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Summary (English)

Reducing X-ray exposure while maintaining the image quality is a major chal-
lenge in computed tomography (CT); since the imperfect data produced from the
few view and/or low intensity projections results in low-quality images that are
suffering from severe artifacts when using conventional reconstruction methods.
Incorporating a priori information about the solution is a necessity to improve
the reconstruction. For example, Total Variation (TV) regularization method -
assuming a piecewise constant image model —has been shown to allow reducing
X-ray exposure significantly, while maintaining the image resolution compared
to a classical reconstruction method such as Filtered Back Projection (FBP).

Some priors for the tomographic reconstruction take the form of cross-section
images of similar objects, providing a set of the so-called training images, that
hold the key to the structural information about the solution. The training
images must be reliable and application-specific. This PhD project aims at
providing a mathematical and computational framework for the use of training
sets as non-parametric priors for the solution in tomographic image reconstruc-
tion. Through an unsupervised machine learning technique (here, the dictionary
learning), prototype elements from the training images are extracted and then
incorporated in the tomographic reconstruction problem both with matrix and
tensor representations of the training images.

First, an algorithm for the tomographic image reconstruction using training im-
ages, where the training images are represented as vectors in a training matrix,
is described. The dictionary learning problem is formulated as a regularized
non-negative matrix factorization in order to compute a nonnegative dictionary.
Then a tomographic solution with a sparse representation in the dictionary is ob-



tained through a convex optimization formulation. Computational experiments
clarify the choice and interplay of the model parameters and the regularization
parameters. Furthermore, the assumptions in the tomographic problem formu-
lation are analyzed. The sensitivity and robustness of the reconstruction to
variations of the scale and rotation in the training images is investigated and
algorithms to estimate the correct relative scale and orientation of the unknown
image to the training images are suggested.

Then, a third-order tensor representation for the training images images is used.
The dictionary and image reconstruction problem are reformulated using the
tensor representation. The dictionary learning problem is presented as a non-
negative tensor factorization problem with sparsity constraints and the recon-
struction problem is formulated in a convex optimization framework by looking
for a solution with a sparse representation in the tensor dictionary. Numerical
results show considering a tensor formulation over a matrix formulation signifi-
cantly reduces the approximation error by the dictionary as well as leads to very
sparse representations of both the training images and the reconstructions.

Further computational experiments show that in few-projection and low-dose
settings our algorithm is while (not surprisingly) being superior to the classical
reconstruction methods, is competitive with (or even better of) the TV regular-
ization and tends to include more texture and sharper edges in the reconstructed
images.

The focus of the thesis is the study of mathematical and algorithmic prospectives
and thus the training images and tomographic scenarios are mostly simulation
based. More studies are however needed for implementing the proposed algo-
rithm in a routine use for clinical applications and materials testing.



Summary (Danish)

I forbindelse med brugen af “computed tomography” eller computer-tomografi
(CT) er det en stor udfordring af opnd hgj billedkvalitet ndr man reducerer
meaengden af Rgntgenstraling, idet de traditionelle rekonstruktionsalgoritmer gi-
ver billeder af lav kvalitet nar man har fa eller stgjfyldte data. Det er ngdven-
digt at udnytte yderligere viden om objektet for at kunne beregne en pélidelig
rekonstruktion. Et eksempel pa en metode der tillader dette er TV (“total va-
riation”) som beregner stykkevis konstante rekonstruktioner - denne metoder
tillader at man reducerer Rgntgendosen betydeligt. Som a priori viden for to-
mografisk rekonstruktion kan man i visse tilfeelde bruge treeningsbilleder, dvs.
tveersnitsbilleder af objekter af samme type som dét der méles pa og som in-
deholder information om objektets struktur. Traeningsbillederne skal vaere pa-
lidelige og specifikke for objektet. Malet med dette ph.d.-projekt er at give en
matematisk og beregningsvenlig formulering af, hvorledes traeningsbilleder bru-
ges om ikke-parametrisk prior for tomografisk billedrekonstruktion. Ved hjaelp
af teknikker fra “unsupervised machine learning” (specifikt, “dictionary lear-
ning”) udtraekkes prototype-elementer fra treeningsbillederne saledes at de kan
bruges i rekonstruktionen; der betrages bade matrix- og tensor-formuleringer
af dette problem. Fgrst beskrives en algoritme til tomografisk rekonstruktion
baseret pa traeningsbilleder, i hvilken billederne er repraesenteret som vekto-
rer i en treenings-matrix. “Dictionary learning” problemet formuleres hér som
en regulariseret ikke-negativ matrix-faktorisering med det formal at beregne et
ikke-negativt “dictionary”. Derefter beregnes en lgsning med sparse repraesenta-
tion i dette “dictionary” vha. en konveks optimerings-formulering. Computer-
eksperimenter klarleegger valget og sammenhaengen af model- og regulariserings-
parametrene samt betydningen af de valgte antagelser. Endvidere undersgges
fglsomheden over for variationer i treeningsbilledernes geometriske skalering og



vi

rotation, og der beskrives metoder til at bestemme disse parametre i treenings-
billederne. Dernaest beskrives en tilsvarende algoritme hvor traeningsbillederne
repraesenteres i en tensor, som benyttes i bade “dictionary”- og rekonstruktions-
problemet. “Dictionary learning” formuleres nu som en ikke-negativ tensor-
faktorisering med sparsitet, mens rekonstruktionsproblemet formulerings som
et konvekst optimeringsproblem hvor lgsningen har en sparse repraesentation i
tensor-“dictionary”. Computer-eksperimenter viser at brugen af tensorer redu-
cerer approximationsfejlen og giver mere sparse repraesentationer af trsenings-
billederne og rekonstruktionen, sammenlignet med den fgrst algoritme. Yderli-
gere computer-eksperimenter viser at i male-situationer med f& data eller lav
Rgntgenstraling er de nye algoritmer bedre end de klassiske metoder, og de er
konkurrencedygtige med TV-regularisering idet de kan give billeder med mere
tekstur og skarpere kanter. Fokus i denne afhandling er studiet af de matemati-
ske og beregningsmaessige aspekter, og arbejdet er derfor baseret pa computer-
simuleringer. Fremadrettet skal metoderne testes pa konkrete anvendelser, fx
inden for materialevidenskab.
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CHAPTER 1

Introduction and Motivation

Computed tomography (CT), or tomographic imaging, is a technique to con-
struct an image of the interior of an object from measurements obtained by
sending X-rays through the object and recording the damping of each ray. CT
was developed in the late 1960’s and the early 1970’s by Godfrey N. Hounsfield
of EMI Laboratories, England and Allan M. Cormack of Tufts University, Mas-
sachusetts, USA. The Nobel Prize in Physiology or Medicine 1979 was awarded
jointly to Cormack and Hounsfield “for the development of computer assisted
tomography”. CT is still as exciting as the beginning of its development and
nowadays is routinely used as a nondestructive testing method in medical imag-
ing, materials science and many other applications. CT is an inverse problem
[85], i.e., the problem of estimating the attenuation coefficients of an object,
given the observed data and the tomographic system geometry.

One of the main challenges in CT is image reconstruction from imperfect sam-
pling data due to low-dose measurements and/or with projections at few views
or with a limited-angle (e.g. due to measurement time or dose constraints).
These limited-data scenarios lead to the so called ill-posed problems. In these
circumstances the classic methods of CT, such as filtered back projection [68]
and algebraic reconstruction techniques [47], are often incapable of producing
satisfactory reconstructions, because they fail to incorporate adequate prior in-
formation [10].



2 Introduction and Motivation

To overcome these difficulties and improve the reconstruction and regularize the
solution of an ill-posed problem, it is necessary to introduce and incorporate a
priori information into the mathematical reconstruction formulation that can
compensate for the lack of data. The prior information can be available in
various forms, such as training images, constraints, edge information, statistical
priors, etc. It is challenging to design mathematical methods that incorporate
the prior information in an optimal way.

A popular prior is that the image is composed of homogeneous regions separated
by sharp boundaries leading to Total Variation (TV) regularization methods
[69, ]. TV regularization can be very well suited for edge-preserving imaging
problems in low dose and/or few-view data sets. A drawback of the TV methods
is that these methods produce images whose pixel values are clustered into
regions with somewhat constant intensity with sharp boundaries [105], which
results in over-smoothed textural images.

A different approach is to use prior information in form of a carefully chosen
set of images referred to as “training images”. Training images used as the
prior for tomographic reconstruction can be slice pictures or high-accuracy re-
constructions of similar specimens which incorporate the important features of
the desired solution. Obviously, such images must be reliable and relevant to
the specific application. From the statistical point of view, the target image is
a realization of an unknown distribution and the training images are the rep-
resentatives or realizations of such a distribution. The training images should
thus be tightly related to the reconstruction problem under study.

The features of training images are obviously not in form of mathematical for-
mulations. “Dictionary learning” is an unsupervised learning method to extract
the prototype features of training images. The dictionary learning problem is to
find “basis elements” and sparse representations of the training signals/images.
That is, we want to write the input images/signals as a weighted linear combina-
tion of a small number of (unknown) basis (dictionary) elements. The dictionary
learning was introduced by Olshausen and Field in 1996 [38]. One can extract
and represent prior information from the training images by forming a dictio-
nary that sparsely encodes the information. This approach appears to be very
suited for incorporating priors such as image texture that are otherwise difficult
to formulate.

What completes this picture comes with the sparse representation theory; the
sparse reconstruction problem seeks an approximate representation of a sig-
nal/image using a linear combination of a few known dictionary elements. Sparse
reconstruction of signals and images has acquired a great deal of interest and
has been extensively studied in the last few years, see, e.g., [14, 20, 31, . In
the classical framework, for the sparse reconstruction problem, the dictionaries



are fixed and predefined. Examples of such dictionaries are Fourier, Curvelets
and Wavelets bases. For instance, Wavelets are used in a Bayesian regulariza-
tion formulation [66] and Curvelets are used for sparse regularization in X-ray
computed tomography [115]. Methods using learned dictionaries are computa-
tionally more expensive than using precomputed dictionaries in solving inverse
problem regularization with sparsity constraints; but they perform better in
promoting sparsity while fitting the measurement data, because the dictionary
is tailored to the statistics of the solution and optimized for the training set.
This concept can be very useful for tomographic reconstruction in general. If
the unknown image is sparse in a specific dictionary, the remaining task is to
find the representation coefficients that reconstruct the original image from the
given measurement data.

The use of dictionary learning in tomographic imaging has been a hot topic in the
last few years. Two different approaches have been emerging, either constructing
the dictionary from the intermediate solutions in an iterative joint learning-
reconstruction algorithm [21, 56, 73, 74, 94], or constructing the dictionary from
training images in a separate step before the reconstruction [34, 84, , ,

]. The simultaneous learning and reconstruction is a non-convex optimization
problem. Furthermore, it violates the fundamental principle of inverse problems
that a data-independent prior must be incorporated in the problem formulation
to eliminate unrealistic solutions that may fit the data.

In this thesis we focus on formulating a regularized tomographic reconstruction
problem that incorporates the available information in terms of training images
at hand. We first construct a dictionary from training images and then solve the
reconstruction problem using the dictionary as a prior to regularize the problem,
in a convex optimization framework, via computing a solution that has a sparse
representation in the dictionary.

The input images in the aforementioned methods are rearranged as vectors in a
matrix. By vectorizing images, the inherent spatial coherences and the original
structures would be lost in the second dimension; however, the images them-
selves can be more naturally represented as a multidimensional array, called a
“tensor”. Recent work by Kilmer et al. [63] sets up a new theoretical linear
algebra framework for tensors. A new method based on [63] for the dictionary
learning problem and its application in tomographic image reconstruction using
third order tensor formulations is developed. This approach differs from previ-
ous approaches in that, first a third-order tensor representation is used for our
images and then the dictionary learning problem is reformulated using the ten-
sor formulation. The reconstruction problem is similarly formulated by looking
for a solution with a sparse representation in the tensor dictionary. It is shown
that it is possible to represent repeated features compactly in the dictionary by
using such tensor formulations.



4 Introduction and Motivation

We seek to use realistic simulations with noisy data, we avoid committing “in-
verse crime”, i.e., the target image is not contained in the training set. We
perform a careful study of the sensitivity of the reconstruction to different pa-
rameters in the reconstruction problem and the dictionary. To the best of our
knowledge, no previous comprehensive study has investigated and explored the
influence of the learned dictionary structure and dictionary parameters in CT.

1.1 Contributions of the Thesis

The aim of this thesis is to provide a theoretical, methodological, and compu-
tational framework for the use of training images as priors for the solutions in
tomographic reconstruction. The main content of this PhD thesis is based on
the collection of two papers [99, 100] and one technical report [98] with the same
author as this thesis. The thesis contributions fall in three major categories:

e An algorithmic framework for using the training images as the prior infor-
mation in image reconstruction is developed: from a set of training images,
a regularized non-negative matrix factorization is used to form a dictio-
nary that captures the desired features; then a reconstruction with a sparse
representation in this dictionary is computed in terms of a convex opti-
mization problem. A careful study of how to compute a dictionary based
on the Alternating Direction Method of Multipliers (ADMM) and how the
dictionary parameters influences the reconstruction quality is performed.
Simulations show that for textural images, this approach is superior to
other methods used for limited-data situations.

Relevant paper:

S. Soltani, M. S. Andersen, P. C. Hansen, “Tomographic Image Recon-
struction using Training Images”, submitted, 2015.

http://arxiv.org/abs/1503.01993

e An empirical study to evaluate the influence of the algorithm and design
parameters in our problem formulation, as well as sensitivity to scale and
rotation —with focus on robustness —is performed. Algorithms to estimate
the correct relative scale and rotation of the unknown image to the training
images are presented.

Relevant paper:

S. Soltani, “Studies of Sensitivity in the Dictionary Learning Approach
to Computed Tomography: Simplifying the Reconstruction Problem, Rota-
tion, and Scale”, DTU Compute Technical Report 2015-4, July 2, 2015.


http://arxiv.org/abs/1503.01993
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http://orbit.dtu.dk/fedora/objects/orbit:140904/datastreams/file_
112138797/content

e The advantage of using a tensor formulation of the problem are demon-
strated, that is more natural than the standard matrix formulation when
working with images. The problems of dictionary learning in the context
of a regularized nonnegative tensor factorization; and the tomographic
image reconstruction in a convex optimization framework with a tensor
formulation are presented. It is also shown that using such tensor formu-
lations leads to much sparser representations because tensors better allow
for identifying spatial coherence in the training images.

Relevant paper:

S. Soltani, M. E. Kilmer, P. C. Hansen, “A Tensor-Based Dictionary
Learning Approach to Tomographic Image Reconstruction”, submitted, 2015.

http://arxiv.org/abs/1506.04954

1.2 Outline

This thesis is organized as follows.

We first establish backgrounds and fundamentals of this thesis and describe
basic definitions in Chapters 2 and 3. Chapter 2 provides the reader with back-
ground knowledge of inverse problems and tomographic image reconstruction.
In Chapter 3 the stage for the image reconstruction problem using dictionaries is
set; providing an overview of the dictionary learning and sparse reconstruction
methods and briefly introducing a generic formulation of such a reconstruction
problem.

Chapters 4, 5 and 6 are dedicated to the main contributions of this thesis. The
Chapters 4 and 5 use the matrix formulation and Chapter 6 use the tensor
formulation of our algorithm. In Chapter 4 an algorithm for tomographic im-
age reconstruction where prior knowledge about the solution is available in the
form of training images is described. In Chapter 5 the problem formulation as-
sumptions from Chapter 4 is investigated in more details; furthermore, we study
the sensitivity of the reconstruction towards changes in scale and rotation and
present algorithms to determine the correct scale and rotation from the mea-
surement tomographic data. In Chapter 6 we describe the tomographic image
reconstruction using the training images in a tensor formulation. Tensor dictio-
nary learning problem and the corresponding regularized image reconstruction
problem in tensor formulation are discussed in 6. The implementation details
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http://arxiv.org/abs/1506.04954

6 Introduction and Motivation

of the Alternating Direction Method of Multipliers (ADMM) to compute the
matrix and tensor dictionaries are also given in Chapters 4 and 6.

Finally in Chapter 7 we discuss the obtained results and suggest possible future
directions.



CHAPTER 2

Inverse Problems and
Regularization

In this chapter we will briefly introduce inverse problems with both computa-
tional and theoretical prospective where we present the discrete inverse problems
in the context of imaging problems. Furthermore, we give a brief overview of
the tomographic image reconstruction problem which belongs to the class of
discrete inverse problems.

2.1 Discrete Inverse Problems

One can say that a direct problem is a problem which consists of computing the
consequences of given causes; then, the corresponding inverse problem consists
of finding the unknown causes of known consequences. The definition of a direct-
inverse pair must be based on well-established physical laws. In other words the
forward problem is to compute the output, given a physical system and the
input to the system. The inverse problem in a continuous setting is to compute
the input given the two other quantities [16, §1]. The objective of an inverse
problem is to find the best model function of parameters f such that

K(f) =9, (2.1)
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where K is the forward operator that describes the explicit relationship between
model parameters f and the observed data g (i.e., the governing physics).

The inverse problems are often ill-posed. Hadamard [413] gave the definition of
a well posed inverse problem:

Well-posed problem

e Existence: The problem must have a solution.
e Uniqueness: The solution must be unique.

e Stability: The solution must depend continuously on the data.

If the problem violates one of the well-posedness conditions, it is said to be
ill-posed.

The general discrete inverse problem obtain from discretization of the continuous
formulation (2.1), often takes the form of a linear least square problem

min ||Az — b||2, AeR™" zeR" beR™, (2.2)

where m # n, x is the vector of unknown parameters, A is the forward system
matrix and b is the observed— often noisy —data.

The (2-norm) condition number of the matrix A is given by:

Omax(4)

K(A) - Umin(A) ’

where omax(A) and omin(A4) are maximal and minimal singular values of A
respectively. The condition number of the inverse problem can be quantified.
A linear system with a low condition number is said to be well-conditioned,
while a linear system with a high condition number is said to be ill-conditioned.
The measure for the ill-posedness of the discrete problem is the decay rate of
the singular values. For very large condition numbers, small data perturbations
can lead to large reconstruction errors and the least squares solution is far from
being a stable solution.

For an ill-posed linear system, the minimization of the data fitting term is
ill-posed and must be regularized. Regularization refers to formulating further
assumptions in the discrete inverse problem (2.2) in order to obtain a unique and
stable solution. We can achieve this by including an additional regularization
term in the object function. The generic regularized problem can hence be



2.1 Discrete Inverse Problems 9

defined as
min Zec(Az,b) + Leg(), (2.3)

where the data fidelity is measured by the loss function .%,..— often the quadratic
2-norm —and regularization is imposed via penalty function Zs.

2.1.1 Tikhonov Regularization

Tikhonov regularization method is the most well-known regularization method
and has been introduced by Tikhonov in 1977 [108]. Tikhonov’s method explic-
itly incorporate the regularity of the solution in the formulation of the problem.
The Tikhonov solution solves the problem

1
min 314z = BlI3 + My 213, (2.4)
where Arin, > 0 is the Tikhonov regularization parameter which controls the
weighting between the fidelity measure and the regularity of the solution. The
behavior of the Tikhonov regularization method is studied using the SVD analy-
sisin [45, §3]. For a review on algorithms for finding the solution to the Tikhonov
regularization problem and corresponding examples please see [15, 40, ].

The solution to the regularized solution depend on the choice of regularization
parameter. Omne of the well known methods for finding a suitable value for

Arikn is the L-curve method [44]. Some more automated methods for selecting
the regularization parameter has been suggested in the literature, see [15] for a
review.

2.1.2 Total Variation Regularization

The total variation (TV) has been originally introduced in image processing
by Rudin, Osher and Fatemi [97], as a regularizing criterion for solving inverse
problems. It has proved to be quite efficient for regularizing images by requiring
the images to have sharp edges and without smoothing the boundaries of the
objects [105].

In this model, the prior is formulated such that the solution is sparse in the

gradient domain. In order to enforce regularization and obtain a unique and
stable solution, the reconstruction image = can be defined as the solution of:

o1
nin §||Al' —bll5 + Arv TV (), (2.5)
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where Ay > 0 is the TV regularization parameter. The discrete TV for the 1D
signal is given by:

TV(z)= Y |Diz|, where |Dfa|=|zi11 — i, (2.6)

1<i<n—1
i.e., D is the finite-difference approximation of the derivative at the ith point.

In image denoising problems TV regularization method tends to work well on
images with regions of constant intensity where it produces a sparse gradient
magnitude.

There are other ways to define discrete TVs by means of finite differences, with
more symmetric schemes (with 3, 4 or 8 neighbors), or absolute values (1-norm)
in higher dimension, but (2.6) is the simplest case which can be efficiently solved
by means of the fast Chambolle method [18].

For example, for higher dimension arrays the isotropic TV is defined by

Ve = Y IDE:., (2.7)

1<i<n,

whereas the anisotropic TV is given by

TV(z)= Y [ID{%Ih, (2.8)

1<i<n,

where n, is the total number of elements in the high-dimensional array z. The
matrix led computes a finite-difference approximation of the gradient at each
pixel/voxel. The TV formulation (2.5) falls into the class of convex optimiza-
tion problems. A first order method for large-scale convex TV regularization
problems is implemented in [59].

2.2 Tomographic Image Reconstruction

Tomography entails the reconstruction of an image from object’s interior where
the projection data from several different directions is given. Tomography has
found widespread application in many scientific fields, including but not limited
to medicine, material science, physics, and geoscience.

Computed tomography (CT) is affiliated with X-ray photons transmitted in
straight lines through the object of interest along several projection lines. While



2.2 Tomographic Image Reconstruction 11

X-ray CT may be the most familiar application of tomography, several compet-
ing methods, such as magnetic resonance imaging (MRI), positron emission
tomography (PET), ultrasound, and nuclear-medicine nowadays exist. CT is
an interesting model case for inverse problems and many mathematical aspects
of CT have been extensively studied and are now well understood, see e.g.,

[15, 35, 42].

In this thesis we focus on the X-ray CT formulation and since the term “to-
mography” is often associated with X-ray CT, throughout this thesis we use the
term tomography to denote the X-ray CT problem.

In tomographic imaging the projection data is measured by the number of X-
ray photons transmitted through the object along individual projection lines
while the goal is to compute the linear attenuation coeflicient in the slice being
imaged. Examples of CT scanner geometries often used to collect projection
data is illustrated in Fig. 2.1.

Figure 2.1: Left: the parallel-beam CT geometry with equidistant angles be-
tween the detector elements and equidistant X-ray source spacing.
Right: the fan-beam CT geometry. A fan-beam sampling unit con-
sists of an X-ray source and a detector array mounted on the same
rotation disk. This figure is from [60].

The spatial distribution of the attenuating components of the object that pro-
duce the projection data is not known a priori. The X-ray attenuation in the
object’s components primarily depends on the it’s density. X-ray attenuation in
tissue can be described by Lambert-Beer’s law, see e.g., [15, §2.3.1]. If f(X) is
the attenuation coefficient at the spatial position X = (z1,z2) in the 2D object,
L is the line in which X-rays moves along, I; is the initial X-ray intensity and
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Iy, is the intensity when exiting the object, known from measurements, then

I = Iyexp ( - /L f(X)dm).

The Lambert-Beer’s law states that the number of photons, decreases expo-
nentially while running through an object along the incident direction. This
attenuation is due to absorption and scattering. By taking the logarithm of the
Lambert-Beer’s law we obtain:

/ f(X)dz =log Iy — log I,. (2.9)
L

The right hand side of (2.9) is known and the left-hand side consists of an
integral of the unknown function f along a straight line L. This is the tomog-
raphy’s inverse problem. It can be shown that ideally the quantity Iy, i.e., the
photon count, is a constant multiple of a Poisson-distributed random variable
[15, §2.3.1], however in presence of other errors such as beam-hardening and
scattering, in practice, it is common to assume a Gaussian noise-model. The
Gaussian noise model is accurate when the photon count is large enough [102].

2.2.1 Continuous Tomographic Data

The Radon transform and its inverse provide the mathematical basis for re-
constructing tomographic images from measured projection. An object can be
perfectly reconstructed from a full set of projections [93].

Let f(X) = f(z1,72) be a continuous function on R%. The Radon transform
is a function defined on the space of straight lines L in R? by the line integral
along each such line

Rf(L) = / F(X)d.

The Radon transform of the function f for the two-dimensional variable X =
(21, x2) in the polar coordinates can be written as

+oo +oo
Rof(t) = / / f(z1,22)0(x1 cos + xosinf — t)dzidrs, (2.10)

where the angle 6 € [0,7) and the parameter t{ € R define a line such that
t = 21 cosf 4+ x5 sin§. The function §(-) is the Dirac delta function.

The 2D Radon transform is a 2D function of 6 and t called the sinogram,
which gives the intensity values in the coordinate system of variables (6,1). The
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function Ry f(t) is often referred to as a sinogram because the Radon transform
of an off-center point source is a sinusoid. When the discrete values of 6 and ¢
are used, then the sinogram is represented by a matrix.We denote the sinogram
by the matrix S.

The task of tomographic reconstruction is to find f(z1,x2) given knowledge of
Ry f(t). The solution to the tomographic reconstruction is based on the central
slice theorem (CST) [15, §5.3]. To briefly explain, CST results in the idealized
reconstruction algorithm for tomographic imaging:

Filter Back Projection Algorithm

e Measure the Radon transform of f:

Iy
R =log(—).
of (1) =log (1)
Note that I, is a function of 6 and t.

e (Calculate the Fourier transform of Ry f with t as the independent
variable and with fixed 6, denoted by Ry f.

e Denote f as the Fourier transform of f such that:

— A

Rof = f.

e Reconstruct f from the Radon inversion formula:

1 i ® ir(xq cos T sin
100 = oz [ RaF@eren oo n 0 anag

where i is the imaginary unit.

‘We denote

1 oo . .
PROf(tj) — g / Ref(r)ezr(ml cos 042 sin 0) |r|dr

— 00

as a filter. Then:
1 e
[(X) = . / PRy f(x1 cosl + xosin 0)d6.
T Jo

Hence, f(X) can be obtained, by definition, as the backprojection of the filter
PRy f. For more detailed description of the filter back projection algorithm we
refer the reader to [15, §5] and [35, §2.3].
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An implementation of the filtered back projection method can be found as the
MATLAB function iradon.m from the Image Processing Toolbox. Filter Back
projection (FBP) method is fast and require a low memory to compute a solu-
tion. However FBP needs a complete projection data i.e., projections in [0, 7)
to compute accurate reconstructed images. Furthermore the FBP formulation
does not allow incorporating prior information on the reconstruction.

2.2.2 Discrete Tomographic Data

The discrete tomographic reconstruction model relies on a discrete representa-
tion of both the image to be reconstructed and the measurement data. These
methods allow integration of prior information in the reconstructing process, as
well as the flexible use of diverse linear algebra and optimization techniques.

In the discrete model the image f(X) is represented by the vector f, obtained
by dividing the object space into n = M x N pixels, with elements f; in a finite
basis of n square summable functions h;(X).

=" fihi(X).
j=1

Here we choose pixel expansion functions for h;(X), j = 1,...,n. The angular
variable is sampled with equidistant steps in the half circle:
-1
0, = , 1<I<N,.
l Np >0 1Vp
The linear parameter { is also sampled uniformly over a suitable interval:
2(k—1)
N,
where 7' > 0. The number of rays in each projection is given by N, and the
total number of projections is V.

t=—T+ 1<k<N,

Let m = N, N, then the measurement b; of the line integral of f over the line
L; is approximated by

b ~ (/ h-(X)d:ri)f-, i=1,...,m.
g L; ’ ’

1

J

where dz; denotes the one-dimensional Lebesgue measure along the line L;. The
measurement b; is equal to log (IITD) + noise. Hence:

n
bi"&i E aijfj, i:l,...,m,
j=1
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where a;; is the distance that L; travels in the jth pixel. An example of a
discretized object and a given projection line is depicted in Fig. 2.2.

b;

/

/

Figure 2.2: A 5x5 example of a discrete image. The length of each pixel side is
1. An attenuation variable f; is appointed inside each pixel. Only
pixels that intersect the line L; are included in the measurement
associated with this line.

By setting up the matrix A = (a;;), ¢ = 1,...,m and j = 1,...,n, we obtain
the linear system of equations Af = b. In general we consider the discrete linear
model as follows:

Af+e=b (2.11)

where the vector ¢ € R™ models the measurement noise error.

The sinogram S of the discrete model is given by reshaping the measurement
vector as a matrix, where column indices correspond to discrete values of 6 while
row indices correspond to discrete values of t.

Let us consider the Shepp-Logan phantom test image at discretization with 125x
125 pixels generated with phantom.m function in MATLAB. We use the function
paralleltomo.m from the MATLAB package AIR Tools [17] to compute the
matrix A with a parallel beam geometry. The paralleltomo.m automatically
choose N, = 180 projection and N, = 177 rays per projection. The Shepp-
Logan test image and it’s corresponding 177 x 180 singoram obtained by the
forward computation Af are given in Fig. 2.3.

2.2.3 Algebraic Reconstruction Techniques

Discretization of the tomographic problem leads to a large, sparse and ill-
conditioned system of equations. Iterative regularization methods for comput-
ing stable regularized solutions to discrete inverse problems have been widely
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Figure 2.3: Left: The 125 x 125 Shepp-Logan phantom. Right: The sinogram
of tomographic measurements, the column indices correspond to
discrete values of # and row indices correspond to discrete values
of t.

used in imaging problems, [9, 40] as well as tomographic reconstruction [42, 51].
There are many variants of these iterative methods, which rely on matrix-vector
multiplications and therefore are well suited for large-scale problems.

These methods often exhibit fast initial convergence towards the desired so-
lution. The number of iterations plays the role of a regularization parameter
because these iterative methods have semi-convergence behavior in the presence
of noisy measurement data. When the number of iterations increases, the iter-
ates first approach the unknown image and then diverge from the regularized
solution and converge to the least squares solution.

One classical method that is routinely used for tomographic imaging problems
is the Kaczmarz method also known as the algebraic reconstruction technique
(ART) [10]. The ART and Kaczmarz methods are alternatively called row-
action methods, the reason is that they access the matrix A one row or one
block at a time. The iteration k£ involves a sweep through the rows of A, i.e.,
al for i =1,...,m, in the following update of the iteration vector:

aT flE ]

FEOT — ple) gy b S
las]|3

a, i=1,....om k=1,... (2.12)

where k is the number of iteration and A*¥! is a relaxation parameter such that
0 < A¥l < 2. The superscripts [£(¥)] and [k(~1)] refer to the ith and (i—1)th row
value at the iteration number k. If the linear system (2.11) is consistent then the
iteration (2.12) converges to a solution f*, and if f% is a linear combinations
of column vectors in AT, then f* is the solution of minimum 2-norm. If the
system is inconsistent then every subsequence associated with a; converges, but
not necessarily to a least squares solution. For proof please see [30].

Another class of iterative methods commonly used in tomography are called si-
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multaneous iterative reconstruction techniques (SIRT). These methods are “si-
multaneous” in the sense that all the equations are used at the same time in one
iteration and involve matrix-vector products, and is given in general form by

fIH = flB o KT AT A (b — AfIH, (2.13)

where T" and M are symmetric positive matrices. Different methods depend on
the choice of these matrices. A convergence scheme is depicted in [47].

With the semi-convergence properties of the iterative methods we need a reliable
stopping criteria that can stop the iterations at the right point. Several stop-
ping criteria are available in literature such as Discrepancy principle (DC) and
Normalized Cumulative Periodogram (NCP), see e.g., [15]. For each iterative
method, a number of strategies are also available for choosing the relaxation
parameter A, For a review we refer the reader to [17].

The ART and SIRT methods are well suited for modern computer architectures.
ART has the faster convergence during the semi-convergence phase comparing
to the SIRT method, however recent block versions of these methods, based on
partitioning the linear system, are able to combine the fast semi-convergence of
ART with the better multi-core properties of SIRT [104].

Several MATLAB packages with implementations of several algebraic iterative
reconstruction methods for the tomographic imaging problems are available.
ASTRA [90, 57] is a MATLAB package with GPU acceleration and interfaces to
Python, for 2D and 3D tomography. The AIR Tools package [47] was developed
for MATLAB, including 2D reconstruction test problems, and techniques.

2.3 The Need for the “Right” Priors

Let us recall from the introduction Chapter 1 that an interesting challenge for
image reconstruction in tomography arises from the insufficient sampling data
with projection data at few views with the uncertain noisy data.

Consider the Shepp-Logan phantom image shown in Fig. 2.3 discretized on a
125 x 125 pixel grid as the given exact image x°*2°*. We fix the number of rays
per view at N = 177 and use an angular range of a full 180°. The number of
views is limited to NV, = 25, The tomographic measurement model, A = (a;;)
with ¢ = 1,...,m and 5 = 1,...,n, where m is the number of tomographic
measurements and n is the total number of pixels in the target reconstruction
solution (), is obtained by a parallel beam tomographic simulation from the
MATLAB Toolbox AIR Tools [47].
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We evaluate the image reconstruction with several reconstruction methods; this
is done with noisy data, the exact data is generated with forward approximation
pexact = Agexact and 1% relative Gaussian noise is added to the exact data to
compute the noisy data. The total number of rows in A is given by m =
NN, = 4425 and the number of columns is given by n = 1252 = 15625. The
reconstruction quality is evaluated by computing the relative error:

||xexact _ tz

||1.exact||2

RE = (2.14)

The reconstructed solutions are illustrated in Fig. 2.4 where the tomographic
problem is solved by means of FBP, ART, Tikhonov regularization and the
TV formulation. The MATLAB toolboxes TVReg [59] and AIR Tools package
[47] are used for obtaining the TV and ART solutions. In these methods the
regularization parameters were chosen such that they were “optimal” in the
sense that they result in a solution with the least relative error.

The FBP, Tikhonov, and ART methods fail to produce desirable reconstructed
images in this low-dose tomographic problem, however the reconstruction error
for the TV solution is significantly smaller than that for other solutions. The
matrix A is ill-conditioned, and rank deficient, due to the ill-posedness of the
underlying inverse problem and therefore the solution is very sensitive to noise
in the data b. For this reason, this simple least squares approach and FBP fail
to produce a meaningful solution, and we must use regularization to incorporate
prior information about the solution. TV regularization methods can maintain
reconstruction quality or even generate better results than the classical Filter
back projection methods in low dose and/or few-view data sets. This leads to
a significant reduction of radiation exposure in CT [10, 69, , ].

Image textures can generally be found in natural images and images of various
materials. Image texture gives us information about the spatial and structural
features and various intensities in an image. For example tomographic tech-
niques in material science allows one to obtain the images of the interior of a
material in a non-destructive way, collect data about the micro-structural char-
acterization of materials and better understand the main physical phenomena
that occur during the forming or the use of a material. To quantify how well
textures of an image can be preserved in a tomographic reconstruction process
in a low-dose scenario, we consider a test image with textural features. A true
image of peppers with clear textures with 200 x 200 resolution is assumed to
be given (in Fig. 2.5). The true image is gray and scaled in the interval [0, 1].
We solve the reconstruction problem using the exact image given in Fig. 2.5.
For this we use N, = 25 projections, N, = 283 rays per projection, and 1%
noise. This problem is highly underdetermined with m = 7,075 measurements
and n = 40,000 unknowns. In Fig. 2.5 the reconstruction, computed by TV
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Non-neg. ART, k=300

(a) RE% = 46.46 (b) RE% = 20.60

Tikh. Reg., A, = 1 TV Reg., Ap,= 0.1274

(c) RE% = 43.07 (d) RE% = 4.95

Figure 2.4: Comparison of the best solutions computed by different recon-
struction methods. Top: left: filter back projection, and right: alge-
braic reconstruction technique solutions. Bottom: left: Tikhonov,
and right: TV regularization solutions. RE denotes the relative
reconstruction error (2.14).
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A =183

(a) gexact (b) TV, RE% = 21.37

Figure 2.5: Left: The 200 x 200 peppers test image. Right: The TV regular-
ization solution with 25 projections and 1% noise. RE denotes the
reconstruction error.

regularization, is illustrated where it can be clearly seen that the TV method
fails to capture the textures of peppers.

TV regularization is very well suited for edge-preserving image processing or
reconstruction problems; however the main drawback of the TV is that it results
in images where the pixel values are clustered into piecewise constant regions
[105] and also in presence of noise TV tends to over-smooth the textures for
natural images. Since the TV constraint penalizes the image gradient, and is
not capable of distinguishing structural details from noise. Another drawback is
that the TV problem (4.11) tends to produce reconstructions whose intensities
are incorrect [105].

Our ultimate goal is to incorporate priors in order to preserve edges and details
in the image. The prior information that is needed for image reconstruction
may be available in so called “training images” that characterize the geometrical
or visual features of the property of interest, e.g., from pictures of specimens
or from high-accuracy reconstructions. The goal of this work is to formulate a
variational framework for solving tomographic reconstruction problems in which
a priori information is available as such training images.



CHAPTER 3

Dictionary Learning and
Sparse Representation

Finding “good” representations of training data has been the topic of a large
amount of research. Unsupervised learning involves learning from unlabeled
training sets of data where no specific order or information of the training data
is available. The problem of unsupervised learning is that of trying to find hidden
structures in unlabeled data and/or blind source separation—the separation of
a set of source/basis signals/images from a set of mixed signals/images— using
feature extraction techniques for dimensionality reduction; e.g., singular value
decomposition, k-means clustering, principal component analysis, independent
component analysis, non-negative matrix factorization and many more. For a
comprehensive overview of the unsupervised learning methods and applications,
at the time of its publication, we refer to [50, §14].

“Dictionary learning” is an unsupervised learning method to learn and extract
various features of a(n) signal/image. The dictionary is learned from training
data, i.e., a large database of images with an arbitrary size. Dictionary learning
is a way to summarize and represent a large number of training images/signals
into fewer elements and, at the same time, compensate for noise or other errors
in these images/signals; hence the learned dictionary is robust to irrelevant
features. The goal of dictionary learning is to represent input signals/images,
represented as vectors, approximately as a weighted linear combination of a
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small number —introducing sparsity —of (unknown) “basis vectors”. These basis
vectors thus capture high-level patterns in the training data. These basis vectors
are called the “elements of the dictionary”. To obtain a sparse representation,
the dictionaries are typically overcomplete, i.e., dictionaries have more basis
functions than it is actually necessary to span the solution space. Such “sparse
coding” of natural images was introduced by Olshausen and Field in 1996 [38].

One is often interested in approximating an image as a linear combination of a
few (aka sparse) elements of the dictionary. Once an unknown signal is sparse in
a specific dictionary, the main challenge is to find the representation coefficients
that reconstruct the original full signal from the given data. We should note
that when a signal is said to be sparse in an engineering sense, it means that
the signal is compressible, i.e. it can be expressed either with a small number
of dictionary elements or with significantly decaying expansion coeflicients.

While learning the dictionary has proven to be critical to achieve (or improve
upon) the quality of existing methods and results, effectively solving the cor-
responding optimization problem is a significant computational challenge, par-
ticularly in the context of the large scale datasets involved in image processing
tasks, that may include millions of training samples.

In Section 3.1 we describe the dictionary learning problem formulation. In
Section 3.2 we will briefly introduce the background on reconstruction methods
with a sparse representation and we formulate our general framework to solve the
tomographic reconstruction problem using learned dictionary priors in Section
3.3.

3.1 The Dictionary Learning Problem

The term dictionary learning refers to methods of inferring, given a data ma-
trix Y, an overcomplete dictionary that will perform good at sparsely encoding
the data in Y i.e., modeling data matrix as sparse linear combinations of the
dictionary. A dictionary learning problem can be formulated as follows:

Given a data matrix Y = [y1,¥2,...,%] € RS> and a number of entries s
find two matrices D = [dy,ds,...,d,] € R®** and H € R**!  which factorize
Y as well as possible, that is: Y ~ DH or in other words Y = DH + FE,
where the matrix £ € R&*! represents approximation error. This standard
generative model assumes that the factorization error is distributed as a zero-
mean Gaussian distribution with covariance ¢?I. The problem of learning a
basis set (dictionary) can be formulated as a matrix factorization problem.
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A generic dictionary learning problem takes the form:

win  Luie(Y, DH) + @aic(D) + ooy (H). (3.1)

)

Here, the misfit of the factorization approximation is measured by the loss func-
tion Zyic, while the priors on the dictionary D and the representation matrix H
are taken into account by the regularization functions ®qic and ®,.}, respectively.

Considering nonnegativity constraints on the elements of D and H or imposing
sparsity constraint on matrix H are widely used methods in unsupervised learn-
ing for decomposing multivariate data into non-negative or/and sparse compo-
nents. In this section we briefly describe the motivation behind this type of
data representation. We note that the Bayesian methods presented in, e.g.,
[67, 122] based on maximum likelihood and maximum a-posteriori probability
which are designed for training data corrupted by an additive noise and/or being
incomplete; are not of our interest in this work.

We present the standard sparse coding, non-negative matrix factorization, and
nonnegative sparse coding problem as the well-known dictionary learning for-
mulations and try to explain their relations.

3.1.1 Sparse Coding

The term “Sparse Coding (SC)” comes from the classic paper [38] in which it
is shown that a coding strategy that maximizes the sparseness is sufficient to
account for capturing natural image features.

In sparse coding the problem of discovering the underlying dictionary is often
formulated in terms of vector representations, i.e., each input vector y; is char-
acterized and represented using basis vectors [dy,da, ..., ds] and a sparse vector
of weights or “coeflicients” h; € R®, j = 1,...,¢ such that y; ~ Dh;. In its
simplest form, the sparsity of the coefficients h; is measured by its cardinality
number. The cardinality is sometimes called the [y pseudo-norm, although the
cardinality function is not a norm. The cardinality is denoted by || - ||o, then:

[hjllo=#{i € {1,....,&} : hi; #0}, Vji=1,...,t

Commonly an optimization problem of the following form is considered.

t
min > ly; — Dhyll3, st |[hillo < ko, G=1,....t, (3.2)

DAk Y, o
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where every representation has at most kg non-zero entries. Let the spark of a
matrix D be defined as the smallest number of columns from D that are linearly-
dependent. In terms of uniqueness, for the case when y; = Dhj, if D exists such
that h;’s for j = 1,...,t are representable using at most ko < spark(D)/2
atoms; then, up to re-scaling and permutation of the columns, D is the unique
dictionary that achieves this sparsity for all the elements in the training database
[31, §12.2.1].

A local minimum to the problem posed in equation (3.2) can be approximated
iteratively, first minimizing over h;’s with D fixed, and then minimizing over D
with h;’s fixed. Dictionary learning algorithms for (3.2) based on such strategy
has been proposed for instance in Method of Optimal Directions (MOD) by
Engan et al. [33] and K-SVD by Aharon et al [1]. Recent modifications and
improvements of the MOD and K-SVD dictionary learning algorithms are also
proposed, e.g., in [82, , ].

However minimizing || - |0 is known to be a NP-hard problem [I10], instead
commonly in the formulation it is replaced by the [, regularization, leading to a
convex relaxation of the sparse coding problem (3.2) when the dictionary D is
fixed. Therefore to favor sparse coefficients, the sparsity prior for each coefficient
h; is defined as ||h;||1. The l;-norm regularization is known to produce sparse
coefficients and can be robust to irrelevant features [37].

To prevent the dictionary D from having arbitrarily small values (which would
lead to arbitrarily large values of in h;), or vise versa, one can introduce con-
straints on the lo-norm of the matrix columns

b={DeR™ | |45 <& Vje{l,... s}}.

Then the search for a sparse code can be formulated as an optimization problem
by constructing the following cost function to be minimized:

. 1 .
el . 3l1vi = Dhills + Allhslh, - forj=1,....¢, (3:3)

The emphasis on minimizing the sparsity induced on the elements h;, is con-
trolled by the regularization parameter A > 0. Similar to the problem (3.2)
the non-convex optimization problem (3.3) is commonly solved alternatively
for D and h; for all j = 1,...,¢t. The h; updating step is a sparse linear
problem —which we will describe in the next section— and the D update is a
norm constrained least squares problem. Most recent methods for solving these
types of problems are based on coordinate descent (gradient methods) with soft
thresholding [78]. For examples of sparse coding algorithms based on problem
formulation (3.3), we refer to [71] and the online dictionary learning method

[79]-
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Using the definition of the /;-norm and the Frobenius norm of a matrix, lead the
problem definition in (3.3), to a more general representation. More specifically,
given a training set of ¢ signals Y = [y1, ..., 3] in R&** one looks for a dictionary
matrix D in such that each signal y; admits a sparse decomposition in D:

. 1
min =

Y — DH||% + )\ H;
DE&HGRS“2|| & + Z| irj

(2]

(3.4)

Note that the problem formulation (3.4) is proper since the columns of the
representation matrix H are independent and separable. Note that the problem
(3.4) is an example of the generic problem formulation (3.1). The optimization
problem (3.4) is not jointly convex in (D, H) and hence there is no guarantee
to obtain the global minimum, but it is convex with respect to each variable D
or H when the other is fixed.

3.1.2 Nonnegative Matrix Factorization

Many real world data are nonnegative and the corresponding basis elements have
a physical meaning only when nonnegative. Lee and Seung in [70] proposed the
notion of non-negative matrix factorization (NMF), as a way to find a set of basis
functions for representing nonnegative data. It is shown in [70] that the basis
vectors displayed as images, appear as a collection of parts and localized features,
so one can say that NMF leads to a parts-based representation. NMF only allow
additive not subtractive combinations, where a zero-value represents the absence
and a positive number represents the presence of the basis component in the
representation.

In principle NMF seeks to decompose a non-negative matrix. Given a nonneg-
ative matrix ¥V € RiXt7 NMF searches for non-negative factors D and H that
approximate Y (i.e., Y &~ DH)where all the entries of D and H are nonnega-
tive. The NMF problem is commonly reformulated as the following optimization
problem:

min 1|\Y —~DH|% st.D>0and H >0, (3.5)
DERéXs HERs Xt 2
where D is a basis matrix and H is a coefficient matrix. The matrices D and H
are forced to have non-negative entries, which lead to sparse representation [28].
‘We note that even in situations where Y = D H holds exactly, the decomposition
is not be unique [28].

A natural way of optimizing the cost function in the non-convex optimization
problem (3.5) is to alternate the minimization between D and H, fixing one



26 Dictionary Learning and Sparse Representation

and optimizing with respect to the other. Numerous methods are proposed in
literature for solving the non-negative matrix factorization problem. One can
mention iterative multiplicative algorithms, the alternating least squares algo-
rithms and projected gradient methods. A comprehensive overview, at the time
of its publication, of non-negative matrix factorizations and applications exists
[24]. Projected gradient approaches are better suited in solving the overcomplete
non-negative matrix factorization problems (i.e., £ < s < t) [119].

3.1.3 Nonnegative Sparse Coding

In the standard sparse coding, the data is described as a combination of el-
ementary features involving both positive and negative elements. The fact is
that features can cancel each other out. Moreover as mentioned in the previous
section solutions obtained by NMF algorithms may not be unique, and it is
often necessary to impose additional constraints such as sparsity. Furthermore,
matrix factorization methods with non-negativity and sparsity constraints usu-
ally lead to estimation of the dictionary elements with specific structures and
physical interpretations, in contrast to other dictionary learning methods [53].

It is clear, however, that with inducing both sparsity and non-negativity con-
straints some of the explained variance in the data may decrease. In other
words, there is a trade-off between the two goals of interpretability, promoting
sparsity and data/statistical fidelity.

For these reasons we prefer to consider the dictionary learning problem which
takes the form of non-negative sparse coding [53] of a non-negative data matrix
Y:

. 1 s
oY - DH|[E+ XY |hi;|  st.  Deb, HeRY',  (3.6)

,J

SE

where the set D is convex and A > 0 is a regularization parameter that controls
the sparsity-inducing penalty ). ; |hi ;1.

A nonnegative dictionary D with s elements refers to a collection of basis image
“carrying image features” and a nonnegative H represents conic combinations
of dictionary elements when approximating a nonnegative data matrix Y. A
sparse H refers to the approximation of training images with a small number of
dictionary elements.

A projected gradient descent algorithm for NMF with sparseness constraints—
or the nonnegative sparse coding (NNSC) problem— is introduced in [53]. The
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problem NNSC is currently solved with projected gradient methods from bound-
constrained optimization problems [36].

In Chapters 4 and 6 we present an algorithm based on the alternating direction
method of multipliers (ADMM) for solving the dictionary learning problem of
the form (3.6) and a third-order tensor formulation of such problem.

3.2 Sparse Solution of Linear Inverse Problem

In sparse approximation problem, the goal is to find an approximate represen-
tation of a response signal(data) using a linear combination of a few known
basis elements from fewer measurements than is required for reconstructing the
original signal. In other words consider @ € R¢**, a known dictionary with
¢ < s and a response signal u, the generic discrete inverse problem of finding
the representation vector w is considered by:

Find sparse w such that dw = u,

where w € R® and v € Ré. In such formulation, the problem is underdetermined,
¢ < s, thus admits an infinite number of solutions. A way of solving this ill-
posed problem is constraining the possible solutions with prior information, here
by exploiting sparsity. Recall that a signal w is sparse if there are a few nonzeros
among the possible entries in w and a simple sparsity measure of the vector w
is defined by the Iy pseudo-norm. The basic problem of finding a maximally
sparse representation of an observed signal u is given by

(P) : m%l lw]lo subject to Pw = u. (3.7)
weRSs

In practice, signals tend to be weakly sparse or compressible when only a few of
their entries have a large magnitude, while most of them are close to zero, rather
than being zero. Mathematically speaking, a compressible signal u is sparse in
@, if the sorted coefficients in decreasing magnitude have a fast decay; i.e., most
of coefficients w vanish but a few.

The optimization problem (F)(3.7) in literature is referred to the “Matching
Pursuit” problem. The spark gives a simple criterion for uniqueness of sparse
solutions in (Pp). If a system of linear equations Pw = u has a solution obeying
lwllo < spark(®)/2, this solution is necessarily the sparsest possible (for a proof
see [14]).

One can consider a natural variation of the problem (Fp), and allow a small
discrepancy between $w and v with some error tolerance € > 0 [26]. This is the
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case when the measurement signal u is contaminated by noise
(P§) : m%l lwllo subject to ||Pw — ulls < e. (3.8)
weRs

Sparse regularization is a popular class of priors to model natural signals and im-
ages. Given a predefined complete basis functions (e.g., Discrete Cosine Trans-
form) or an overcomplete dictionary (e.g., Wavelets, or learned dictionaries), we
are interested in an efficient encoding of the data, in the sense of sparseness,
i.e., to use as few dictionary components as possible in our representation. The
sparsity inducing norms perform model selection as well as regularization.

3.2.1 Algorithmic Approaches

The problem (Py)(3.7) and (P§)(3.8) being non-convex and NP-hard, a straight-
forward approach to solve them seems intractable. There are at least five major
classes of computational techniques for solving sparse approximation problems,
we list them from the Tropp and Wright review paper in [110].

1. Brute force: Exhaustive combinatorial search through all possible sup-
port sets which is plausible only for small-scale problems.

2. Greedy pursuit: Iteratively refine a sparse solution by successively iden-
tifying one or more components that yield the greatest improvement in

quality [83].

3. Convex relaxation: Replace the combinatorial problem with a convex
optimization problem. Solve the convex program with algorithms that
exploit the problem structure [20, 76].

4. Bayesian framework: Assume a prior distribution for the unknown coef-
ficients that favors sparsity and develop a maximum a posteriori estimator
that incorporates the observation [91].

5. Nonconvex optimization: Relax the [y problem to a related nonconvex
problem and attempt to identify a stationary point [19, 41].

A basic suboptimal greedy sequential solver for (Py)(3.7) and (P§)(3.8) is known
as “Orthogonal Matching Pursuit algorithm” (OMP) [92]. The OMP algorithm
iteratively generates for the signal v and the dictionary @, a sorted list of indexes
and scalars which are the sub-optimal solution to the problem of sparse signal
representation and yields a substantial improvements in approximating the sig-
nal. Many related greedy pursuit algorithms have been proposed in literature,
please see, e.g., [31, §3.1].
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Since Bayesian framework and non-convex optimization methods do not cur-
rently offer theoretical guarantees [110], we only focus on convex optimization
formulations to obtain solutions to the sparse approximation problems. It is not
clear where a convex relaxation formulation is preferable to a greedy algorithm
technique however convex relaxation algorithms are more effective in a wider
variety of settings, such as in presence of heavy noise in the measurement signal

[110].

3.2.2 Convex Relaxation Methods

Recall that the I; norm is the closest convex relaxation to the [y pseudo norm
function. The convex form of (Fy) (3.7) also known as “Basis Pursuit” (BP)
[20], which is the solution having the smallest I; norm of coefficients, is given
by
(Py): min |jw|l; subject to Pw = u. (3.9)
w€ERS®

By emperical observation, in many cases (P;) successfully finds the sparsest
representation [31, §3.2].

An equivalent representation of (Pf§)(3.8) is given by

(PY) : m%l lw|li  subject to ||Pw — u|lz <€, (3.10)
weRs

where € is an estimate of the noise level in the data. Some authors refer to (Ps)
(3.10) as the “Basis Pursuit Denoising” (BPDN).

Another variant of the BP problem known as the “Lasso”, which specified by
Tibshirani [107] is as follows:

m}RI{l |Pw — ull2  subject to |lw|l1 < 7, (3.11)
weR?

where the parameter v > 0 controls the sparsity level of the representation w.
We can also use a parameter p > 0 to balance the twin objectives in (Pf) and
Lasso problems of minimizing both error and sparsity and obtain:

1
min 1w — ullf + ). (312)

For appropriate parameter choices of €, u, and v, the solutions of BPDN (3.10),
relaxed Lagrangian formulation (3.12), and Lasso (5.1), coincide, and these
problems are in some sense equivalent. However, except for special cases—such
as @ orthogonal —the parameters that make these problems equivalent cannot
be known a priori [112].
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The Basis Pursuit problem formulations (3.10), (5.1) and (3.12) being convex,
they can be solved by means of convex optimization techniques. The interior-
point method was first used in solving the BP problem [20], and simple iterative
algorithms such as “iteratively re-weighted least squares” (IRLS) were devel-
oped to solve the relaxed Lagrangian problem (3.12) [31, §5.3]. The paper by
Figueiredo et al. [36] proposes gradient projection algorithms for the bound-
constrained quadratic programming formulation of the Lagrangian relaxation
problem (3.12).

In general the interior-point methods are not as efficient as the gradient methods
with very sparse solutions. In recent years, a new efficient family of optimization
techniques called the “Iterative Shrinkage Algorithms” (ISA) based on the clas-
sical Donoho-Johnson shrinkage method [27] have been developed. This class of
methods can be viewed as an extension to the classical gradient algorithm. For
an extensive list and description of such methods we refer to [31, §6]. Most of
such methods e.g., FISTA [5] are concerned with the unconstrained Lagrangian
problem formulation.

There are fewer methods specially adapted to Lasso (5.1) and BPDN (3.10),
SPGLI [112] is a solver specifically designed for BPDN (3.10) and Lasso (5.1).
SPGL1 can efficiently handle large scale problems, the issue is that currently
it cannot handle variations in their mathematical formulations. NESTA [7]
can efficiently deal with variations of the objective functional (3.10), but it
has limitations due to requirement of inverting ®@*, where @* is the conjugate
transpose of @.

Becker, Candés and Grant in [3] have developed a framework for solving a va-
riety of convex cone problems including BP, BPDN and Lasso, and variations
of these problem formulations, using optimal first-order methods. TFOCS is a
library (MATLAB Toolbox) based on [3, 6] designed to facilitate the construc-
tion of the first-order methods which handles a variety of Basis Pursuit problem
formulations. Hence, we will use TFOCS to solve the convex optimization sparse
approximation problem in our image reconstruction step which we will describe
later.

3.3 Application to Tomographic Reconstruction

Recall that in tomography a noisy measurement signal b is measured as the
response of sending physical signals (e.g., waves, particles, currents) through
an object of interest. The discrete tomographic model is represented by an
m by n matrix A, representing the forward projection model. Considering an
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unknown M x N image z, with n = M N as a vector of absorption coefficients for
pixels/voxels of the image of interest; yields the linear inverse problem: b ~ Ax
where z € R™. Our work is concerned with underdetermined problems where
m < n, and the need for regularization is even more pronounced.

Generally the image x is not sparse but the situation changes when we know
that x has a sparse representation in terms of a known basis W, i.e., we can find
a solution to the problem

Find sparse o such that AW« = b,

where x = Wa. The simplest dictionary, the identity matrix is a naive dictio-
nary where no prior about the image is incorporated in the representation of
the solution. Here we are interested in using a global learned dictionary W for
the image x.

Since the observation b is always in presence of error, it is natural to consider
the following problem formulation to allow some error tolerance € > 0:

m%R? |ler]|1  subject to [|[AWa —blj2 <, (3.13)
aeRe

where A € R™*" b € R™, W € R"*?¢ is an overcomplete dictionary (i.e., n < p),
€ is a small positive constant and o € R? is the unknown variable. The number
of dictionary elements (p) is arbitrary here. We can then reconstruct z from the
solution « as z* := Wa*. In other words, the solution to (3.13) should be a
linear combination of a small number of “elements” from the dictionary. The
formulation (3.13) is a simplistic model where no other assumptions are made
on the image x or representation a.

Consider the case when W is an orthogonal complete basis (i.e., n = p), then
such problems as (3.13) correspond to a so-called synthesis regularization be-
cause one can assumes the sparsity of the coefficients « that synthesize the signal
x = Wa. We should also here refer to the analysis problem:

;rel]%rylb |[WTz||; subject to ||Az — bl|z < e, (3.14)
In the analysis problem we are looking for an x such that Az ~ b and WTz is
sparse. In the synthesis problem, we seek a solution of the form x = W« such
that Ax ~ b and « is sparse. In a synthesis prior, the generative vector « is
sparse in the dictionary W whereas in analysis prior, the correlation between
the signal x and the dictionary W is sparse. Our problem formulation falls into
a synthesis prior model.

Dealing with an overcomplete learned dictionary W, in a very generic formula-
tion « solves the problem

min ZQC(AWO(, b) + ‘I’sp(a) + (I’IP(W()(), (3.15)

e
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where the data fidelity is measured by the loss function % — often the lo-norm —
and regularization is imposed via penalty functions. Specifically, the function
®gp enforces the sparsity prior on «, often formulated in terms of the sparsity
inducing norm (|| - ||1), while the function ®1p enforces the Image Prior.

Note how the generic problem (3.15) is related to the formulations (2.3) and
(3.12). In the next chapter we describe one of many ways to efficiently implement
such a scheme.



CHAPTER 4

Tomographic Image
Reconstruction Using
Dictionary Priors

Finding low-dimensional representations of given images in a well chosen basis
set is intuitively useful for image reconstruction: suppose that we have at hand
a dictionary which is good at representing a class of images, i.e., the images
admit sparse representations over the dictionary. Then, one hopes that a sparse
approximation of the reconstruction solution with the given dictionary signifi-
cantly reduces the amount of noise without losing important information and
can also compensate for the lack of data. Experiments have shown that such a
model with sparse coding is very effective in many applications.

In 2006, Elad and Ahron [32] address the image denoising problem using a
process that combines dictionary learning and reconstruction. They use a dic-
tionary trained from a noise-free image using the K-SVD algorithm [1] combined
with an adaptive dictionary trained on patches of the noisy image. It is shown
in [32] that both dictionaries perform very well in the denoising process. Since
then, the dictionary learning approach has been explored in areas such image
denoising [22, 72, 90], image deblurring [75], image restoration [32] and image
classification [30]. The dictionary learning approach in tomographic imaging is
likewise beginning to emerge recently, e.g., X-ray tomography [34, ], spec-
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tral computed tomography [121], magnetic resonance imaging (MRI) [56, 94],
ultrasound tomography [109], electron tomography [74], positron emission to-
mography (PET) [21] and phase-contrast tomography [34].

Most of these works use K-SVD to learn the dictionary (except [116] that uses
an online dictionary learning method [79]), All of these works use the methods
to regularize the reconstruction by means of a penalty that the reconstruction
should be close to the subspace spanned by the dictionary images. While all
these methods perform better than classical reconstruction methods, they show
no significant improvement over the TV-regularized approach.

As mentioned in the introduction Chapter 1, some works ([21, 56, 73, 74, 94])
use a joint formulation that combines the dictionary learning problem and the
reconstruction problem into one optimization problem, i.e., the dictionary is
learned from the given noisy data. This corresponds to a “bootstrap” situation
where one creates the prior as part of the solution process and it is unclear
how the properties of the dictionary influence the computed reconstruction.
Our work is different: we use a prior that is already available in the form of
a set of training images, and we use this prior to regularize the reconstruction
problem. To do this, we use a two-stage algorithm where we first compute the
dictionary from the given training images, and then we use the dictionary to
compute the reconstruction. Our two-stage algorithm is inspired by the work
in [34] and, to some extent, [116]. However, the algorithm in [34] is tested on a
simple tomography setup with no noise in the data and in [116] the dictionary
is trained from an image reconstructed by a high-dose X-ray exposure and then
used to reconstruct the same image with fewer X-ray projections.

We utilize the dictionary in a different way than the mentioned works, using
non-overlapping blocks of the image (that we will describe in details in Section
4.3) which reduces the number of unknowns in the reconstruction problem.

Recall from Section 3.3 that the proposed framework for dictionary-based to-
mographic reconstruction consists of two conceptual steps: (i) computing a dic-
tionary (using techniques from machine learning) from the training images, and
(ii) computing a reconstruction composed of images from the dictionary. Our
goal is to incorporate prior information e.g., about texture from a set of training
images. We focus on formulating and finding a learned dictionary W from the
training images and solving the tomography problem such that x = Wa is a
sparse linear combination of the dictionary elements (the columns of W). We
build on ideas from sparse approximation theory [14, 31, ]

Our reconstruction reconstruction scheme is depicted in Fig. 4.1 which we will
describe in Sections 4.1 and 4.3 in details.
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Figure 4.1: The reconstruction scheme.

main contributions of this chapter are:

A two-stage reconstruction framework is presented; first the dictionary
learning problem is formulated as a nonnegative sparse coding problem,
and then a reconstruction that is sparse with respect to the learned dic-
tionary is computed, where, the reconstruction problem is formulated as
a convex optimization problem.

An algorithm based on the ADMM method is implemented to approximate
a learned dictionary.

The influence of the parameters of the dictionary on the reconstruction is
empirically studied.

The proposed method is compared with TV and classical reconstruction
methods for solving the few-view/limited-angle tomographic problems for
images that resemble texture. It is shown that in few-projection low-dose
settings our algorithm while being superior to the classical reconstruc-
tion method and competitive with total variation regularization, tends to
include more texture and more correct edges.

In this chapter we use the following notations, where A is an arbitrary matrix:

1/2
JAlle = (542) 0 IAlloum = X 1igly 14 ]lmax = maxi; | A

A vector g € R™ is a subgradient of a function f:R™ — R at z € domf if

f(2) > f(z)+ g% (2 —x) Vz € domf.



36 Tomographic Image Reconstruction Using Dictionary Priors

If f is convex and differentiable then its gradient at x is the subgradient, and a
subgradient can exist even when f is not differentiable at x. The subdifferential
Of (z) of f at x is the set of all subgradients:

Of(x) ={g | 9" (= — ) < f(2) - f(x),Vz € domf}.

A set C is called a cone if for every x € C and 6 > 0, we have 0z € C. A set C
is a convex cone if it is convex and a cone.

4.1 The Dictionary Learning Formulation

The dictionary should comprise all the important features of the desired solu-
tion. The number of training images should be large enough to ensure that all
image features are represented, and the dictionary should preferably be overde-
termined to ensure that one can sparsely realize the desired reconstructions.
Using training images of the same size as the image to be reconstructed would
require a huge number of training images and lead to an enormous dictionary.
The dictionary based methods process training images patch by patch. The
dictionary is able to capture local image features effectively because of analyz-
ing training images in a patch-based nature. Therefore we must use patches of
smaller size taken from the training images to train a patch dictionary D, and
then built the global dictionary W from the found D.

We extract training patches of size p x r from our training image/images. Let
the matrix Y € R*? consist of ¢ training image patches arranged as vectors
of length £ = pr. Then a dictionary D can be computed by means of the
generic dictionary learning problem (3.1), where D € R** is the dictionary
of s dictionary image patches, and H € R**? contains information about the
approximation of each of the training image patches.

Dictionary learning problems of the form (3.1) are generally non-convex opti-
mization problems because of the bilinear term DH where both D and H are
variables. Applying a convergent iterative optimization method therefore does
not guarantee that we find a global minimum (only a local stationary point).
To obtain a good dictionary, we must be careful when choosing the loss func-
tions Zyic and the penalties ®qic and @, on D and H, and we must also pay
attention to implementation issues such as the starting point; see Section 4.2
for details.

As mentioned in Section 3.1.3, a non-negative matrix factorization (NMF) has
the ability to extract meaningful factors [70], and with non-negative elements
in D its columns represent a basis of images. Similarly, having non-negative
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elements in H corresponds to each training image being represented as a conic
combination of dictionary images, and the representation itself is therefore non-
negative. Additionally, NMF often works well in combination with sparsity con-
straints [53] which in our application translates to training image patches being
represented as a conic combination of a small number of dictionary elements
(basis images).

The dictionary learning problem that we will use henceforth takes the form of
nonnegative sparse coding [53] of a nonnegative data matrix Y:

1
in Y —DH|f + M| H|sam  st. DeD, HeRY, (4.1)

5

OE

where the set D is compact and convex and A > 0 is a regularization parameter
that controls the sparsity-inducing penalty || H||sum. In our approach we affect
sparsity implicitly through [;-norm regularization and via the regularization
parameter \. This problem is an instance of the more general formulation (3.1)
if we define

1
Zise(Y.DH) = 5|V - DH]}

and

D4ic(D) = In(D), O, (H) = Rixt(H) + A H |lsum

where Iy denotes the indicator function of a set Z. Note that the loss function
is invariant under a scaling D + (D and H + (~'H for ¢ > 0. Thus, letting
¢ — oo implies that ®,ep(C"'H) — 0 and ||¢(D|| — oo if D is nonzero. This
means that D must be compact to ensure that the problem has well-defined
minima. Here we will consider two different definitions of the set D, namely

P = {D € B |[d)] <1} and Py = {D € B [l < V/E).

The set D, corresponds to box constraints, and D5 is a spherical sector of the
2-norm ball with radius /€. As we will see in the Section 4.4, the use of D
as a prior gives rise to binary-looking images (corresponding to the vertices of
Do) whereas Dy gives rise to more “natural looking” images.

We use the ADMM method (see e.g. [11]) to compute an approximate local
minimizer of (4.1). Learning the dictionary with an ADMM method has the
advantages that it is less dependent on the initial dictionary, and it changes
the initial dictionary drastically during the first few steps. At the same time
the updates are cheap to compute, making the method suited for large-scale
problems. The implementation details are given in the next section.
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4.2 The Dictionary Learning Algorithm

The dictionary learning problem (4.1) being non-convex, it is too costly to solve
it globally. We will therefore optimize locally by applying the ADMM method
[11] to the following reformulation of (4.1)

minimizeDﬂ % ||Y*UV||123+>\||H||sum+IRi><t(H) +ID(D) (4 2)

subject to D=U H=YV, '
where U € R¢%* and V € R**! are auxiliary variables that are introduced in
order to make the ADMM-updates separable and hence cheap. The augmented
Lagrangian associated with (4.2) can be expressed as

1
Lo(D, H,U,V, A, 4) =S|Iy - UVI[E 4+ M H ||sum + Lyex:(H) + Ip(D)
+ Te(AT(D = U)) + Tre(AT(H = V)) (4.3)
P p
+ §IID—U||%+ SIH ~ Vg

where A € RE*® and A € R*** are Lagrange multipliers, and p is a positive
penalty parameter which can be chosen fixed prior to the learning process. If
we partition the variables into two blocks (D, V) and (H,U) and apply ADMM
to (4.2), we obtain an algorithm where each iteration involves the following three
steps: (i) minimize L, jointly over D and V; (ii) minimize L, jointly over H and
U; and (iii) update the dual variables A and A by taking a gradient-ascent step.
Since L, is separable in D and V, step (i) can be expressed as two separate
updates

D1 = min Ly(D, Hy, Uy, Vi, Ay, i) = Pp(Uy, — p~ " Ay) (4.4a)
Vit1 = mvin Ly(Dy, Hg, Ui, V, Ay, Ay) (4.4b)

= (US Uk + pI) " (USY + Ay + pHy,)

where Pp(-) is the projection onto the set D. Similarly, L, is also separable in
H and U, so step (ii) can be written as

Hypr = min  Ly(Dyyr, H,Ug, Vi, A, A) (4.4c)
HeRY!
= PRj—Xt(SA/p(Vk+1 — p_l/Ik))
Uk+1 = mUian(Dk_,_th,U, V]H_l,/lk,/Ik) (44d)

= (YVii + Ak + pDiy1) (Vi1 Vil + pI) 7!
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where S/, denotes an entrywise soft-thresholding operator, and Pysx:(-) is the

projection onto the non-negative orthant. Finally, the dual variable updates in
step (iii) are given by

Apy1 = A + p(Dpy1 — Upg1) (4.4e)
/Ik;Jrl = /Ik + p(Hk+1 — Vk+1). (44f)

The projection onto the set P, is an element-wise projection onto the interval
[0,1] and hence easy to compute. However, the projection onto Dy does not
have a closed form solution, so we compute it iteratively using Dykstra’s alter-
nating projection algorithm [12]. The iterative scheme which approximates the
projection onto the set Dg is given in Algorithm 2.

Algorithm 1 Dykstra’s Projection Algorithm

Input: The vector u;, Vj = 1,...,s.
Output: Pp,(z;).
Initialization: Set Z; = u;, p1 and ¢ to be zero vectors € RS .
for kK = 1,2,...do

g = max(0, Ty + pi).

Dk+1 = Tk + Dk — Yk

Trr1 = Y+ Qr

Tp1 = ———"—F—

max([[[|2//¢,1)

Gk+1 = Yk +qk — Tkt
if ||:Ijk — -fk-',-l”F < 1073 then
Exit
end if
end for

The map S/, is defined component-wise as follows:

ei,j + 2%) if 91"]‘ < —ﬁ
Sx/p(0) = 10 if 10,51 < 3,
91'7]' — 2%) if 91‘,]‘ > ﬁ

The convergence properties of ADMM when applied to non-convex problems
of the form (4.2) have been studied by e.g. [117]. They show that whenever
the sequence of iterates produced by (4.4) converges, the limit satisfies the the
KKT-conditions (i.e., the first-order necessary conditions for optimality) which

can be expressed as
D=U H=YV,
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A=—(Y -DH)H", A=-DY(Y - DH),
—A € 0Dy (D), —A€ 0D, (H).

The convergence result is somewhat weak, but empirical evidence suggests that
applying ADMM to non-convex problems often works well in practice [11]. Tt
is interesting to note that the point D = U = 0 and H = V = 0 satisfies the
KKT-conditions, and although it is a stationary point, it is clearly not a local
minima. For this reason, we avoid initializing with zeros. We initialize U with
some of the images in the training set and we set V' = [I 0] (i.e., the leading s
columns of V' is the identity matrix).

The KKT-conditions can be used to formulate stopping criteria. We use the
following conditions

”D B UHmax ||H - V”max

. L = Imax o (4.5a)
maX(L ||DHmaX) max(l, HHHmaX)
A—DY(DH — Y)||max A—(DH — Y)H" || juax
[ (DH =) |max _ 14— M lmax 451
max(1, | Al max) max(1, [ Allmax)

where € > 0 is a given tolerance.

The KKT-conditions can also be used to derive an upper bound X for the regular-
ization parameter A. It follows from the optimality conditions that for H = Osx,
A= —D7Y and hence for some X and all D € D we have

DTY S 5\ 8||Os><15||sum>

Le., H = 0 satisfies the first-order optimality conditions for all A > A If all
entries in Y are between 0 and 1, then the upper bound A = £ can be used for
both dictionaries since

sup [|DTY [lmax = max E[|Yegll2 <&
DeDs Jj=1,...,t

and
sup ||DT) [max = max [[Ye;[1 <&
DeD j=1,...,t

which implies that DTY € X9)|0,x¢||sum for all D € D.

4.3 The Reconstruction Problem

Recall that we formulate the discrete tomographic reconstruction problem as
Az =~ b, where b contains the noisy data and A is the system matrix (see Section
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2.2.2). The vector x represents an M x N image of absorption coefficients, and
these coeflicients must be nonnegative to have physical meaning. Hence we must
impose a nonnegativity constraint on the solution. A simple/naive tomographic
reconstruction problem for Gaussian noise could thus be formulated as

1
min 5 | Az — b||2 s.t. z e RY. (4.6)

Referring to (2.3), the loss function £ is represented by the residua 1’s lo-norm
and the non-negativity of the image is imposed as a prior. As investigated in
Section 2.3 due to the ill-posed nature of the underlying problem, the lack of
other priors results in unsatisfactory result.

We now turn to the reconstruction problem based on the patch dictionary D
and problem formulation (3.15). We divide the reconstruction into nonoverlap-
ping blocks of the same size as the patches and use the dictionary D within
each block (ensuring that we limit blocking artifacts); conceptually this corre-
sponds to building a global dictionary W from D. For ease of our presentation
we assume that the image size is a multiple of the patch size. Since the patch
dictionary images are generally much smaller than the desired reconstruction
(p €« M and r < N), we partition the image into an (M/p) x (N/r) array
of non-overlapping blocks or patches represented by the vectors z; € RS for
j=1,...,¢ = (M/p)(N/r). The advantage of using non-overlapping blocks,
compared to overlapping blocks, is that we avoid over-smoothing the image tex-
tures when averaging over the overlapping regions, and it requires less computing
time.

Each block of x is expressed as a conic combination of dictionary images, and
hence the dictionary prior is expressed as

e =Wa, W=(I®D), a>0, (4.7

where II is a permutation matrix, W is the global dictionary for the image, and

aq

a=] 1 |eR x---xR®
. —————
Qg q times

is a vector of coeflicients for each of a total of ¢ blocks. With this non-overlapping
formulation, it is straightforward to determine the number of unknowns in the
problem 4.7. The dimension of « is s¢ = sn/€ which is equal to the product
of the over-representation factor s/¢ and the number of pixels n in the image.
The permutation matrix II re-orders the vector x such that we reconstruct the
image block by block.
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Figure 4.2: Polyhedral cone in Ri spanned by five nonnegative dictionary
elements, where e; denotes the ith canonical unit vector in R*.

In pursuit of a nonnegative image x, we impose the constraint that the vector
a should be nonnegative. This implies that each block x; of x lies inside a
polyhedral cone

C={Dz|zecR}} (4.8)

where C C Ri since the dictionary images are all nonnegative. This is illustrated
in Fig. 4.2. Clearly, if the dictionary contains the standard basis of R¢, then
C is equivalent to the entire nonnegative orthant in R¢. However, if the cone
C is a proper subset of ]Ri_, then not all nonnegative images have an exact
representation in C, and hence the constraints z; € C may have a regularizing
effect even without a sparsity prior on «. This can also be motivated by the
fact that the faces of the cone C consist of images x; that can be represented as
a conic combination of at most £ — 1 dictionary images.

Adding a sparsity prior on «, in addition to nonnegativity constraints, corre-
sponds to the belief that x; can be expressed as a conic combination of a small
number of dictionary images and hence provides additional regularization. We
include a ly-norm regularizer in our reconstruction problem as an approximate
sparsity prior on a.

Reconstruction based on non-overlapping blocks often gives rise to block arti-
facts in the reconstruction because the objective in the reconstruction problem
does not penalize jumps across the boundaries of neighboring blocks. To miti-
gate this type of artifact, we add a penalty term that discourages such jumps.
We choose a penalty of the form

1

1 2
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where L is a matrix such that Lz is a vector with finite-difference approximations
of the directional derivatives across the block boundaries. The denominator is
the total number of pixels along the boundaries of the blocks in the image.

The constrained least squares reconstruction problem is then given by

minimize, £ 2| AIIT(I ® D)a —b||3 + u%HaHl + 82T (I ® D)a)
subject to «a >0

(4.10)

with regularization parameters p,d > 0. We seek to make the problem formu-
lation normalized by i) division of the squared residual norm by the number of
measurement m, ii) division of the l;-norm constraint by the number of blocks
q, and iii) the scaling used in ¢ (4.9).

Relaxing the non-negativity constraint or the /;-norm penalty on the represen-
tation vector « in (4.10) can be considered as a different choice of priors (less
strong ones) under the same problem formulation assumptions in (3.15). The
problem (4.10) is a convex but non-differentiable optimization problem which
belongs to the class of sparse approximation problems, for which several algo-
rithms have been developed recently (see Section 3.2 for details).

4.4 Numerical Experiments

In this section we use numerical examples to demonstrate and quantify the be-
havior of our two-stage algorithm and evaluate the computed reconstructions.
In particular we explore the influence of the dictionary structure and its pa-
rameters (number of elements, patch sizes) on the reconstruction, in order to
illustrate the role of the learned dictionary.

The underlying idea is to compute a regularized least squares fit in which the
solution is expressed in terms of the dictionary, and hence it lies in the cone C
(4.8) defined by the dictionary elements. Hence there are two types of errors
in the reconstruction process. Typically, the exact image does not lie in the
cone C, leading to an approxzimation error. Moreover, we encounter a regqular-
ization error due to the combination of the error present in the data and the
regularization scheme.

In the learning stage we use a data set of images which are similar to the ones
we wish to reconstruct. The ground-truth or exact image £°%#°* is not contained
in the training set, so that we avoid committing an inverse crime. All images
are gray-level and scaled in the interval [0, 1].
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We use the discrete TV regularization problem formulation as

. 1
min 5||Ag;_b||§+ATV > IDE|, (4.11)

S
Q 1<i<n

where Q = {x € R" | 0 < x; < 1}, D computes a finite-difference approx-
imation of the gradient at each pixel, and Apy > 0 is the TV regularization
parameter.

All experiments were run in MATLAB (R2011b) on a 64-bit Linux system. The
reconstruction problems are solved using the software package TFOCS (Tem-
plates for First-Order Conic Solvers) [8]. We compare with TV reconstructions
computed by means of the MATLAB software TVREG [59], with filtered back
projection solutions computed by means of MATLAB’s iradon function, and
solutions computed by means of the algebraic reconstruction technique (ART,
also known as Kaczmarz’s method) with nonnegativety constraints implemented
in the MATLAB package AIR Tools [47]. (We did not compare with Krylov
subspace methods because they are inferior to ART for images with sharp edges.)

4.4.1 The Training Image and the Tomographic Test Prob-
lem

The test images in Sections 4.4.2-4.4.4 are chosen as square patches from a
high-resolution photo of peppers with uneven surfaces, making them interesting
test images for studies of the reconstruction of textures. Figure 4.3 shows the
1600 x 1200 high-resolution image and the exact image of dimensions M x N =
200 x 200. This size allows us to perform many numerical experiments in a
reasonable amount of time; we demonstrate the performance of our algorithm
on a larger test problem in Section 4.4.5.

All test problems represent a parallel-beam tomographic measurement, and we
use the function paralleltomo from the MATLAB package AIR TooOLs [47] to
compute the matrix A. The data associated with a set of parallel rays is called a
projection and the number of rays in each projection is given by N, = [v2N|. If
the total number of projections is N, then the number of rows in A is m = N, NV,
while the number of columns is n = MN. Recall that we are interested in
scenarios with a small number of projections. The exact data is generated with
the forward model after which we add Gaussian white noise, i.e., b = Ax®*3t f¢,
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Figure 4.3: Left: the high-resolution image from which we obtain the training
image patches. Right: the 200 x 200 exact image z*a¢,

4.4.2 Studies of the Dictionary Learning Stage

It is not straightforward to evaluate the performance of the dictionary learn-
ing algorithm, considering that we are dealing with a non-convex optimization
problem. In addition, the computed dictionary must be validated to estimate
how well it will perform in practice. We are aware that the parameters of the
dictionary learning algorithm may have an impact on the obtained dictionary,
so it is of our great interest to study how these parameters affect the dictionary
and —as a result —the reconstruction.

A good dictionary should preserve the structural information of the training
images as much as possible and, at the same time, admit a sparse representation
as well as a small factorization error. These requirements are related to the
number of dictionary elements, i.e., the number of columns s in the matrix D.
Since we want a compressed representation of the training images we choose s
such that £ < s < t, and the precise value will be investigated. The optimal
patch size p X r is unclear and will also be studied; without loss of generality
we assume p = 7.

The regularization parameter A in (4.1) balances the matrix factorization error
and the sparsity constraint on the elements of the matrix H. The larger the
A, the more weight is given to minimization of ||H ||sym, while for small A\ more
weight is given to minimization of the factorization error. If A = 0 then (4.1)
reduces to the classical nonnegative matrix factorization problem.
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From the analysis of the upper bound on the regularization parameter A in the
Section 4.2, we know A > ¢ implies H = 0; so A can be varied in the interval (0, ¢]
to find dictionaries with different sparsity priors. Note that the scaling of the
training images affects the scaling of the matrix H as well as the regularization
parameter .

To evaluate the impact of the dictionary parameters, we use three different patch
sizes (5 x 5, 10 x 10, and 20 x 20) and the number of dictionary elements s is
chosen to be 2, 3, and 4 times the of the number of rows ¢ in dictionary D.

The training patches are easy to acquire. Note that for example in a 256 x 256-
size image, about 61,000 overlapping 10 x 10 patches can be extracted. We
extract more than 50,000 patches from the high-resolution image in Fig. 4.3,
and for different combinations of patch sizes and number of dictionary elements
we solve the dictionary learning problem (4.1). Figure 4.4 shows examples of
such learned dictionaries, where columns of D are represented as images; we see
that the penalty constraint D € P, gives rise to “binary looking” dictionary
elements while D € D5 results in dictionary elements that use the whole gray-
scale range.

To evaluate the approximation error, i.e., the distance of the exact image z°*2<t
to its projection on the cone C (4.8), we compute the solutions o to the ¢

approximation problems for all blocks j = 1,2, ..., ¢ in z®act,

exact |

eact|® gt a; > 0. (4.12)

o1
II;ljn §||Daj —x

If Pc is the projection into the cone C, then Pc(x§***") = Daj is the best repre-
sentation/approximation of the jth block in the cone. The mean approximation
error (MAE) is then computed as

1 2 1 exac exac

j=1

The ability of the dictionary to represent features and textures from the training
images, which determines how good reconstructions we are able to compute,
depends on the regularization parameter A, the patch size, and the number
of dictionary elements. Figure 4.5 shows how the mean approximation error
MAE (4.13) and mean l;-norm of the columns of H (i.e. ||H||sum/t) associated
with the dictionary varies with patch size &, number of dictionary elements s,
and regularization parameter A\. An advantage of larger patch sizes is that the
variation of MAE with s and X is less pronounced than for small patch sizes, so
overall we tend to prefer larger patch sizes. In particular, for a large patch size
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:

1

L.

B

=K

(b) 10 x 10, s = 300 (c) 20 x 20, s = 800

(d) 5x 5, s =100 (e) 10 x 10, s = 300 (f) 20 x 20, s = 800

Figure 4.4: Examples of dictionary elements. Top row: with the constraint
D € D, the images appear as “binary looking.” Bottom row:
with the constraint D € Py the images appear to use the whole
gray-scale range.

we can use a smaller over-representation factor s/¢ than for a small patch size.
From the analysis of the upper bound on A (see Section 4.2) we expect that for
5 x5, 10 x 10 and 20 x 20 patch sizes with & = 25, 100 and 400 respectively,
|H||sum = 0. This analysis is consistent with the values of mean [;-norm of
columns of H plotted in Fig. 4.5. As A approaches & we have that ||H||sum
approaches 0, , for relatively large value of A with respect to the patch sizes,
the dictionary D takes arbitrary values, and the approximation errors level off
at a maximum value. Regarding the two different constraints D € D, and
D € Dy we do not see any big difference in the approximation errors for 10 x 10
and 20 x 20 patches. From the given || H||sum/t plots in Fig. 4.5, we can argue
that for representing gray-scale patches (as in the reference image) with binary
looking images in P, a larger number of dictionary elements may be needed.
To limit the amount of results we now use D € Ds.

The computational work depends on the patch size and the number of dictio-
nary elements which, in turn, affects the approximation error: the larger the
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Figure 4.5: Mean approximation errors (4.13) and 1/t||H||sum. Results for
both D € Dy, and D € Dy with different patch sizes and differ-
ent s.

dictionary, the smaller the approximation error, but at a higher computational
cost. We have found that a good trade-off between the computational work and
the approximation error can be obtained by increasing the number of dictionary
elements until the approximation error levels off.

Convergence plots for A = 0.1, 1, 10, p = r = 10 and s = 300 are shown in Fig.
4.6. For A = 10 we put emphasis on minimizing the sparsity penalty, and after
few iterations we have reached convergence where the residual term dominates
the objective function. For A = 0.1 we put more emphasis on minimizing the
residual term, and we need more iterations to converge; since the objective
function is dominated by the sparsity penalty. The objective values in Fig. 4.6
are slightly smaller for dictionary elements in Ds.

4.4.3 Studies of the Reconstruction Stage

Here we evaluate the overall reconstruction framework including the effect of the
reconstruction parameters as well as their connection to the dictionary learning
parameter \ and the patch size.

We solve the reconstruction problem (4.10) using the exact image given in
Fig. 4.3. We choose N, = 25 projections corresponding to uniformly distributed
angles in [0°,180°]. Hence the matrix A has dimensions m = |/2-200] - 25 =
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A =0.1 A =1 A =10

0 100 200 300 0 100 200 300 0 100 200 300
lterations lterations lterations

Figure 4.6: Convergence of ADMM algorithm in Section 4.2 for A = 0.1, 1,
and 10, £ = 100 and s = 300. We plot 1/2||Y — DH ||+ || H ||sum
versus the number of iterations for both D € B, and D € D, .
Note the different scalings of the axes.

7,075 and n = 2002 = 40,000, so the problem is highly underdetermined. We
use the relative noise level ||e]|2/]|Az®*2t||s = 0.01. Moreover, we use 5 x 5,
10 x 10 and 20 x 20 patches and corresponding dictionary matrices D®), D(10),
and D% in Dy of size 25x 100, 100 x 300, and 400 x 800, respectively. Examples
of the dictionary elements are shown in the bottom row of Fig. 4.4.

We first investigate the reconstruction’s sensitivity to the choice of A in the
dictionary learning problem and the parameters x4 and § in the reconstruction
problem. To simplify the notation of (4.10) we define 7 = p/q. It follows
from the optimality conditions of (4.10) that a* = 0 is optimal when 7 > 7 =
LI(I ® DT)ITATb||« and hence we choose 7 € [0,7]. Large values of 7 refer
to the case where the sparsity prior is strong and the solution is presented with
too few dictionary elements. On the other hand if 7 is small and a sufficient
number of dictionary elements are included, the reconstruction error worsens
only slightly when 7 decreases. In the next chapter we show that we may,
obtain reasonable reconstructions even with 7 = 0.

To investigate the effect of regularization parameters A and 7, we first perform
experiments with § = 0 corresponding to no image prior. The quality of a
solution z is evaluated by the reconstruction error (RE) (2.14) shown as contour
plots in Fig. 4.7. The reconstruction error is smaller for larger patch sizes, and
also less dependent on the regularization parameters A and 7. The smallest
reconstruction errors are obtained in all dictionary sizes for A ~ 3.

Let us now consider the reconstructions when 4 > 0 in order to reduce block
artifacts. Figure 4.8 shows contour plots of the reconstruction errors versus 7
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Figure 4.7: Contour plots of the reconstruction error RE (2.14) versus A and
T=p/q.

and ¢, using a fixed A = 3.16. It is no surprise that introducing ¢ acts as a
regularizer that can significantly improve the reconstruction. Sufficiently large
values of § yield smaller reconstruction errors. In consistence with the results
from Fig. 4.7 the reconstruction errors are smaller for 10 x 10 and 20 x 20
patch sizes than for 5 x 5 patches. For larger patch sizes (which allow for
capturing more structure in the dictionary elements) the reconstruction error is
quite insensitive to the choice of § and 7. The contour plots in Fig. 4.8 suggest
that with our problem specification, we should choose § > 1.
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Figure 4.8: Contour plots of the reconstruction errors RE (2.14) versus 7 =
w/q and ¢ for a fixed A = 3.16.

The approximation error i.e., || P (2°%8t) —z¢Xa¢t||5 as well as the reconstruction

errors are listed in Table 4.1. These errors show that how well we can represent
the exact image in the cone defined by the dictionary, as well as how well we
can find a solution as close as possible to this representation, i.e., Pe(z®").
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As can be seen in Fig. 4.5, the MAE for A = 3.16 is quite similar for D®) and
D09 while it is higher for D% which leads to a higher representation error
using the dictionary with 20 x 20 patches, however the sparse approximation
solution error (||Pc(z%%) — z||2) is smaller for 20 x 20 patches using a smaller
over representation factor.

Table 4.1: The corresponding errors for the reconstruction and the best rep-
resentation of the exact image 2%t in the cone defined by the

dictionary.
||Pc(xexact) _ xexact”Q ||Pc(xexact) _ xH2 Hm _ xexact”Q
5 X b 7.70 11.98 15.27
10 x 10 7.46 12.04 14.98
20 x 20 9.60 10.54 15.37

Finally, in Fig. 4.9 we compare our reconstructions with those computed by
means of filtered back projection (FBP), the algebraic reconstruction technique
(ART), and TV regularization. We used the Shepp-Logan filter in iradon. To
be fair, the TV regularization parameter and the number of ART iterations were
chosen to yield an optimal reconstruction. Note that the TV solution for this
tomographic scenario and test image is the same as the solution given in Fig.
2.5 Chapter 2.

e The FBP reconstruction contains the typical artifacts associated with this
method for underdetermined problems, such as line structures.

e The ART reconstruction —although having about the same RE as our re-
construction —is blurry and contains artifacts such as circle structures and
errors in the corners.

e The TV reconstruction has the typical “cartoonish” appearance of TV
solutions and hence it fails to include most of the details associated with
the texture; the edges of the pepper grains are distinct but geometrically
somewhat un-smooth.

e Our reconstructions, while having about the same RE as the TV recon-
struction, include more texture and some of the details from the exact
image (but not all) are recovered, especially with D(*9). Also the pepper
grain edges resemble more the smooth edges from the exact image.

We conclude that our dictionary-based reconstruction method appears to have
an edge over the other three methods.
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10 iterations Ap=188

(a) FBP, RE = 0.481 (b) ART, RE = 0.225 (c) TV, RE = 0.214

8=13.34 8=13.34 8=237.14

(d) 5 x 5, RE = 0.224 (e) 10 x 10, RE = 0.220 (f) 20 x 20, RE = 0.226

Figure 4.9: Reconstructions for different patch sizes, with D € Dy, A = 3.16,
and 7 = 0.022, compared with the FBP, ART and TV solutions.
RE denotes the reconstruction error (2.14).

4.4.4 Studies of Sensitivity to Noise and Limited-Angle
Data

To further study the performance of our algorithm, in this section we consider
reconstructions based on (4.10) with more noise in the data, and with projec-
tions within a limited range. The first two sets use 25 and 50 projections with
uniform angular sampling in [0°,180°] and with relative noise level = 0.05, i.e.,
a higher noise level than above. For our highly underdetermined problems we
know that both filtered back projection and algebraic iterative techniques give
unsatisfactory solutions, and therefore we only compare our method with TV.
As before the regularization parameters A and 7 are chosen from numerical
experiments such that a solution with the smallest error is obtained.

The reconstructions are shown in the top and middle rows of Fig. 4.10. The
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1=0.147, §=237.14 1=0.147, 5=31.62 A =16.238

(a) DO RE = 0.247 (b) DY) RE = 0.262 (c) TV, RE = 0.245

7=0.022, 5=1000 1=0.147, 5=316.23 A =16.238

(d) DU RE = 0.220 (e) D(20) RE = 0.222 (f) TV, RE = 0.215

7=0.003, 5=10 1=0.022, $=1000 A=0.616

(g) DO RE = 0.255 (h) D29 RE = 0.261 (i) TV, RE = 0.246

Figure 4.10: The left and middle columns show our reconstructions with A =
3.16 using D% and D9 respectively; the right column shows
the TV reconstructions. Top and middle rows: N, = 25 and
N, = 50 projections in [0°,180°] and relative noise level 0.05.
Bottom row: N, = 25 projections in [0°,120°] and relative noise
level 0.01.
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reconstruction errors are still similar across the methods. Again, the TV recon-
structions have the characteristic “cartoonish” appearance while the dictionary-
based reconstructions retain more the structure and texture but have other
artifacts — especially for N, = 25. We also note that these artifacts are different
for the two different dictionaries.

The third set uses 25 projections uniformly distributed in the limited range
[0°,120°] and with relative noise level 0.01. In this case the TV reconstructions
display additional artifacts related to the limited-angle situation, while such
artifacts are somewhat less pronounced in the reconstructions by our algorithm.

4.4.5 A Large Test Case

We finish the numerical experiments of this chapter with a verification of our
method on two larger test problems that simulate the analysis of microstructure
in materials science. Almost all common metals, and many ceramics, are poly-
crystalline, i.e., they are composed of many small crystals or grains of varying
size and orientation, and the variations in orientation can be random. A grain
boundary is the interface between two grains. It is of particular interest to study
how these boundaries — the interfaces between grains— change over time, for
instance when the material is exposed to external stimuli such heat or pressure.
Here we assume that priors of the grain structure are available in the form of
training images.

The simulated data was computed using images of steel and zirconium grains.
The steel microstructure image from [55] is of dimensions 900 x 1280 and the zir-
conium grain image (produced by a scanning electron microscope) is 760 x 1020.
More than 50,000 patches are extracted from these images to learn dictionaries
DR € Py, Py, of size 400 x 800. To avoid doing inverse crime, we obtain the
exact images of dimensions 520 x 520 by first rotating the high-resolution image
and then extracting the exact image. The high-resolution images and the exact
images are shown in Fig. 4.11.

We consider a parallel-beam tomographic scenario with N, = 50 projections
corresponding to 50 uniformly distributed projections in [0°,180°], leading to
m = 36, 750 data values. We add Gaussian white noise with relative noise level
0.01 and compute reconstructions by our method as well as the TV method;
these reconstruction are shown in Fig. 4.12. All regularization parameters were
chosen to give the best reconstruction as measured by the RE, and we note that
the reconstruction errors are dominated by the error coming from the regulariza-
tion of the noisy data; the approximation errors || Pc(z¥X#¢%) — ®Xact||y /||x®*2<t ||y
are of the order 0.03 and 0.05 for the steel and zirconium images, respectively.
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Figure 4.11: Left: high-resolution images of steel micro-structure [55] (top)
and zirconium grains (bottom) used to generate the training im-
ages. Right: the corresponding exact images of size 520 x 520.

We see that our algorithm, for both Dy and D, performs better than the
TV method for recovering the textures and, in particular, the grain boundaries
that are of interest here. Our reconstructions for D, have the sharpest grain
boundaries, but some small black “dots” have appeared which are not present for
D5; in both cases the images are suited for post-processing via image analysis.

As expected, the TV reconstructions exhibit “cartoonish” artifacts, and for the
steel grains the black interfaces tend to be too thick and they are not so well
resolved. Our method, for both Dy and P, recovers better the grain interfaces
that are of interest here. We obtain the sharpest interfaces for Do, but some
small black “dots” have appeared which are not present for Ps; in both cases
the images are suited for postprocessing via image analysis.
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Ap=11.288

(d) D?9 € Dy, RE = 0.146 (e) D?° € P, RE = 0.158 (f) TV, RE = 0.137

Figure 4.12: Reconstructions of the 520 x 520 images by our method (left and
middle) and by the TV method (right). Top: steel microstruc-
ture. Bottom: zirconium grains.

4.5 Summary

In this chapter we describe and examine an algorithm that incorporates training
images as priors in computed tomography (CT) reconstruction problems. This
type of priors can be useful in low-dose CT where we are faced with underde-
termined systems of equations.

Our algorithm has two stages. In the first stage a learned dictionary from
a set of training images is computed using a regularized nonnegative matrix
factorization (NMF). In the second stage, via a regularized least squares fit a
nonnegative reconstruction lying in the cone defined by the dictionary elements
is computed; the reconstruction is sparse with respect to the dictionary. Hence,
regularization is obtained by enforcing that the reconstruction is within the
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range of the dictionary elements and by the sparsity constraint.

The proposed algorithm works with non-overlapping image patches; the same
dictionary is used for all patches, and the blocking artifacts are minimized by
an additional regularization term. This reduces the computational complex-
ity, compared to all other proposed algorithms that apply a dictionary-based
regularization based on overlapping patches around every pixel in the image.

Our algorithm includes several regularization parameters. In the first stage a
parameter is used to control the sparsity in the NMF, and in the second stage
one parameter to control the sparsity of the representation in the dictionary
and another parameter to avoid blocking artifacts are used. A series of nu-
merical experiments with noisy data and without committing inverse crime are
performed, where the interplay between these parameters and the computed
reconstructions are demonstrated, and it is shown that the reconstructions are
not very sensitive to these parameters.

In conclusion the training images can be useful as a strong prior for regulariza-
tion of low-dose CT problems, through a sparse representation in a nonnegative
dictionary learned from the training images. Our reconstructions are (not sur-
prisingly) superior to those computed by classical methods such as filtered back
projection and algebraic iterative methods, and they are competitive with total
variation (TV) reconstructions. Specifically, in our test problems our algorithm
tends to be able to include more texture and also produces edges whose location
is more correct.
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CHAPTER 5

Studies of Sensitivity

In Chapter 4 we formulated and implemented a two-stage algorithm for using
training images in tomographic reconstruction, in which we first form a dictio-
nary from patches extracted from the training images and then by means of a
sparsity prior on all the non-overlapping patches in the image, the dictionary
is used for finding a tomographic solution in the cone defined by the dictio-
nary. Being successful in incorporating the desirable features of the training
image in the dictionary prior, leads to a superior solution comparing to classical
tomographic reconstruction methods.

There is no guarantee that the training images have the correct orientation or
scale when trying to solve the image reconstruction problem for an unknown
object, which is often neglected when using learned dictionary approaches in
tomographic image reconstruction, e.g., see [109, ]. On the other hand in
Chapter 4 we have been working under the assumption that the representation
in the learned dictionary is nonnegative and that it is sparse and the solution
lies in the cone spanned by the learned dictionary elements. Imposing both
non-negativity and a sparsity constraint on the representation vector and only
searching for solutions in the cone spanned by the dictionary elements are strong
assumptions in the reconstruction formulation. Therefore we are interested to
investigate how relaxing this assumption affects the reconstructed solution.

In this Chapter, we continue the work initiated in Chapter 4, in order to increase
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an understanding of the model’s limitations and capabilities. In Sections 5.1

and 5.2 we use numerical examples to demonstrate and quantify the behavior
of our two-stage algorithm when we encounter uncertainty in the tomographic
reconstruction stage such as model assumptions and changes in the scale and
orientation of the object.

The main contributions of this chapter are:

e The robustness of our problem formulation in Chapter 4 is further studied.
The influence of relaxing the representation in the cone defined by the
dictionary as well as the constraints in the problem formulation is explored.

e The sensitivity and robustness of our algorithm to scale and rotation vari-
ances with various computational tests are analyzed.

e Algorithms to detect rotation and scale of the image, prior to the recon-
struction step, from the sinogram of the tomographic measurement data
are proposed.

All experiments are run in MATLAB (R2014a) on a 64-bit Linux system. We
use an implementation of the ADMM algorithm presented in Section 4.2 to ob-
tain a dictionary and the reconstruction problems are solved using the software
package TFOCS version 1.3.1 [8]. Our computational test setup is identical to
the numerical setup described in the intro of Section 4.4.

5.1 Simplifying the Reconstruction Problem

In this section we perform an empirical study of the reconstruction’s robustness
to the assumptions in the reconstruction step and that the solution is a conic
combination of dictionary elements and their effects on the success of recon-
struction.

5.1.1 The Constraints of The Reconstruction

We have been working under the assumption that o > 0 and that it is sparse.
Imposing both non-negativity and a l;-norm constraint on the representation
vector « are strong assumptions in the reconstruction formulation.
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If we drop the non-negativity constraint in the image reconstruction problem,
then (4.10) can be reformulated as a constrained least squares problem:

2

1 T
1= AT (I ® D)
min§ <\6F T a— (8) st |l < 7. (5.1)
S S LI"(I ® D) .

where v > 0 and M(M/p—1)+ N(N/r —1) = 9.

Alternatively we can relax the parameter 7. This is motivated by the results
in Section 4.4.3 which suggest that for sufficiently large A, § and patch sizes,
the reconstruction error is almost independent of 7 as long as it is small. When
7 = 0, we exclude the /1-norm constraint on the representation vector «, and
(4.10) reduces to a nonnegative constrained least square problem:

1| (=ATT(I e D) N
min 5 5 LTI D a—{ s.t. a > 0. (5.2)
Vo (I®D) 2

We use the peppers test problem (Fig. 4.3) with 25 projections and relative
noise level 0.01. We solve problem (5.1) for 10 x 10 patches and corresponding
dictionary matrix D19, in D of size 100 x 300, which resulted in the smallest
reconstruction error when solving (4.10) (cf. Fig. 4.9). Likewise we choose
10 x 10 and 20 x 20 patch sizes and D19 and D9 € B, of size 400 x 800 to
solve the nonnegativity constrained least square problem (5.2). Figures 5.1 and
5.2 show reconstructions when solving the two above problems (5.1) and (5.2),

respectively.

0.8
0.7
0.6
0.5

0.
r 0.3
TS 0

¥

Figure 5.1: Contour plots of the reconstruction error RE for problem (5.1).
Left: RE versus A and v when § = 0. Middle: RE versus v and
¢ with fixed A = 10. Right: The best reconstruction with RE =
0.243.

8=1000, y=158.49

IS

There are two difficulties with the reconstructions computed via (5.1). The
lack of a nonnegativity constraint on « can lead to negative pixel values in the
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Figure 5.2: Left: plots of reconstruction error versus § for problem (5.2), us-
ing fixed A = 3.16 and 7 = 0. Right: the best reconstructions
with RE = 0.242 and RE = 0.231. The top and bottom rows
correspond to patch sizes 10 x 10 and 20 x 20, respectively.

reconstruction, and this is undesired because it is nonphysical and it leads to a
larger reconstruction error. Also, as can be seen in Fig. 5.1, the reconstruction
is very sensitive to the choice of the regularization parameter 7, it must be
sufficiently large to allow the solution to be represented with a sufficient number
of dictionary elements, and it should be carefully chosen to provide an acceptable
reconstruction. This shows that the non-negatively constraint plays an extra
role of regularization.

The solution to problem (5.2) for a 20 x 20 patch size, compared to the solution
shown in Fig. 4.9, is not significantly worse both visually and in terms of
reconstruction error. This suggests that using the dictionary obtained from
(4.1) with a proper choice of A and patch size and a nonnegativity constraint
may be sufficient for the reconstruction problem, i.e., we can let 7 = 0. While
this seems to simplify the problem — going from (4.10) to (5.2) — it does not
significantly simplify the computational optimization problem, since the [;-norm
constraint is handled by simple thresholding in the software; but it helps us to
get rid of a parameter in the reconstruction process. Also, when the /;-norm
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constraint is omitted, additional care is necessary when choosing A\ and the patch
sizes to avoid introducing artifacts or noise in the reconstruction.

5.1.2 Importance of the Representation in the Cone De-
fined by the Dictionary

Our formulation in 4.10 enforces that the solution is an exact representation
in the dictionary, searching for a reconstruction in the cone spanned by the
dictionary, i.e., Iz = (I ® D)a, is a very strong prior. Let us construct our
tomographic reconstruction formulation in a different way.

Here to incorporate our dictionary prior, we consider Iz ~~ (I ® D)« rather than
assuming that Ilx = (I®D)q, i.e., x does not have an exact representation in the
dictionary and instead it is close to a solution that lies in the space spanned by
the dictionary elements. Thus we consider the following reconstruction problem:

1
min >[4z — b + 66(x) + Blle - 1" (T & D)a, (53)

st. >0, a>0,

where the function () is defined in equation (4.9). For simplicity of this study,
we dropped the sparsity prior u/q|la]1 from (4.10) in (5.3). This is motivated
by the results from Sections 4.4.3 and 5.1.1 that for sufficiently large values of §
and patch sizes, the reconstruction error is almost independent of u as long as
it is small.

The problem (5.3) can equivalently be written as:

2

1
1 ﬁA 0 x b
min - ||| %L 0 —lo (5.4)
T, 2 \/5 [0
V2BI  —/2B1" (I ® D) 0/,

s.t. (a:) > 0.
o

Note the similarity of the (5.4) to the generic nonnegative least squares problem
formulation (4.6).

The regularization parameter § in (5.3) and (5.4) balances the fitting term and
the regularization induced by the dictionary. The larger the 3, the more weight
is given to minimization of ||z — I (I ® D)al|3, while for small 8 more weight
is given to fitting the noisy data, resulting in solutions that are less regular (we
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obtain the problem (4.6) and the naive solution when 5 = 0). We expect that
for sufficiently large 5 we obtain solutions not far from solutions obtained with
the exact dictionary approach (i.e., from problem (4.10)).

Consider the tomographic problem from Section 4.4.3 with N, = 25 projections
and 1% additive relative noise. Moreover, we use the 20 by 20 patch dictionary
D0 ¢ Dy of size 400 x 800.

The reconstructions for various values of 8 are shown in Fig. 5.3; they are similar
across the larger values of 3, however pronounced artifacts have appeared for
small values of 8 from over-fitting the noisy data and reducing the weight on
the dictionary prior. As can be see in Fig. 5.3, with larger values of 5 and less
weight given to fit the tomographic data, the solution tends to be smooth.

We define the relative dictionary misfit by |[IIT(I ® D)a — x||2/||z|]2. Plots
of the reconstruction error and the relative dictionary misfit are given in Fig.
5.3. As illustrated by these plots the reconstruction error decreases and then
levels off for large values of 3, e.g., RE= 0.2238 for § = 1000. The relative
dictionary misfit exponentially decreases for large values of 3, indicating that
the approximation x ~ IIT(I ® D)« is almost exact for 3 sufficiently large.

By considering the problem formulation (5.4) instead of (4.10) we are intro-
ducing g as a new regularization parameter, which needs further investigations
to find a suitable value for it. In general relaxing Iz = (I ® D)a does not
give an advantage, i.e., approximating a solution by Iz ~ (I ® D)« does not
particularly improve the reconstruction quality, and one can compute a good
reconstruction as a conic combination of the dictionary elements.

5.2 Rotation and Scale

It may be crucial to include the acts of rotation and geometric scaling of the
training images when using the learned dictionaries in the tomographic recon-
struction, where there is no guarantee that the training set will have the correct
orientation and geometric scaling. Rotation and scaling are two unknown pa-
rameters that are needed to be considered in the reconstruction formulation and
hence it is advantageous to determine the correct rotation and scaling parame-
ters or obtain a scale and rotation invariant dictionary prior to the reconstruc-
tion process.

Invariance to rotation and scale are desirable in many practical applications. For
example, in pattern recognition the widely used scale-invariant feature transform
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Figure 5.3: Reconstruction results from solving (5.3) with 3 € [1071°,1000].
Bottom: Middle: plot of reconstruction error versus 3. Right: plot
of the relative dictionary misfit versus .
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(SIFT) algorithm successfully detects the training image under changes in im-
age scale, noise and rotation [77]. The paper [52] presents a face recognition
method which uses features that are extracted from the log-polar images which
are invariant to scale and rotation. Dictionary learning methods that are in-
dependent of orientation and scale, with applications in classification of images
or clustering, have also been recently developed. A shift, scale and rotation
invariant dictionary learning method for multivariate signals and a hierarchi-
cal dictionary learning method for invariant classification have been proposed
in [4] and [3] respectively. These methods learn a dictionary in a log-polar do-
main. In the paper [23] a rotation and scale invariant clustering algorithm using
dictionaries is presented where the image features are extracted in the Radon
transform domain.

To the best of our knowledge, no study has investigated and explored the role
played by scale and rotation in tomographic reconstruction approaches using
dictionaries.

5.2.1 Sensitivity to Scale

It is possible that the scale of the training images differ from the one we would
like to achieve in the reconstruction process. While the dictionary learning
approaches in image processing problems such as image denoising and image
restoration do not directly suffer from scale issues, it has been explored that with
the existence of multi-scale features in images, using multi-scale dictionaries
would result in superior reconstructions compared to single-scale dictionaries
(see, e.g., [31, 82, 89]). Such dictionaries enforce sparsity at multiple scales.

One idea is to train the dictionary on many possible scaling of the training
images, this approach is computationally expensive in both the learning and
reconstruction stage. Inspired by a multi-scale dictionary, first we investigate
if a generic dictionary of smaller patches (with a fixed patch size) or a learned
dictionary from different scaling of the training images could result in a “better”
reconstruction for an off-scale image.

If the image is represented by a function X then we say X is a scaled copy of X
with scale factor 7 if X (u,v) = X (nu,nv). We look at three test examples that
we call “peppers”, “matches”, and “binary” images. The binary test image —a
random image with binary pixel values— is generated by the phantomgallery
function from the MATLAB package AIR Tools [17]. The exact test images of

size 200 x 200 with the scale factor n = 1.5 are shown in Fig. 5.4.

To generate different dictionaries for our tests, we consider a large training
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Figure 5.4: The 200 x 200 exact images x°*2°* with scale factor n = 1.5. Left:
peppers, middle: matches, and right: binary test images.

image for each test case and we denote its scale to be the reference scale (scale
1). Knowing that the scale of the training image is different from the image we
want to reconstruct, we can argue that we need a greater over-representation
factor to learn a generic dictionary and be able to represent off-scale images.
Hence for n = 1 we learned dictionaries of 5 x 5 and 10 x 10 patch sizes with
over-representation factors of 10 and 5, respectively, i.e., D(®) e R25%250 apd
D(10) ¢ R100x500 W also learn a 20 x 20 patch dictionary of size 400 x 1200 in
which the training patches are chosen randomly from training images that are
scaled by a factor of 0.5, 1 and 2. Figure 5.5 shows examples of 200 x 200 sub-
images of our three training test images with scale factors n = 0.5, 1, 2. The
learned multi-scale dictionaries with 20 x 20 patches and generic dictionaries
with 10 x 10 patches and A = 1 are given in Fig. 5.6. We clearly see the
multi-scale features of the dictionary with 20 x 20 patches.

We solve the reconstruction problem (4.10) using the exact images given in
Fig. 5.4. We choose N, = 25, projections with uniformly distributed angles
in [0°,180°], N, = 283 and 1% additive noise level. In Fig. 5.7 we compare
our reconstructions with those computed by the multi-scale dictionary with
20 x 20 (n = 0.5, 1, 2) patches and the generic dictionaries of scale factor n = 1
with 5x5 and 10x 10 patch sizes. To be fair, the regularization parameters 7 and
6 were chosen to yield an optimal reconstruction in terms of the reconstruction
€erTor.

The reconstructions shown in the right column of Fig. 5.7 show no particular
advantage in terms of reconstruction errors when using a multi-scale dictionary
(learned from patches of various scale) over a sufficiently large generic dictionary
of smaller patch sizes, with the reconstructions shown in left and middle columns
of Fig. 5.7.

Now to better understand the role played by the scale parameter n, we solve the
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Figure 5.5: Examples of 200 x 200 sub-images of the training test images with
scale factors n = 0.5, 1, 2. Top: peppers, middle: matches, and
bottom: binary test images.



5.2 Rotation and Scale 69

Peppers Matches

i)

N
W

Figure 5.6: Top: Examples of the multi-scale dictionary elements (images)
with 20 x 20 patches and A = 1. Bottom: Examples of the generic
dictionary elements (images) with scale factor 1, 10 x 10 patches
and A = 1.

peppers tomographic reconstruction problem from the Section 4.4.3 with the
exact image given in the Fig. 4.3 and the matches test problem of size 200 x 200
where the exact image is given in Fig. 5.8. The scale factor of these test images
is assumed to be n = 1. We use N, = 25 projections with angles in [0°, 180°]
and relative noise level 0.01. We keep the size of the patches 10 x 10 and the
dictionary size s = 500, and we learn 11 new dictionaries of size 100 x 500 where
the scale factor of the training images 7 is varied in the interval [0.4, 4]. Plots of
the reconstruction error versus the scale factor of the training patches, which we
learned our dictionaries from, are given in Fig. 5.9. We also plot the structural
similarity index measure (SSIM) [114] for measuring the similarity between the
reconstructed solution and the exact images in Figures 4.3 and 5.8. Recall that
a larger SSIM means a better reconstruction.

Figure 5.9 shows that unless we are looking for a solution with a higher resolu-
tion than the training images, i.e., if the scale of the training images are smaller
than the desired image that we want to reconstruct, the reconstruction is not
very sensitive to the scaling factor, choosing a generic dictionary and sufficiently
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(a) 5 x 5, RE=0.1973 (b) 10 x 10, RE=0.2025 (c) 20 x 20, RE=0.2035
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Figure 5.7: Reconstructions for the generic and multi-scale dictionaries with
different patch sizes (Fig. 5.6), using the exact images given in
Fig. 5.4. RE denotes the reconstruction error.
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Figure 5.8: The 200 x 200 matches exact image x°*2¢" with scale factor n = 1.
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Figure 5.9: Top: left: peppers, and right: matches reconstruction errors versus
the scaling factor of dictionaries. Bottom: left: peppers, and right:
matches SSIM measures versus the scaling factor of dictionaries.

large number of elements. This is no surprise, one cannot expect to perfectly
reconstruct a high resolution image from a dictionary learned from lower res-
olution training images since some important details of textures and structure
are missing in those images.

5.2.2 An Algorithm to Determine Scale

One may think of a preprocessing step to find the appropriate scale of the image
before training the dictionary. Then the simplest case is downsizing the training
images and learn the dictionary in the right scale or downsizing/shrinking the
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dictionary images in the right way. One simple way to determine the correct
scale is to reconstruct a naive FBP solution and compare the solution with the
training images to find the correct scale. The scale can be detected by comparing
similar single objects in both images; however the limited tomographic data and
presence of noise often result in obtaining unreliable naive solutions where most
textures and image structures have disappeared, which makes such an estimation
difficult.

Another option is to find scales from the sinogram of the 2D unknown image.
Recall that the tomographic data can be represented — for some 2D applications —
as a matrix called the sinogram. We denote the sinogram by the matrix S. The
2D Radon transform is graphically represented as the sinogram, which means
by the intensity values in the coordinate system of variables (t,6). Recall the
definition of the Radon transform of a two variable function X from the equation
(2.10). By swapping the coordinate system:

t=x1cosf 4+ xosinf g= —x1sinfh + x5 cosb
x1 =tcosf —gsinf xo = tsinf + scosb,
the radon transform can be equally expressed as
+oo

RoX(t) = X (tcosf —gsin b, {sin 6 4 s cos )ds,

—00

(t,0) € (=00, 00) x [0, ).

Let X be a scaled copy of X with the scaling factor . Then the Radon trans-
forms of X and X are related as follows:

RoX(t) = X (tcos® —gsind, {sin 0 + g cos f)ds (5.5)
“+o0o
= X (nt cos @ — ngsin 6, nt sin 0 + ng cos 0)ds (5.6)
1

Let us define:
My = max Ro X (t)]

Then for any pair X and X related by X (u,v) = X (yu,nv) with 7 > 0 the
following holds:

1
Mg = -~ Mx.
1
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Since from (5.5):
Mg = max IR X (t)]

1
= “RoX
i Ry X (1)

%
1

= e [Ro X (nt)]
1 .

= 5 Thax RoX ()] (if ¥ = nt)
1

— =My,
n

This proof is adopted from [23]. In the sinogram matrix S given by the dis-

cretized Radon transform, column indices correspond to discrete values of 6,
while row indices correspond to discrete values of {. Hence Mx is the element-
wise maximum of the values in the sinogram matrix.

Consider an unknown image X, where a noisy sinogram of X is available. We
can make an artificial sinogram of a sub-image of the training image with the
same tomographic setting/scenario. We can claim that if the training image Z
with a similar dimension as X is given, then we can compute the relative scale
factor n by

We emphasize that the practical use of this approach relies on a careful imple-
mentation, and use of the Radon transform such that the integrals are correctly
evaluated. Matlab’s radon satisfies this requirement.

For a test problem we use the 200 x 200 resolution Shepp-Logan phantom in a
800 x 800 image grid given in Fig. 5.10 with n = 1. We compute the matrix
A and the measurement data b with IV, = 25 projections, N, = 1131 rays per
projection and 1% additive noise. We construct Z as reference training images
with scale factors 0.5, 2, 3, and 4 (see Fig. 5.10). We should here mention that
it is important that all of these images have the same number of pixels, to avoid
scaling issues with the numerical computations. We create an artificial noise-
free sinogram of this training images. The images X, Z and the corresponding
sinograms of our tomographic data are shown in Fig. 5.10. The number of
pixels in the images given in Fig. 5.10 is 8002.

We compute Mx and M from the given sinograms in Fig. 5.10. We obtain
n = [0.51, 2.05, 3.11, 4.17], which are an approximation to the correct scale
factors [0.5, 2, 3, 4].
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Figure 5.10: Left: the reference Shepp-logan phantom image X, n = 1 and
training images Z with scale factor n = 0.5, 2, 3, 4. Right: the
clean sinograms (S € RM*No) of Z and noisy sinogram of X
with N, = 25 projections and N, = 1131 rays.
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Now let us consider our textural 200 x 200 peppers test image with n = 1 given in
Fig. 4.3. We identically consider Z as training images of size 200 x 200, similar
to our test image with scale factors 0.5, 2, 3, 4 and compute the sinogram matrix
S with analogous tomographic scenario, i.e., N, = 25 projections in [0°, 180°],
N, = 283 rays per projection and 1% additive noise (see Fig. 5.11). Computing
Mx and Mj; from the given sinograms in Fig. 5.11 results in approximating
the scale factors to be [0.9647, 1.0000, 1.0738, 0.9649, 1.3451], showing that this
method is not suited for images with textures without a zero patching of pixels
around the object under study.

We can conclude that this method only works well if the unknown image is a
single object with an unknown scale, and a training image includes a similar
object with a different scale.

Finding the scale factor in 3D tomographic reconstruction where the tomo-
graphic data is available in form of projection images in which a multitude of
details of the shapes and features are already visible, is a fairly straightforward
process. Because the shapes in 2D slices of training images can be compared
with similar shapes in the 2D projection data and the scale factor can be found
with simple mathematical functions from geometry, e.g., we need to find a cor-
responding side in each similar shape in two images where we can measure the
length of both. The ratio between the length of these sides is the scale factor.

5.2.3 Sensitivity to Rotation

In this section we analyze the sensitivity of the reconstruction results to a ro-
tation parameter. We use three test images of size 200 x 200 which we call
“peppers”, “binary” and “D53”. The D53 test image is chosen from the normal-
ized brodatz texture database [54]. For the peppers test image we use the exact
image given in Fig. 4.3. The binary and D53 test images are given in Fig. 5.12.
We expect that the peppers test image is invariant to rotation while the binary
and D53 test images, as can be seen in Fig. 5.12, are highly directional and
sensitive to rotation.

We choose rotation angles of [5°, 10°, 30°, 45°, 60°, 90°] and we rotate the test
images with the chosen angles. Since the rotated images are not exactly equiva-
lent to the original test images, for the comparison of the reconstruction qualities
to be fair, we extracted 4 smaller test images of size 50 x 50 from each rotated
image. We use a reconstruction scenario with 12 projections and 70 rays in
[0°,180°] and 1% noise. We obtain a reconstruction for each 50 x 50 image in
every rotation and average over the reconstruction errors and SSIM measures.
Figure 5.13 shows the plots for the average reconstruction errors (RE) and SSIM



76 Studies of Sensitivity

(a) Z,n =05 (b) Clean S, M = 99.03

15 20 2!

80
60
40
20
5
)

(g) Z,n=3 (h) Clean S, M; = 97.84

Figure 5.11: Left: the reference peppers image X, n = 1 and training images
Z with scale factor n = 0.5, 2, 3, 4. Right: the clean sinograms
(S € RN-*Ne) of Z and noisy sinogram of X with N, = 25
projections and N, = 283 rays.
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Figure 5.12: The 200 x 200 test images for the rotation sensitivity analysis.
Left: the D53 and right: the binary test images.

measures versus the rotation angles for our three test images.
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Figure 5.13: Left: The plots for the average reconstruction errors (RE) and,
Right: SSIM measures versus the rotation degrees for our three
test images, where 4 smaller test images of size 50 x 50 are ex-
tracted from each rotated test image.

The plots in Fig. 5.13 show that while, as expected, no particular sensitivity
trends for the peppers test image can be detected by changing the rotation
angles, the binary test image and D53 are highly sensitive to rotation and the
worst reconstructions in term of RE and SSIM measures are obtained with the
60° and 90° rotation.

5.2.4 An Algorithm to Determine Rotation Angle

If the angle of rotation is known in advance to the reconstruction step, one
can learn the dictionaries with larger patch sizes and then rotate the dictionary
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images by the known angle. The pixels that fall outside the boundaries of the
original dictionary image are, in MATLAB, set to 0 and appear as a black
background in the rotated image. However, we can specify a smaller patch
size and exclude the boundary pixels with zero values in the rotated dictionary
elements and extract rotated dictionary images of smaller size than the original
one, to include in the reconstruction step.

If an image is given, the principal direction of the image can be estimated from
the Radon transform of the image [23]. The Radon transform can be used to
detect linear trends in images. For general images, the principal orientation may
be taken as the direction along which the Radon transform has the maximum
variability [23].

Let v; denote the variance of the sinogram data for the jth projection, i.e., the
jth column of the sinogram matrix S:

N:

S Sy~ )7, Vi=1,.. N,

k=1

1
N, -1

Uj =
where .#; is the mean of each column vector in S,

N,
1 «— .
%j:ﬁrkilskd’ V]:l,...,Np.

An important observation in [58] was that the sinogram RyX(t) along 6 has
larger variations with respect to ¢ for the principal angle with most directional
lines. Hence in our case with angles 0;, j =1, ..., Ny:

— sk
O =10, j'= argmjaxvj

is the direction with most linear trends along it. Such an estimate is useful for
estimating the presence of rotation in the images.

We can assume that Z € R™ is a sub-image from the training image of a similar
size as the unknown image . We compute the sinogram of Z by generating the
tomographic data by AZ and representing it as a matrix. We compute maxy ¥y
and find © to be the angle of most directional trends in the sub-image z. We
refer to © as the reference angle of the training image. Similarly, we compute
O = argmaxg vy for the unknown image x. Then the rotation is approximately
the difference between the angles, i.e., © — O.

To test this claim, let us choose 200 x 200 test images —similar to the D53 test
image given in Fig. 5.12— rotated by [5°, 10°, 30°, 45°, 60°, 90°], making six
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test images. We consider a training image with no rotation, i.e., with rotation
angle 0° of size 200 x 200. In our first computational test, to find the correct
rotation angle, we consider a tomographic scenario with a full data set, i.e.,
projections from all possible angles. The N, = 180 projections are sampled
with equidistant steps over [0°, 180°], moreover we consider N, = 283 and 1%
noise in the data.

Figure 5.14 shows the variance plots of the sinograms of our training image and
rotated test images with different orientations. The sinogram of the reference
training image with no rotation is noise free, while noise is present in the sino-
grams of the rotated test images. Note that the variance of the projections
has two local maxima at 90° and 179° for the reference training image with
no rotation. The local maximum at 179° is narrower compared with the local
maximum at 90°, because there are more straight lines along 179°. Hence 179°
is the reference orientation.

Given the plots in Fig. 5.14, we calculate the rotation degrees by finding the
angle with the maximum variance in each plot, the difference to the original
orientation in the reference training image gives the correct rotation. The esti-
mations based on the full tomographic data are accurate and we obtain all the
rotation angles, i.e., 5°, 10°, 30°, 45°, 60°, and 90°.

We now consider tomographic data with data from few projections of the same
directional D53 images, we use 50 projections with uniform angular sampling
in [0°,180°] and with relative noise level 1%, i.e., the same noise level as above.
The variances of the sinograms of the training image and the test images with
rotational angles [5°, 10°, 30°, 45°, 60°, 90°] are given in Fig. 5.15.

The variance plots in Fig. 5.15 indicate that with limited tomographic data
where the projection data along some directions are missing and the information
of the variances along all the directions are not attainable, we may not be able
to find the correct orientation of the directional textures in the image. Note
how the peak in the variance plot with the 10° rotation is missing. We find the
rotation angles to be

[3.67°, 180°, 29.39°, 44.08°, 58.78°, 88.16°].

We observe that the method fails to find the correct orientation for the image
with 10° rotation. One possible way to compensate for the missing projection
data and construct new data points for these missing projections from the known
ones, is to use interpolation of the tomographic data in the sinogram. Using
linear 2D interpolation for gridded data, we approximate the rotated angles as
before, where we obtain [4°, 0°, 29°, 44°, 59°, 88°] as the rotations. Although
we still can not achieve the correct orientation for the image with 10° rotation,
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Figure 5.14: The variance of sinograms from the 200 x 200 D53 six test images
with different rotation angles with full tomographic data compar-
ing to a similar training image with no rotation of 200 x 200 size.
Note how the maximum in the variance plots changes as the ro-
tation degrees varies.

in the presence of noise we can still approximate other rotation angles with a
small error.

To complete this picture, we consider a tomographic problem where an exact
image is given in Fig. 5.16. This exact image is rotated by 30° from the reference
training image. We consider the same tomographic scenario with 50 projections
in [0°,180°] and 1% noise. By the above method for the noisy sinogram we
approximate the rotation angle to be 29°. A dictionary from 20 x 20 patches
from the training image, i.e., D € R490x800 s computed; each dictionary image
is rotated by 29° and then 10 x 10 dictionary elements are extracted from the
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Figure 5.15: The variance of sinograms from the six 200 x 200 D53 test im-
ages with different rotation angles with limited tomographic data
compared to a similar training image with no rotation of 200x 200
size. Note how the maximum in the variance plots changes as
the rotation degrees varies. With the limited tomographic data,
the maximum disappears when rotating the reference image with

10°.

rotated 20 x 20 dictionary basis images, and then 300 dictionary elements are
randomly chosen from these 800 rotated dictionary images. Now a new rotated
dictionary such that D € R'90%300 ig at hand. We reconstruct the image using
the rotated dictionary D and compare it with a reconstruction obtained using
10 x 10 dictionary elements and s = 300, obtained from the reference training
image with 0° rotation. The results are illustrated in Fig. 5.16 which shows
clearly how using a correctly rotated dictionary can improve the reconstruction

significantly.
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Figure 5.16: Left: The 30° rotated exact image. Middle: The tomographic
reconstruction using a dictionary obtained from our reference
training image without any knowledge of rotation. Right: The
reconstructed solution with a rotated dictionary where the de-
gree of rotation is approximated from the noisy sinogram of the
tomographic data.

5.3 Summary

The work in this Chapter is an extension of the computational experiments in
Chapter 4, while here, we further examined our problem formulation by nu-
merically investigating the sensitivity of the reconstruction formulation to the
representation by the dictionary and the model constraints as well as inconsis-
tencies in scale and rotation of the unknown image to the training images. It is
shown that using the nonnegative dictionary and representation had a regular-
izing effect on the solution.

In addition, algorithms to determine the correct scale and rotation degree of the
unknown image from the tomographic sinogram are suggested. Numerical ex-
amples showed that both methods can be advantageous in obtaining the correct
scale and rotation of the unknown image from the measurement data, however,
future work concerning approximating the correct scale of unknown textural
images from the given sinogram where the proposed method fails should be
considered.



CHAPTER 6

A Tensor-Based Dictionary
Learning Approach to CT

Images are naturally two-dimensional objects and we find it fundamentally rea-
sonable to work with them in their natural form (as a matrix). For example we
are interested in capturing image-to-image correlations (not just pixel-to-pixel)
that let us reduce the overall redundancy in the data. As illustrated in Fig. 6.1
by vectorizing images, the spatial coherences of the features in images may be
lost.

One common feature in the dictionary learning literature and sparse represen-
tation in terms of these dictionaries is the reliance on the (invertible) mapping
of 2D images to vectors and subsequent use of a linear algebraic framework:
Matrices are used for the dictionary representation (the columns represent vec-
torized forms of image features) and the use of a linear combination of the
columns of the dictionary gives the expression of the image, in its vectorized
form. However, the training data itself can be more naturally represented as a
multidimensional array, called a tensor. For example, a collection of K gray-
scale images of size M x N could be arranged in an M x K x N array, also
known as a third-order tensor. Recent work in imaging applications such as fa-
cial recognition [49], video completion [120] has shown that using the right kind
of factorizations of particular tensor-based representations of the data can have
a distinct advantage over matrix-based counterparts. For this reason, in this
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Figure 6.1: By arranging images in vectors the correlations between pixels may
be lost or distort. The image is from http://www.dreamstime.
com

chapter we will develop a fundamentally new approach for both the dictionary
learning and image reconstruction tasks that is based on a particular type of
tensor decomposition, i.e., the t-product introduced in [64].

There are several different tensor factorizations and decompositions such as
CANDECOMP/PARAFAC (CP) [62] and Tucker decomposition [111]. The use
of different decompositions is driven by applications as well as the properties of
the decompositions. For an extensive list of tensor decompositions, their appli-
cations, and further references, see [65]. It is natural to use higher-order tensor
decomposition approaches in imaging problems, which are nowadays frequently
used in image analysis and signal processing [2, 17, 24, 49, 63].

Some recent works provide algorithms and analysis for tensor sparse coding and
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dictionary learning based on different factorization strategies. Caiafa and Ci-
chocki [17] discuss multidimensional compressed sensing algorithms using the

Tucker decomposition. Zubair and Wang [123] propose a tensor learning algo-
rithm based on the Tucker model with a sparsity constraint on the core tensor.
Tensor-based extensions of the method of optimal directions (MOD) [33] and
the KSVD algorithm [1] have been studied in [95] for separable multidimensional
dictionaries. An algorithm for tensor dictionary learning based on the CP de-
composition, called K-CPD, is presented in [29]. In the context of tomography,
we are only aware of the work by Tan et. al. [106] applying a tensor-MOD dic-

tionary learning approach using Tucker decomposition in dynamic tomographic
reconstruction.

Recent work by Kilmer et al. [63] sets up a new theoretical framework which
facilitates a straightforward extension of matrix factorizations to third-order
tensors based on a new tensor multiplication definition, called the t-product.
The motivation for our work is to use the t-product as a natural extension for
the dictionary learning problem and image reconstruction in a third-order tensor
formulation with the factorization based on the framework in [64] and [63].

In this chapter we re-visit the dictionary learning approach introduced in Chap-
ter 4 for X-ray CT reconstruction, now using a tensor formulation of the prob-
lem. We will consider a collection of training patches as a third-order tensor,
with each 2D image making up a slice of the data tensor. We describe this
approach in more details in this chapter.

The main contributions of this chapter are:

e It is shown that the new tensor factorization formulation is not a trivial
reformulation of the matrix-based decomposition.

e A third-order tensor representation for the training images is used and a
tensor dictionary learning problem for our tensor training data is formu-
lated using the tensor product introduced in [64].

e An algorithm based on the alternating direction method of multipliers
(ADMM) for solving the tensor dictionary learning problem is described.

e The reconstruction problem is formulated in terms of recovering the ex-
pansion coefficients in the tensor dictionary, i.e., recasting a tensor formu-
lation for the reconstruction problem in terms of a convex optimization
problem.

e It is shown that considering a tensor formulation over a matrix formulation
significantly reduces the approximation error by the dictionary.
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e It is demonstrated that in the tensor formulation, a much sparser repre-
sentation is obtained of both the dictionary and the reconstruction, due to
the ability of representing repeated features compactly in the dictionary.

6.1 Notations and Preliminaries on Tensors

In this section we present the definitions and notations that will be used through-
out this chapter. We exclusively consider the tensor definitions and the tensor
product notation introduced in [64] and [63]. Throughout the chapter, a capital
italics letter such as A denotes a matrix and a capital calligraphy letter such as
A denotes a tensor.

A tensor is a multidimensional array of numbers. The order of a tensor refers
to its dimensionality. Thus, if A € R*™*" then we say A is a third-order
tensor. A 1 x 1 x n tensor is called a tube fiber. A graphical illustration of a
third-order tensor decomposed into its tube fibers is given in the upper right
image of Fig. 6.2. Thus, one way to view a third-order tensor is as a matrix
of tube fibers. In particular, an £ X 1 X n tensor is a vector of tube fibers. To
make this clear, we use the notation VI; = A(:,7,:) to denote the jth “column”
or lateral slice of the third-order tensor (see the middle figure of the bottom
row of Fig. 6.2). The kth frontal slice, which is an £ X m matrix, is denoted by
A®) = A(:,:, k). Frontal slices and other decompositions of a third-order tensor
are shown in Fig. 6.2.

We can consider an [ X 1 X n tensor is a matrix oriented into the third dimension.
It will therefore be useful to use notation from [64] that allows us to easily move

between [ x n matrices and their I X 1 X n counterparts (see Fig 6.3). Specifically,

ﬁ
the squeeze operation on X € RI*1xn

MATLAB:

is identical to the squeeze function in

X = squeeze(jc')) = X(i,k)= })(Z, 1,k).

The vec function unwraps the tensor A into a vector of length ¢mn by column
stacking of frontal slices, i.e., in MATLAB notation: vec(A4) = A(:). For the
tensor A4 we define the unfold and fold functions in terms of frontal slices:

A

A®@)
unfold(A) = | . e Rinxm, fold(unfold(A)) = A.

A(.n)
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Figure 6.2: Different representations of a third-order tensor, from [65]. Top
left to right: column, row, and tube fibers. Bottom left to right:
horizontal, lateral, and frontal slices.

Ty n
—A—
squeeze
—
m m

Figure 6.3: m x 1 x n tensors and m x n matrices related through the squeeze
operation, figure from [63].

The block circulant matrix of size fn x nm that is generated via unfold(.A) is
given as

AQ) A gl 0 4@

A2 A A o AB)
circ(A) = :

A A1) A=) 4

Definition 1 Let B € R>XPX" qnd C € RP*™*". Then the t-product from [(/]
is defined by
A =B« C = fold(circ(B)unfold(C)),

from which it follows that A is an £ x m X n tensor.

The t-product can be considered as a natural extension of the matrix multipli-
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cation [13]. In general the t-product is not commutative between two arbitrary
tensors, but it is commutative between tube fibers.

Definition 2 Given m tube fibers c; € RY1X" i =1,... m a t-linear com-
bination [05] of the lateral slices A; € R j=1,...,m, is defined as

— — — -
Aixci +Agxca+---+ A, xc,, =AxC,
where
C1
— : GRmXD(n

Cm
The multiplication c; * Xj is not defined unless £ = 1.

Definition 3 The identity tensor L, is the tensor whose first frontal slice
is the m x m identity matriz, and whose other frontal slices are all zeros.

Definition 4 An m x m x n tensor A has an inverse B, provided that
AxB=Tpnmn and Bx A= T, mn.

Definition 5 Following [0/], if A is I x m X n, then the transposed tensor

AT is the m x I x n tensor obtained by transposing each of the frontal slices and

then reversing the order of transposed frontal slices 2 through n.

Definition 6 Let a;j, be the 4,5,k element of A. Then the Frobenius norm

of the tensor A is

[Allr = [lvec(A)l2 =

We also use the following notation:

Mllsum = [[vec(A)llr = D laigrl, [ Allmax = [[vec(A)l|oo = max |aijl.
.k bk
If A is a matrix then [[Allsum = _; ; |ai;|. Let i, @ =1,...,min{m, n} denote

the singular values of A. The nuclear norm (also known as the trace norm) is

defined as

min{m,n}
|A]l« = trace(VATA) = Z ;.

i=1
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6.2 Tensor Dictionary Learning

In recent years there has been an increasing interest in obtaining a non-negative
tensor factorization (NTF) (often based on CP and Tucker decompositions)
as a natural generalization of the NMF for a nonnegative data. Similar to
NMF, the sparsity of the representation has been empirically observed in NTF
based on CP and Tucker decompositions. For NTF based on a subset of tensor
decomposition methods, we refer to [24]. Unlike the work in [24], we express the
dictionary learning problem in a third-order tensor framework based on the t-
product. This will be described in detail below, but the key is a t-product-based
NTF reminiscent of the NMF.

The NTF based on the t-product was proposed in [48], where preliminary work
with MRI data showed the possibility that sparsity is encouraged when non-
negativity is enforced. Here, we extend the work by incorporating sparsity
constraints and we provide the corresponding optimization algorithm. Given
the patch tensor dictionary D, we compute reconstructed images that have a
sparse representation in the space defined by the t-product and D. Thus, both
the dictionary and the sparsity of the representation serve to regularize the
ill-posed problem.

6.2.1 Tensor Factorization via t-Product

Let the third-order data tensor Y € Rﬁ”w consist of ¢ training image patches
of size p x r, arranged as the lateral slices of ), i.e.,

_) . .
yj:y(:vja:)a for J=1....t
see Fig. 6.4.

Our non-negative tensor decomposition problem, based on the t-product, is the
problem of writing the non-negative data tensor as a product Y = D x H of two
tensors D € RPX$X" and H € R***X", The tensor D consists of s dictionary 2D
image patches of size p x r arranged as the lateral slices of D, while H is the
tensor of coefficients.

The main difference between NTF and NMF is that the s x t x r tensor H has
r times more degrees of freedom in the representation than the s x ¢t matrix H.
To make this clear, an illustration of the tensor factorization versus the matrix
factorization is given in Fig. 6.5.
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Figure 6.4: The third-order training tensor Y € RL*“*" where training

patches are arranged as the lateral slices of ).

The t-product from Definition 1 involves unfolding and forming a block circulant
matrix of the given tensors. Using the fact that a block circulant matrix can be
block-diagonalized by the Discrete Fourier Transform (DFT) [39, §4.7.7], the t-
product is computable in the Fourier domain [63]. Specifically, we can compute
Y = D xH by applying the DFT along tube fibers of D and H:

j}(:,:,k) :ﬁ(:,:,k)ﬁ(:,:,k), k=1,....m7

where ~ denotes DFT; in MATLAB notation we apply the DFT across the third
dimension: D = ££t(D,[],3), H = ££t(H,[],3), then: Y = ifft(Y,[],3).
Working in the Fourier domain conveniently reduces the number of arithmetic
operations [19], and since the operation is separable in the third dimension it
allows for parallelism.

Although the representation of the training patches in the third-order tensor re-
sembles the matrix formulation, it is not a re-formulation of the matrix problem
packaged as tensors. In fact, the tensor formulation gives a richer approach of
formulating the problem, as we now describe.

Recall that the jth patch Y; is the jth lateral slice of ¥ = D x H, ie., Y; =
squeeze(Y(:,,:)). Hence, as shown in [15],

Y; = Z squeeze(D(:,1,:)) circ (squeeze (H(j, 1, )T)) (6.1)

i=1

In other words, the jth patch is a sum over all the lateral slices of D, each one
“weighted” by multiplication with a circulant matrix derived from a tube fiber

of H.



6.2 Tensor Dictionary Learning 91

<<

s
M ER
i=1

(a) Matrix multiplication

Y., ~ Z D.j: | * /-'Hi,j,:

(b) Tensor multiplication

Figure 6.5: A visual interpretation of a third order tensor (Y(:, j,:)) approxi-
mated as a sum of t-products of lateral slices in D (D(:,4,:)) and
tubal scalars of . Note that if the third dimension, is one, the
t-product becomes regular matrix multiplication, and then this il-
lustration collapses to an approximation of a matrix as a sum of
products of the vectors in D.

We use a small example to show why this is significant. Consider the 3 x 3
down-shift matrix and the (column) circulant matrix generated by the vector v:

0 01 vi V3 U9
Z=110 0], Clv] = circ(v) = |v2 v1 w3
010 Vs Ve U
Noting that
3 0 01 010
C[U]:kazk Y=o T+wv |1 0 0)4+wv3|0 0 1
k=1 0 1 0 100
it follows that X
DClv)=> vwDzF!
k=1

Extrapolating to (6.1), we obtain the following result.

Theorem 6.1 Let Z denote the n X n down-shift matrix. With
D; = squeeze(D(:,i,:)) and h'") = squeeze(H(j,,:)"), the jth image patch
is given by

Y=Y DiClh) =" (hgij)Di +> h;mpizkl) : (6.2)
=1

i=1 k=2
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To show the relevance of this result we note that the product D;Z*~! is D;
with its columns cyclically shifted left by k& — 1 columns. Assuming that D;
represents a “prototype” element/feature in the image, we now have a way
of also including shifts of that prototype in our dictionary without explicitly
storing those shifted bases in the dictionary. Note that if h;”) =0,k=2,...,n
then Yj is a (standard) linear combination of matrices D;; this shows that our
new approach effectively subsumes the matrix-based approach from Chapter 4,
while making the basis richer with the storage of only a few entries of a circulant
matrix rather than storing extra basis image patches!

6.2.2 Formulation of the Tensor-Based Dictionary Learn-
ing Problem

One is usually not interested in a perfect factorization of the data because over-
fitting can occur, meaning that the learned parameters do fit well the training
data, but have a bad generalization performance. This issue is solved by making
a priori assumptions on the dictionary and coefficients.

Based on the approximate decomposition Y ~ D x H, we consider the generic
tensor-based dictionary learning problem (similar to the matrix formulation in
3.1):

%117{[1 gdic(ya D x H) + (I)dic(D) + (I)rep(H)- (63)
The misfit of the factorization approximation is measured by the loss function
Ziic, (e.g., the Frobenius norm). Different priors on the dictionary D and the
representation tensor H are controlled by the regularization functions ®g4;c(D)
and Pyep(H).

NTF itself results in a sparse representation. Imposing sparsity-inducing norm
constraints on the representation allows us to further control sparsity of the
representation of the training image, i.e., the training patches being represented
as a combination of a small number of dictionary elements. At the same time
this alleviates the non-uniqueness drawback of the NTF.

Therefore, similar to the dictionary learning formulation in (4.1) we pose the
tensor dictionary learning problem as a non-negative sparse coding problem [53]:

1

Here D is a closed set defined below, Iz denotes the indicator function of a set
Z,and A > 0 is a regularization parameter that controls the sparsity-inducing
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penalty ||H|/sum. If we do not impose bound constraints on the dictionary ele-
ments, then the dictionary and coefficient tensors D and H can be arbitrarily
scaled, because for any ¢ > 0 we have |V — (¢D) * (%’H)H% = |V - D= H|3.
We define the compact and convex set D such that D € D prevents this incon-
venience:

D={D e R | |D(i,:)|p < /oy i=1,...,5}. (6.5)

When r = 1 then (6.4) collapses to the standard non-negative sparse coding
problem.

6.2.3 The Tensor-Based Dictionary Learning Algorithm

The optimization problem (6.4) is non-convex, while it is convex with respect
to each variable D or H when the other is fixed. Computing a local minimizer
can be done using the ADMM method [11], which is a splitting method from
the augmented Lagrangian family. We therefore consider an equivalent form of
(6.4):

minimizep 7,y % ||y —U * VH% + A ”HHsum + IRiXtXT(H) + ID(D>

) (6.6)
subject to D=U and H=V,

where D,U € RP***" and H,V € R****". The augmented Lagrangian for (6.6)
is

o1
Lo(DUHV, A A) = SV = U VI[E+ A Hlswm + e xexr () + In(D)
+AToD-U)+ AT O (H-V)

1 1
+ (51D~ UlE + I - VIR),
(6.7)

where A € RP***" and A € R¥***" are Lagrange multiplier tensors, p > 0
is the quadratic penalty parameter, and ©® denotes the Hadamard (entrywise)
product.

The objective function becomes separable by introducing the auxiliary variables
U and V. The alternate direction method is obtained by minimizing £, with
respect to D, H, U, V one at a time while fixing the other variables at their
most recent values and updating the Lagrangian multipliers A and A. If Pp
is the metric projection on D (which is computed using Dykstra’s alternating
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projection algorithm [12]), then the ADMM updates are given by:

Dg+1 = min Ly(D, Hi, U, Vi, Ak, Ax) = Po(Uy, — p~ ' A) (6.8a)
Vk+1 = mVin Lp(Dkv Hkvuka V7 Aka /Ik) (68b)
= (L{,;F * Uy, +pI)71 * (Z/lg x Y+ A +p7-lk)
Hk:-‘rl = ” Iﬂgsi}(ltXTLp(Dk:-‘rlaHaukka-‘rlaAka/ik) (68C)
S

+

=Py (Sa/p(Vis1 — p ' Ar))

Up+1 = min Ly(Diy1, Hie, U, Vieyr, Ag, Ay) (6.8d)
= (V*Viiy + Ak + pDiy1) * (Vigr * Vi, + PI)_l

g1 = Ag + p(Dr1 — Upy1) (6.8e)

/Ik+1 = /Ik + p(Hk+1 — Vk+1)- (6.8f)

Here P4 (©);; = max{0; ;,0} and S/, denotes soft thresholding. The updates
for U1 and Vi1 are computed in the Fourier domain.

The KKT-conditions for (6.7) can be expressed as
D=U, H=V,
A=—Y-DxH)+H', A=-DV'«(Y-DxH),
—A € 004 (D), —A € IPrep(H),

where 9f(X) denotes the sub-differential of f at X. The KKT conditions are
used to formulate stopping criteria for the ADMM algorithm, and we use the
following conditions:

||D_u||max <e HH_VHmax ¢
max(L, [[Dllmax) =~ max(l, [H|max) =
|A=DT % (D*H—V)|lmax <. A= (D*H—Y)*H"||max
max(1, ”/IHmaX) - max(1, || Aflmax) -

(6.9a)

(6.9b)

where € > 0 is a given tolerance. Algorithm 2 summarizes the algorithm to solve
(6.4). Note that satisfaction of the KKT conditions produces a local minimum;
this is not a guarantee of convergence to the global optimum.

Under rather mild conditions the ADMM method can be shown to converge
for all values of the algorithm parameter p in the Lagrange function £, (6.7),
cf. [11]. Small values of p lead to slow convergence; larger values give faster
convergence but puts less emphasis on minimizing the residual for the NTF. For
the convergence properties of ADMM and the impact of the parameter p see
[37] and the references therein.
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Algorithm 2 Tensor Dictionary Learning Algorithm

Input: Tensor of training image patches ) € RiXtXT7 number of dictionary
images s, tolerances p, e > 0.
Output: Tensor dictionary Dy € RL**", tensor representation Hj €
RSXtX?".

+

Initialization: Let the lateral slices of & be randomly selected training
patches, let V be the identity tensor, let % =V, and let A, A be zero tensors
of appropriate sizes.
for kK = 1,...do

Update Dy, Hy, Uy, Vi, Ag, A,, by means of (6.8).

if all stopping criteria (6.9) are met then

Exit.

end if

end for

6.3 Tomographic Reconstruction with Tensor Dic-
tionary

Recall that a linear tomographic problem is often written Az =~ b with A €
R™*™ where the vector x represents the unknown M x N image, the vector b is
the inaccurate /noisy data, and the matrix A represents the forward tomography
model. Since we assume that the vector x represents an image of absorption
coeflicients we impose a nonnegativity constraint on the solution.

Without loss of generality we, similar to the matrix-based formulation, assume
that the size of the image is a multiple of the patch sizes in the dictionary.
We partition the image into ¢ = (M/p)(N/r) non-overlapping patches of size
(M/p) x (N/r), ie., X; e RP*" for j=1,...,q.

In the matrix-based formulation of the reconstruction problem in Chapter 4,
once the patch dictionary is formed we write the image patches we want to
recover (sub-vectors of the reconstructed image ) as conic combinations of the
patch dictionary columns. The inverse problem then becomes one of recovering
the expansion coefficients subject to non-negativity constraints (which produces
a nonnegative x because the dictionary elements are nonnegative).

Here we define a similar reconstruction problem in our tensor-based formulation.
We arrange all the patches X; of the reconstructed image as lateral slices of a

p X q X r tensor X, i.e.,

%
X; = squeeze (X)), X =X(:7,1), j=1,...,q.
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Moreover, we assume that there exists a s x ¢ X r coefficient tensor C such
that the image patches can be written as t-linear combinations of the patch
dictionary elements, i.e.,

— —
X=DxC &  X;=DxC;, j=1,....4q (6.10)

_>
where the tube fibers of C; = C(:, j,:) can be considered as the expansion coeffi-
cients. In other words, we restrict our solution so that it is a t-linear combination
of the dictionary images.

Then, similar to (6.1), each patch X, in the reconstruction can be built from

the matrices squeeze(D;), i =1...,s:

c;

X; = squeeze(D*g;) = Z squeeze(D;) circ (squeeze( (4,1, )T)) (6.11)

Since the circulant matrices are not scalar multiples of the identity matrix, X;

is not a simple linear combination of the matrices squeeze(D;).

Thus, we want to find a tensor C such that X = D % C solves the reconstruction
problem, and to ensure a nonnegative reconstruction, we enforce non-negativity
constraints on C. Then we write the vectorized image as © = IIvec(DxC), where
the permutation matrix IT ensures the correct shuffling of the pixels from the
patches. Then our generic reconstruction problem takes the form

mcin Lrec (AHvec(D *C), b) + @, (C) + P (D xC), Cc>0. (6.12)

The data fidelity is measured by the loss function %, and regularization is
imposed via ®4, which enforces a sparsity prior on C, and ®;,, which enforces
an image prior on the reconstruction. By choosing these three functions to be
convex, we can solve (6.12) by means of convex optimization methods.

Our patches are non-overlapping because overlapping patches tend to produce
blurring in the overlap regions of the reconstruction. Similar to the matrix-
based formulation non-overlapping patches may give rise to block artifacts in
the reconstruction, because the objective in the reconstruction problem does
not penalize jumps across the values at the boundary of neighboring patches.
To mitigate this type of jumps, we add the image penalty term @i, (D *xC) =
§2¢(Ilvec(D = C)) that discourages such artifacts, where § is a regularization
parameter, and the function ¢ is defined by equation (4.9).

We consider two different ways to impose a sparsity prior on C in the form
D, (C) = pe,(C), v =1,2, where p is a regularization parameter and

1 1
¢1(C) = 6||C||SUm7 p2(C) = g(llcllsum +Cll,), (6.13)
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in which the sq X r matrix C' is defined as

squeeze (C_1>)
C = .
squeeze (C_;)

The first prior ¢; corresponds to a standard sparsity prior in reconstruction
problems. The second prior ¢, which tends to produce a sparse and low-rank
C, is inspired by a similar use in compressed sensing [33].

To summarize, we consider a reconstruction problem of the form
minimizec 5= || Allvec(D  C) — b||3 + pp, (C) + 62 (Ilvec(D * C)) (6.14)
6.1
subject to C >0,

where p and 0 are regularization parameters. We note that (6.14) is a convex but
non-differentiable optimization problem. It is solved using the software package
TFOCS [38]. The implementation details are included in Appendix B.

We note that imposing the non-negativity constraint on the solution implies
that each image patch X; belongs to a closed set defined by

G — {D*? | 3 c RinXT} g Rﬁxlxr. (615)

The set G is a cone, since for any 7 € G and any nonnegative tube fiber
c € RYIX7 the product Ysc belongs to G. Clearly, if the dictionary D
contains the standard basis that spans RE "™ then G is equivalent to the entire
nonnegative orthant RTlxr, and any image patch X; can be reconstructed by
a t-linear combination of dictionary basis images. However, in the typical case
where G is a proper subset of Rﬁ“w then not all nonnegative images have an

exact representation in G, leading to an approximation error.

6.4 Numerical Experiments

We conclude with computational tests to examine the tensor formulation. All
experiments are run in MATLAB (R2014a) on a 64-bit Linux system. The
reconstruction problems are solved using the software package TFOCS version
1.3.1 [8] and compared with results from the matrix-based approach in Chapter
4.

In Sections 6.4.1-6.4.2.2 we use the 1600 x 1200 high-resolution photo of peppers;
from this image we extract the p x r training image patches. We also use the
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200 x 200 ground-truth or exact image x°*#°* from Fig. 4.3. The exact image is
not contained in the training set, so that we avoid committing an inverse crime.
All the images are gray-level and scaled in the interval [0, 1].

6.4.1 Dictionary Learning Experiments

Recall that the problem (6.4) is non-convex. To the best of our knowledge
there is no global convergence results for non-convex optimization problems. To
estimate how well the computed dictionary performs in practice, it should be
validated in application. We first test the convergence of our tensor dictionary
learning algorithm. Then we measure how tensor dictionary performs at sparsely
encoding the training data given in ) as well as approximating similar images
compared to the matrix dictionary learning algorithm from Chapter 4.

Patch sizes should be sufficiently large to capture the desired structure in the
training images, but the computational cost of the dictionary learning increases
with the patch size. The study of the patch size pxr and number s of elements in
Chapter 4 shows that a reasonably large patch size gives a good trade-off between
the computational work and the approximation error by the dictionary, and
that the over-representation factor s/(pr) can be smaller for larger patches. For
these reasons, we have chosen p = r = 10 and (unless otherwise noted) s = 300
for both the dictionary learning and tomographic reconstruction studies. We
extract 52,934 patches from the high-resolution image and apply Algorithm 2
to learn the dictionary. The tensor dictionary D and the coefficient tensor H
are 10 x 300 x 10 and 300 x 52934 x 10, respectively.

Convergence plots for A = 0.1, 1, and 10 are shown in Fig. 6.6. For A = 10 we
put emphasis on minimizing the sparsity penalty, and after about 200 iterations
we have reached convergence where the residual term dominates the objective
function. For A = 0.1 we put more emphasis on minimizing the residual term,
and we need about 500 iterations to converge; now the objective function is
dominated by the sparsity penalty.

Next we consider the approximation errors mentioned in the previous section.
Following the study in Section 4.4.2, a way to bound these errors is to consider
how well we can approximate the exact image z°*** with patches in the cone
G (6.15) defined by the dictionary. Consider the ¢ approximation problems for
all blocks X, j = 1,2,...,¢, of the exact image:

_>

. =7 2
ming: %HD *Cj — X;X"wt| . s.t. C; > 0.

— —
If C;* denotes the solution to the jth problem, then vec(D * C;*) is the best
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Figure 6.6: Convergence of Algorithm 2 for A = 0.1, 1, and 10. We plot
2|V = D * H||E + A||H||sum versus the number of iterations. Note
the different scalings of the axes.

approximation in G of the jth block X;xa"t. We define the mean approximation
error for our tensor formulation as

MAE= L i:HD*cT;*—X*?XmH :
\/ﬁq e J F

Figure 6.7 shows how these MAEs vary with the number of nonzeros of H and
H, as a function of A, for both s = 200 and s = 300. This plot shows that for a
given number of nonzeros in H or H we obtain approximately the same mean
approximation error. In other words despite the fact that the s x ¢t x r tensor H
has r times more degrees of freedom in the representation than the s x ¢ matrix
H, we do not need more nonzero values to represent our training images.

In Fig. 6.7 we note that for large enough \ both H and H consist entirely of
zeros, in which case the dictionaries D and D are solely determined by the
constraints. Hence, as A increases the MAE settles at a value that is almost
independent on A.

To determine a suitable value of the regularization parameter A in (6.4) we
plot the residual norm || — D * H||g versus || H||sum for various A € [0.1, 100]
in Fig. 6.8. We define the optimal parameter to be the one that minimizes
|H|20m + |1 — D+ H||%, which is obtained for A = 3.1623, and we use this value
throughout the rest of our experiments for the peppers test image.

Figure 6.9 shows examples of tensor and matrix dictionary elements/images,
where lateral slices of the tensor dictionary and columns of the matrix dictio-
nary are represented as images. The dictionary images are sorted according to
increasing variance. The tensor and matrix dictionary images are different but
they are visually similar.
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Figure 6.7: The mean approximation error MAE (6.4.1) for the tensor and
matrix formulations versus the number of nonzeros of ‘H and H,
respectively, as functions of A (small A\ give a larger number of
NONZETos).
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Figure 6.8: A trade-off curve for the tensor dictionary learning problem; the
red dot denotes the value A = 3.1623 that yields the smallest value
of [ H|Zum + 1V — D H]3.
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Figure 6.9: Examples of dictionary elements/images from the tensor formula-
tio (left) and the matrix formulation (right) with 10 x 10 patches
and A = 3.1623 and s = 300.
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Figure 6.10: Dependence of the dictionary on the number of dictionary el-
ements s, for both the tensor and matrix formulations. Left:
the density of H and H. Right: the MAE associated with the
dictionaries.
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We conclude these experiments with a study of how the number s of dictio-
nary elements influences the dictionary, for the fixed A = 3.1623. Specifically,
Fig. 6.10 shows how the density and the MAE varies with s in the range from
100 to 500. As we have already seen for s = 300 the density of H is consistently
much lower than that of H, and it is also less dependent on s in the tensor for-
mulation. We also see that the MAE for the tensor formulation is consistently
lower for the tensor formulation: even with s = 400, 500 dictionary elements
in the matrix formulation we cannot achieve the tensor formulation’s low MAE
for s = 100. These results confirm our intuition that the tensor formulation is
better suited for sparsely representing the training image, because due to the
ability of capturing repeating features we can use a much smaller dictionary.

6.4.2 Reconstruction Experiments

In this section we present numerical experiments for 2D tomographic reconstruc-
tion in few-projection and noisy settings. We perform two different experiments
to analyze our algorithm: first we examine the role of different regularization
terms and then we study the reconstruction quality in different tomography
scenarios. We also present results using a more realistic test problem.

We consider parallel-beam geometry and the test problem is generated by means
of the function paralleltomo from AIR TooLs [17]. The exact data is gener-
ated by the forward model b2t = Ax®*2t o which we add white Gaussian
noise.

The accuracy of the reconstruction is measured by the relative 2-norm error
RE = chxact _ .13”2 / ”xcxact”2'

We also report the structural similarity index measure (SSIM) [114] (recall that
a larger SSIM means a better reconstruction). We remind that the error is due
to the combination of the approximation error, the error from the data, and the
regularization error.

The parameters 0 and p in the reconstruction problem (6.14) both play a role
in terms of regularization; to simplify (6.14) we set 7 = u/q. As described in
Section 4.4.3, a nonnegative constraint in the reconstruction problem plays an
extra role of regularization and therefore the reconstruction is not very sensitive
to the regularization parameters ¢ and 7, hence they are chosen from a few
numerical experiments such that a solution with the smallest error is obtained.

We compare our method with FBP, Tikhonov regularization, and TV. The FBP
solution is computed using MATLAB’s iradon function with the “Shepp-Logan”
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filter. The Tikhonov solution is obtained by solving (2.4) and the TV solution
is obtained using (4.11). We solve the TV problem with the software TVREG
[59]. The Tikhonov and TV regularization parameters are chosen to yield the
smallest reconstruction error.

The computational bottleneck of the objective function evaluation in solving
(6.14) is calculating D * C, where D € RP***" and C € R**9*". Recall that the
computation is done in the Fourier domain, and since log(r) < ¢,p the com-
putational complexity of the t-product is O(sqpr + s(p + ¢)rlog(r)) = O(sgpr)
[49]. In the matrix formulation the computational bottleneck is the matrix
multiplication D reshape (a,&q) where D € RP™*¢ and o € R%2¥!, also with
complexity O(sgpr). This gives the tensor formulation an advantage, since we
can use a much smaller s here, say, 2-3 times smaller than in the matrix formu-
lation.

Since computation times vary between different computers, and since we did
not pay specific attention to efficiency, we report the number of objective func-
tion evaluations returned by TFOCS. We stop the iterations when the relative
change in the iteration vector is less than 10~7. For the comparison to be fair,
the starting point in all the computations is the zero vector /matrix of appropri-
ate size.

6.4.2.1 Study of Regularization Terms

We solve the reconstruction problem using the exact image shown in Fig. 4.3.
Moreover, we use 10 x 10 patches, s = 300, and A = 3.1623. For the problems
in this section we use N, = 25 projections, N, = 283 rays per projection, and
1% noise. We compare two different regularization terms in the reconstruction
problem (6.14). The [;-norm (sparsity) regularization ||C||sum is similar to the I1-
norm regularization in the dictionary learning problem (6.4). The regularization
term ||Cllsum + ||C||« results in coefficient tensors that are simultaneously low
rank and sparse.

We compare the tensor reconstruction solution with the solutions obtained by
the matrix formulation as well as FBP, Tikhonov regularization, and TV. The
reconstructions are shown in Fig. 6.11. The corresponding relative errors, SSIM,
and densities of C as well as the number of objective function evaluation are
listed in Table 6.1. The table also lists the compressibility, defined as the per-
centage of coefficients which have values larger than 10™*. Both the density
and the compressibility show that we obtain very sparse representations of the
reconstructed image.
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(a) FBP (b) Tikhonov (c) TV

1=0.0215, 5=13.34 1=0.0215, 8=10 1=0.0215, 8=10

(d) Matrix formulation (e) Tensor: [|C||sum (f) Tensor: ||Cllsum + ||C||«

Figure 6.11: Comparison of the best solutions computed by different recon-
struction methods. Subfigures (e) and (f) correspond to our new

tensor formulation with two different regularization terms; we
used A = 3.1623.

Table 6.1: Comparison of the best solutions computed by different reconstruc-
tion methods. The bold numbers indicate the lowest iteration num-
ber, density of C and compression percentages, and highest SSIM

measure.
Method Itr.# Density% Compr.% RE%  SSIM
FBP: - - - 54.81  0.2981
Tikhonov reg.: - - - 21.99  0.5010
TV: - - - 21.37 0.4953
Matrix alg. 36843 12.53 5.31 22.00  0.4903
[ICllsum reg. 48787 5.30 0.67 22.21  0.4890

[Cllsum + |C]|« reg. 8002  10.27 3.26 21.55  0.5061
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The FBP, Tikhonov, and TV methods fail to produce desirable reconstructions,
although the 2-norm reconstruction error for the TV solution is slightly smaller
than that for our solutions. The RE and SSIM do not tell the full story, and
using a dictionary clearly improves recovering the texture of the image. The
reconstructed images in Fig. 6.11 are similar across the matrix and tensor for-
mulations; however, the results in Table 6.1 show that the tensor-formulation
solution is more than 5 times more compressed and more than 2 times sparser
than the matrix-formulation solution. Imposing both sparsity and low-rank reg-
ularization || - ||sum + || - ||« produces a marginally more accurate solution with a
denser representation.

6.4.2.2 More Challenging Tomographic Reconstructions

To further study the performance and robustness of our tensor formulation
approach, we consider problems with more noise in the data, or with projection
angles in a limited range, still using the same test problem. Knowing that
FBP, Tikhonov, and TV give unsatisfactory solutions for such problems, we
only compare our method with the matrix formulation approach, and again we
consider both regularization terms ||C||sum and [|C||sum + ||C]|« in (6.14).

e First we compute a reconstruction with N, = 50 projections, uniform
angular sampling in [0°,180°] and with relative noise level 1%. In this
scenario we use more projection data than in the previous section.

e Next we use 50 and 25 projections uniformly distributed in the limited
range [0°,120°] and with relative noise level 1%.

e Finally we use 25 and 50 projections with uniform angular sampling in
[0°,180°] and with relative noise level 5%, i.e., a higher noise level than
above.

The reconstructions are shown in Fig. 6.12; they are similar across the tensor and
matrix formulations, and pronounced artifacts have appeared from the limited
angles and the higher noise level.

Table 6.2 lists the corresponding relative error, SSIM, density, and compress-
ibility together with the iteration number. Comparison of Tables 6.1 and 6.2
reveal the same pattern. Algorithm 2 converges faster when imposing the com-
bined regularization term ||C||sum + ||C||«, and this choice also slightly improves
the reconstruction in all scenarios. However, enforcing only the sparsity prior
IC||sum significantly reduce the representation redundancy, leading to a very
sparse representation comparing to the matrix formulation. In the scenario
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1=0.01, 3=10 1=0.0147, =10 1=0.01, =10

(a) Np = 50
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noise 1%

1=0.01, 6=13.34 1=0.01, 8=10 1=0.01, =10

(c) Np =25
angles in [0°, 120°]

noise 1%

1=0.0215, 8=1000 1=0.1, 3=100 1=0.0464, 5=13.34

(d) N, = 50
angles in [0°, 180°] noise
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1=0.1468, 6=237.14 1=0.2154, =100 1=0.1, 8=31.62

(e) Np = 25
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Matrix alg. Tensor alg. Tensor alg.

[Cllsum reg. [Cllsum + [|C]|+ reg.

Figure 6.12: Reconstruction experiments from Section 6.4.2.2 with A =
3.1623.
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Table 6.2: Comparison of tensor and matrix formulation reconstructions in the
experiments from Section 6.4.2.2. The methods “Matrix”, “Tensor-
17, and “Tensor-2” refer to the matrix-formulation algorithm and
our new tensor-formulation algorithm with regularization terms
ICllsum and [|C]|sum + [|C||+. The bold numbers indicate the lowest
iteration number, density and compression, and the highest SSIM.

Settings Method  Ttr.# Density% Compr.% RE%  SSIM
Ny =50 Matrix 41204 20.70 8.80 17.70  0.6368
in [0°,180°] | Tensor-1 52801 4.46 0.79 17.19  0.6560
noise 1% Tensor-2 15676 17.39 1.84 16.82 0.6688
Np =50 Matrix 48873 14.4575 9.43 22.77  0.5695
in [0°,120°] | Tensor-1 61106 9.08 0.98 22.80  0.5818
noise 1% Tensor-2 16177 23.81 2.07 22.49 0.5883
Np =25 Matrix 45775 100 5.91 25.46  0.4536
in [0°,120°] | Tensor-1 59347 26.00 0.73 25.85  0.4544
noise 1% Tensor-2 17053 27.49 2.29 25.33 0.4676
N, =50 Matrix 110322 50.17 8.02 22.05  0.4910
in [0°,180°] | Tensor-1 40695 8.97 0.74 21.84  0.4846
noise 5% Tensor-2 10392 14.64 1.72 21.81 0.5107
Np =25 Matrix 72139 45.51 6.29 24.69  0.3768
in 0°,180°] | Tensor-1 37072 8.60 0.64 25.12  0.3738
noise 5% Tensor-2 9076 13.28 2.4829 24.67 0.4041
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Figure 6.13: Reconstructions for the realistic test problem, computed with the
matrix formulation (a) and the tensor formulation (b) + (c).

with 50 projections and 1% noise, where the regularization and perturbation
errors are less dominating, the improvement in reconstructions by the tensor al-
gorithm — compared to the matrix formulation —is more pronounced. Overall,
we recommend the use of ||C||sum + ||C]|« which leads to the faster algorithm.

6.4.2.3 A Larger Test Problem

Tomography is a common tool in materials science to study the structure of
grains in polycrystalline materials such as metals. The grain structure is some-
times known a priori in the form of training images. As test image in this
experiment we use the high-resolution image of zirconium grains (produced by
a scanning electron microscope) of dimension 760 x 1020 shown in the bottom
of Fig. 4.11.

Training patches of size 10 x 10 are again extracted from the high-resolution
image to learn matrix and tensor dictionaries size 100 x 300 and 10 x 300 x
10, respectively. To avoid committing inverse crime, we first rotate the high-
resolution image and then extract the exact image of dimensions 520 x 520 —also
shown in the bottom of Fig. 4.11.

We use a parallel-beam setting with N, = 50 projection angles in [0°,180°] and
N, = 707 rays per projection, and again the matrix is computed by means of the
function paralleltomo from AIR TooLs [47]. We added 1% white Gaussian
noise to the clean data. This problem is highly underdetermined with m = 36750
measurements and n = 270400 unknowns.
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Table 6.3: Comparison of reconstruction in the realistic test problem, using
the matrix and tensor formulations. The bold numbers indicate
the lowest iteration number, density, and compression, and highest

SSIM.
Method Itr.#  Density% Compr.% RE% SSIM
Matrix alg. 73961  48.61 6.86 14.90  0.4887
[Clsum Teg. 74310  33.18 0.76 15.23  0.4793
[ICllsum + [|C ]|« reg. 24396  38.78 3.17 14.80 0.5035

Figure 6.13 shows the reconstructed images with the matrix and tensor formula-
tions. All regularization parameters are chosen empirically to give the smallest
reconstruction errors. All three reconstructions are similar, since the recon-
struction errors are dominated by the error coming from the regularization of
the noisy data. More information is given in Table 6.3. Imposing the sparsity
prior ||Cllsum in the tensor formulation produces the sparsest representation.
The solution is computed in fewer iterations with the ||C||sum + ||C||« regulariza-
tion term while the reconstruction has a negligible improvement in terms of RE
and SSIM. We conclude that our tensor algorithm is also well suited for more
realistic tomographic problems.

6.5 Summary

In this chapter we presented the problem of dictionary learning in a tensor for-
mulation and focused on solving the tomographic image reconstruction in the
context of a t-product tensor-tensor factorization. The tensor dictionary learn-
ing problem is formulated as a non-negative sparse tensor factorization problem,
and a regularized nonnegative reconstruction in the tensor-space defined by the
t-product is computed. An algorithm based on the alternating direction method
of multipliers (ADMM) is proposed for solving the tensor dictionary learning
problem and, using the tensor dictionary, a convex optimization problem to
recover the solution’s coefficients in the expansion under the t-product is for-
mulated.

Numerical experiments on the properties of the representation in the learned
tensor dictionary in the context of tomographic reconstruction are presented.
The dictionary-based reconstruction quality is superior to well know classical
regularization schemes, e.g., filtered back projection and total variation, and
the solution representation in terms of the tensor dictionary is more sparse
compared to the similar matrix dictionary representations from Chapter 4. The
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experiments suggest that additional prior constraints improve representation
and quality of the reconstruction.



CHAPTER 7

Conclusions and Remarks

It is often the case that prior to the tomographic process, a guess about the
interior of the object under study is known. For example in medical imag-
ing a collection of tomographic image reconstructions from former patients are
available, or in material science the prior about the material’s structure can be
easily available in (higher resolution) photos taken from cross sections of another
substance being cut, similar to the object under study.

It is well known that in CT with infinitely many rays, an image of the interior
of the object can be reconstructed perfectly [93]. The problem arises when the
number of projections are limited and a high resolution reconstruction is desired.
Then, the use of training images to compensate for lack of data in tomographic
experiments with few projections (to e.g., reduce dose) is reasonable.

This PhD thesis aims at providing an efficient and reliable computational frame-
work for the use of training images—as samples of the prior for the solution—
in tomographic image reconstruction. We use dictionary learning to construct
a dictionary from a large data set of training patches extracted from the train-
ing images, and to obtain prototype elements and features from such training
images. The dictionary is then incorporated in the reconstruction problem via
a convex optimization formulation, as the prior for the solution. The com-
putational large-scale optimization problem is then solved through first-order
methods. The simplicity of this approach is that once the dictionary elements
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have been determined, the solution to the image reconstruction problem is ob-
tained by an sparse approximation in the dictionary. Both matrix and tensor
formulations have been developed to represent the images and formulate the dic-
tionary learning and tomographic image reconstruction problems. Algorithms
have been developed based on the ADMM method to compute the matrix and
tensor dictionaries. We have tested the robustness and efficiency of our frame-
work for the tomographic image reconstruction.

The dictionaries and sparsity priors play the regularization role for our under-
determined systems in the low-dose tomographic scenarios. The dictionaries
and reconstructions are constrained to be nonnegative and it is shown that such
nonnegativity constraints tend to have extra regularization effect on the solu-
tion. As a result, the reconstruction is not very sensitive to the regularization
parameters and a reliable reconstruction can be obtained from a few experi-
ments with the regularization parameters; however, a future work may include
designing automatic parameter choice rules.

A formulation to compute the approximation error by the dictionary, i.e., how
well we can represent our test images with the dictionary has been used to show
how this error depends on the dictionary parameters.

Although the computational tests in this thesis were simulation based and not
from real tomographic data, we tried to study the effect of different noise lev-
els and dose constraints and we avoided committing inverse crimes. With this
proposed approach, we are able to obtain sharper images with more reliable
details; however, one should note that the tomographic solution in very un-
derdetermined and noisy systems is solely determined by the prior and while a
TV reconstruction have a “cartoonish” artifact for textural features the solution
with dictionary learning approach may have other artifacts in these scenarios.

Our algorithm works with non-overlapping patches in the image and the same
dictionary is used for all patches. To minimize blocking artifacts from recon-
structing the image block by block, an additional regularization parameter is
introduced in the tomographic reconstruction. Considering non-overlapping
patches in the image compared to other proposed algorithms that apply a
dictionary-based regularization, based on overlapping patches around every pixel
in the image, reduces the computational complexity of the sparse approximation
problem in the dictionary.

In this thesis and all the aforementioned previous works, the dictionary is fixed
for all the overlapping/non-overlapping patches in the image, however images
typically are non-stationary, i.e., the statistical feature properties may change
from one location to the other in the image. It could be interesting to study
how one can use dictionaries adopted to various statistical features of the tomo-
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graphic images dependent on the location in the image. These non-stationary
regions in the target image can be subdivided into stationary regions and dif-
ferent dictionaries for each subregion can be considered. Nevertheless, this cor-
rection needs a well known and trusted prior about the statistics of the features
in the image.

Such an approach, using training images to learn a dictionary and solve a some-
how big sparse approximation problem as well as looking for appropriate regular-
ization parameters may seem computationally expensive. However a dictionary
for a particular application need to be computed once and then can be used for
several reconstructions. Furthermore, when time is not crucial in tomographic
reconstruction, such as in material science applications, the amount of improve-
ment in the reconstruction comparing to a fast but not reliable reconstruction
technique like FBP is encouraging to use such a method.

A major contribution of this thesis is to formulate a tensor dictionary learning
problem and tomographic image reconstruction around the new concepts from
[63] and present algorithms to tackle such problems. It is shown that considering
a tensor formulation over a matrix formulation significantly reduces the approx-
imation error by the dictionary. As our tensor framework encourages, other
imaging applications may also benefit from treating inherently two-dimensional
images in their multidimensional format using the introduced tensor-tensor fac-
torization and dictionary learning approach. So we suggest to further study the
applications of the tensor dictionary in other imaging problems. In future work
it would be also interesting to further study the tensor dictionary representa-
tion property using other products from the family of tensor-tensor products
introduced, e.g., in [61].

In this thesis we have also studied the effects of the rotation and scale propor-
tions of the training images to the unknown image; nonetheless, further studies
are needed to understand all the difficulties and challenges of implementing such
an approach in real applications.

We have focused on 2D tomographic problems; however, a more challenging
problem that arises in real-world tomographic applications is in 3D. The chal-
lenge is that our training images will still be in 2D, because they typically come
from pictures of slices of 3D objects. We hypothesize that the principles and
model presented in this work can carry over to 3D reconstruction problems
through multiplanar 2D as well, where a stack of two-dimensional reconstructed
slices are acquired with the expansion of the system matrix and reformulation
of the problem statement. Additional studies are necessary to investigate this
hypothesis. The large-scale computing aspects will become more pronounced in
3D reconstructions.
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APPENDIX A

ADMM

Our solution of the dictionary learning problems (4.1) and (6.4) relies on the
ADMM, which has become very popular in the recent years [11]. The classic
alternating direction method (ADMM) solves structured convex problems in the
form of

_min_ f(z) +9(2) (A1)

st. Ax +Bz = ¢

where f and g are convex functions defined on closed subsets X and Z of a
finite-dimensional space, respectively, and A, B and ¢ are matrices and vector
of appropriate sizes. We form the augmented Lagrangian associated with (A.1)

Lo(w,2y) = f(@) +g(z) +y" (A + Bz = o) + (§)]| Az + Bz — |3,

where y is a Lagrangian multiplier vector and p > 0 is a penalty parameter.
ADMM performs minimization with respect to x and z alternatively, followed
by the dual variable update of y, i.e., at each iteration k:

2F = argmin L(z, 25, y¥), (A.2a)

k+1

z .= argmin £(z"T1) 2, y¥), (A.2D)
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Y= gk (AT 4 BMY ), (A.2¢)

ADMM can be slow to converge to high accuracy, however, in practice ADMM
often converges to a modest accuracy within a few tens of iterations [11].



APPENDIX B

Reconstruction with Tensor
Dictionary Via TFOCS

The reconstruction problem (6.14) is a convex, but ||C||sum and ||C||. are not dif-
ferentiable which rules out conventional smooth optimization techniques. The
TFOCS software [3] provides a general framework for solving convex optimiza-
tion problems, and the core of the method computes the solution to a standard
problem of the form

minimize [(A(x) —b) + h(zx), (B.1)

where the functions [ and h are convex, A is a linear operator, and b is a vector;
moreover [ is smooth and h is non-smooth.

To solve problem (6.14) by TFOCS, it is reformulated as a constrained linear
least squares problem:

(5, mestoecr - (3)]

2

1
min —

2 + p e, (C) s.t. >0, (B2

where ¥ = /2(M(M/p—1)+ N(N/r —1)). Referring to (B.1), I(-) is the
squared 2-norm residual and h(-) = p e, (+).
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The methods used in TFOCS require computation of the proximity operators
of the non-smooth function h. The proximity operator of a convex function is a
natural extension of the notion of a projection operator onto a convex set [25].

Let f = [|Cllsum = [|C]|sum and g = ||C||« be defined on the set of real-valued
matrices and note that domf Ndomg # 0. For Z € R™*™ consider the mini-
mization problem

1
minimizex f(X) +g(X) + 5[ X - Z||3 (B.3)

whose unique solution is X = prox;, ,(Z). While the prox operators for ||C/|sum
and ||C||. are easily computed, the prox operator of the sum of two functions is
intractable. Although the TFOCS library includes implementations of a variety
of prox operators —including norms and indicator functions of many common
convex sets— implementation of prox operators of the form prox, +g(-) is left
out. Hence we compute the prox operator for || - ||sum + || - ||« iteratively using a
Dykstra-like proximal algorithm [25], where prox operators of || - ||sum and || - ||«
are consecutively computed in an iterative scheme.

Let 7 = pu/q > 0. For f(X) = 7||X|sum and X > 0, prox; is the one-sided
elementwise shrinkage operator

0, Xij=>T1
prox;(X)i; =4 X5 -7, |[Xij| <7
O7 Xi,j S —T

The proximity operator of g(X) = 7||X||« has an analytical expression via the
singular value shrinkage (soft threshold) operator

prox,(X) = Udiag(o; — 7) VT,

where X = UX V7 is the singular value decomposition of X [16]. The compu-
tation of 7]|C/||. can be done very efficiently since C' is sq x r with r < sq.

The iterative algorithm which computes an approximate solution to prox;,,, is
given in Algorithm 3. Every sequence X generated by Algorithm 3 converges
to the unique solution prox; , of problem (B.3) [27].
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Algorithm 3 Dykstra-Like Proximal Algorithm

Input: The matrix Z
Output: prox;,  (Z)
Initialization: Set X; = Z and set P; and ()1 to zero matrices of appropriate
sizes.
for k = 1,2,...do
Yi = prox, (Xy + Py)
Piy1 = X+ Py - Y,
Xiy1 = proxp(Yi + Q)
Qr+1 = Y+ Qr — Xit1
if ||Yk — Xk+1||F < 1073 then
Exit
end if
end for
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