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Abstract:
In this paper we present a moving horizon estimation (MHE) formulation suitable to easily
describe the quadratic programs (QPs) arising in constrained and nonlinear MHE. We propose
algorithms for factorization and solution of the underlying Karush-Kuhn-Tucker (KKT) system,
as well as the efficient implementation techniques focusing on small-scale problems. The
proposed MHE solver is implemented using custom linear algebra routines and is compared
against implementations using BLAS libraries. Additionally, the MHE solver is interfaced to
a code generation tool for nonlinear model predictive control (NMPC) and nonlinear MHE
(NMHE). On an example problem with 33 states, 6 inputs and 15 estimation intervals execution
times below 500 microseconds are reported for the QP underlying the NMHE.

1. INTRODUCTION

Moving Horizon Estimation (MHE) has emerged as an
effective option to state and parameter estimation of con-
strained or non-linear systems. It is found to give su-
perior estimation performance with respect to the Ex-
tended Kalman Filter (EKF), at the cost of increased
computational cost [11]: MHE requires the solution of an
optimization problem at each sampling instant.

MHE can be seen as an extension of the Kalman Filter,
where, beside the current measurement, a window of N
past measurements is explicitly taken into account in the
estimation. This makes the estimation less sensitive to
the choice of the arrival cost, that rarely has an analytic
expression in case of constrained or non-linear systems
[18]. Furthermore, the MHE formulation can naturally and
optimally take constraints into account.

From an algorithmic point of view, MHE is often consid-
ered the dual of Model Predictive Control (MPC), with
the difference that the initial state is free. Therefore, algo-
rithms for MPC have been used to solve MHE problems.
In particular, a forward Riccati recursion (corresponding
to a covariance Kalman filter recursion) has been proposed
in [20; 14] for the solution of the unconstrained MHE sub-
problems. A QR factorization based, square-root forward
Riccati is proposed as routine in an Interior-Point Method
(IPM) for MHE in [12].

The focus of the current paper is on the computational per-
formance of algorithms and implementations, rather than
the control or estimation performance. More precisely, the
focus is on the development of a fast solver for the equality-
constrained linear MHE problem, specially tailored to
small-scale problems. This solver is embedded in an algo-
rithmic framework for non-linear MHE (presented in [15]
and implemented using automatic code generation in [6])
and used to solve in real-time the QPs arising in equality-

constrained non-linear MHE problems. The real-world test
problem in Section 5.2 falls into this class of problems.
Furthermore, the developed solver can be easily embedded
as a routine into an IPM to solve inequality-constrained
MHE problems, similarly to [9] for the MPC problem case.
In an IPM, a solver for the equality-constrained MHE
problem is used to compute the Newton direction, that is
the most computationally expensive part of the algorithm.
Hence the importance of a solver for this class of problems.

The focus on small-scale problems has important conse-
quences on algorithmic and implementation choices. In
case of small-scale dense problems (with dense meaning
MPC and MHE problems where the dynamic system
matrices are dense), solvers based on tailored recursions
are much faster than general-purpose direct sparse solvers
(see e.g. [7] for a comparison of a Riccati recursion based
solver to PARDISO and MA57 direct sparse solves in
the unconstrained MPC problem case). The performance
gap suggests that direct sparse solvers may become com-
petitive only for very sparse problems. In case of large-
scale and sparse solvers, direct sparse solvers have been
successfully applied to the MHE problem [23]. Further-
more, the focus on small-scale problems reduces the issues
related to the numerical stability of the recursion schemes.
It is well known that the Riccati recursion can be seen
as a special stage-wise factorization of the KKT matrix
of the unconstrained MPC problem. The factorization of
different permutations of the KKT matrix can have better
accuracy properties, especially in case of ill-conditioned
problems.

In this paper, we study the applicability to the MHE
problem of the efficient implementation techniques pro-
posed in [9; 8] for the MPC problem, with special focus
on small-scale performance. In particular, one of the key
ingredients to obtain solvers giving high-performance for
small matrices is the merging of linear algebra routines
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successfully applied to the MHE problem [23]. Further-
more, the focus on small-scale problems reduces the issues
related to the numerical stability of the recursion schemes.
It is well known that the Riccati recursion can be seen
as a special stage-wise factorization of the KKT matrix
of the unconstrained MPC problem. The factorization of
different permutations of the KKT matrix can have better
accuracy properties, especially in case of ill-conditioned
problems.

In this paper, we study the applicability to the MHE
problem of the efficient implementation techniques pro-
posed in [9; 8] for the MPC problem, with special focus
on small-scale performance. In particular, one of the key
ingredients to obtain solvers giving high-performance for
small matrices is the merging of linear algebra routines
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Moving Horizon Estimation (MHE) has emerged as an
effective option to state and parameter estimation of con-
strained or non-linear systems. It is found to give su-
perior estimation performance with respect to the Ex-
tended Kalman Filter (EKF), at the cost of increased
computational cost [11]: MHE requires the solution of an
optimization problem at each sampling instant.

MHE can be seen as an extension of the Kalman Filter,
where, beside the current measurement, a window of N
past measurements is explicitly taken into account in the
estimation. This makes the estimation less sensitive to
the choice of the arrival cost, that rarely has an analytic
expression in case of constrained or non-linear systems
[18]. Furthermore, the MHE formulation can naturally and
optimally take constraints into account.

From an algorithmic point of view, MHE is often consid-
ered the dual of Model Predictive Control (MPC), with
the difference that the initial state is free. Therefore, algo-
rithms for MPC have been used to solve MHE problems.
In particular, a forward Riccati recursion (corresponding
to a covariance Kalman filter recursion) has been proposed
in [20; 14] for the solution of the unconstrained MHE sub-
problems. A QR factorization based, square-root forward
Riccati is proposed as routine in an Interior-Point Method
(IPM) for MHE in [12].

The focus of the current paper is on the computational per-
formance of algorithms and implementations, rather than
the control or estimation performance. More precisely, the
focus is on the development of a fast solver for the equality-
constrained linear MHE problem, specially tailored to
small-scale problems. This solver is embedded in an algo-
rithmic framework for non-linear MHE (presented in [15]
and implemented using automatic code generation in [6])
and used to solve in real-time the QPs arising in equality-

constrained non-linear MHE problems. The real-world test
problem in Section 5.2 falls into this class of problems.
Furthermore, the developed solver can be easily embedded
as a routine into an IPM to solve inequality-constrained
MHE problems, similarly to [9] for the MPC problem case.
In an IPM, a solver for the equality-constrained MHE
problem is used to compute the Newton direction, that is
the most computationally expensive part of the algorithm.
Hence the importance of a solver for this class of problems.

The focus on small-scale problems has important conse-
quences on algorithmic and implementation choices. In
case of small-scale dense problems (with dense meaning
MPC and MHE problems where the dynamic system
matrices are dense), solvers based on tailored recursions
are much faster than general-purpose direct sparse solvers
(see e.g. [7] for a comparison of a Riccati recursion based
solver to PARDISO and MA57 direct sparse solves in
the unconstrained MPC problem case). The performance
gap suggests that direct sparse solvers may become com-
petitive only for very sparse problems. In case of large-
scale and sparse solvers, direct sparse solvers have been
successfully applied to the MHE problem [23]. Further-
more, the focus on small-scale problems reduces the issues
related to the numerical stability of the recursion schemes.
It is well known that the Riccati recursion can be seen
as a special stage-wise factorization of the KKT matrix
of the unconstrained MPC problem. The factorization of
different permutations of the KKT matrix can have better
accuracy properties, especially in case of ill-conditioned
problems.

In this paper, we study the applicability to the MHE
problem of the efficient implementation techniques pro-
posed in [9; 8] for the MPC problem, with special focus
on small-scale performance. In particular, one of the key
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and implemented using automatic code generation in [6])
and used to solve in real-time the QPs arising in equality-
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Furthermore, the developed solver can be easily embedded
as a routine into an IPM to solve inequality-constrained
MHE problems, similarly to [9] for the MPC problem case.
In an IPM, a solver for the equality-constrained MHE
problem is used to compute the Newton direction, that is
the most computationally expensive part of the algorithm.
Hence the importance of a solver for this class of problems.

The focus on small-scale problems has important conse-
quences on algorithmic and implementation choices. In
case of small-scale dense problems (with dense meaning
MPC and MHE problems where the dynamic system
matrices are dense), solvers based on tailored recursions
are much faster than general-purpose direct sparse solvers
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focus is on the development of a fast solver for the equality-
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and implemented using automatic code generation in [6])
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MHE problems, similarly to [9] for the MPC problem case.
In an IPM, a solver for the equality-constrained MHE
problem is used to compute the Newton direction, that is
the most computationally expensive part of the algorithm.
Hence the importance of a solver for this class of problems.

The focus on small-scale problems has important conse-
quences on algorithmic and implementation choices. In
case of small-scale dense problems (with dense meaning
MPC and MHE problems where the dynamic system
matrices are dense), solvers based on tailored recursions
are much faster than general-purpose direct sparse solvers
(see e.g. [7] for a comparison of a Riccati recursion based
solver to PARDISO and MA57 direct sparse solves in
the unconstrained MPC problem case). The performance
gap suggests that direct sparse solvers may become com-
petitive only for very sparse problems. In case of large-
scale and sparse solvers, direct sparse solvers have been
successfully applied to the MHE problem [23]. Further-
more, the focus on small-scale problems reduces the issues
related to the numerical stability of the recursion schemes.
It is well known that the Riccati recursion can be seen
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of the unconstrained MPC problem. The factorization of
different permutations of the KKT matrix can have better
accuracy properties, especially in case of ill-conditioned
problems.

In this paper, we study the applicability to the MHE
problem of the efficient implementation techniques pro-
posed in [9; 8] for the MPC problem, with special focus
on small-scale performance. In particular, one of the key
ingredients to obtain solvers giving high-performance for
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[8]. In the case of the MHE problem, the efficient Riccati
recursion implementation proposed in [9] can not be em-
ployed, since the covariance of the state estimates (needed
in the computation of the state estimates in the forward-
backward substitutions) is never computed explicitly, but
instead only implicitly in a Cholesky factorization. There-
fore, in this paper we consider a different recursion for
MHE, corresponding to the information Kalman filter.
This recursion can be effectively implemented using the
proposed techniques, giving noticeable speedups with re-
spect to the use of optimized BLAS (Basic Linear Algebra
Subprograms) and LAPACK (Linear Algebra PACKage)
libraries, as shown in Section 5.1. As a further advan-
tage, the use of this recursion as routine in solvers for
constrained MHE is straightforward, since the inversion
of the information matrices (updated at each iteration of
e.g. an IPM) is efficiently embedded in the recursion itself.
Finally, this recursion can naturally handle state equality
constraints at the last stage, that are useful to provide the
controller with consistent state feedback.

Besides the use of the efficient implementation techniques
proposed in [9; 8], the key difference between the solver
presented in the current paper and the one presented in
[12] regards the choices at the linear algebra level. Given
the generic matrices A and B, the upper Cholesky factor
R of the matrix A + B′ · B can be computed efficiently
using the BLAS rank-k symmetric update routine syrk
and LAPACK Cholesky factorization routine potrf at a
cost of 4

3n
3 flops (if all matrices are of size n). Given the

uniqueness of the Cholesky factorization, R can also be
computed using the LAPACK QR factorization routine

geqrf, as

[
B
A

1/2

]
= Q ·R, at the larger cost of 10

3 n3 flops,

plus possibly 1
3n

3 to compute A
1/2. On the other hand,

the QR factorization based on Householder reflections is
more accurate, since the worse-conditioned normal matrix
B′ ·B is not computed explicitly. The choice between the
two implementations therefore depends on accuracy and
speed requirements.

2. PROBLEM FORMULATION

The aim of the MHE problem is the reconstruction of
the state vectors xk, process noise vectors wk and mea-
surement noise vectors vk, given the plant model, the
measurement vectors yk for a window of past time instants
k = 0, 1, . . . , N and an initial estimate of the state vector

at time 0, x̄0, and relative covariance matrix P̃0, summa-
rizing the contribution given by the measurements prior
to time 0.

The (unconstrained) MHE problem is traditionally written
as the Quadratic Program (QP)

min
xk,wk,vk

∑N
k=0

1
2 (vk − v̄k)

T R̃−1
k (vk − v̄k)+

+
∑N−1

k=0
1
2 ((wk − w̄k)

T Q̃−1
k (wk − w̄k)+

+ 1
2 (x0 − x̄0)

T P̃−1
0 (x0 − x̄0)

s.t. xk+1 = Akxk +Gkwk + fk
yk = Ckxk + vk

In this formulation, the inverse of the matrices in the cost

function has a precise statistical interpretation: R̃k is the

covariance matrix of the measurement noise vector vk, Q̃k

is the covariance matrix of the process noise vector wk.
The vectors v̄k and w̄k are the expected values of the
measurement and process noises.

In this paper, we consider a different formulation of the
MHE problem. Namely, we consider a QP in the form

min
xk,wk

∑N
k=0

1
2x

T
kQkxk + qTk xk+

+
∑N−1

k=0
1
2w

T
k Rkwk+

+rTk wk + 1
2 (x0 − x̄0)

TP0(x0 − x̄0)

(1a)

s.t. xk+1 = Akxk +Gkwk + fk (1b)

yk = Ckxk + vk (1c)

DNxN = dN (1d)

The matrices Qk, Rk and P0 can be interpreted as
information matrices. In general, the matrices Rk are
assumed to be strictly positive definite, and the matrices
Qk and P0 are assumed to be positive semi-definite, with
the matrix Q0 + P0 strictly positive definite.

This formulation reflects the deterministic view of the
MHE as the problem of finding the optimal xk, wk and
vk sequences in a least-square sense, with respect to some
cost function. The penalization of xk in place of vk in
the cost function (1a) is useful to account for QPs in
non-linear MHE. The fact that the matrices in the cost
function appear as not-inverted makes straightforward the
use of a solver for this MHE formulation as a routine
for constrained MHE (e.g., in an IPM these matrices are
updated to take into account constraints). The inversion
does not need to be performed explicitly, but instead
implicitly and embedded in the solution algorithm, as
shown in section 4.1.

In this formulation, we consider additional state equality
constraints (1d) beside the dynamic system equations (1b).
These equality constraints are used to provide consistent
feedback signal to the controller. They are enforced only
at the last stage to avoid Linear Independence Constraint
Qualification (LICQ) problems.

The size of problem (1) is defined by the quantities: nx

(state vector size), nw (process noise vector size), nd

(number of state equality constraints on the last stage),
N (horizon lenght).

3. STAGE-WISE FACTORIZATION OF THE KKT
MATRIX

The MHE problem (1) is an equality constrained QP with
a special structure. For N = 2, the solution is obtained
solving the KKT (Karush-Kuhn-Tucker) system



E0 AT
0

R0 GT
0

A0 G0 −I
−I Q1 AT

1

R1 GT
1

A1 G1 −I
−I Q2 DT

2
D2







x0

w0

λ0

x1

w1

λ1

x2

λ2



=




−e0
−r0
−f0
−q1
−r1
−f1
−q2
+d2




(2)

where λk are the Lagrangian multipliers and

E0 = Q0 + P0

e0 = q0 + P0x̄0.

The KKT matrix is symmetric, large and structured. If the
structure is not exploited, it can be factorized using a dense
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LDL factorization using 1
3 ((N − 1)(2nx + nw) + nx + nd)

3

flops. However, the problem structure can be exploited to
greatly reduce this cost computational.

The stage-wise structure of the KKT matrix can be
exploited to factorize it stage-by-stage using a forward
recursion, starting from the first stage. This recursion is
analogue to the Information Filter (IF) formulation of the
Kalman filter proposed in [16]. The recursion can be easily
generalized (at the cost of a modest increase in the solution
time) to handle a cross-term Sk between xk and wk in the
cost function. The top-left corner of the KKT matrix is


E0 AT

0

R0 GT
0

A0 G0 −I
−I Q1






x0

w0

λ0

x1


 =



−e0
−r0
−f0
−q1


 . (3)

If the matrix E0 is invertible, the variable x0 can be
eliminated using the Schur complement of E0, obtaining


R0 GT

0

G0 −A0E
−1
0 A0 −I

−I Q1





w0

λ0

x1


 =




−r0
−f0 +A0E

−1
0 e0

−q1


 .

Similarly, if the matrix R0 is invertible, the variable w0

can be eliminated, obtaining[
−A0E

−1
0 AT

0 −G0R
−1
0 G0 −I

−I Q1

] [
λ0

x1

]
=

=

[
−f0 +A0E

−1
0 e0 +G0R

−1
0 r0

−q1

]
.

Finally, if the matrix P−1
1 = A0E

−1
0 AT

0 + G0R
−1
0 G0 is

invertible, the variable λ0 can be eliminated, obtaining

(Q1 + P1)x1 = −q1 − P1(−f0 +A0E
−1
0 e0 +G0R

−1
0 r0),

that can be rewritten in the more compact form

E1x1 = −e1 (4)

closing the recursion, since now the top-left corner of the
KKT matrix is.


E1 AT

1

R1 GT
1

A1 G1 −I
−I Q2






x1

w1

λ1

x2


 =



−e1
−r1
−f1
−q2


 .

that is in the same form as (3). The recursion can therefore
be repeated at the following stage. At the last stage, we
can distinguish two cases, depending on the presence of
equality constraints on the state vector at the last stage
(1d).

If nd = 0, the last stage looks like

E2x2 = −e2
that, if E2 is invertible, can be easily solved to compute
x2. Notice that the information matrix E2 of the estimate
x2 is available at no extra cost.

If nd > 0, the last stage looks like[
E2 DT

2
D2

] [
x2

λ2

]
=

[
−e2
+d2

]
.

If the matrix E2 is invertible, the variable x2 can be
eliminated using the Schur complement of E2, obtaining

(−D2E
−1
2 DT

2 )λ2 = d2 +D2E
−1
2 e2.

If the matrix D2E
−1
2 DT

2 is invertible, then the value of λ2

can be computed, that in turn gives the value of x2 as

E2x2 = −e2 −DT
2 λ2.

The information matrix of the estimate in the null-space
can be computed as

EZ,2 = Z ′E2Z

where Z is a null-space matrix of D [17].

Notice that the proposed recursion requires the invert-
ibility of the matrices Rk for k = 0, . . . , N − 1, of the
matrices Ek = Qk + Pk for k = 0, . . . , N , of the matrices
P−1
k (and then of the matrices Pk) for k = 1, . . . , N , and

of the matrix DNE−1
N DT

N . However, the matrix P0 can
be singular: in particular, it can be set to 0 if no prior
information is available about the value of the estimate
of x0. Invertibility of Qk for k = 0, . . . , N and full row-
rank of Ak for k = 1, . . . , N − 1 and of DN guarantees the
invertibility of Ek for k = 0, . . . , N , of Pk for k = 1, . . . , N
and of DNE−1

N DT
N .

4. IMPLEMENTATION

In this paper, the efficient implementation techniques
proposed in [9; 8] for the Riccati-based solver for the
unconstrained MPC problem are applied to the MHE
problem (1).

4.1 Algorithm

In the MPC case, the backward Riccati recursion can be
seen as a stage-wise factorization of the KKT matrix,
with the recursion beginning at the last stage [19]. The
key operation in the algorithm presented in [9] is the
computation of Q+AT · P ·A, where Q is a positive semi-
definite matrix. If all matrices A, P and Q have size n,
then the most efficient way to compute this operation is

Q+AT · P · A = Q+AT · (L · LT ) · A =

= Q+ (AT · L) · (AT · L)T
(5)

where L is the lower Cholesky factor of P. Using spe-
cialized BLAS routines, the cost of this operation is 1

3n
3

(potrf) + n3 (trmm) + n3 (syrk) = 7
3n

3 flops.

In the MHE case, in the forward recursion presented in
Section 3 the key operation is the computation of Q+A ·
P−1 · AT , where Q is a positive definite matrix. Despite
the presence of a matrix inversion, this operation can
be computed in the exact same number of flops as the
operation in (5). In fact, the matrix inversion is computed
implicitly, as

Q+A · P−1 · AT = Q+A · (L · LT )−1 · AT =

= Q+ (A · L−T ) · (A · L−T )T
(6)

where again L is the lower Cholesky factor of P. Since
the matrix L is triangular, the operation A · L−T can
be computed efficiently using the routine trsm to solve
a triangular system of linear equations with matrix RHS.
Using specialized BLAS routines, the cost of this operation
is 1

3n
3 (potrf) + n3 (trsm) + n3 (syrk) = 7

3n
3 flops. This

makes the IF-like recursion in Section 3 competitive with
respect to the forward Riccati recursion generally used to
factorize the KKT matrix of the MHE problem.

The algorithm for the factorization of the KKT matrix
(2) is presented in Algorithm 1. The algorithm can be
implemented using standard BLAS and LAPACK rou-
tines: the name of the routines is in the comment to each
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LDL factorization using 1
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=

=
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.
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can be computed, that in turn gives the value of x2 as
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The information matrix of the estimate in the null-space
can be computed as

EZ,2 = Z ′E2Z

where Z is a null-space matrix of D [17].

Notice that the proposed recursion requires the invert-
ibility of the matrices Rk for k = 0, . . . , N − 1, of the
matrices Ek = Qk + Pk for k = 0, . . . , N , of the matrices
P−1
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N . However, the matrix P0 can
be singular: in particular, it can be set to 0 if no prior
information is available about the value of the estimate
of x0. Invertibility of Qk for k = 0, . . . , N and full row-
rank of Ak for k = 1, . . . , N − 1 and of DN guarantees the
invertibility of Ek for k = 0, . . . , N , of Pk for k = 1, . . . , N
and of DNE−1
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4. IMPLEMENTATION

In this paper, the efficient implementation techniques
proposed in [9; 8] for the Riccati-based solver for the
unconstrained MPC problem are applied to the MHE
problem (1).

4.1 Algorithm

In the MPC case, the backward Riccati recursion can be
seen as a stage-wise factorization of the KKT matrix,
with the recursion beginning at the last stage [19]. The
key operation in the algorithm presented in [9] is the
computation of Q+AT · P ·A, where Q is a positive semi-
definite matrix. If all matrices A, P and Q have size n,
then the most efficient way to compute this operation is

Q+AT · P · A = Q+AT · (L · LT ) · A =

= Q+ (AT · L) · (AT · L)T
(5)

where L is the lower Cholesky factor of P. Using spe-
cialized BLAS routines, the cost of this operation is 1

3n
3

(potrf) + n3 (trmm) + n3 (syrk) = 7
3n

3 flops.

In the MHE case, in the forward recursion presented in
Section 3 the key operation is the computation of Q+A ·
P−1 · AT , where Q is a positive definite matrix. Despite
the presence of a matrix inversion, this operation can
be computed in the exact same number of flops as the
operation in (5). In fact, the matrix inversion is computed
implicitly, as

Q+A · P−1 · AT = Q+A · (L · LT )−1 · AT =

= Q+ (A · L−T ) · (A · L−T )T
(6)

where again L is the lower Cholesky factor of P. Since
the matrix L is triangular, the operation A · L−T can
be computed efficiently using the routine trsm to solve
a triangular system of linear equations with matrix RHS.
Using specialized BLAS routines, the cost of this operation
is 1

3n
3 (potrf) + n3 (trsm) + n3 (syrk) = 7

3n
3 flops. This

makes the IF-like recursion in Section 3 competitive with
respect to the forward Riccati recursion generally used to
factorize the KKT matrix of the MHE problem.

The algorithm for the factorization of the KKT matrix
(2) is presented in Algorithm 1. The algorithm can be
implemented using standard BLAS and LAPACK rou-
tines: the name of the routines is in the comment to each
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Algorithm 1 Factorization of the KKT matrix of the
MHE problem (1)

Require:
U0 s.t. P0 = U0 · UT

0

1: for k ← 0, . . . , N − 1 do
2: Ek ← Qk + Uk · UT

k � lauum

3: Le,k ← E
1/2
k � potrf

4: ALe,k ← Ak · L−T
e,k � trsm

5: Lr,k ← R
1/2
k � potrf

6: GLr,k ← Gk · L−T
r,k � trsm

7: Pinv ← ALe,k ·ALT
e,k +GLr,k ·GLT

r,k � syrk

8: Lp ← P
1/2
inv � potrf

9: Uk+1 ← L−T
p � trtri

10: end for
11: EN ← QN + UN · UT

N � lauum

12: Le,N ← E
1/2
N � potrf

13: if nd > 0 then
14: DLe ← DN · L−T

e,N � trsm

15: Pd ← DLe ·DLT
e � syrk

16: Ld ← P
1/2
d � potrf

17: end if

line. The cost of the algorithm is of N( 103 n3
x + n2

xnw +

nxn
2
w + 1

3n
3
w) +

2
3n

3
x + ndn

2
x + n2

dnx + 1
3n

3
d flops. If the

Rk matrices are diagonal, then operations in lines 5 and
6 can be performed in a linear and quadratic number of
flops, respectively. This decreases N(nxn

2
w + 1

3n
3
w) flops

from the complexity of the algorithm, making it linear in
nw. This is advantageous in typical situations with MHE
formulations involving additive process noise.

The algorithm for the solution of the KKT system given
the factorization of the KKT matrix is presented in Algo-
rithm 2. It consists of forward and backward substitutions.
Again, triangular matrices are exploited by means of spe-
cialized routines.

4.2 Merging of linear algebra routines

All linear-algebra routines are implemented using the im-
plementation techniques presented in [9; 8]. In particular,
high-performance kernels for the general matrix-matrix
multiplication routine gemm are used as the backbone of
kernels for all matrix-matrix operations and factorizations.
These kernels are optimized for a number of architectures,
and can attain a large fraction of the floating-point (FP)
peak performance. The design focus is on performance for
small-scale matrices, but the performance scales optimally
for matrices of size up to a few hundreds, large enough for
embedded MPC and MHE needs.

In the optimization of solvers for small scale problems, it is
beneficial to merge linear algebra routines when possible,
as shown in the Riccati recursion for unconstrained MPC
problems in [9]. The main advantage is the reduction in
the number of calls to linear algebra kernels. In fact, in
our implementation linear algebra kernels are blocked for
register size, and therefore they compute a sub-matrix of
the result matrix with a single kernel call. If the size of
the result matrix is not a multiple of the optimal kernel

Algorithm 2 Forward-backward substitution of the KKT
system of the MHE problem (1)

Require:
Uk+1, Le,k, ALe,k, Lr,k, GLr,k, k = 0, . . . , N − 1
Le,N , DLe, Ld

1: for k ← 0, . . . , N − 1 do
2: ek ← qk + Uk · UT

k · x̄k � trmv

3: x̄k+1 ← −f0 +ALe,k · L−1
e,k · ek � gemv & trsv

4: x̄k+1 ← x̄k+1 +GLr,k · L−1
r,k · rk � gemv & trsv

5: end for
6: eN ← qN + UN · UT

N · x̄N � trmv
7: if nd = 0 then
8: xN ← −L−T

e,N · L−1
e,N · eN � trsv

9: else
10: λN ← dN +DLe · L−1

e,N · eN � gemv & trsv

11: λN ← −L−T
d · L−1

d · λN � trsv

12: xN ← −L−T
e,N · (eN +DLT

e · λN ) � gemv & trsv
13: end if
14: for k ← N − 1, . . . , 0 do
15: λk ← Uk · UT

k · (x̄k+1 − xk+1) � trmv

16: xk ← L−T
e,k · (−ek −ALT

e,k · λk) � gemv & trsv

17: wk ← L−T
r,k · (−rk −GLT

r,k · λk) � gemv & trsv
18: end for

size, there is a loss in performance: therefore merging
small matrices into larger ones increases the likelihood of
using the optimal kernel size. Furthermore, the reduction
in the number of kernel calls reduces the corresponding
overhead, and improves memory reuse. All these aspects
are especially beneficial for small size problems.

As the problem size increases, however, the performance
advantages of merging linear algebra routines become
smaller, since the kernels call overhead gets amortized over
a larger number of flops. On the contrary, numerical tests
show that merging linear algebra routines often slightly
decreases performance for large problems. This is due to
the fact that merged routines operate on larger amounts
of data than un-merged routines, and therefore cache size
is exceeded for smaller problem sizes. The performance
crossover point can be easily determined by numerical
simulation, and it can be used as threshold to switch
between merged and un-merged linear algebra routines.

In order to motivate the use of routine merging, let us
consider a 3 × 3 blocked version of the operation L =
(Q + A · A′)

1/2 in (7). The last line contains the explicit
expression of the lower Cholesky factor L: the expression
for the Lij block is in position ij in the matrix. We
can see immmediately that the products Ai · AT

j (used
to compute the matrix to be factorized) are in the same
form as the correction terms −Lik · LT

jk in the Cholesky

factorization (a part the change of sign). This means that
the Lmatrix can be computed sweeping it once block-wise:
each block is initialized with Qij , then updated with Ai ·
AT

j and corrected with the products −Lik ·LT
jk, and finally

Cholesky-factorized (diagonal blocks) or solved using a
triangular matrix (off-diagonal blocks). So, diagonal blocks
are computed using the merged kernel syrk potrf, while
the off-diagonal blocks are computed using the merged
kernel gemm trsm.
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L =

[L00 ∗ ∗
L10 L11 ∗
L20 L21 L22

]
=

([Q00 ∗ ∗
Q10 Q11 ∗
Q20 Q21 Q22

]
+

[A0

A1

A2

]
·
[
AT

0 AT
1 AT

2

])
1/2

=

=





Q00 +A0 · AT

0 ∗ ∗
Q10 +A1 · AT

0 Q11 +A1 · AT
1 ∗

Q20 +A2 · AT
0 Q21 +A2 · AT

1 Q22 +A2 · 2T0






1/2

=

=




(Q00 +A0 · AT
0 )

1/2 ∗ ∗
(Q10 +A1 · AT

0 )L−T
00 (Q11 +A1 · AT

1 − L10 · LT
10)

1/2 ∗
(Q20 +A2 · AT

0 )L−T
00 (Q21 +A2 · AT

1 − L20 · LT
10)L−T

11 (Q22 +A2 · AT
2 − L20 · LT

20 − L21 · LT
21)

1/2




(7)

Having this in mind, lines 5, 6 of Algorithm 1 can be
trivially merged: in fact, the trsm kernel is already used in-
ternally in the Cholesky factorization routine. This means
that the operations in lines 5, 6 can be computed using a
Cholesky-like factorizatin routine operating on rectangular
matrices, as [

Lr,k

GLr

]
= rect potrf

([
Rk

Gk

])
.

Lines 2, 3, 4 of Algorithm 1 perform a similar operation
to the one in (7), with the difference that the A matrix is
upper triangular and the Q and L matrices are rectangu-
lar. This means that the operations in lineas 2, 3, 4 can be
computed as[

Le,k

ALe

]
= rect potrf

([
Qk

Ak

]
+

[
Uk

0

]
·
[
UT
k 0

])
,

where the product Uk ·UT
k takes into account the fact that

Uk is upper-triangular.

Notice that, if a cross term Sk is present in the cost
function, then operations in lines 2, 3, 4, 5, 6, plus the
additional operations related to Sk can be merged in the
single routine[
Le,k ∗
Ls,k Lr,k

ALe GLr

]
= rect potrf

([
Qk ∗
Sk Rk

Ak Gk

]
+

[
Uk

0
0

]
·
[
UT
k 0

])
.

Lines 7, 8, 9 of Algorithm 1 can be merged as well.
Lines 7, 8 implement the exact same operation in (7).
The triangular matrix inversion and transposition in line
9 can be computed easily by considering the analogy of
this operation with the trsm operation embedded in the
Cholesky factorization. All operations in lines 7, 8, 9 can
therefore be computed as[

Lp

Uk+1

]
= rect potrf

([
0
I

]
+

[
ALe GLr

0 0

]
·
[
ALT

e

GLT
r

])
,

and taking into account the fact that Uk+1 is upper
triangular.

Similar arguments apply to the operations in the remain-
ing lines 11, 12, 14, 15, 16 of Algorithm 1, and similarly
the merged routine gemv trsv can be used at lines 3, 4,
10, 12, 16, 17 of Algorithm 2.

5. NUMERICAL TESTS

5.1 Performance tests

The results of the tests reported in this section assess
the performance of the proposed MHE solver when imple-
mented using different libraries for linear algebra. Namely,

the implementation using the custom and merged linear
algebra routines presented in section 4.2 (that is part of
the HPMPC toolbox [1]) is compared against two open
source BLAS libraries: OpenBLAS and the Netlib BLAS.

OpenBLAS [3] is an highly optimized BLAS implementa-
tion, providing code tuned for a number of architectures.
It is a fork of the successful (and now unsupported) Go-
toBLAS [10], and it supports also the most recent archi-
tectures. It makes use of a complex blocking strategy to
optimize the use of caches and TLBs (Translation Looka-
side Buffer), and key routines are written in assembly
using architecture-specific instructions. Its performance is
competitive against vendor BLAS. The version tested in
this paper is the 0.2.14.

Netlib BLAS [2] is the reference BLAS. It is written in
Fortran code and it is generic, not targeting any feature
of specific architectures. It does not perform any blocking
strategy, and level-3 routines are written as simple triple
loops. The performance is usually poor for large matrices.

The test machine is a laptop equipped with the Intel Core
i5 2410M processor, running at a maximum frequency of
2.9 GHz. The operating system is Linux Ubuntu 14.04,
with gcc 4.8.2 compiler. The processor has 2 cores and 4
threads (however, only single-thread code is considered in
our tests). The processor implements the Sandy Bridge
architecture, supporting the AVX instruction set (that
operates on 256-bit vector register, each holding 4 double
or 8 single precision FP numbers). The Sandy Bridge
core can perform one vector multiplication and one vector
addition each clock cycle, and therefore in double precision
it has a FP peak performance of 8 flops per cycle (that at
2.9 GHz gives 23.2 Gflops).

In Fig. 1 there is the result of a performance test. On
the small scale (Fig. 1a), the performance of the HPMPC
version is much better than both BLAS versions, and it
can attain a large fraction of the FP peak performance
for problems with tens of states. On the medium scale
(Fig. 1b), the performance of HPMPC is steady at around
75-80% of FP peak, while the performance of the Netlib
BLAS version is steady at around 15% of FP peak. On
the other hand, the performance of OpenBLAS increases
with the problem size. For even larger problems, the
performance of unblocked implementations (HPMPC and
Netlib BLAS) would decrease, while the performance of
the OpenBLAS implementation would be steadily close to
FP peak. Such large problem sizes are however of limited
interest in embedded MHE, and therefore the HPMPC
implementation gives the best performance for relevant
problem sizes.
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Having this in mind, lines 5, 6 of Algorithm 1 can be
trivially merged: in fact, the trsm kernel is already used in-
ternally in the Cholesky factorization routine. This means
that the operations in lines 5, 6 can be computed using a
Cholesky-like factorizatin routine operating on rectangular
matrices, as [

Lr,k

GLr

]
= rect potrf
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.

Lines 2, 3, 4 of Algorithm 1 perform a similar operation
to the one in (7), with the difference that the A matrix is
upper triangular and the Q and L matrices are rectangu-
lar. This means that the operations in lineas 2, 3, 4 can be
computed as[
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where the product Uk ·UT
k takes into account the fact that
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Notice that, if a cross term Sk is present in the cost
function, then operations in lines 2, 3, 4, 5, 6, plus the
additional operations related to Sk can be merged in the
single routine[
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Lines 7, 8, 9 of Algorithm 1 can be merged as well.
Lines 7, 8 implement the exact same operation in (7).
The triangular matrix inversion and transposition in line
9 can be computed easily by considering the analogy of
this operation with the trsm operation embedded in the
Cholesky factorization. All operations in lines 7, 8, 9 can
therefore be computed as[
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= rect potrf

([
0
I

]
+

[
ALe GLr

0 0

]
·
[
ALT

e

GLT
r

])
,

and taking into account the fact that Uk+1 is upper
triangular.

Similar arguments apply to the operations in the remain-
ing lines 11, 12, 14, 15, 16 of Algorithm 1, and similarly
the merged routine gemv trsv can be used at lines 3, 4,
10, 12, 16, 17 of Algorithm 2.

5. NUMERICAL TESTS

5.1 Performance tests

The results of the tests reported in this section assess
the performance of the proposed MHE solver when imple-
mented using different libraries for linear algebra. Namely,

the implementation using the custom and merged linear
algebra routines presented in section 4.2 (that is part of
the HPMPC toolbox [1]) is compared against two open
source BLAS libraries: OpenBLAS and the Netlib BLAS.

OpenBLAS [3] is an highly optimized BLAS implementa-
tion, providing code tuned for a number of architectures.
It is a fork of the successful (and now unsupported) Go-
toBLAS [10], and it supports also the most recent archi-
tectures. It makes use of a complex blocking strategy to
optimize the use of caches and TLBs (Translation Looka-
side Buffer), and key routines are written in assembly
using architecture-specific instructions. Its performance is
competitive against vendor BLAS. The version tested in
this paper is the 0.2.14.

Netlib BLAS [2] is the reference BLAS. It is written in
Fortran code and it is generic, not targeting any feature
of specific architectures. It does not perform any blocking
strategy, and level-3 routines are written as simple triple
loops. The performance is usually poor for large matrices.

The test machine is a laptop equipped with the Intel Core
i5 2410M processor, running at a maximum frequency of
2.9 GHz. The operating system is Linux Ubuntu 14.04,
with gcc 4.8.2 compiler. The processor has 2 cores and 4
threads (however, only single-thread code is considered in
our tests). The processor implements the Sandy Bridge
architecture, supporting the AVX instruction set (that
operates on 256-bit vector register, each holding 4 double
or 8 single precision FP numbers). The Sandy Bridge
core can perform one vector multiplication and one vector
addition each clock cycle, and therefore in double precision
it has a FP peak performance of 8 flops per cycle (that at
2.9 GHz gives 23.2 Gflops).

In Fig. 1 there is the result of a performance test. On
the small scale (Fig. 1a), the performance of the HPMPC
version is much better than both BLAS versions, and it
can attain a large fraction of the FP peak performance
for problems with tens of states. On the medium scale
(Fig. 1b), the performance of HPMPC is steady at around
75-80% of FP peak, while the performance of the Netlib
BLAS version is steady at around 15% of FP peak. On
the other hand, the performance of OpenBLAS increases
with the problem size. For even larger problems, the
performance of unblocked implementations (HPMPC and
Netlib BLAS) would decrease, while the performance of
the OpenBLAS implementation would be steadily close to
FP peak. Such large problem sizes are however of limited
interest in embedded MHE, and therefore the HPMPC
implementation gives the best performance for relevant
problem sizes.
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Fig. 1. Performance test for the proposed MHE KKT
matrix factorization algorithm, assuming Sk = 0 and
Rk dense. The performance in Gflops is represented as
a function of nx = nw, while N = 10 and nd = 0 are
fixed. Top of the picture is the FP peak performance
of the processor.

In Fig. 2 there are the running times for the factorization
Algorithm 1 (Fig. 2a) and for the forward-backward sub-
stitution Algorithm 2 (Fig. 2b), in the three implemen-
tations using HPMPC, OpenBLAS and Netlib. In both
the factorization and the substitution cases, the HPMPC
implementation has a big advantage for small problems. In
the factorization case, HPMPC retains the performance
advantage over the Netlib BLAS version also for larger
problems, while the the OpenBLAS version reduces the
performance gap. In the substitution case, for larger prob-
lems the performance of the three implementations gets
very similar. This is due to the fact that Algorithm 2
is implemented using level 2 BLAS, where matrices are
streamed and there is no reuse in matrix elements. There-
fore for large problems the substitution time is dominated
by the cost of streaming matrices from main memory, that
is the same for all implementations.

5.2 Nonlinear MHE and MPC in closed loop: real-time
numerical simulations

In the following we present the strength of the presented
solver for MHE for state estimation and control of a
nonlinear system. Namely, we present results of closed-loop
real-time simulations of rotational start-up for an airborne
wind energy system [22]. The system is modeled as a
differential-algebraic equation (DAE), with 27 differential
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(a) Factorization time.
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(b) Substitution time.

Fig. 2. Execution time for the proposed MHE KKT matrix
factorization algorithm and forward-backward substi-
tution algorithm, assuming Sk = 0 and Rk dense. The
execution time in seconds is represented as a function
of nx = nw, while N = 10 and nd = 0 are fixed.

states, 1 algebraic state and 4 control inputs. To solve the
nonlinear MPC (NMPC) and nonlinear MHE (NMHE)
formulations we use the ACADO Code Generation Tool
(CGT) [13] that implements the real-time iteration (RTI)
scheme [4; 15]. The QP underlying the NMHE solver is
solved using the implementation presented in Section 4,
while the QP underlying the NMPC solver is handled with
an efficient implementation from [9].

An augmented model used for the NMHE, one that in-
cludes a disturbance model, has nx = 33 states and nw = 6
disturbance inputs. Consistency conditions of the DAE
model yield nd = 9 equality constraints, while the number
of estimation intervals is N = 15. On the other hand, the
NMPC formulation hasN = 50 intervals. For more details,
we refer to [21] and references therein.

The simulation results are reported in Figure 3. A control
interval begins with a feedback step of the RTI scheme
for the NMHE (MHE FBK), after which the current state
estimate is obtained. Afterwards, the NMPC feedback step
is triggered (MPC FBK) for calculation of optimal control
inputs. In essence, the execution times of the feedback
steps amount to solutions of underlying QPs. After each
feedback step corresponding preparation step is executed
(MHE PREP and MPC PREP), which includes model
integration, sensitivity generation and linearization of the
objective and the constraints. In this setting both NMHE
and NMPC run on the separate CPU cores.
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Fig. 3. Feedback and preparation step times for the MHE
and MPC using the ACADO-HPMPC solver in the
rotational start-up of an airbone wind energy system.

The solution times for the feedback step of the NMHE
are always less than 500 µs, and the maximum feedback
times for the NMPC are always less than 3 ms. In total,
the maximum feedback delay is always less than 3.5 ms,
far below the control period of 40 ms. Note that in [21]
qpOASES [5] solver is used to solve the QPs underlying
the same NMHE formulation. In that case the feedback
step of the NMHE alone requires about 3.5 ms, i.e. nearly
seven times more than with the MHE QP solver proposed
in this paper.

6. CONCLUSION

In this paper, we presented an information Kalman filter
recursion for the MHE problem, that can be easily used as
routine in constrained and non-linear MHE. Furthermore
we proposed efficient implementation techniques tailored
to this recursion form, with special focus on small-scale
performance. The resulting solver is shown to give no-
ticeable performance improvements when compared to the
same algorithm implemented using optimized BLAS and
LAPACK libraries. Furthermore, the solver has been used
to solve QPs underlying a nonlinear MHE formulation
and provides state estimates necessary for control of a
challenging non-linear system in less than 500 µs.
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Bock. A real-time algorithm for moving horizon state
and parameter estimation. Computers & Chemical
Engineering, 1(35), 2011.

[16] G. O. Mutambara. Decentralized estimation and
control for multi-sensor systems. CRC press, 1998.

[17] J. Nocedal and S. J. Wright. Numerical Optimization.
Springer, New York, 2nd edition, 2006.

[18] C. V. Rao, J. B. Rawlings, and Q. Mayne. Con-
strained state estimation for nonlinear discrete-time
systems: Stability and moving horizon approxima-
tions. IEEE Transactions on Automatic Control,
48(2), 2003.

[19] M. C. Steinbach. A Structured Interior-Point SQP
Method for Nonlinear Optimal Control Problems. In
Computational Optimal Control. Springer, 1994.

[20] J. Tenny, M. and J. B. Rawlings. Efficient moving
horizon estimation and nonlinear model predictive
control. In American Control Conference, 2002.

[21] M. Vukov. Embedded Model Predictive Control and
Moving Horizon Estimation for Mechatronics Appli-
cations. PhD thesis, KU Leuven, April 2015.

[22] M. Zanon, S. Gros, and M. Diehl. Rotational Start-
up of Tethered Airplanes Based on Nonlinear MPC
and MHE. In Proceedings of the European Control
Conference, 2013.

[23] V.M. Zavala and L.T. Biegler. Nonlinear program-
ming strategies for state estimation and model predic-
tive control. In Nonlinear Model Predictive Control,
pages 419–432. Springer Berlin Heidelberg, 2009.

2015 IFAC NMPC
September 17-20, 2015. Seville, Spain

86


