each train we are given a
route in the network, which is a sequence of legs connecting a sequence of stops. For each
leg a departure window is given together with a power profile for traversing the leg. Here, a
power profile defines the power phases of a train on a trip, i.e., when a train is consuming or
regenerating power during the trip. The problem then amounts to deciding the times of the
departures of all legs such that the highest peak of electrical power usage is minimised.

The choice of departure times for the trains is governed by minimum dwell-time constraints
at platforms and headway time constraints between trains travelling on the same track in the
same direction. Further constraints include a fixed order in which trains are to traverse each
track in the network, and the fact that passenger connections between certain trains at certain
stations need to be maintained. Here, a passenger connection is defined whenever the difference
in time between an arrival and departure at the same station falls within a 5–15 minute interval
in the original timetable. We consider a discretization of time such that trains can only depart
on whole minutes, and we assume fixed running times and single-direction tracks.

Given a solution which specifies the departure times for all legs, the power profiles are used to
calculate the net power usage of all trains for each second of the considered time horizon. Within
a power profiles each second can be either positive (acceleration) or negative (regeneration). For
consecutive periods of 15 minutes, covering the entire considered time horizon, the average power
consumption is calculated for each period by only taking into account seconds with a positive
net power usage (the assumption is thus made that power regenerated by a braking train that
is not consumed by an accelerating train in the span of the same second is lost). The objective
is to minimise the 15-minute period with the highest average power consumption.
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3 MILP formulation

We are given a set of legs L together with a list of consecutive possible departure times Ti ⊆ T
for each leg i ∈ L, where T is the set of discrete time instants in the considered time horizon.
We consider the problem of deciding at which time instant each leg should depart so as to
minimize peaks in energy consumption, subject to constraints ensuring that runtimes, dwell
times, headways and connections are respected. To this aim we define a binary decision variable
xit which assumes a value of 1 if leg i ∈ L departs at time t ∈ Ti and 0 otherwise. First we
impose constraints to select exactly one of the possible departures:∑

t∈Ti

xit = 1 i ∈ L. (1)

The track headway, passenger connections, dwell time, and runtime constrains share a com-
mon precedence structure, which is why we model time using the same notation. In order
to model the constraints on departure times we consider a directed graph G = (L,A) where
(i, j) ∈ A ⊆ L×L denotes a precedence constraint on the departure time of j with respect to the
departure time of i. Each precedence constraint (i, j) ∈ A is associated with a set of conflicting
pairs of time instants Cij ⊆ Ti×Tj , where (t, t′) ∈ Cij indicates that a conflict will arise if leg i
departs at t and leg j departs at time t′. The precedence constraints may then be modelled by
one of the following two inequality sets:∑

t′∈Tj :(t,t′)∈Cij

xjt′ + xit ≤ 1 (i, j) ∈ A, t ∈ Ti. (2)

∑
t′∈Ti:(t,t′)∈Cij

xit′ + xjt ≤ 1 (i, j) ∈ A, t ∈ Tj . (3)

Note the subtle difference between the two inequality sets, and the fact that using only one set
is sufficient. Including both sets can strengthen the LP relaxation, but in our experiments we
found this to be of no significant benefit.

In the subsection that follows we discuss in more detail the construction of the sets A and
Cij , and in the section after that we discuss the objective function.

3.1 Precedence constraints

First of all, the fixed runtime and dwell time (at the destination) of each leg should be respected.
Let ri denote the running time and di the dwell time of leg i ∈ L. In input we have for each
leg a train successor leg which represents the next movement of the same train. If j is the train
successor leg of i, then (i, j) ∈ A and

Cij = {(t, t′) ∈ Ti × Tj | t+ ri + di > t′}.

Secondly, headways need to be respected between trains entering the same track. Note, we
assume that no track is used in both directions. In input we have for each leg a track successor
leg that will follow it on the same track (recall that the order in which trains traverse the tracks
cannot be altered). If j is the track successor leg of i, then (i, j) ∈ A and

Cij = {(t, t′) ∈ Ti × Tj | t+ hij > t′},

where hij denotes the required headway between the consecutive legs i and j.
Finally, connections need to be maintained. In input we have for each leg a connection

successor leg, that has to maintain a connection with it within a specified time window. If j is
the connection successor leg of i, then (i, j) ∈ A and

Cij = {(t, t′) ∈ Ti × Tj | t+ ri + cmin
ij > t′ ∨ t+ ri + cmax

ij < t′},

where cmin
ij and cmax

ij denote the minimum and maximum time j should wait after the arrival
of i.
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3.2 Objective function

The set T will be a discretization of time in minutes, but for the calculation of the objective
function we consider a finer discretization of time in seconds, represented by the set S.

Let πist ∈ R denote the power usage2 during second s ∈ S by leg i ∈ L, given that it departs at
time t ∈ Ti (calculated from its power profile given in input). Let πs ∈ R+

0 be a decision variable
representing the total power consumption during second s ∈ S, realised by the constraint set∑

i∈L

∑
t∈Ti

πistx
i
t ≤ πs s ∈ S. (4)

Note that if the left hand side of the above inequality is negative, this represents lost energy.
Consequently, πs = 0 in this case, as πs is defined as a non-negative continuous variable.

As stated before, the objective is to minimise the 15 minute time window with the highest
average power consumption. Towards this end, let P be the set of consecutive 901 second periods
that covers the considered time window, where any two consecutive periods overlap in exactly
one second. Let fp and `p denote the first and last second in period p ∈ P, respectively, and let
Π be the total energy consumption of the period with the highest consumption. This value is
realised by the constraint set

1

2

`p−1∑
s=fp

(πs + πs+1) ≤ Π p ∈ P, (5)

using the trapezoidal rule for approximating integrals.
Finally, the MILP formulation is given by

minimize Π
subject to (1)–(5).

4 Heuristic approaches

In this section we describe two heuristic approaches to the problem, both making use of variants
of the MILP presented in the previous section in different ways. A third heuristic will also
be used, namely imposing a time limit on the solution of the MILP presented in the previous
section.

4.1 Heuristic approximation of Π

The calculation of the objective function requires a large amount of variables to be included in
the MILP model, namely a variable πs for each second s ∈ S in the considered time horizon.
This is necessary to ensure that a negative net power usage during any second results in energy
lost to the system.

We consider an aggregation of these variables, thereby obtaining a relaxation of the problem
by assuming that regenerated energy is not lost and can be recuperated at any other point in
time. This is, of course, not a realistic assumption, but it results in a MILP with less variables
and constraints that can be solved in considerably less time. Full accuracy is lost because the
power at every second is no longer restricted to be non-negative.

In order to achieve this, we define, for each leg i ∈ L, time instant t ∈ T and period p ∈ P,
the quantity

πipt =
1

2

`p−1∑
s=fp

(
πist + πis+1 t

)
2By power usage we mean either consumption (πi

st > 0), generation (πi
st < 0), or that the leg simply does not

cover second s if it departs at time t (πi
st = 0).
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i.e. the total power contribution of leg i in period p, given that i departs at time t. Note, that
πist and πipt are not variables but coefficients in the model.

Now constraint sets (4) and (5) may be removed and replaced by∑
i∈L

∑
t∈Ti

xitπ
i
pt ≤ Π p ∈ P. (6)

Note that the solution given by the MILP in this case will both give a lower bound to the
optimal solution of the original MILP, as well as a heuristic solution to the problem.

4.2 Rolling horizon matheuristic

In this section we propose an iterative matheuristic, which, during each iteration, attempts
to improve the incumbent solution by focussing on the period with the highest average power
consumption in the incumbent, henceforth referred to as the focus period. The matheuristic
considers a restricted time window that includes the focus period together with a certain number
of periods around it (governed by an input parameter), and solves the EETTP inside this window
using a local search heuristic. The local search heuristic itself uses the MILP to make small
changes to the incumbent solution as long it improves the objective function value. This MILP
is a restricted version of the presented MILP in Section 3, where a selected set of departures
(around the focus period) are only allowed to be slightly shifted in time with respect to the
incumbent (i.e. the departure windows are trimmed).

In order to impose a rolling horizon, we restrict the considered time horizon to some window
[Tmin, Tmax] ⊆ T, and only allow legs with departure windows completely inside this window to
be altered, while all other departures stay fixed. The set of fixed legs are then given by

L̂ = {i ∈ L : Ti ∩ [Tmin, Tmax] ⊂ Ti},

and we impose the additional constraints

xit = x̂it, i ∈ L̂, (7)

given a solution x̂ = [x̂it] to (1)–(2). In other words, all departure decisions outside the considered
horizon are fixed to match the incumbent.

In order to trim the departure windows according to x̂ for the purpose of applying the local
search heuristic, we impose the constraints∑

t∈Ti(x̂)

xit = 1, i ∈ L, (8)

where

Ti(x̂) =

t ∈ Ti :

∣∣∣∣∣∣
∑
t′∈Ti

t′x̂it′ − t

∣∣∣∣∣∣ ≤ τ
 ,

for some parameter τ . In other words, departure times in the new solution can differ in at most
τ minutes from the corresponding times in the incumbent.

The matheuristic is formally described in Algorithm 1. The algorithm starts from an initial
solution3 x̂ and initial restricted time window of 1, which indicates the number of periods on
either side of the focus period to include in the rolling horizon. The next rolling horizon window
is determined in Steps 5–7 and the local search is performed in Steps 8–11. During each iteration
the local search solves the MILP including the constraints for the rolling horizon as well as for
trimming the departure windows. It continues as long as it can find improved solutions for the

3The provided instances all came with initial feasible solutions, and we used these solutions as starting points
for the matheuristic.
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current horizon. The stretch stays fixed as long as the local search can find improved solutions,
after which the stretch is increased and the process repeated. The entire process is repeated
until the stretch reaches a maximum value, and then the matheuristic terminates.

In what follows we will use the notation TτAδ to denote the specific configuration of the
rolling horizon matheuristic where the parameter τ has the same meaning as above and where
the horizon [Tmin, Tmax] covers δ periods completely, with the focus period in the middle.

Algorithm 1 Rolling horizon matheuristic

Input: Instance of the EETTP, trim size τ , max window stretch nmax

Output: A solution x̂ to the instance
1: Generate initial solution x̂
2: n← 1
3: while n ≤ nmax do
4: while improvement found do
5: p∗ ← period with the highest average power consumption
6: Tmin ← Tp∗ − 900n
7: Tmax ← Tp∗ + 900n
8: while improvement found do
9: x̃← minimize Π subject to (1)–(8)

10: if Πx̃ < Πx̂ then
11: x̂← x̃
12: n← n+ 1

5 Results

The complete MILP model and a set of matheuristic have been tested using the provided in-
stances, and in this section we report the results. To our surprise the complete MILP model
appears to be quite solvable, and produces superior results. The heuristic approaches can be
faster but never better. We show the resulting solution quality that can be achieved using heuris-
tics. Note that the MILP used in the implementation of the matheuristics is programmed to be
as efficient as possible; it does not contain variables with fixed values nor constraints without
variables.

The best results (which also are the submitted results) were produced by solving the complete
MILP model using CPLEX 12.6. An overview of the statistics are shown in Table 1. In all cases,
except the first, we were able to obtain solution with a proven gap less than 0.5%. In 8 of the
11 cases we have result that are prove to less than 0.0001%, thereafter the search terminates.
All produced results are obtained within a maximal runtime of 24 hours. Instance 7 and 10 run
out of memory (24GB) before 24 hours are reached, and the solutions for both instances are
therefore obtained in less time. In contrast to our expectations, the first instance proves to be
hard to solve. We believe that the strength of the MILP model is largely due to preprocessing
and constraint propagation; experimental runs with finding the LP relaxation turns out to be
more time-consuming than running the MILP formulation (Table 3)

Granted, it is hard to improve upon the result produce by solving the complete MILP model.
However, shorter runtimes are in some cases important. Furthermore, in face of even larger
instances, the MILP may become impractical. Four different heuristic variants are chosen, the
results are shown in Table 2. The first two methods are T1A5 and T3A9 (using the notation
introduced in Section 4.2). The third heuristic is the one presented in Section 4.1 that uses
a heuristic approximation of the objective function, while the forth method is the full MILP
together with a time limit of 15 minutes. We observe that the last two methods produce the
best overall results, and the amount of time to solve the problem is relatively low. The results

6



Instance Cost Gap Runtime Variables Constraints Nodes

1 1.09 15.61% 86 410 16 737 16 763 117 817
2 2.94 0.00% 2 681 16 981 16 959 1 833
3 15.18 0.00% 435 17 748 17 835 6 271
4 14.97 0.00% 1 361 20 008 20 795 23 421
5 19.42 0.00% 1 499 21 306 21 786 12 870
6 20.43 0.00% 5 687 20 265 20 574 138 556
7 16.32 0.11% 28 825 25 927 29 366 62 280
8 2.42 0.00% 7 092 41 163 114 433 8 996
9 98.14 0.00% 18 003 27 907 30 413 61 451
10 68.12 0.01% 43 220 33 702 38 849 127 267

259.03

Table 1: Overview of best obtained results

of the other approaches show that the methods are able to produce solutions within short time
using the heuristic described. To our surprise, the matheuristics presented in Section 4 did
not prove to be more effective than the MILP in section 3, even with if used with a heuristic
objective.

T1A5 T3A9 Heuristic Objective MILP 15min

Instance Cost Runtime Cost Runtime Cost Runtime Cost Runtime

1 1.20 53 1.17 876 1.46 6 1.17 901
2 3.44 49 3.17 169 3.77 1 2.99 901
3 19.50 29 17.92 131 15.29 2 15.18 366
4 19.00 30 17.51 397 15.33 3 14.97 901
5 25.84 65 23.82 405 20.06 4 19.42 901
6 25.81 43 22.92 673 20.92 49 20.45 902
7 20.53 109 16.47 5 781 18.23 492 16.86 902
8 2.68 18 2.67 62 2.71 29 2.61 902
9 107.98 188 101.81 5 298 98.99 63 98.26 904
10 79.25 17 68.61 11 000 68.14 581 68.72 903

305.23 601.00 276.08 24 791 264.90 1 230 260.64 8 484

Table 2: Overview of four different heuristic solution methods.

6 Conclusion

We have presented several solution methods for solving the EETTP. One exact and several
heuristic approaches have been proposed and benchmarked.

The exact method, based on a MILP model, performs very well. The best found solutions
are obtained with this method. Even if a short time limit is given, e.g. 15 minutes per instance,
the exact method provides superior solutions. Using a heuristic objective good results can be
obtained faster. The matheuristic approaches show a general lack of strength. The solution
quality is poor compared to the MILP model with a 15 minute time limit, and given more
flexibility the runtime becomes too high.

To our surprise, the exact MILP model approach is found to be superior to the other con-
sidered approaches. In addition to the high quality solution obtained, this exact method is also
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Instance Objective Runtime Variables Constraints

1 735.34 143 16 737 16 844
2 2 640.36 30 16 981 17 069
3 13 600.85 195 17 748 18 110
4 13 411.34 228 20 008 21 830
5 17 350.00 259 21 306 22 640
6 18 317.91 141 20 265 21 284
7 14 607.51 2 013 25 927 33 507
8 2 032.33 97 767 41 163 188 728
9 88 100.69 2 163 27 907 34 276

10 61 044.77 2 934 33 702 45 560

Table 3: Results of solving the LP relaxations, using both (2) and (3) in the MILP.

able to provide optimality bounds. The quality of any solutions found by heuristic approaches
will always be unproven without good bounds.

7 Future research

As mentioned in the introduction, the precedence constraints considered in this report is similar
to precedence constraints in project scheduling problems, and can be modelled using similar
techniques. Artigues et al. [3] present a large variety of MILP models for the resource constrained
project scheduling problem, where they refer to the time-indexed variables that we have used in
our model as “pulse” start variables. They presented a number of different time-indexed variables
— such as whether or not a specific activity starts before a specific point in time (start “step”
variables), or whether or not a specific activity is in progress at a specific point in time (on/off
variables) — and these ideas could lead to a number of alternative formulations for the EETTP.
As future research we propose further investigations into alternative MILP approaches inspired
by these ideas.
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