

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 21, 2017

Flow Formulation-based Model for the Curriculum-based Course Timetabling Problem

Bagger, Niels-Christian Fink; Kristiansen, Simon; Sørensen, Matias; Stidsen, Thomas Jacob Riis

Published in:
MISTA 2015 Proceedings

Publication date:
2015

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Bagger, N-C. F., Kristiansen, S., Sørensen, M., & Stidsen, T. J. R. (2015). Flow Formulation-based Model for the
Curriculum-based Course Timetabling Problem. In Z. Hanzálek, G. Kendall, B. McCollum, & P. Šcha (Eds.),
MISTA 2015 Proceedings (pp. 825-848). (Proceedings of the Multidisciplinary International Conference on
Scheduling: Theory and Applications).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/43251848?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/flow-formulationbased-model-for-the-curriculumbased-course-timetabling-problem(2ee5af3a-0454-421e-a8a9-fb5db2d72907).html

MISTA 2015 manuscript No.
(will be inserted by the editor)

Flow Formulation-based Model for the Curriculum-based
Course Timetabling Problem

Niels-Christian Fink Bagger · Simon

Kristiansen · Matias Sørensen · Thomas R.

Stidsen

the date of receipt and acceptance should be inserted later

Abstract In this work we will present a new mixed integer programming formula-
tion for the curriculum-based course timetabling problem. We show that the model
contains an underlying network model by dividing the problem into two models
and then connecting the two models back into one model using a maximum flow
problem. This decreases the number of integer variables significantly and improves
the performance compared to the basic formulation. It also shows competitiveness
with other approaches based on mixed integer programming from the literature
and improves the currently best known lower bound on one data instance in the
benchmark data set from the second international timetabling competition.

1 Introduction

Each semester universities face the problem of generating high quality course
timetables. A timetable determines when and where a course should take place.
The problem of focus in this work is the Curriculum-based Course Timetabling
(CCT) Problem from track 3 of the second international timetabling competition
(ITC2007) as described by Gaspero et al (2007), in which weekly lectures for mul-
tiple courses have to be scheduled and assigned to rooms. A week is divided into
days and each day is divided into time slots. A day and time slot combination is
referred to as a period. The schedule and room assignment must fulfil some spe-
cific hard constraints; all lectures must be scheduled and in different periods, one

Niels-Christian Fink Bagger
Department of Management Engineering, Technical University of Denmark
E-mail: nbag@dtu.dk

Simon Kristiansen
Better Sports ApS

Matias Sørensen
MaCom A/S

Thomas R. Stidsen
Department of Management Engineering, Technical University of Denmark

2 Niels-Christian Fink Bagger et al.

teacher cannot give two lectures in the same period and a room cannot accommo-
date two lectures in the same period. Furthermore some courses are grouped into
curricula and for each curriculum the courses within cannot be scheduled in the
same periods.

Besides the hard constraints there are also soft constraints for which it is
wanted to minimize the violation of these. For every lecture it is wanted to be
able to accommodate a seat for each student attending. This is denoted as the
RoomCapacity constraint and when a lecture is scheduled in a room the number
of students above the capacity is the counted violation. Each course has a wish
for the minimum number of days to spread the lectures across. This is denoted
as the MinimumWorkingDays constraint and each day below this number in which
lectures are not scheduled is counted as one violation. It is wanted to schedule
lectures from the same curriculum in adjacent periods. Two periods are considered
to be adjacent if they belong to the same day and are in consecutive time slots.
If a lecture from a curriculum is scheduled in a period and no lecture from the
same curriculum is scheduled in an adjacent period, the lecture is denoted as
being secluded. Every time there is a secluded lecture this counts as one violation
of the CurriculumCompactness constraint. Each course should not be assigned to
too many different rooms during the week. This is denoted as the RoomStability

constraint and every room except the first that the course is scheduled in is counted
as one violation.

The objective is to find a solution which fulfils all the hard constraints and
minimizes a weighted sum of the violations of the soft constraints. The problem
will be solved using integer programming and the formulation of the model will
be given in Section 2.

2 Mixed Integer Programming Formulation

The problem has been considered using mixed integer programming models before
in the literature, see e.g. Burke et al (2010, 2012); Lach and Lübbecke (2012); Cac-
chiani et al (2013); Hao and Benlic (2011). For an great survey refer to Bettinelli
et al (2015). A very common way to formulate the model is to use three-indexed
binary variables. Here we will give the formulation similar to the three-indexed
formulations from Burke et al (2012) and Lach and Lübbecke (2012). Let C be
the set of courses, P be the set of periods and R be the set of rooms. Furthermore
there are days D, curricula Q, lecturers L, the periods Pd ⊆ P that belongs to day
d ∈ D, the courses Cq ⊆ C which are part of curriculum q ∈ Q and the courses
Cl ⊆ C which are all being taught by lecturer l ∈ L. For each period p ∈ P we will
denote the adjacent periods as p−1 and p+1 for the periods belonging to the same
day as p in the time slot right before and the time slot right after p respectively.
When p corresponds to the first (last) time slot on the day, then the period p− 1
(p + 1) is undefined and we will define any variable associated with it to always
take the value zero.

Let Lc be the number of lectures to be scheduled for course c ∈ C, Cr be the
capacity of room r ∈ R, Sc be the number of students attending course c ∈ C and
let Fc,p be one if it is allowed to schedule a lecture from course c ∈ C in period
p ∈ P and zero otherwise. Lastly Mc is the minimum number of days that it is
preferred to schedule lectures for course c ∈ C in.

Title Suppressed Due to Excessive Length 3

Let xc,p,r be a binary variable deciding whether to schedule a lecture from
course c ∈ C in period p ∈ P and room r ∈ R or not. tc,d is a non-negative
variable taking value 1 if course c ∈ C has at least one lecture at day d ∈ D,
and 0 otherwise. wc is a non-negative variable denoting the number of days below
the given minimum that course c ∈ C has lectures. zc,r is a non-negative variable
taking value 1 if course c ∈ C is occupying room r ∈ R at least once during the
week, and 0 otherwise. κc is a non-negative variable counting the number of times
that course c ∈ C is changing room. sq,p is a non-negative variable taking value 1
if curriculum q ∈ Q has a secluded lecture in period p ∈ P . Let WRC , WCC , WWD

and WRS be the weights of the constraints RoomCapacity, CurriculumCompactness,
MinimumWorkingDays and RoomStability respectively. The formulation is given in
Model 1.

min WRC
∑

c∈C,p∈P,r∈R
(Sc − Cr)+ · xc,p,r +WCC

∑
q∈Q,p∈P

sq,p

+WWD
∑
c∈C

wc +WRS
∑
c∈C

κc (1a)

s. t.
∑

p∈P,r∈R
xc,p,r = Lc ∀c ∈ C (1b)

∑
r∈R

xc,p,r ≤ Fc,p ∀c ∈ C, p ∈ P (1c)

∑
c∈C

xc,p,r ≤ 1 ∀p ∈ P, r ∈ R (1d)

∑
c∈Cq,r∈R

xc,p,r ≤ 1 ∀q ∈ Q, p ∈ P (1e)

∑
c∈Cl,r∈R

xc,p,r ≤ 1 ∀l ∈ L, p ∈ P (1f)

tc,d −
∑

p∈Pd,r∈R
xc,p,r ≤ 0 ∀c ∈ C, d ∈ D (1g)

wc +
∑
d∈D

tc,d ≥Mc ∀c ∈ C (1h)

∑
p∈P

xc,p,r − Lc · zc,r ≤ 0 ∀c ∈ C, r ∈ R (1i)

∑
r∈R

zc,r − κc ≤ 1 ∀c ∈ C (1j)

∑
c∈Cq,r∈R

(xc,p,r − xc,p−1,r − xc,p+1,r) ≤ sq,p ∀q ∈ Q, p ∈ P (1k)

xc,p,r ∈ B ∀c ∈ C, p ∈ P, r ∈ R (1l)

zc,r ∈ B ∀c ∈ C, r ∈ R (1m)

0 ≤ tc,d ≤ 1 ∀c ∈ C, d ∈ D (1n)

wc ≥ 0 ∀c ∈ C (1o)

κc ≥ 0 ∀c ∈ C (1p)

sq,p ≥ 0 ∀q ∈ Q, p ∈ P (1q)

Model 1 A three-index formulation of the CCT problem.

4 Niels-Christian Fink Bagger et al.

The objective function (1a) consists of the weighted sum of the soft constraint
violations and the weights are set according to Gaspero et al (2007):

WRC = 1 (1)

WCC = 2 (2)

WWD = 5 (3)

WRS = 1 (4)

The constraints (1b) ensures that all lectures of the courses are scheduled. Con-
straints (1c) ensures that each lecture of a course is scheduled in different periods
and only in periods where the course is available. Constraints (1d) make sure that
at most one lecture is scheduled in a room in any period. (1e) and (1f) ensures that
courses from the same curriculum or taught by the same lecturer is not scheduled
in the same periods. The constraints (1g) and (1h) computes which days that the
course have been scheduled for lectures and by how much the minimum work-
ing days is violated. Constraints (1i) and (1j) calculates which rooms the courses
puts into use and how many different rooms they are scheduled in. Lastly the
constraints (1k) computes the periods where the curricula have secluded lectures.

2.1 Maximum Flow-based Formulation

The mixed integer programming formulation that we will present here is inspired
by the formulation proposed by Lach and Lübbecke (2008, 2012) that consists of
decomposing the model into two stages; stage I which is assigning time slots to
the courses and stage II which is allocating rooms to the courses based on the
assigned time slots from stage I. Instead of solving the two stages separately as
Lach and Lübbecke (2008, 2012) we will combine the two stages into one model
by using a flow network. This creates new models with a much lower number of
integer variables compared to Model 1 at the cost of introducing three-indexed
continuous variables. However due to the huge reduction in integer variables (and
non-zeros in the constraint matrix) we expect these flow-based models to perform
better than Model 1.

At first we will consider only assigning the courses to time slots, i.e. ignore
the existence of rooms. This will only account for the MinimumWorkingDays and
the CurriculumCompactness soft constraints. Let xc,t be a binary variable deciding
whether to assign course c ∈ C to time slot t ∈ T or not. tc,d, wc and sq,t are
defined in the same way as for Model 1. The formulation of assigning the courses
to time slots is given in Model 2. The description of the objective and constraints
follows that of Model 1.

The next step is to consider the room assignment part of the problem. Let zc,r
be a binary variable taking value one if course c ∈ C is allowed to be scheduled
in room r ∈ R and zero otherwise. Let κc be a non-negative variable counting the
number of times that course c ∈ C is changing room and let the integer variable
yc,r identify the number of times that course c ∈ C is assigned to room r ∈ R. The
formulation is given in Model 3.

Constraints (3d) in Model 3 ensures that for some course c ∈ C and some room
r ∈ R, zc,r is set to one if yc,r > 0. Constraints (3c) ensures that the total number

Title Suppressed Due to Excessive Length 5

min WCC
∑

q∈Q,p∈P
sq,p +WWD

∑
c∈C

wc (2a)

s. t.
∑
p∈P

xc,p = Lc ∀c ∈ C (2b)

xc,p ≤ Fc,p ∀c ∈ C, p ∈ P (2c)∑
c∈Cq

xc,p ≤ 1 ∀q ∈ Q, p ∈ P (2d)

∑
c∈Cl

xc,p ≤ 1 ∀l ∈ L, p ∈ P (2e)

∑
c∈Cq

(xc,p − xc,p−1 − xc,p+1) ≤ sq,p ∀q ∈ Q, p ∈ P (2f)

tc,d −
∑
t∈Td

xc,t ≤ 0 ∀c ∈ C, d ∈ D (2g)

wc +
∑
d∈D

tc,d ≥Mc ∀c ∈ C (2h)

xc,p ∈ B ∀c ∈ C, p ∈ P (2i)

sq,p ≥ 0 ∀q ∈ Q, p ∈ P (2j)

0 ≤ tc,d ≤ 1 ∀c ∈ C, d ∈ D (2k)

wc ≥ 0 ∀c ∈ C (2l)

Model 2 The formulation for assigning only the time slots.

min WRC
∑

c∈C,r∈R
(Sc − Cr)+ · yc,r +WRS

∑
c∈C

pc (3a)

s. t.
∑
r∈R

zc,r − pc ≤ 1 ∀c ∈ C (3b)

∑
r∈R

yc,r = Lc ∀c ∈ C (3c)

yc,r − Lc · zc,r ≤ 0 ∀c ∈ C, r ∈ R (3d)

yc,r ∈ N ∀c ∈ C, r ∈ R (3e)

zc,r ∈ B ∀c ∈ C, r ∈ R (3f)

pc ≥ 0 ∀c ∈ C (3g)

Model 3 The formulation ignoring the time aspects and considering only the room stability
and the room capacity violations.

of times that a course c ∈ C is occupying some rooms is equal to the number of
lectures to be taught.

If a solution x to Model 2 and a solution y to Model 3 is given then a new
problem emerges; is the combined solution feasible, i.e. is there a feasible mapping
from the assigned rooms in y to the assigned periods in x such that no room is
occupied by two courses in the same period and no course is teaching two lectures
in the same period. As a first attempt on the flow problem to use for the connection
between Model 2 and Model 3 it is tempting to create a graph mapping the course-

6 Niels-Christian Fink Bagger et al.

room assignment y into room-period pairs. For each course c ∈ C and each room
r ∈ R create a node (c, r) and for each room r ∈ R and period p ∈ P create a node
(r, p). For each course c ∈ C, room r ∈ R and period p ∈ P create an arc from
(c, r) to (r, p). Create a source node (u) and a sink node (v) and for each c ∈ C
and r ∈ R create an arc from node (u) to node (c, r) and for every r ∈ R and every
p ∈ P create an arc from node (r, p) to node (v).

The capacity on the arc (r, p)→ (v) for some r ∈ R and some p ∈ P is one and
always going to be unchanged. The remaining capacities are set based to some
solution (x, y) for Model 2 and Model 3. For each course c ∈ C and room r ∈ R
the capacity of the arc (u) → (c, r) is set to yc,r and for each c ∈ C, r ∈ R and
p ∈ P the capacity of the arc (c, r)→ (r, t) is set to xc,p. An example of the graph
is illustrated in Fig. 1.

u

c2, r1

c1, r1

c1, r2

c2, r2

r1, p1

r1, p2

r2, p1

r2, p2

v

y c
1
,r
1

y c2,
r1

y
c
1 ,r

2

y
c
2 ,r

2

xc1,p1

x
c
1 ,p

2

x c
2
,p

1

xc2,p2

xc1,p1

x
c
1 ,p

2

x c
2
,p

1

xc2,p2

1
1

1

1

Fig. 1 Illustration of an attempt of the maximum flow graph of an instance with two courses,
two rooms and two periods.

For each c ∈ C, r ∈ R and p ∈ P the amount of flow on the arc (c, r) → (r, p)
in the graph in Fig. 1 corresponds to the number of times course c is assigned to
room r in period p. Due to the capacities on the arcs at most one amount of flow
can go through a node corresponding to a room and period pair (r, p), i.e. at most
one course can be assigned to a room r ∈ R in period p ∈ P . If the maximum flow
in this graph is equal to the total sum of lectures of all courses then the solution
(x, y) would be identified as being feasible. However, this is not always true. As
an example consider an instance with three courses c1 with one lecture, c2 with
two lectures and c3 with one lecture, two periods p1 and p2, and two rooms r1
and r2. Consider a solution (x, y) assumed to be feasible for Model 2 and Model 3
where course c1 has been assigned one lecture to room r1 and assigned to period

Title Suppressed Due to Excessive Length 7

p1, course c2 has been assigned one lecture to room r1 and one lecture to room
r2 and has been assigned both period p1 and p2, course c3 has been assigned to
room r2 and period p1. The example is illustrated in Fig. 2 where only the arcs
with positive capacities are illustrated.

u

c2, r1

c1, r1

c2, r2

c3, r2

r1, p1

r1, p2

r2, p1

r2, p2

v

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. 2 Illustration of an example of the graph from Fig. 1 with three courses (c1, c2 and c3),
two periods (p1 and p2) and two rooms (r1 and r2). The capacities on the arcs illustrates the
room assignments and the period assignments. This graph incorrectly deems the assignments
feasible.

In Fig. 2 it can be seen that to get all lectures assigned the flow on the arcs
from (u) must all equal the respective capacity. To get the flow out of node (c1, r1)
it will have to be send to node (r1, p1) and to get the flow out of node (c3, r2) it will
have to be send to node (r2, p1). This means that both of the rooms are occupied
in period p1. Since course c2 has two lectures and there are only two periods then
clearly the assignment is infeasible since the course cannot be assigned a room in
period p1. However it is possible to send all the flow through the graph. This is
done by sending the flow that comes into node (c2, r1) further on to node (r1, p2)
and sending the flow from node (c2, r2) to node (r2, p2). By this flow the course
c2 has been assigned two lectures in the same period in two different rooms which
is an infeasible assignment for Model 1. However, since the value of the maximum
flow is equal to the total number of lectures then this graph is incorrectly stating
that the assignments are feasible. Therefore the graph needs to be extended to
only allow one unit of flow for each course-period pair. For every room r ∈ R and
period p ∈ P remove the arc (r, p) → (v) and split the node (r, p) into two nodes
(r, p)1 and (r, p)2 and add an arc from (r, p)1 to (r, p)2 with a capacity of one. For
every course c ∈ C and period p ∈ P create a node (c, p), add an arc to node (v)
with a capacity of xc,p and then for every room r ∈ R add an arc from node (r, p)2

8 Niels-Christian Fink Bagger et al.

to node (c, p) with capacity 1. The graph, denoted Gmf, is illustrated in Fig. 3
where the nodes denoted (r, p)1 are to the left in the graph and the nodes denoted
(r, p)2 are to the right.

u

c2, r1

c1, r1

c1, r2

c2, r2

r1, p1

r1, p2

r2, p1

r2, p2

r1, p1

r2, p1

r1, p2

r2, p2

c1, p1

c2, p1

c1, p2

c2, p2

v

y c
1
,r
1

y c2,
r1

y
c
1 ,r

2

y
c
2 ,r

2

xc1,p1

41x
c
1 ,p

24
2

x c
2
,p
1

43

xc2,p2

44

xc1,p1

45

x
c
1 ,p

2

4
6

x c
2
,p
1

47

xc2,p2

48

1

1

1

1

1

41

14
3

1

47

1
45

1

42

14
4

1
46

1

48

x
c
2 ,p

1

x
c
1 ,p

1
xc1

,p2

x c
2
,p
2

Fig. 3 Illustration of the maximum flow graph of an instance with two courses, two rooms
and two periods.

Let the following non-negative variables be defined:

fuc,r : The amount of flow on the arc (u)→ (c, r).
f1c,p,r : The amount of flow on the arc (c, r)→ (r, p)1.
fr,p : The amount of flow on the arc (r, p)1 → (r, p)2.
f2c,p,r : The amount of flow on the arc (r, p)2 → (c, p).
fvc,p : The amount of flow on the arc (c, p)→ (v).

For a course c ∈ C, room r ∈ R and period p ∈ P the variable f1c,p,r is indicating
whether course c has a lecture scheduled in period p and room r, but so is the
variable f2c,p,r. This means that, for the graph to be correct, if there exists an
integer feasible flow f where the total amount of flow is equal to

∑
c∈C Lc then

there has to exist a flow f ′ with the same total amount of flow (it is possible
that f ′ is the same flow as f) where f1c,p,r = f2c,p,r for every triple (c, p, r). This
is illustrated in the graph by marking the pair of arcs with the symbol ∆i. If two
arcs have the same ∆i symbol then the flow on these two arcs must be equal. This
is not taken care of in the standard formulation of the maximum flow problem,
but this is not an issue by applying Proposition 1.

Proposition 1 Let the total amount of flow (the value) of f be denoted v(f) and

let A be the set of feasible period-room assignments. Consider the (possibly fractional)

maximum flow fmax in Gmf for a given period-room assignment pair (x, y). Then we

have the following:

v (fmax) ≥
∑
c∈C

Lc ⇐⇒ (x, y) ∈ A

Title Suppressed Due to Excessive Length 9

To prove Proposition 1 we will first show that (x, y) ∈ A =⇒ v (fmax) ≥∑
c∈C Lc. Next we will show that v (fmax) ≥

∑
c∈C Lc =⇒ (x, y) ∈ A by using

Proposition 2.

Proposition 2 Consider some period-room assignment pair (x, y) and let F
(
Gmf

)
denote all feasible integer flows in Gmf given this assignment. If there exists a flow

f ∈ F
(
Gmf

)
where v(f) ≥

∑
c∈C Lc then there exists a flow f ′ ∈ F

(
Gmf

)
where

v(f ′) = v(f) and f1c,p,r = f2c,p,r ∀c ∈ C, p ∈ P, r ∈ R

The proof of Proposition 2 is given in Appendix A.

Proof (Proof of (x, y) ∈ A =⇒ v (fmax) ≥
∑
c∈C Lc from Proposition 1) Assume

that (x, y) ∈ A and consider some feasible solution for this assignment. Let the
variable fc,p,r take value one if course c ∈ C is assigned to period t ∈ T and room
r ∈ R in the considered solution. Since we are considering a feasible solution and
it is based on the assignment (x, y) then the following conditions must be met:∑

p∈P
fc,p,r = yc,r ∀c ∈ C, r ∈ R (5)

∑
c∈C

fc,p,r ≤ 1 ∀p ∈ P, r ∈ R (6)

∑
r∈R

fc,p,r = xc,p ∀c ∈ C, p ∈ P (7)

We will create a flow f ′ on the graph Gmf in the following way: Note that
for each course c ∈ C, period p ∈ P and room r ∈ R there is a unique path
(u) → (c, r) → (r, p)1 → (r, p)2 → (c, p) → (v) corresponding to the variable fc,p,r
and if fc,p,r = 1 then we will send one unit of flow on this path, otherwise not.
Since we are only considering paths then the node balance constraints must all
hold for this flow. Since

∑
p∈P fc,p,r = yc,r for some course c ∈ C and room r ∈ R

then the total flow on the arc (u)→ (c, r) is equal to yc,r which is the capacity on
that arc so the capacity cannot be exceeded. Since

∑
c∈C fc,p,r ≤ 1 for some room

r ∈ R and period p ∈ P then the total amount of flow on the arc (r, p)1 → (r, p)2

cannot exceed one which is the capacity on that arc so the flow is also feasible for
this arc. This also means that the flow on the arc (r, p)2 → (c, p) cannot exceed
one for some course c ∈ C, period p ∈ P and room r ∈ R which is the capacity
on this arc. Lastly since

∑
r∈R fc,p,r = xc,p for some c ∈ C and p ∈ P then

the total flow going through the arc (c, p) → (v) must be equal to xc,p which is
the capacity on that arc. Furthermore this also means that the flow on the arc
(c, r)→ (r, p)1 can at most be xc,p which is the capacity on that arc. This concludes
that the flow we created must be a feasible flow for Gmf with respect to (x, y). Since∑
r∈R fc,p,r = xc,p for every course c ∈ C and period p ∈ P and

∑
p∈P xc,p = Lc

then
∑
c∈C,p∈P,r∈R fc,p,r =

∑
c Lc and since each fc,p,r variable corresponds to a

path then the total amount of flow v(f ′) must be equal to
∑
c∈C Lc. Since f ′ is a

feasible flow then the maximum flow f must have at least the same total amount
of flow in Gmf, so we have v(f) ≥ Lc.

Proof (Proof of v (fmax) ≥
∑
c∈C Lc =⇒ (x, y) ∈ A from Proposition 1) The

integrality requirements of the maximum flow problem can be removed from the

10 Niels-Christian Fink Bagger et al.

mathematical model since all capacities are integral (Ahuja et al, 1993, Theorem
6.5). By using (Ahuja et al, 1993, Theorem 6.5) then there must exist a maximum
flow f with integer values and if v(f) ≥

∑
c∈C Lc then Proposition 2 shows that

there must exist an integer maximum flow where f1c,p,r = f2c,p,r for every triple
(c, p, r). This means that the f1c,p,r variables and the f2c,p,r variables describe a
feasible assignment based on the solution pair (x, y) implying that (x, y) ∈ A.

The LP formulation of the maximum flow model as a feasibility problem, i.e.
replacing the objective with a constraint that the value of the flow must be at least
the number of lectures, is given in Model 4. We have substituted any occurrence
of the flow variables f1c,p,r and f2c,p,r in Model 4, since we are only interested in a
solution where the two variables are equal, with the non-negative variable fc,p,r.

∑
c∈C,r∈R

fuc,r ≥
∑
c∈C

Lc (4a)

fuc,r −
∑
p∈P

fc,p,r = 0 ∀c ∈ C, r ∈ R (4b)

∑
c∈C

fc,p,r − fr,p = 0 ∀p ∈ P, r ∈ R (4c)

fr,p −
∑
c∈C

fc,p,r = 0 ∀p ∈ P, r ∈ R (4d)

∑
r∈R

fc,p,r − fvc,p = 0 ∀c ∈ C, p ∈ P (4e)

0 ≤ fuc,r ≤ yc,r ∀c ∈ C, r ∈ R (4f)

0 ≤ fc,p,r ≤ 1 ∀c ∈ C, p ∈ P, r ∈ R (4g)

0 ≤ fr,p ≤ 1 ∀p ∈ P, r ∈ R (4h)

0 ≤ fvc,p ≤ xc,p ∀c ∈ C, p ∈ P (4i)

Model 4 The feasibility flow problem.

Any solution to Model 4 can only fulfil constraint (4a) if the flow send out of
the source node on each arc is equal to the capacity so the variable fuc,r can be
replaced with the value yc,r in Model 4 which means that constraints (4a) and
(4b) are replaced by: ∑

p∈P
fc,p,r = yc,r ∀c ∈ C, r ∈ R

Constraints (4c) and (4d) and the variable bounds (4h) can be replaced by the
constraints: ∑

c∈C
fc,p,r ≤ 1 ∀p ∈ P, r ∈ R

Finally the constraints (4e) and variable bounds (4g) and (4i) can be replaced
by the constraints: ∑

r∈R
fc,p,r ≤ xc,p ∀c ∈ C, p ∈ P

Title Suppressed Due to Excessive Length 11

These latter mentioned substitutions together with Model 2 and Model 3 can
then be combined into Model 5.

min WRC
∑
c,r

(Sc − Cr)+ · yc,r +WCC
∑

q∈Q,p∈P
sq,p

+WWD
∑
c∈C

wc +WRS
∑
c∈C

κc (5a)

s. t. (2b) — (2l) (5b)

(3b) — (3g) (5c)∑
p∈P

fc,p,r = yc,r ∀c ∈ C, r ∈ R (5d)

∑
r∈R

fc,p,r ≤ xc,p ∀c ∈ C, p ∈ P (5e)

∑
c∈C

fc,p,r ≤ 1 ∀p ∈ P, r ∈ R (5f)

fc,p,r ≥ 0 ∀c ∈ C, p ∈ P, r ∈ R (5g)

Model 5 The combined formulation connecting the period assignments and room assignments
using the maximum flow model.

It is not guaranteed that the fc,p,r variables are integers in the solution obtained
from Model 5. If the solution returned by the model contains fractional values for
the fc,p,r variables then a polynomial algorithm to find an integer feasible solution
can be applied. Such an algorithm is given in Algorithm 1 in Appendix A.

3 Computational Results

We have tested the model on the 21 data sets from the ITC2007 competition
track 3 described in Gaspero et al (2007). Along the competition a benchmarking
tool was provided. The benchmarking tool calculates the amount of time that
the algorithms where allowed to run in the competition. This amount of time is
usually referred to as one CPU time unit. We ran the tests in Windows 8.1 on an
3.07GHz Intel R© CoreTM i7 CPU with 12GB memory. Running the benchmarking
tool returned 260 seconds as one CPU unit. All tests has been limited to a single
thread.

As mentioned it may be needed to run some flow algorithms on the solutions
returned by Model 5. The running times of these algorithms are just a matter of
milliseconds even for the largest datasets and so we have neglected these algorithms
from the time limits. Furthermore for all our tests the final solutions did not contain
any fractional variables so the algorithms were never put to use. If Fc,p = 0 for
some course c ∈ C and period p ∈ P then we do not add the variables xc,p,
{fc,p,r}r∈R and {xc,p,r}r∈R to the models. This makes the constraints (1c) and
(2c) redundant since every course is taught by exactly one lecturer and constraints
(1f) and (2e) ensures that each lecturer has at most one lecture scheduled in any
period. Furthermore we replace the constraints (1e), (1f), (2d) and (2e) by clique

12 Niels-Christian Fink Bagger et al.

inequalities. This is done by creating a graph where each node corresponds to
a course. An edge is connecting two courses if they are in the same curriculum
or taught be the same lecturer. We then enumerate all the maximal cliques by
running the BronKerbosch algorithm Bron and Kerbosch (1973). Let Γ be the set
of cliques and let Cγ be the set of courses in the clique γ ∈ Γ . Then for each clique
γ ∈ Γ and period p ∈ P we add the following constraints to both the basic model
and the maximum flow-based formulation:∑

c∈Cγ ,r∈R
xc,p,r ≤ 1 ∀γ ∈ Γ, p ∈ P

∑
c∈Cγ

xc,p ≤ 1 ∀γ ∈ Γ, p ∈ P

Enumerating all the maximal cliques takes less than a second even for the largest
data instances we have tested so we have neglected these enumerations from the
time limits when solving the models.

In Table 1 the statistics of the basic model and the maximum flow-based formu-
lation can be seen. For each of the 21 data sets the number of continuous variables,
integer variables, constraints and non-zeros is reported.

Table 1: The statistics of the different models of the 21 test instances
from ITC2007 track 3; the basic formulation (Basic) and the maxi-
mum flow-based formulation (MF). For each data instance and for-
mulation the number of continuous variables (Cont.), the number
of integer variables (Int.), the number of rows in the model (Rows)
and the number of non-zeros (Non-Zeros) is reported. The number
in parenthesis denotes how many of the integer variables that are
binary (Bin.).

Cont. Int. (Bin.) Rows Non-
Zeros

Basic 630 5580 (5580) 2670 61620
comp01

MF 5712 1207 (1027) 2794 29544
Basic 2324 34112 (34112) 9593 672958

comp02
MF 26916 4161 (2849) 10032 134643
Basic 2204 29952 (29952) 8628 593908

comp03
MF 24892 3722 (2570) 8973 123222
Basic 1978 36972 (36972) 8104 528387

comp04
MF 30400 4423 (3001) 8833 141108
Basic 5436 17982 (17982) 14256 868140

comp05
MF 15993 2145 (1659) 11927 98302
Basic 2506 50544 (50544) 12333 940504

comp06
MF 39730 5956 (4012) 13223 194715
Basic 2842 68120 (68120) 15368 1220537

comp07
MF 55002 7848 (5228) 16825 264695
Basic 2127 40248 (40248) 8186 511003

comp08
MF 32223 4768 (3220) 8897 146461

Continued on next page

Title Suppressed Due to Excessive Length 13

Table 1 – Continued from previous page

Cont. Int. (Bin.) Rows Non-
Zeros

Basic 2407 35568 (35568) 8851 604293
comp09

MF 29317 4231 (2863) 9413 137921
Basic 2480 53820 (53820) 13665 1036975

comp10
MF 41738 6321 (4251) 14593 206834
Basic 795 6900 (6900) 3855 88395

comp11
MF 7075 1556 (1406) 3910 40313
Basic 6104 35816 (35816) 22712 1666356

comp12
MF 25904 3736 (2768) 19368 165972
Basic 2224 40508 (40508) 8114 553425

comp13
MF 32282 4698 (3140) 8937 147523
Basic 2095 37570 (30570) 9875 699435

comp14
MF 29958 4529 (3084) 10514 148453
Basic 2204 29952 (29950) 8628 593908

comp15
MF 24892 3722 (2570) 8973 123222
Basic 2531 56160 (56160) 12599 1013091

comp16
MF 46171 6502 (4342) 13783 220565
Basic 2443 43758 (43758) 11050 778699

comp17
MF 35202 5293 (3610) 11836 171848
Basic 2248 15651 (15651) 7290 304912

comp18
MF 12130 1944 (1521) 6147 62416
Basic 2168 30784 (30784) 7926 490106

comp19
MF 24168 3743 (2559) 8306 115114
Basic 2797 59774 (59774) 14067 1103445

comp20
MF 47143 6932 (4633) 15180 228938
Basic 2608 43992 (43992) 11919 952542

comp21
MF 36574 5271 (3579) 12777 182969
Average x12.5 x0.1 (x0.1) x1.0 x0.2
Min x2.9 x0.1 (x0.1) x0.8 x0.1Change
Max x19.4 x0.2 (x0.2) x1.1 x0.5

It can be seen in Table 1 that the maximum flow-based formulation increases
the number of continuous variables on average more that 12 times. However the
number of integer variables and non-zeroes in the model is on average a tenth
and a fifth respectively compared to the basic model which is why we expect the
maximum flow-based formulation to perform better. The model has been solved
using the .NET framework provided by Gurobi Optimization (2015) version 6.0.0.
The bounds obtained by the maximum flow-based formulation is compared on the
first 14 data sets with the following four approaches from the literature:

LL12 An approach based on solving the problem in two stages proposed
by Lach and Lübbecke (2012); first assigning the courses into periods
and then assigning the first stage assignments into rooms.

BMPR10 A approach based on considering a subset of soft constraints proposed
by Burke et al (2010).

HB11 An approach based on partitioning the courses into subsets proposed
by Hao and Benlic (2011).

14 Niels-Christian Fink Bagger et al.

CCRT13 An approach based on splitting the objective into parts proposed by
Cacchiani et al (2013).

In Table 2 the lower bounds for the latter mentioned four approaches and the
maximum flow-based formulation is reported when running the approaches for one
CPU unit (1 T), ten CPU units (10 T) and forty CPU units (40 T). It can be seen
that the proposed formulation is able to compete with most of the approaches,
except for the proposed method by Cacchiani et al (2013) which seems to perform
better on most instances. However the maximum-flow based formulation appears
to generate a much better bound on two of the instances; comp05 and comp12.
Referring back to Table 1 these are the two only of the first fourteen instances
where the formulation actually reduces instead of increasing the number of rows
in the model. Furthermore consider Table 5. In this table the number of courses
and the number of unavailable time slots are illustrated for each instance. Here it
can be seen that the number of unavailable time slots per course is much higher
for the two before mentioned instances than for the other of the first fourteen data
sets. This can explain why the number of rows is reduced since we did not include
the variables of the unavailable periods and so many rows where not added as they
were empty.

Since Lach and Lübbecke (2012) and Burke et al (2010) obtain both lower and
upper bound these are also compared with the bounds obtained by the maximum
flow-based formulation. The results are given in Table 3. Here it can be seen that
Burke et al (2010) obtains better lower bounds in most cases for one CPU unit,
however for longer running times the maximum flow formulation generates better
lower bound on more instances than the other two. As for the upper bounds Lach
and Lübbecke (2012) yields better result in more cases than our proposed approach
for the short (1 T) and middle (10 T) running time whereas for the long (40 T)
running time they yield better upper bounds on an equal amount fo instances
making it hard to claim one approach as outperforming the other.

In Table 4 the results of both the basic formulation in Model 1 and the maxi-
mum flow based formulation is given. Here it can be seen that the maximum flow
formulation clearly outperforms the basic formulation and a new lower bound com-
pared to the best known bound is obtained in one of the instances. This makes the
model very interesting as some of the other approaches from the literature based
in the basic formulation might also benefit from this reformulation.

T
itle

S
u

p
p

ressed
D

u
e

to
E

x
cessiv

e
L

en
g
th

1
5

LL12 BMPR10 HB11 CCRT13 MF

Instance 1 T 10 T 40 T 1 T 10 T 40 T 1 T 10 T 40 T 1 T 10 T 40 T 1 T 10 T 40 T

comp01 4 4 4 0 4 5 4 4 4 5 5 5 5 5 5
comp02 0 8 11 0 0 1 10 12 12 0 16 16 0 0 10
comp03 0 0 25 25 33 33 26 34 36 24 52 52 26 35 36
comp04 22 28 28 35 35 35 35 35 35 35 35 35 23 35 35
comp05 92 25 108 119 111 114 19 69 80 6 6 166 119 171 179
comp06 7 10 10 13 15 16 12 12 16 0 11 11 13 13 16
comp07 0 2 6 6 6 6 5 6 6 0 6 6 0 6 6
comp08 30 34 37 37 37 37 37 37 37 37 37 37 27 37 37
comp09 37 41 46 68 65 66 39 67 67 92 92 92 45 71 76
comp10 2 4 4 3 4 4 4 4 4 0 2 2 3 4 4
comp11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
comp12 29 32 53 101 95 95 43 78 84 0 0 100 85 115 138
comp13 33 39 41 52 52 54 46 53 55 57 57 57 38 54 56
comp14 40 41 46 41 42 42 41 43 43 32 48 48 41 42 46

Best 1 2 4 8 6 7 7 5 6 6 10 10 6 8 9
0 0 0 2 1 0 2 0 0 2 5 5 0 2 2

Table 2 Comparison of the lower bounds obtained for the different model formulations; Lach and Lübbecke (2012) (LL12), Burke et al (2010) (BMPR10),
Hao and Benlic (2011) (HB11), Cacchiani et al (2013) (CCRT13) and the maximum flow based formulation (MF). For each formulation the lower bound
is given for one CPU time unit (1 T), ten CPU time units (10 T) and forty CPU time units (40 T). The numbers reported in bold font are the values
where the specific models obtained a value which is at least as good as the other formulations. The numbers underlined are the values where the specific
models obtained a value which is the better that for the other formulations.

1
6

N
iels-C

h
ristia

n
F

in
k

B
a
g
g
er

et
a
l.

LL12 BMPR10 MF

1 T 10 T 40 T 1 T 10 T 40 T 1 T 10 T 40 T

Instance LB UB LB UB LB UB LB UB LB UB LB UB LB UB LB UB LB UB

comp01 4 12 4 12 4 12 0 168 4 10 5 9 5 5 5 5 5 5
comp02 0 239 8 93 11 46 0 114 0 101 1 63 0 253 0 74 10 54
comp03 0 194 0 86 25 66 25 158 33 144 33 123 26 228 35 115 36 84
comp04 22 44 28 41 28 38 35 153 35 36 35 36 23 123 35 38 35 35
comp05 92 965 25 468 108 368 119 1447 111 649 114 629 119 515 171 505 179 377
comp06 7 395 10 79 10 51 13 277 15 317 16 46 13 897 13 298 16 71
comp07 0 525 2 28 6 25 6 - 6 857 6 45 0 1095 6 215 6 58
comp08 30 78 34 48 37 44 37 173 37 53 37 41 27 195 37 44 37 40
comp09 37 115 41 106 46 99 68 112 65 115 66 105 45 213 71 127 76 99
comp10 2 235 4 44 4 16 3 70 4 49 4 23 3 994 4 311 4 44
comp11 0 7 0 7 0 7 0 288 0 12 0 12 0 0 0 0 0 0
comp12 29 1122 32 657 53 548 101 - 95 889 95 785 85 1844 115 507 138 485
comp13 33 98 39 67 41 66 52 556 52 92 54 67 38 461 54 102 56 65
comp14 40 113 41 54 46 53 41 123 42 72 42 55 41 180 42 84 46 58

Best 2 6 3 8 6 7 12 5 7 1 7 1 8 3 12 5 13 7
0 6 1 8 1 6 6 5 1 1 0 1 2 3 6 5 5 6

Table 3 Comparison of the bounds obtained by Lach and Lübbecke (2012) (LL12), Burke et al (2010) (BMPR10) and the maximum flow based
formulation (MF). For each approach the lower bound is given for one CPU time unit (1 T), ten CPU time units (10 T) and forty CPU time units
(40 T). The numbers reported in bold font are the values where the approach obtained a value which is at least as good as the other approaches. The
numbers underlined are the values where the specific approaches obtained a value which is better than the other approaches.

T
itle

S
u

p
p

ressed
D

u
e

to
E

x
cessiv

e
L

en
g
th

1
7

Basic MF

Best Known 1 T 10 T 40 T 1 T 10 T 40 T

Instance LB UB LB UB LB UB LB UB LB UB LB UB LB UB
comp01 5 5 5 5 5 5 5 5 5 5 5 5 5 5
comp02 16 24 0 308 2 139 5 71 0 253 0 74 10 54
comp03 52 64 25 1415 28 181 28 109 26 228 35 115 36 84
comp04 35 35 22 182 35 59 35 35 23 123 35 38 35 35
comp05 211 284 117 537 141 484 149 387 119 515 171 505 179 377
comp06 27 27 12 1403 12 135 14 124 13 897 13 298 16 71
comp07 6 6 0 354 6 315 6 119 0 1095 6 215 6 58
comp08 37 37 20 177 37 65 37 61 27 195 37 44 37 40
comp09 96 96 37 272 65 167 68 159 45 213 71 127 76 99
comp10 4 4 0 256 4 94 4 56 3 994 4 311 4 44
comp11 0 0 0 0 0 0 0 0 0 0 0 0 0 0
comp12 100 298 59 1363 69 717 106 581 85 1844 115 507 138 485
comp13 59 59 28 280 50 130 53 117 38 461 54 102 56 65
comp14 51 51 39 305 42 112 42 96 41 180 42 84 46 58
comp15 52 64 25 1415 28 181 28 109 26 228 35 115 36 84
comp16 18 18 8 329 8 103 11 101 7 400 12 74 13 58
comp17 56 56 24 335 30 268 39 155 33 450 42 122 43 105
comp18 61 61 14 168 22 165 26 103 20 145 26 88 29 83
comp19 57 57 30 205 49 143 52 138 36 210 53 62 57 57
comp20 4 4 0 1169 0 120 0 103 0 1215 0 972 0 103
comp21 74 74 15 847 31 258 49 186 32 527 54 142 57 122

Best 6 11 9 6 7 4 20 12 20 17 21 21
2 2 6 2 7 3 2 2 7 2 8 4

Table 4 Comparison of the bounds obtained for the basic model (Basic) and the maximum flow-based formulation (MF). For each formulation the
bounds are given for one CPU time unit (1 T), ten CPU time units (10 T) and forty CPU time units (40 T). The numbers reported in bold font are
the values where the specific models obtained a value which is at least as good as the other formulations. The numbers underlined are the values where
the specific models obtained a value which is as least as good as the best known bounds reported by Scheduling and Timetabling Research Group at the
University of Udine (2015).

18 Niels-Christian Fink Bagger et al.

Instance |C| |U | |U |/|C|
comp01 30 53 1.8
comp02 82 513 6.3
comp03 72 382 5.3
comp04 79 396 5.0
comp05 54 771 14.3
comp06 108 632 5.9
comp07 131 667 5.1
comp08 86 478 5.6
comp09 76 405 5.3
comp10 115 694 6.0
comp11 30 94 3.1
comp12 88 1368 15.5
comp13 82 468 5.7
comp14 85 486 5.7

Table 5 Illustrating the statistics of the data sets regarding the unavailable periods. For each
instance the number of courses (|C|), the total number of unavailable periods (|U |) and the
average number of unavailable periods per course (|U |/|C|) is reported.

4 Conclusion

A mixed integer programming model for the curriculum-based course timetabling
problem has been proposed with an underlying flow network. It has been shown
that the formulation decreases the number of integer variables significantly and
provides better results than a traditional three-index formulation. It is also com-
petitive with most of the other mixed integer programming based approaches from
the literature and improves one currently best known lower bound on the bench-
marking instances from the second international timetabling competition. Some of
the approaches from the literature are based on the original three-indexed model
and it is believed that these approaches can also benefit from the proposed model.

Acknowledgements The authors would like to thank professor Stephan Røpke, Depart-
ment of Management Engineering, Technical University of Denmark, and professor Carsten
Thomassen, Department of Applied Mathematics and Computer Science, Technical University
of Denmark for fruitful discussions on the proof in Appendix A.

A Proof of Proposition 2

For the proof of Proposition 2 we will be considering the graph Gmf as described in Section 2.1
and a given solution pair (x, y) to Model 2 and Model 3 where

∑
p∈P xc,p =

∑
r∈R yc,r =

Lc ∀c ∈ C due to constraints (2b) and (3c). Furthermore we will assume that Lc ≤ |P | ∀c ∈ C.
This is a fair assumption to make as the problem is otherwise infeasible. Before the proposition
is proved it will be restated here for the sake of completeness.

Proposition 3 (Restatement of Proposition2)
Consider some period-room assignment pair (x, y) and let F

(
Gmf

)
denote all feasible

integer flows in Gmf given this assignment. If there exists a flow f ∈ F
(
Gmf

)
where v(f) ≥∑

c∈C Lc then there exists a flow f ′ ∈ F
(
Gmf

)
where v(f ′) = v(f) and f1c,p,r = f2c,p,r ∀c ∈

C, p ∈ P, r ∈ R

Title Suppressed Due to Excessive Length 19

Algorithm 1: EqualPairMaxFlow

Input: The graph Gmf

Output: An integer maximum flow f where f1c,t,r = f2c,t,r ∀c ∈ C, t ∈ T , r ∈ R if

v(f) ≥
∑

c∈C Lc, otherwise nil

Initialize f as the maximum flow in Gmf

if v(f) <
∑

c∈C Lc then
return nil

// Iterate over all (c, p, r)-triples to repair any violations
foreach c ∈ C do

foreach p ∈ P do
foreach r ∈ R do

/* Change the flow f by setting f2c,p,r to the same value as f1c,p,r
*/

f2c,p,r ← f1c,p,r

return f

To prove Proposition 2 we will show that Algorithm 1 is correct.
Algorithm 1 starts off by finding a maximum flow f which has integer values. This can be

done by some polynomial algorithm, e.g. the Labeling algorithm (Ahuja et al, 1993, proof of
Theorem 6.5). If v(f) <

∑
c Lc then the algorithm returns nil to indicate that the assignment

(x, y) is infeasible which has been proved in Section 2.1 to be the case. If v(f) ≥
∑

c Lc then
the algorithm iterates over every triple (c, p, r) and then set the value of the variable f2c,p,r to

the same value as the variable f1c,p,r. When the algorithm is done then clearly the flow still

maintains integer values and f1c,p,r = f2c,p,r for every triple (c, p, r). What needs to be shown to
prove that Algorithm 1 is correct is that the value of the flow is unchanged, the node balancing
constraints are not violated and the capacities are not exceeded, i.e. that the the flow after
the change remains a feasible flow.

Assuming that Algorithm 1 is correct we can prove Proposition 2.

Proof (Proof of Proposition 2) As Algorithm 1 is correct then Proposition 2 must be true
since if v(f) <

∑
c∈C Lc the algorithm returns that the assignment (x, y) is infeasible and if

v(f) ≥
∑

c∈C Lc the algorithm will return an integer maximum flow f where f1c,p,r = f2c,p,r
∀c ∈ C, p ∈ P , r ∈ R.

To prove that Algorithm 1 is correct we will first show that when considering an integer
feasible flow f where v(f) ≥

∑
c∈C Lc, if there is a violation then it is possible to redirect

the flow such that the total number of violations is decreased by at least two as stated in
Proposition 4. This means that if we have k violations for the flow f then applying this
redirection technique at most k/2 times will remove all such violations where k must be less
than or equal to |C| · |P | · |R|.

Proposition 4 Consider a flow f ∈ F
(
Gmf

)
where v(f) ≥

∑
c∈C Lc. If there exists violations

of some course-period-room triples (c, p, r), i.e. that f1c,p,r 6= f2c,p,r, then it is possible to

redirect the flow to another flow f ′ ∈ F
(
Gmf

)
where v(f ′) = v(f) such that the total number

of violations is decreased by at least two.

Proof (Proof of Proposition 4) Consider a flow f ∈ F (Gmf) where v(f) ≥
∑

c∈C Lc. Assume

that there exists violations of some course-period-room triples (c, p, r), i.e. that f1c,p,r 6= f2c,p,r.
Since we know that

∑
p∈P xc,p = Lc for every course c ∈ C then for every period p ∈ P where

xc,p = 1 there must be at least one unit of flow on the arc (c, p) → (v) otherwise all the flow
from the source cannot get to the sink. Let there be a course-period-room triple (c1, p1, r1)
such that f1c1,p1,r1 6= f2c1,p1,r1 . Since the capacity on the arc (c1, r1) → (r1, p1)1 is xc1,p1
which is a binary value and the capacity on the arc (r1, p1)2 → (c1, p1) is one then two cases
can occur:

Case 1 f1c1,p1,r1 = 0 ∧ f2c1,p1,r1 = 1

20 Niels-Christian Fink Bagger et al.

Case 2 f1c1,p1,r1 = 1 ∧ f2c1,p1,r1 = 0

Consider first Case 1. This case is illustrated in Fig. 4.

u c2, r1

c1, r1 r1, p1 r1, p1 c1, p1

c2, p1 v

f1
c1,p1,r1

f
1
c 2
,p

1
,r

1

f2
c1,p1,r1

f 2
c
2 ,p

1 ,r
1

Fig. 4 Illustration of Case 1. The dashed arcs means that there is no flow. The lightly gray
arcs correspond to where it is unknown whether there is any flow and the solid black arcs are
where there must be at least one unit of flow.

Since f2c1,p1,r1 = 1 this means that fr1,p1 = 1 since this is the only way flow can enter

the node (r1, p1)2 meaning that node (r1, p1)1 must be sending out one unit of flow. Since
(r1, p1)1 is sending out one unit of flow then it must mean that f1c2,p1,r1 = 1 for some course

c2 ∈ C. Furthermore since the capacity on the arc (r1, p1)1 → (r1, p1)2 is one and this is the
only arc entering (r1, p1)2 then it cannot send any units of flow to node (c2, p1). This means
that Case 1 must contain a triple (c2, p1, r1) for which Case 2 applies. So we can prove the
claim for both cases by only considering Case 2.

Consider now Case 2. Since f1c1,p1,r1 = 1 then there must be a unit of flow on the arc from

(r1, p1)2 to (c2, p1) for some course c2 ∈ C. This is illustrated in Fig. 5.

u c2, r1

c1, r1 r1, p1 r1, p1 c1, p1

c2, p1 v

f1
c1,p1,r1

f2
c1,p1,r1

f 2
c
2 ,p

1 ,r
1f

1
c 2
,p

1
,r

1

Fig. 5 Illustration of Case 2. The interpretation of the arcs corresponds to Fig. 4.

Due to the construction of the graph the capacity on the arc (c1, p1)→ (v) is equal to the
capacity on the arc (c1, r1) → (r1, p1)1 and must therefore be one since f1c1,p1,r1 = 1. This

means that we could redirect the flow on the subpath (r1, p1)2 → (c2, p1)→ (v) to the subpath
(r1, p1)2 → (c1, p1)→ (v) if there is no flow on the arc (c1, p1)→ (v) and maintain an integer
feasible flow where the total amount of flow is unchanged. However as latter mentioned the
flow on the arc (c1, p1)→ (v) must be one, i.e. fvc1,p1 = 1, since xc1,p1 = 1 which means that

node (c1, p1) must receive one unit of flow from node (r2, p1)2 for some room r2 ∈ R. This
case is illustrated in Fig. 6.

Consider the four nodes (r1, p1)2, (c1, p1), (r2, p1)2 and (c2, p1) in Fig. 6. As mentioned
earlier the capacity on the arc (r1, p1)2 → (c1, p1) must be one. The capacity on the arc
(r2, p1)2 → (c2, p1) is set to xc2,p1 which is also the capacity on the arc (r1, p1)2 → (c2, p1)
which must be one since there is one unit of flow on the arc (r1, p1)2 → (c2, p1). So swapping
the flow on the arc (r1, p1)2 → (c2, p1) with the arc (r1, p1)2 → (c1, p1) and swapping the
flow on the arcs (r2, p1)2 → (c1, p1) and (r2, p1)2 → (c2, p1) will maintain an integer feasible

Title Suppressed Due to Excessive Length 21

u c2, r1

c1, r1

c3, r2

r1, p1

r2, p1

r1, p1

r2, p1

c1, p1

c2, p1 v

f
2
c 1
,p

1
,r 2

f2
c2,p1,r2

Fig. 6 Illustration of Case 2. The interpretation of the arcs corresponds to Fig. 4.

flow with an unchanged amount of flow where the Case 2 violation is removed from the triple
(c1, p1, r1) and the Case 1 violation is removed from the triple (c2, p1, r1). This swap does
not introduce new violations when c1 6= c3 and so we are done. However if c1 = c3 then one
violation is introduced for the triple (c1, p1, r2) and one for the triple (c2, p1, r2) meaning that
making the swaps does not change the number of violations. So we need to show that when
c1 = c3 it is possible to find another place in the graph to make the swap and repair at least
two violations.

Since we know that there is flow from the source to the nodes (c1, r1) and (c1, r2) then we
know that

∑
r∈R yc1,r ≥ 2 meaning that

∑
p∈P xc1,p ≥ 2, i.e. that c1 is teaching at least two

lectures. This means that there must exist another period p2 ∈ P : p1 6= p2 where xc1,p2 = 1.
As xc1,p2 = 1 implies that there is at least one unit of flow on the arc (c1, t2)→ (v) then there
must be one unit of flow on the path (u) → (c4, r3) → (r3, p2)1 → (r3, p2)2 → (c1, p2) → (v)
for some c4 ∈ C and r3 ∈ R as illustrated in Fig. 7.

u c1, r2

c1, r1 r1, p1

r2, p1

r1, p1

r2, p1

c1, p1

c2, p1

c4, r3 r3, t2 r3, p2 c1, p2

v

Fig. 7 Illustration of Case 2 where c1 = c3. The interpretation of the arcs corresponds to
Fig. 4.

Suppose that c1 = c4. Then
∑

r∈R yc1,r ≥ 3 and there must be some other period that
c1 is assigned to and we can consider that period as p2 instead. So we must be able to find
a period p2 ∈ T and a course c4 ∈ C such that p1 6= p2 and c1 6= c4 where there is flow on

22 Niels-Christian Fink Bagger et al.

the path (u)→ (c4, r3)→ (r3, p2)1 → (r3, p2)2 → (c1, p2)→ (v) for some r3 ∈ R. This means
that for the triple (c1, p2, r3) there is a Case 1 violation and for the triple (c4, p2, r3) there is
a Case 2 violation. This is exactly the same cases as for the triples (c2, p1, r1) and (c1, p1, r1)
and so there must exist a course c5 ∈ C and a room r4 ∈ R where there is one unit of flow
on the path (u) → (c5, r4) → (r4, p2)1 → (r4, p2)2 → (c4, p2) → (v). This means that we
have two cases; either c4 6= c5 and we can swap the flow on the arcs (r3, p2)2 → (c1, p2) and
(r3, p2)2 → (c4, p2) and swap the flow on the arcs (r4, p2)2 → (c4, p2) and (r4, p2)2 → (c1, p2)
or c4 = c5 and we can find a path (u) → (c6, r5) → (r5, p3)1 → (r5, p3)2 → (c4, p3) → (v)
where there is one unit of flow and where c6 6= c4 and p3 6= p2 in the same way as we found
c4 and p2. This is illustrated in Fig. 8.

u c4, r3

c1, r2

c1, r1

c4, r4

c6, r5

r1, p1

r2, p1

r1, p1

r2, p1

c2, p1

c1, p1

r3, p2

r4, p2

r5, p3

r3, p2

r4, p2

r5, p3

c1, p2

c4, p2

c4, p3

v

Fig. 8 Illustration of Case 2 after a couple of iterations. The interpretation of the arcs corre-
sponds to Fig. 4.

It may be the case that c6 = c1. However this indicates that the course c1 is teaching
at least one more lecture than previously thought when we found the period p2, so we can
backtrack to the point where we found p2 and then find another period instead of p2 which
we have not yet considered for c1. This means that whenever we are considering a violating
pair we must be able to either redirect the flow for that pair or find a new violating pair which
involves a new course which we either have not yet considered before or it is a course we have
been considering before and then we can backtrack to this course and consider a new period
which we have not considered before for that course. Clearly all the operations can be made in
polynomial asymptotic time but it needs to be shown that the total number of backtracking
operations is finitely bounded to ensure that the algorithm is finite. So if the total number of
backtrack operations is finite then eventually the algorithm will end up with some pair where
the flow can be redirected and decrease the number of violations.

Title Suppressed Due to Excessive Length 23

Let T (m,n) be the total number of backtrack operations that our algorithm performs
where m = |P | and n = |C|. The number of times that we backtrack to the first course in
our algorithm can at most be the number of lectures taught by the course since we consider
a new period not considered for the course before whenever we backtrack. Since the number
of lectures is linearly bounded by m then we can at most backtrack O(m) times to the first
course. Every time we backtrack to the first course we have been backtracking T (m,n − 1)
times to the remaining courses meaning that we have the following recursive relation:

T (m,n) = O(m) · T (m,n− 1)

Consider when n = 2. We can backtrack to the first course O(m) times but we can never
backtrack to the second course since there are no other courses to backtrack from and so we
have the base case:

T (m, 2) = O(m)

We will now show that the recursion leads to a finite number of total backtracking operations
by making a guess of the asymptotic bound:

T (m,n) = O
(
mn−1

)
It is easy to see that it holds for the base case so we can assume that it holds for T (m,n− 1)
and then we have:

T (m,n− 1) = O
(
mn−2

)
T (m,n) = O(m) ·O

(
mn−2

)
= O

(
mn−1

)
It has now been shown by induction that the algorithm is making a finite number of back-
tracking operations which concludes the proof of Proposition 4.

Before proving the correctness of Algorithm 1 it should be noted that since
∑

r∈R yc,r = Lc

∀c ∈ C then the total capacity on the outgoing arcs of the source is
∑

c∈C Lc. This means
that for the maximum flow f it must always hold that v(f) ≤

∑
c∈C Lc. Furthermore since

all capacities in the graph Gmf are integers then there must be a maximum flow taking integer
values (Ahuja et al, 1993, Theorem 6.5).

Proof (Proof that Algorithm 1 is correct) The proof of Proposition 4 implies that if we have a
feasible integer flow f ∈ Gmf where v(f) ≥

∑
c∈C Lc and if for some triple (c, p, r) we have that

f1c,p,r 6= f2c,p,r then there must exist some courses c1 ∈ C, c2 ∈ C, c3 ∈ C, some rooms r1 ∈ R,
r2 ∈ R and a period p1 ∈ P where c1 6= c3 (it is possible that c2 = c3) and the following
holds; f1c1,p1,r1 = 1, f1c1,p1,r2 = 0, f1c2,p1,r1 = 0, f1c3,p1,r2 = 1, f2c1,p1,r1 = 0, f2c1,p1,r2 = 1,

f2c2,p1,r1 = 1 and f2c2,p1,r2 = 0. Swapping the values of f2c1,p1,r1 and f2c1,p1,r2 and swapping

the values of f2c2,p1,r1 and f2c2,p1,r2 will remain an integer feasible flow with the same total
amount of flow and a decrease in the number of violations by at least two. So a simple algorithm
is to search for these courses, these rooms and this period where the swap can be done, do the
swap and then iterate. This can be implemented to run in polynomial asymptotic time instead
of the exponential asymptotic time given in the proof of Proposition 4. However, since the
swaps are only done on the f2c,p,r variables and never on the f1c,p,r variables then this means

that the values of the f1c,p,r variables must be feasible values for the f2c,p,r and so a much
simpler algorithm can be constructed by the following steps:

Step 1 Find an integer maximum flow f . This can be done by some polynomial maximum
flow algorithm, e.g. the Labeling Algorithm (Ahuja et al, 1993, proof of Theorem
6.5, section 6.5)

Step 2 If v(f) <
∑

c∈C Lc then return nil, i.e. that it is infeasible, which is correct as
it has been proved that the assignment pair (x, y) cannot be feasible in this case,
otherwise go to Step 3.

Step 3 Iterate over all triples (c, p, r) and set the value of the variable f2c,p,r equal to the

value of the f1c,p,r variable and return this new flow.

Note that these steps is exactly the description of Algorithm 1 and so the algorithm must be
correct.

24 Niels-Christian Fink Bagger et al.

References

Ahuja RK, Magnanti TL, Orlin JB (1993) Network Flows: Theory, Algorithms, and Applica-
tions. Prentice-Hall, Inc., Upper Saddle River, NJ, USA

Bettinelli A, Cacchiani V, Roberti R, Toth P (2015) An overview of curriculum-based course
timetabling. TOP pp 1–37

Bron C, Kerbosch J (1973) Algorithm 457: Finding all cliques of an undi-
rected graph. Commun ACM 16(9):575–577, DOI 10.1145/362342.362367, URL
http://doi.acm.org/10.1145/362342.362367

Burke E, Marecek J, Parkes A, Rudová H (2010) Decomposition, reformulation, and diving in
university course timetabling. Computers & Operations Research 37(3):582–597

Burke EK, Marec J, Parkes AJ, Rudova H (2012) A branch-and-cut procedure for the udine
course timetabling problem. Annals of Operations Research 194(1):71–87

Cacchiani V, Caprara A, Roberti R, Toth P (2013) A new lower bound for curriculum-based
course timetabling. Computers & Operations Research 40(10):2466 – 2477

Gaspero LD, Schaerf A, McCollum B (2007) The second international timetabling competition
(itc-2007): Curriculum-based course timetabling (track 3). Tech. rep., School of Electronics,
Electrical Engineering and Computer Science, Queens University SARC Building, Belfast,
United Kingdom

Gurobi Optimization I (2015) Gurobi optimizer reference manual. URL
http://www.gurobi.com

Hao JK, Benlic U (2011) Lower bounds for the itc-2007 curriculum-based course timetabling
problem. European Journal of Operational Research 212(3):464 – 472

Lach G, Lübbecke M (2008) Optimal university course timetables and the partial transver-
sal polytope. In: McGeoch C (ed) Experimental Algorithms, Lecture Notes in Computer
Science, vol 5038, Springer Berlin / Heidelberg, pp 235–248

Lach G, Lübbecke M (2012) Curriculum based course timetabling: new solutions to udine
benchmark instances. Annals of Operations Research 194:255–272

Scheduling, Timetabling Research Group at the University of Udine I (2015) Curriculum-based
course timetabling. http://tabu.diegm.uniud.it/ctt/index.php

