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Abstract 

The determination of hydrogen (H2) concentration together with the products of microbial 

reduction reactions in a trichloroethylene dechlorinating system is conducted to delineate the 

ongoing predominant terminal electron accepting processes (TEAP). Formate was used as 

electron donor and synthetic Fe minerals or environmental samples were used as the 

substrata. Iron(III) and Mn(IV) reduction limited microbial dechlorination by the mixed 

anaerobic culture by decreasing the level of H2 in the system. The H2 measurements indicated 

that the H2 concentration at which different TEAPs occur can overlap and thus these TEAPs 

can therefore occur concurrently rather than exclusively. Difference in Fe(III) bioavailability 

and hence, Fe(III) reduction partially explain this wide range. The distinction between 

dechlorination and other microbial reduction processes based on H2 threshold values is not 

feasible under such conditions, though there appears to be a relation between the rates of H2 

consuming process and the observed H2 level.  

 

 

Keywords: Trichloroethylene, Fe reduction, Reductive dechlorination, Manganese reduction, 

Hydrogen concentration. 

Brief: Hydrogen determination in a laboratory batch system under different redox conditions 

have been used to assess dynamics of reductive dechlorination 
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1. Introduction 

Trichloroethylene (TCE), a chlorinated hydrocarbon compound, has been widely used for 

metal cleaning and degreasing industries in the past and is frequently detected as a 

groundwater contaminant. Microbial transformation of TCE into cis-dichloroethylene (cis-

DCE) and vinyl chloride (VC) and finally into the environmentally benign product ethene 

occurs in anaerobic environments and is termed reductive dechlorination (Bradley, 2003; 

Maymo-Gatell et al., 1997). Different organic compounds can undergo fermentation reactions 

and produce H2 or can directly serve as electron donor for TCE dechlorination. The efficacy 

of microbial reductive dechlorination in anaerobic environments is determined by various 

factors such as the presence of specific dechlorinating microorganisms, availability of solid 

and aqueous electron acceptors as well as electron donor and the actual chlorinated ethenes 

present (Chambon et al., 2013). 

The dechlorination reaction depends on the hydrogen (H2) concentration present in the 

system and different terminal electron accepting processes (TEAP) tend to occur at different 

H2 concentrations. Hydrogen threshold concentrations for different metabolic processes 

reported in previous experimental studies under a range of conditions are <0.1 nM for nitrate 

reduction; < 0.5 nM for Mn(IV) reduction; 0.1-0.8 nM during iron(III) reduction; 0.6-0.9 nM 

for TCE reduction, 0.1-2.5 nM for cis-DCE reduction and 2-24 nM for VC reduction; 1-15 

nM H2 for sulfate reduction, 5-100 nM and > 354 nM during methanogenesis and 

acetogenesis, respectively (Heimann et al., 2009; Löffler et al., 1999; Lovley and Goodwin, 

1988; Lu et al., 2001; Luijten et al., 2004; Mazur et al., 2003; Yang and McCarty, 1998). 

These H2 ranges suggest that TCE reduction may take place along with Fe(III) reduction 

followed by sulfate reduction. Sulfate and Fe(III) present in the aquifer indeed have a 

detrimental effect on the success of reductive dechlorination of TCE, since it may stall at 

DCE or VC as final products. Thus the dechlorinators may have to compete for the available 

electron equivalents with these alternate terminal electron accepting processes such as Fe(III) 

and sulfate reduction. It should be noted that these threshold concentrations should be applied 

for situations of limited electron donors. Hoehler et al. (1998) suggested that for some 

processes, the H2 concentration is influenced by the environmental conditions such as 

reactant and product concentrations as well as temperature and pH conditions i.e., the 

thermodynamics of the processes. The partial equilibrium approach states that the 

fermentation reaction determines the overall rate while TEAPs are close to their equilibrium. 

This approach explains the H2 concentration in natural systems and the occurrence of 

concomitant TEAPs (Jakobsen et al., 1998; Postma and Jakobsen, 1996).  

It has been shown that reductive dechlorination of TCE does occur under Fe(III) reducing 

conditions (Azizian et al., 2008; Paul et al., 2013; Wei and Finneran, 2011) while a few other 

studies indicate that concomitant Fe(III)-reduction poses a competitive inhibition to the 

dechlorination process, especially on cis-DCE and VC dechlorination (Dupont et al., 2003; 

Evans and Koenigsberg, 2001; Paul et al., 2013; Yager et al., 1997). Different approaches 

have been used to assess the redox conditions during transformation of TCE such as the 

concentration of either the parent compound or electron donor or of reduced species such as 

Fe
2+

, HS
-
 and CH4 (Damgaard et al., 2013; Hunkeler et al., 2011). As described above, H2 

concentrations can also be used as an indicator of the dominant TEAP in natural or 

contaminated groundwater systems (Chapelle et al., 1996; Lovley and Goodwin, 1988).  

From our previous study using different synthetic Fe minerals, it has been shown that the 

competition between TCE reduction and Fe reduction is influenced by Fe mineralogy (Paul et 

al., 2013). In that study, the characteristic H2 concentration at which both processes are 

occurring have not been measured. Such measurements, combined with a detection of 



dechlorination rate, formate oxidation and iron reduction processes, can lead to a better 

prediction of ongoing TEAPs and requirements of electron equivalents. The objective of this 

study is to determine critical H2 concentrations at which TCE reduction and Fe(III) reduction 

reaction occurs depending on iron mineralogy. We have used synthetic Fe minerals as well as 

subsurface materials or subsoils containing natural Fe oxides; the TCE dechlorination was 

measured in a controlled system by using a constant medium composition and an initially 

identical microbial inoculum.  

2. Materials and methods  

2.1 Experimental set up 

2.1.1 Chemicals:  

The following chemicals were purchased in liquid form: trichloroethylene (GC grade 99.5 

±%,) and cis-dichloroethene (97%, Acros).Vinyl chloride was purchased from Gerling, Holz 

& Co. (99.97%), and ethene was obtained as pure gas from Mikrolab, Aarhus. Formate as a 

sodium salt (Sigma Chemical Company, USA; 99% purity) was used as the sole added 

electron donor. 

2.1.2 Samples and Fe characterization 

The synthetic iron(III) oxide phases used in this study (Table 1) included a 2-line ferrihydrite 

suspension (HFO), 2-line ferrihydrite powder, 6-line ferrihydrite powder, goethite and 

lepidocrocite. These were synthesized according to Schwertmann and Cornell (2000) and 

coated or mixed on to fine quartz sand (>125 mm, 0.0%organic matter) to have a final total 

Fe(III) concentration as given in Table 1. 

The sand contained a background Fe concentration of 0.90 mmol Fe kg
-1

 sand. Two-line 

ferrihydrite suspension, 2-line ferrihydrite powder and 6-line ferrihydrite were directly mixed 

to the sand while goethite and lepidocrocite were coated onto the sand according to Paul et al. 

(2013). 



The sand contained a background Fe concentration of 0.90 mmol Fe kg
-1

 sand. Two-line 

ferrihydrite suspension, 2-line ferrihydrite powder and 6-line ferrihydrite were directly mixed 

to the sand while goethite and lepidocrocite were coated onto the sand according to Paul et al. 

(2013). The specific surface area of HFO, 2-line ferrihydrite powder, 6-line ferrihydrite 

powder, lepidocrocite and goethite was 250, 214, 209, 61 and 37 m
2
g

-1
, respectively as 

determined by multipoint BET (Brunauer, Emmett and Teller) analysis (Paul e al., 2013). The 

solubility of these iron oxides was also determined by acidic oxalate solution extraction at 

room temperature in dark condition for 2 h at a solid: liquid ratio (S:L) of 1:50. The poorly 

crystalline iron oxide, HFO was completely dissolved in the solution while around half of the 

powder ferrihydrite forms (53% and 51% for 2-line and 6-line ferrihydrite, respectively) were 

dissolved in oxalate solution. Lepidocrocite was dissolved up to 62% of the total amount 

added while the crystalline oxide, goethite was dissolved only up to 4%. 

The sediment samples were homogenized prior to the addition to the bottles. Four previously 

characterized Fe(III) bearing subsurface materials from well described Danish field sites such 

as Grindsted (Heron et al., 1998),Vejen (Bjerg and Christensen, 1992; Heron et al., 1994; 

Pedersen et al., 1991), Farum (Andersen and Vikjær  Lassen, 1990) and Vadsbyvej 

(Damgaard et al., 2013) were also included. It has been shown in previous studies that the 

predominant terminal electron acceptors at the sampling location in the Grindsted landfill 

leachate plume were Fe(III), and in addition Mn reduction also appears to be taking place in 

more oxidized parts of the plume (Albrechtsen et al., 1999; Bjerg et al., 1995). At Vadsbyvej 

Fe(III)-reduction was the prevailing redox process (Damgaard et al., 2013), while the redox 

conditions at Vejen and Farum were aerobic (Andersen and Vikjær  Lassen, 1990; Pedersen 

et al., 1991). The sediment samples used were dry samples stored for several years to months 

at room temperature prior to incubation. 

Total sediment contents of Fe and Mn were determined for the synthetic Fe(III) oxide and 

natural sediment samples by boiling aqua regia extraction (HNO3: HCl, 1:3) for 4 h at 140 
o
C 



and 5N HCl extraction. In addition, the reduced Fe fraction (before and after microbial 

incubation) was determined by anaerobic acid extractions using 1 g subsamples of synthetic 

and environmental samples in 10 mL of extractants i.e., 0.5N HCl extractions for 1 h and 5N 

HCl extractions for 72 h in parallel at room temperature and at 30 rpm (Heron et al., 1994) 

and followed by a ferrozine assay (Viollier et al., 2000). The concentration of Fe(III) 

extracted by 5N HCl and aqua regia digestion were very similar (Table 1) for the synthetic Fe 

oxides. The 5N HCl extraction constituted only 60-80% of total Fe content (determined by 

aqua regia extraction) in environmental samples implying that 5N HCl extraction cannot be 

used as a total Fe extraction method. The sediment samples from Grindsted and Vadsbyvej 

contained the highest quantities of Fe. The results of chemical extraction (Table 1) shows the 

presence of Fe(III) as well as a considerable amount of Mn and consequently both can act as 

terminal electron acceptors along with TCE.  

 

2.2 Laboratory batch experiment 

The synthetic and environmental samples (28 g dry weight ) were suspended in 20 mL of 

sterile anaerobic MOPS buffered (10 mM, pH 7.2) anaerobic medium (details given in 

supplementary information) contained in 118 mL serum bottles (Wheaton Industries, 

Millville, NJ). Besides the sterile media, inoculation and sampling were conducted by using 

sterile syringes and needles. However, ferric iron oxides and Fe oxides containing 

environmental samples were not sterilized since heat and pressure during autoclaving might 

induce changes in crystallinity, particle size and surface area of the Fe oxides. Control sand 

was also not sterilized in order to treat it in the same way as the other solid substrata. All the 

anaerobic experimental bottles were prepared outside the anaerobic chamber using a N2 

flushing system in order to prevent contamination by H2 from the anaerobic chamber where a 

5% H2 gas is used. Resazurin served as the redox indicator. Sodium formate was used as the 

electron donor and was added to a final concentration of 9 mM, implying an excess electron 

equivalents compared to the stoichiometric amount required for the complete reduction of 

TCE. After the addition of formate, the bottles were incubated for 19 days (indicated as 

negative days in figures) to create anaerobic reducing conditions conducive for the reductive 

dechlorination process. After this pre-incubation period, TCE was subsequently added from a 

7.6 mM stock solution of TCE prepared in the anaerobic mineral medium in an amount 

resulting in a calculated aqueous concentration of 1 mM, taking into account the amount that 

will enter into the headspace using the dimensionless Henry constant reported by Gossett 

(1987). The batch bottles were then amended with 5% (v/v) of the KB-1 consortium (see 

below). Each batch experiment consisted of four replicates and included a biotic control 

without any added iron content and a sterile (abiotic) control treatment (no Fe added) 

amended with 1% formaldehyde to inhibit microbial activity. Changes in the concentration of 

chlorinated ethenes due to repetitive headspace sampling were adjusted for using the relative 

concentration changes in the abiotic control assumed to be related to the sampling (e.g. if 2% 

TCE was removed by a sampling of the abiotic control, measured amounts in the other bottles 

were divided by 0.98 for the corresponding sample event. Because the correction is made for 

the specific sample events, errors introduced due to varying concentrations and the slow 

degradation in the abiotic control are minor. Soluble Fe
2+

 was monitored over time from the 

liquid phase throughout the degradation experiment using the ferrozine assay (Viollier et al., 

2000) and this measurements were used to calculate the rate of aqueous Fe(II) (Fe(II)aq) 

production later. The relative percentage of Fe(II)aq of Fe(II)tot in synthetic Fe oxide 

experiments were around 27% in 2-line and 6-line ferrihydrites, 24% in lepidocrocite and 21 

and 10%, respectively for HFO and geothite. In environmental samples, the percentage of 

Fe(II)aq of the total Fe(II) produced was very low compared to the synthetic Fe oxides (4%, 



7% and 8% in Vejen, Grindsted and  Farum, respectively) except in the case of Vadbyvej 

(19%). The determination of sediment bound Fe(II) over time from the batch bottles was 

virtually impossible due to the strict anaerobic condition requirement of the experiments as 

well as the volatile nature of chlorinated ethenes leading them to escape from the bottle even 

it is opened inside the glove box. However, since the concentration of dissolved Fe is 

generally increasing it is assumed that the amount of Fe(II) precipitating must be limited. To 

quantify the total amount of Fe(II) produced, anaerobic 0.5N HCl (Lovley and Phillips, 1986) 

and 5N HCl extractions were performed on the reduced sand after ending the batch 

experiments. The supernatant was decanted, filtered and measured by ferrozine assay for Fe
2+

  

and for total Fe and Mn (assumed to be dissolved Mn(II)) by atomic absorption spectroscopy.  

 

2.3 Anaerobic dechlorinating microbial consortium 

For the present study, a stable anaerobic dechlorinating microbial consortium KB-1
TM

 

(SiREM, Canada) was used as inoculum. This enrichment culture was originally derived from 

soil and groundwater contaminated with TCE and contains bacteria of the genus 

Dehalococcoides sp., Geobacter sp., Methanomethylovorans sp. together with a variety of 

several other organisms (Duhamel and Edwards, 2006). All incubations were conducted in a 

defined mineral medium as described by Haest et al. (2011), except that the yeast extract 

concentration was lowered to 10 mg L
-1

. Cysteine and sodium sulfate was included in the 

growth medium but was excluded from the experimental medium to limit direct or indirect 

sulfate sources. This dechlorinating enrichment culture was routinely spiked with TCE (1 

mM aqueous concentration) and sodium formate (3.5 mM) and the liquid phase was purged 

before each spiking with pure N2 in order to remove any daughter products produced during 

incubation. 

2.4 Analytical procedures 

Chlorinated ethenes (TCE, DCE isomers and vinyl chloride) were analyzed by gas 

chromatography (Agilent 6890N, Mass Spectrometry: Agilent 5973) as described by 

Heimann et al. (2007). A 200 µL headspace sample is injected into a 21 ml sample vial 

containing 0.5 mL acidified internal standard (10 ppmv aqueous solution of chloroform) and 

9.5 mL of distilled water. The standards and the analytical controls were also treated in the 

same way as the experimental samples. Detection limits for the chlorinated ethenes were 

below 1 μg L
-1

.  

 Samples for headspace hydrogen (H2) were analyzed immediately with a reduction gas 

detector (Trace Analytical RGD2) as described elsewhere (Heimann et al., 2006). Gaseous H2 

standards were prepared by diluting pure H2 gas in 120 ml serum bottles containing pure 

nitrogen. In the biotic controls, Vejen and in HFO bottles a concentration that was higher 

than the detection range of instrument was always observed (also during the last experimental 

days in HFO treatment), and the sample had to be diluted several times prior to analysis. 

Standards covered a range of 0.4 to 51.3 ppm by volume. Headspace concentrations were 

converted to aqueous concentrations and amount of substance per bottle by using Henry’s 

law constants for H2 (Heimann et al., 2006). Error bars on all graphs indicate the standard 

deviation from the average value of four replicates of batch bottles, if not indicated otherwise.  

Samples for organic anions (formate, acetate and lactate) and inorganic anions (sulfate and 

chloride) were analyzed by suppressed ion chromatography on a Dionex ICE-AS1 ion 

exclusion column and sulfate samples by Dionex Ion Pac AS14 column (Heimann et al., 

2007). 



Total elemental analysis of the chemical extracts was performed by atomic absorption 

spectroscopy (Perkin Elmer Instruments Analyst 200 AAS 5000) with flame detection at 

wavelengths of 248.33 nm and 279.83 for iron and manganese, respectively. Detection limits 

were below 0.01 mM. The Fe(II) concentration in extracts or in liquid phase was determined 

using a ferrozine assay where HEPES buffer (50 mM, pH 7.0) was used instead of 

ammonium acetate buffer (Viollier et al., 2000). 

3. Results and discussion 

3.1 Dynamics of H2 concentrations and terminal electron acceptor processes 

In addition to dechlorination and reduced species, the H2 levels and formate consumption was 

monitored in all experiments (Fig.1f-j and Fig. 2e-h). Formate served as the major electron 

donor in all treatments whereas 1.3 mM of acetate was also present in the Grindsted sample. 

Possible other H2 producing reactions occurring include yeast extract (10 mg L
-1

) 

fermentation (0.075 mmol H2 per liter) and biomass decay (Yang and McCarty, 1998). 

 

Pre-incubation of batch bottles with formate has been done (indicated in negative days) in 

order to allow biological and/or chemical oxygen consumption to further deplete residual 

oxygen prior to the addition of KB-1 and TCE avoiding further changes to the sediment 

redox environment. This pre-incubation, resulted in a H2 concentration of up to 250 nM in all 

synthetic Fe treatments except in 6-line ferrihydrite (up to 600 nM) and in HFO (around 10 

nM), produced probably due to fermentation reactions by spore forming fermenters. The H2 

data in abiotic treatments indicate that these fermenters could survive even after 

formaldehyde treatment; however the actual reason is unknown (Fig.SI.1b). A complete 

consumption of formate as well as the acetate in the Grindsted sample was observed before 

inoculation, implying a lack of reducing equivalents to support microbial dechlorination. 

Therefore, an extra 3 mM formate was added on the 0
th

 day before the addition of microbial 

inoculum. 

 The observed H2 concentrations are much higher than detected in systems depleted in 

organic substrate and a situation where the supply of H2 is limiting is not obtained as long as 



there is formate present. The reason for this could be that H2 production from formate is 

thermodynamically very favorable, implying that H2 production produces energy even when 

high concentrations of H2 are built up. This presumably implies that a large population of 

formate fermenters can be supported, potentially scavenging the system for other nutrients, 

possibly limiting the activity of terminal electron acceptors such as dechlorinators or Fe oxide 

reducers. If this is the explanation, then another substrate for H2 production needs to be used 

to obtain a system characterized by competition.  

 

It may also be that the time available compared to the relative growth rates of H2 producers 

and consumers has not been long enough, however maintaining the system for longer times 

without running out of one or the other reactant would be complicated. Most of the previous 

studies conducted for determining H2 thresholds during dechlorination reactions e.g., Lu et al. 

(2001), Luitjen et al. (2004), Wei and Finneran (2011) utilized a slow-release H2 donor or 

were measured in ground water systems where electron donor is usually limited. However, 

the choice of formate has been made after different trials using different electron donors, due 

to the capability of formate in maintaining the pH of the medium for a long running 

experiment of dechlorination where pH is a very important factor that affects the rate of 

reaction. 

In general, the variations in the H2 concentration reflect the balance between the 

metabolic activity of fermenters producing H2 (Clostridium sp.) and the H2 consumption 

by dechlorinators and/or iron and manganese reducers present in the system. The H2 

concentrations exceed 1000 nM and suggest that the dechlorination process is not 

limited due to a too low H2 level (Heimann et al., 2007; Lee et al., 2007). This H2 level 

also suggests the possibility of additional H2-consuming processes such as 



methanogenesis and acetogenesis along with the observed Fe(III) and Mn(IV) reduction 

in the experimental treatments. The occurrence of these H2-consuming processes was 

previously shown in similar studies conducted using similar culture and experimental 

conditions as used in this study (Paul and Smolders, 2014, 2015), implying that the 

dechlorinators had several competitors for the donated electrons in these systems.  

To assess the dynamics in these systems characterized by several concomitant TEAP’s 

we have used the observed concentration data over time to derive rates of the individual 

redox processes, as well as a rate of H2 consumption based on the dechlorination and 

rates of Fe(II)aq production. The rate of Fe (II)aq production was used here despite of the 

rate of Fe(II)tot production because of the difficulties in the determination of sediment 

bound Fe(II) over time from the batch bottles. However, it should be noted that rates of 

Fe oxide reduction have been higher than those of Fe(II)aq production. As an overall 

indicator of the state of the balance between H2 production and consumption we have 

also derived the H2 residence time. Selected samples are shown in Figure 3 and the 

detailed representation of all samples is given in the supplementary information 

(Fig.SI.2a, 2b and 2c).  

A general feature to be noted from the data of all samples is the increase in the residence 

time of H2 when the TCE rate decreases. This observation possibly reflect the transition 

from TCE to cis-DCE dechlorination where there is still production of H2 which may 

actually be lower, but the rate at which it is used decreases so much that the residence 

time increases substantially. However, the duration on which these changes occurred 

differed between the synthetic and natural samples. The rapid increase in residence time 

after TCE removal seems to be very similar for all of the synthetic oxides except for 

HFO. In the biotic control as well as in the natural samples this increase in residence 

time of H2 did not coincide with the TCE removal.  

The more reactive Fe-oxides showed lower peaks in the H2 residence times than the 

more stable Fe-oxides, reflecting the lower rate of reduction of the more stable Fe-oxides 

allowing the peak of H2 during the transition to cis-DCE reduction to become higher. 

The difference in both the width and height of peak in residence time shows a much 

larger variation among the natural samples with the peak height spanning 2 orders of 

magnitude. 

After the TCE to cis-DCE conversion, residence time of H2 coincides with the rate of H2 

consumption which becomes slow at that point perhaps due to the shift in the dominant 

microbial dechlorination to Fe reducers in the system. The lag time observed in synthetic 

oxides and biotic control might reflect the time the dechlorinating subpopulation of 

Geobacter required to activate the systems that are responsible for the Fe-oxide 

reduction. Geobacter was also responsible for TCE degradation in addition to 

Dehalococcoides and Clostridium and was the dominant organisms in KB-1 culture. 

While in the case of natural samples, Fe(III) reduction has taken place prior to 

incubation with KB-1 culture probably due to indigenous microorganisms. In Grindsted, 

the indigenous and supplemented formate was depleted very fast leaving the system 

“unstable” with respect to the iron reduction and dechlorination pattern. There was no 

general reaction trend observed in those reactions in Grindsted sample which shows that 

the organic carbon availability plays a role as well for the H2 dynamics. 

 



 

 

3.2 Relation between H2 levels, dechlorination and terminal electron acceptor processes 

The H2 levels measured in this study were well above the observed concentration ranges in 

previous studies where a much lower H2 concentration in the range of 0.6-0.9 nM H2 for 

PCE/TCE dechlorination as well as 0.1-2.0 nM and 0.1 -0.4 nM H2 for Fe(III) and Mn 

reduction reactions respectively was measured (Lu et al., 2001). Here, we did not observe 

distinct H2 levels corresponding to the TCE dechlorination and Fe(III) succession. The first 

dechlorination step in all systems was characterized by H2 concentrations far beyond any 

metabolic threshold or related to partial equilibrium due to rapid formate fermentation 

producing an excess of reducing equivalents (Heimann et al., 2007). This ample availability 

of electron donor in all batches is a likely reason for the observed similar dechlorination rates 

and the lack of a larger time lag in the Fe(III) rich systems. The hydrogen level stabilized at 

ca.8 nM in the biotic control during the last days of incubation whereas in other treatments no 

steady-state hydrogen H2 levels were achieved till the end of this study. This is possibly due 

to the use of different substrates and electron acceptors and also due to the limited 

experimental time frame (Lu et al., 2001). Hence, the specific steady-state H2 levels as 

suggested by Lovley and Goodwin (1988) were not observed in this study. Likewise, the 



partial-equilibrium approach where the in situ activities of reactants and products control the 

occurrence of the different redox processes is also not applicable in this study (Heimann and 

Jakobsen, 2006; Jakobsen et al., 1998). To examine whether there was any relation between 

the observed H2 levels and the reduction rates, we have compared the H2 levels associated 

with the highest reduction rates of both electron acceptors derived from the slopes of the 

curves in Fig. 1 and 2 (Figure 3). Maximum rate of TCE reductive dechlorination into cis-

DCE was associated with a H2 concentration of up to 500 nM in all treatments. The highest 

iron reduction rate was measured at a higher H2 level than those at which TCE dechlorination 

occurred but the former process spanned the H2 range of TCE reduction, again underlining 

that both processes can occur concomitantly. It also suggests that TCE to cis-DCE reduction 

is actually more efficient than the Fe-oxide reduction, so that the pool of H2 is diminished 

when TCE reduction is active, and grows when Fe-oxide reduction dominates. It appears that 

the consumption of H2 by dechlorinators is actually capable of lowering the concentration of 

H2 in the system. Nonetheless, the presence of high donor supply and its rapid fermentation 

kinetics was not sufficient to exclude Fe(III) reduction and therefore both reactions take place 

concurrently.  

A time lag prior to cis-DCE dechlorination coincided with a large buildup of H2 above 1000 

nM in the biotic control, HFO and Vejen (Fig. 1f and j, 2e), probably accompanied by active 

methanogenesis. Methanogens are commonly found to be growing concomitantly with 

Dehalococcoides within chloroethene-degrading communities (Heimann et al., 2007). The H2 

concentrations observed in biotic control are also in the range observed for methanogenic 

conditions. This explanation seems justifiable since Fe(III) availability was limited either due 

to its absence in the biotic control or depleted due to microbial iron reduction as in the case of 

Vejen and HFO samples. This result is consistent with observations in similar studies using 

control sand where 40 µmol bottle
-1

 of methane was formed during incubation and scavenged 

around 82% of the electron equivalents supplied (Paul and Smolders, 2014, 2015). The 

fermentation burst upon rapid formate utilization probably favored the enrichment of 

methanogens (Methanomethylovorans sps.) and they can compete for H2 with dehalogenators 

(Fennell et al., 1997; Smatlak et al., 1996; Yang and McCarty, 1998).  

3.3 Pattern of TCE degradation in the presence of iron oxides  

No cis-DCE was observed in the abiotic control treatments (Fig.SI.1a). Dechlorination of cis-

DCE was initiated at a very slow rate in the biotic control during the 50 days of incubation 

(Fig. 1a). No other treatments showed the onset of cis-DCE dechlorination. Conversely, 

degradation of TCE into ethene did occur in the source cultures grown in the same anaerobic 

mineral medium but with cysteine and under the same conditions (pH 7.2, TCE 1 mM) as the 

experimental set up, illustrating that this potential was present in the inoculum (data not 

shown).  

A complete degradation of TCE to cis-DCE was observed in the presence of synthetic Fe 

minerals. The degradation time was about 40 days for HFO amended systems (Fig.1e) 

whereas it took only 10 days for complete conversion of TCE into cis-DCE in biotic control, 

2-line ferrihydrite (not shown), goethite, lepidocrocite and 6-line ferrihydrite treatments 

(Fig.1). The dechlorination pattern in these synthetic Fe minerals results is consistent with the 

previous batch experiments using similar Fe oxides (Paul et al., 2013).  

A fast TCE to cis-DCE dechlorination similar to the biotic control was observed in the 

environmental sample treatments, except in the Vadsbyvej system (Fig. 2). In the Vadsbyvej 

sample, after an initial partial TCE dechlorination, a stall in the cis-DCE production occurred 

(Fig. 2d). The presence of Mn(IV), highest in the Vadsbyvej sample, along with Fe(III) as the 

alternate competing terminal electron acceptors, could explain this limited TCE reduction.  



The dissolved Fe(II) measured from the liquid phase was maximally 5% of the total reduced 

Fe. Owing to the crystallinity of goethite, there was negligible Fe(III) reduction as seen in 

Fig. 1b. About 0.2 -1.2 mM of dissolved Fe
2+

 was measured in other synthetic Fe mineral 

batches (Fig 1c-e). The adsorbed or precipitated Fe(II) content extracted using 0.5N HCl was 

comparable to the 5N HCl extractable fraction in all synthetic Fe treatments, but constituted 

only a small percentage of the total Fe content. Vejen and Grindsted showed the highest 

percentage of Fe(III) reduction among the environmental samples whereas it was found for 

HFO in the synthetic Fe minerals (Table 1).  

Approximately half of the 5N HCl extractable Fe(II) was extracted using 0.5N HCl in all 

environmental samples, except for the Vadsbyvej sample, where 0.5N HCl gave a much 

smaller fraction (4%) of the 5N HCl extractable content. This is possibly due to the presence 

of Fe(II) bearing silicates in this clayey sample and the effective dissolution of these minerals 

by the much stronger acid extraction. Although the total Fe content of the environmental 

samples was larger than that of synthetic Fe coated substrates, the fraction of microbially 

reduced Fe was similar in both cases. The low concentration of dissolved Fe
2+

 detected in the 

environmental samples is possibly due to the presence of clay minerals or layer silicates 

acting as Fe(II) sink in these samples (Roden and Urrutia, 1999).  

In all batch treatments, a change from the initial color of the sediment or Fe oxide into a 

blackish color has been noticed during the incubation period; however the mineral 

transformation was not investigated in detail. This color change is possibly due to the 

formation of mixed Fe(II)-Fe(III) compounds such as magnetite in HFO system or might 

likely be a combination of siderite (FeCO3, formed with inorganic carbon produced from the 

oxidation of formate or from NH4CO3) and or mixed Fe (II)-Fe (III) phases (green rust). The 

possibility of formation of phosphate containing iron minerals can be neglected in synthetic 

Fe experiments since the experimental medium contained only a few micromoles per litre of 

phosphate. However in the case of environmental samples, Fe(III) reduction offers the 

production of a wide variety of reducing minerals such as iron sulfides, iron oxides, iron 

carbonates, and mixed oxides such as green rust or magnetite under natural conditions.  

These minerals are found to be active dechlorinating minerals, dechlorinates at different rates 

and are sometimes more reactive than naturally occurring mineral species, potentially due to 

its greater surface area (Lee and Batchelor, 2002a, 2002b). The adsorption of dissolved Fe
2+

 

onto these mineral surfaces can potentially increase the reactivity of the minerals. In our 

study, although the formation of secondary minerals is observed, a detailed investigation of 

those minerals except in the case of magnetite in HFO systems was not made. Magnetite is 

considered to be a less reactive mineral than other secondary minerals (Lee and Batchelor, 

2002a). The contribution of these secondary minerals in dechlorination activity in our 

systems was difficult to estimate since abiotic and biotic seems to be highly interrelated 

(biotic reactions produce secondary minerals which results in abiotic reactions) and 

synergistic (Fe
2+ 

promotes the activity of secondary minerals) and appears to be more 

complex than biologically mediated pathways. 

Moreover, it is often observed that the primary reaction products from the reduction of 

chlorinated ethenes as acetylenes without the accumulation of daughter products. Further 

work is needed to disentangle abiotic reaction pathways due to secondary minerals from 

biotic reactions and also the interaction between biotic and abiotic reactions. The Fe mineral 

transformation occurs due to recrystallization in the presence of Fe
2+

 and even ferrous iron 

also plays a major role in abiotic degradation that microbes play in reductive dechlorination, 

at rates comparable to biological processes. The resulting secondary mineral can only be 

partially extracted using 5N HCl. This effect is even more pronounced for the weaker 0.5N 



HCl extraction which is less efficient as extraction medium for magnetite (Heron et al., 

1994). This mineral transformation and the high resistivity of the transformed products 

towards weak acid extractants might explain the difference of up to 20% of the difference 

between 5N HCl extractable Fe fraction before and after the microbial reduction. The 

removal of Fe and Mn through the liquid sampling over time as well as the removal of liquid 

phase for adsorbed Fe(II) determination after reduction experiment explains the loss of up to 

10 percent.  

The dechlorination pattern observed in synthetic and environmental samples showed that 

iron(III) reduction occur concomitantly with dechlorination and thus these electron acceptors 

compete for H2 (AFCEE, 2004; Aulenta et al., 2007; Dupont et al., 2003; Paul et al., 2013; 

Wiedemeier et al., 1998; Yager et al., 1997). When the dechlorination reaction began, 

sufficient electron donor was present and TCE to cis-DCE dechlorination occurred together 

with Fe(III) reduction. Dechlorination reactions constituted only 30% of electrons equivalents 

supplied while majority (up to 96%) of electrons flows towards Fe(III) reduction in Fe 

enriched systems. Thus, simultaneous occurrence of both electron consuming reactions 

ultimately resulted in lack of electron donor in these systems and as such, further 

dechlorination was not possible.  

Electron flow up to 20-85% towards iron reduction was observed in other studies (Azizian et 

al., 2008; Azizian et al., 2010; Malaguerra et al., 2011; Paul et al., 2013). A previous study by 

Sleep et al. (2005) also observed cis-DCE as the terminal end product of PCE dechlorination 

under electron donor limited conditions. Another possible explanation for the pronounced 

effect of iron reduction on cis-DCE dechlorination would be the competition for H2 between 

Dehalococcoides sp. and iron reducers for which H2 is the ultimate electron donor. It is 

already shown that the cis-DCE dechlorinating microorganisms probably have higher H2 

thresholds than iron reducers (Lu et al., 2001; Luijten et al., 2004).  

Iron reduction may have reduced the H2 levels below the thresholds required for cis-DCE and 

VC reduction resulting in an accumulation of cis-DCE (Evans and Koenigsberg, 2001). In the 

biotic control, even without any Fe addition, the cis-DCE stall was probably due to the 

occurrence of methanogenesis which resulted in a high methane production as explained in 

section 2.2. Previous studies (Paul and Smolders, 2014, 2015) conducted using the same 

materials and subculture at the same experimental conditions confirmed this explanation. 

This methane production was the result of sudden outburst of fermentation reactions from the 

fast-fermenting organic carbon substrate used (formate) and in turn competitively consumed 

around 82% of the total electron supplied while in HFO; a very low amount of methane was 

detected.  

The absence or very low methane in HFO is due to the inhibitory effect of Fe (III) on 

methanogenic populations i.e., Fe(III) reducers are generally assumed to out-compete 

methanogens because of their higher affinity for hydrogen at low concentrations. In contrast 

to this study, a complete dechlorination of TCE to ethene with simultaneous iron reduction 

process is observed by Wei and Finneran (2011) and Azizian et al. (2008), as the donor was a 

slow-fermenting substrate and was provided in excess. Thus, the extent and ultimate effect of 

the competition on the outcome of the dechlorination may also depend on the amount and 

type of electron donor compared to the amount of alternative TEA’s.  

3.4 Manganese reduction and manganese species in subsurface samples 

Manganese was only detectable in the natural samples as shown in Table 1. Vejen and 

Vadsbyvej samples contain the highest initial Mn content. About 80% of the 0.5N HCl 



extractable Mn was found in the dissolved phase of Vejen sample whereas only about 5-16% 

in other samples (data not shown). Despite the lowest initial Mn concentration in the 

Grindsted and Farum samples, a higher percentage of it appeared to be reducible as 

determined by 0.5N HCl extractions (assumed to extract only the easily extractable Mn 

species). Electron mass balance calculations indicate that about 2-18% of the total electron 

equivalents supplied was channeled to Mn reduction. Although, this percentage of electron 

consumption appeared to be smaller when compared to the Fe(III) oxides in competition with 

TCE, the higher oxidation potential of Mn-oxides implies that TCE dechlorination can be 

significantly affected in natural sediment systems containing significant amount of Mn as 

alternative terminal electron acceptor.  

4. Conclusions 

The electron flux in the systems was limited by the electron accepting pathway in all set ups 

except in 2-line ferrihydrite suspension rather than the H2 production rate which was not 

limited. The type and the high donor level used in this study implies that the systems cannot 

be considered in a state of partial equilibrium and accordingly, the concomitant occurrence of 

TEAPs with a broad range of energy yields, is possible. It appears that the H2 level, rather 

than being controlled by thermodynamics, is controlled by the differences in the efficiencies 

of the H2 producers and the H2 consumers. The use of a slow-H2 yielding substrates in 

contrast to formate which is a high rate H2 yielding substrate may possibly yield systems that 

are closer to partial equilibrium and may be necessary to selectively enhance dechlorination 

while managing competition reactions. This study illustrates parallel consumption of 

electrons by TCE dechlorination, Fe(III) or Mn(IV) reduction and methanogenesis. Only a 

fraction of the electron flow was used for dechlorination.  

The simultaneous occurrence of different terminal electron accepting processes shows that 

the distinction between dechlorination and other microbial reduction processes based on H2 

concentrations alone is not feasible. The higher H2 thresholds for the reduction of lower 

chlorinated compounds (cis-DCE, VC) than for TCE and the strict requirement of H2 as 

electron donor for Dehalococcoides sps. suggest that there is competition between cis-DCE 

reduction and Fe(III) reduction for H2, even with formate as electron donor. However this 

competition effect needs to be investigated through further studies. Studies specifically aimed 

at the effects of Mn(IV)-reduction is also recommended to further investigate the effect of 

Mn reduction on TCE dechlorination.  
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1. Anaerobic mineral medium 

This medium composition was previously used by Haest et al. (2011) and was originally 

adapted from Gerritse et al. (1997). The inoculum for the batch degradation experiment was 

grown on 1 mM TCE and 3.5 mM formate at 20 
o
C in an anaerobic mineral medium 

containing: 10 μM (NH4)H2PO4, 0.2 mM Na2SO4, 2.9 mM (NH4)HCO3, 30 mM 3-(N-

morpholino)propanesulfonic acid (MOPS, pKa = 7.21), 11.9 mM NaOH, 0.1 mM KOH, 1.2 

mM Ca(OH)2, 0.3 mM MgO, 10 mg L-1 yeast extract, 1 mM cysteine (not included in the 

experimental medium), 1% resazurin, 1 mL∙L
-1

 trace element stock solution and 1 mL L
-1

 

vitamin stock solution.  

The trace element stock solution contained 0.5 g L
-1

 EDTA, 2 g L
-1

  FeSO4.7H2O, 0.03 g∙ L
-1

 

MnCl2.4H2O, 0.13 g L
-1 

CaCl2.2H2O, 0.02 g L
-1

  NiCl2.6H2O, 0.03 g L
-1

 Na2SeO3.5H2O, 0.1 

g L
-1

 ZnSO4.7H2O, 0.3 g L
-1 

H3BO3, 0.01 g L
-1

 CuCl2.2H2O, 0.03 g L
-1

 Na2MoO4, 0.033 g L
-1

 

Na2WO4.2H2O, 0.2 g L
-1 

CoCl2.6H2O, 0.01 g L
-1

 AlCl3.6H2O and 1 mL L
-1

 HCl (37%) 

(Gerritse et al., 1992). The vitamin stock solution contained 100 mg L
-1

p-aminobenzoic acid, 

50 mg L
-1

 folic acid,100 mg L
-1

lipoic acid, 100 mg L
-1

riboflavic acid, 200 mg L
-1

 thiamine, 

200 mg L
-1

nicotic acid, 500 mg L
-1

pyridoxamine, 100 mg L
-1

pantotheic acid, 100 mg L
-

1
cobalamine and 20 mg L

-1
biotine (Heijthuijsen and Hansen, 1986). 
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Figure 1a 

 
Figure 1b 

 

Figure SI. 1 Observed dynamics in chloroethenes, formate and H2 concentration in sterile 

abiotic controls. The chloroethenes concentrations include the concentration in headspace and 

dissolved ethenes and the values are the averages of four replicates measurements whereas 

the error bars indicate the standard deviation. Figure 1a include chlorinated ethenes 

concentrations [TCE ( ), cis-DCE ( ), VC ( ) ] in µmol bottle
-1

 plotted against 

degradation time and figure 1b represents formate ( ) and H2 ( ) concentration in 

mmol l
-1

 and nmol l
-1

 respectively plotted against degradation time.  



Figure 2a 

Figure SI. 2a  The rates of the individual redox processes per day, as well as a rate of H2 

consumption (nmoles per day) based on the dechlorination and Fe-oxide reduction rates (both 

rates in µmoles per day) as well as the residence time of H2 plotted against the days of 

incubation in biotic control and  ferrihydrite (HFO) system. The negative and positive rate of 

H2 corresponds to the rate of consumption and production, respectively while for the rate of 

Fe-oxide reduction, negative values indicate a decrease in the Fe
2+ 

production and for TCE 

reduction, negative values indicate an increase in the TCE to cis-DCE dechlorination rate. 



Figure 2b 

 

Figure SI. 2b  The rates of the individual redox processes per day, as well as a rate of H2 

consumption (nmoles per day) based on the dechlorination and Fe-oxide reduction rates (both 

rates in µmoles per day) as well as the residence time of H2 plotted against the days of 

incubation in 6-line ferrihydrite, goethite and 2-line ferrihydrite systems. The negative and 

positive rate of H2 corresponds to the rate of consumption and production, respectively while 

for the rate of Fe-oxide reduction, negative values indicate a decrease in the Fe
2+ 

production 

and for TCE reduction, negative values indicate an increase in the TCE to cis-DCE 

dechlorination rate. 



Figure 2c 

 

Figure SI.2c  The rates of the individual redox processes per day, as well as a rate of H2 

consumption (nmoles per day) based on the dechlorination and Fe-oxide reduction rates (both 

rates in µmoles per day) as well as the residence time of H2 plotted against the days of 

incubation in the environmental samples (Vejen, Grindsted and Vadsbyvej). The negative and 

positive rate of H2 corresponds to the rate of consumption and production, respectively while 

for the rate of Fe-oxide reduction, negative values indicate a decrease in the Fe
2+ 

production 

and for TCE reduction, negative values indicate an increase in the TCE to cis-DCE 

dechlorination rate. 
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