

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 21, 2017

Design and Analysis of Symmetric Primitives

Lauridsen, Martin Mehl; Rechberger, Christian; Knudsen, Lars Ramkilde

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Lauridsen, M. M., Rechberger, C., & Knudsen, L. R. (2016). Design and Analysis of Symmetric Primitives. Kgs.
Lyngby: Technical University of Denmark (DTU). (DTU Compute PHD-2015; No. 382).

http://orbit.dtu.dk/en/publications/design-and-analysis-of-symmetric-primitives(7d94a26d-c657-4566-a265-461473931cd1).html

Design and Analysis

of Symmetric Primitives

Martin M. Lauridsen

August 2015

Advisor: Christian Rechberger
Co-advisor: Lars R. Knudsen

Technical University of Denmark
Department of Applied Mathematics and Computer Science

ISSN: 0909-3192
Serial no.: PHD-2015-382

Til mine forældre

Abstract

The subject of this thesis is the study of symmetric cryptographic primitives. We investigate these
objects from three different perspectives: cryptanalysis, design and implementation aspects.

The first part deals with cryptanalysis of symmetric primitives, where one tries to leverage
a property of the design to achieve some adversarial goal. Two of the most successful types of
cryptanalysis are differential- and linear attacks. We apply variants of differential cryptanalysis
to the lightweight block cipher SIMON which was proposed by researchers from the National
Security Agency (NSA) in 2013. In particular, we present a search heuristic to find differentials
of high probability, and we investigate the clustering of characteristics known as the differential
effect. Finally, we apply impossible differential attacks using truncated differentials to a number
of SIMON variants. Next, we define a theoretical model for key-less linear distinguishers, which
captures the meaning of distinguishing a block cipher from an ideal permutation using linear
cryptanalysis, when the key is either known or chosen by the adversary. Such models exist using
differential properties but were never before defined using linear cryptanalysis. We apply this
model to the standardized block cipher PRESENT. Finally, we present very generic attacks on two
authenticated encryption schemes, AVALANCHE and RBS, by pointing out severe design flaws that
can be leveraged to fully recover the secret key with very low complexity.

In the second part, we delve into the matter of the various aspects of designing a symmet-
ric cryptographic primitive. We start by considering generalizations of the widely acclaimed
Advanced Encryption Standard (AES) block cipher. In particular, our focus is on a component
operation in the cipher which permutes parts of the input to obtain dependency between the state
bits. With this operation in focus, we give a range of theoretical results, reducing the possible
choices for the operation in generalized ciphers to a particular set of classes. We then employ
a computer-aided optimization technique to determine the best choices for the operation in
terms of resistance towards differential- and linear cryptanalysis. Also in the vein of symmetric
primitive design we present PRØST, a new and highly secure permutation. Employing existing
third-party modes of operation, we present six proposals based on PRØST for the ongoing CAESAR
competition for authenticated encryption with associated data. We describe the design criteria,
the usage modes and give proofs of security.

Finally, in the third part, we consider implementation aspects of symmetric cryptography, with
focus on high-performance software. In more detail, we analyze and implement modes recom-
mended by the National Institute of Standards and Technology (NIST), as well as authenticated
encryption modes from the CAESAR competition, when instantiated with the AES. The data pro-
cessed in our benchmarking has sizes representative to that of typical Internet traffic. Motivated
by a significant improvement to special AES instructions in the most recent microarchitecture

iii

iv ABSTRACT

from Intel, codenamed Haswell, our implementations are tailored for this platform. Finally, we
introduce the comb scheduler which is a low-overhead look-ahead strategy for processing multiple
messages in parallel. We show that it significantly increases the throughput for sequential modes
of operation especially, but also for parallel modes to a lesser extent.

Resumé

Emnet for denne afhandling er analyse af symmetriske kryptografiske primitiver. Vi studerer disse
objekter fra tre forskellige perspektiver: kryptoanalyse, design, samt implementeringsaspekter.

Den første del handler om kryptoanalyse af symmetriske primitiver, hvor man forsøger at
udnytte en egenskab i designet til at opnå et mål som strider med sikkerheden. De to mest
succesfulde typer af kryptoanalyse er differentielle- og lineære angreb. Vi benytter varianter af
differentiel kryptoanalyse på block cipheret SIMON, som blev fremsat af forskere fra National
Security Agency (NSA) i år 2013. Vi giver en søgeheuristik som finder differentialer af høj
sandsynlighed, og vi undersøger grupperingen af karakteristikker kendt som differentiel-effekten.
Endelig fremstiller vi på baggrund af trunkerede differentialer angreb på adskillige varianter af
SIMON med umulige differentialer. Derefter definerer vi en teoretisk model for nøgle-løse lineære
distinguishers, som indfanger begrebet at skelne mellem et block cipher og en ideel permutation
ved brug af lineær kryptoanalyse, når nøglen enten er kendt eller valgt af angriberen. Sådanne
modeller som gør brug af differentielle egenskaber eksisterer allerede, men er aldrig før blevet
defineret ved brug af lineær kryptoanalyse. Vi anvender denne model på det standardiserede block
cipher PRESENT. Endelig fremsætter vi generiske angreb på to autentificerede krypteringssystemer,
AVALANCHE og RBS, ved at påpege alvorlige designfejl som kan udnyttes til fuldstændigt at
bestemme den hemmelige nøgle med meget lav kompleksitet.

I den anden del dykker vi ned i forskellige design perspektiver af symmetriske kryptografiske
primitiver. Vi starter med at undersøge generaliseringer af det bredt anerkendte Advanced
Encryption Standard (AES) block cipher. Navnligt er vores fokus på en operation i AES som
permuterer dele af inputtet for at opnå en afhængighed mellem bits i krypteringstilstanden.
Med denne operation i fokus giver vi en række teoretiske resultater, som reducerer de mulige
valg af operationer i generaliserede ciphers til en række bestemte klasser. Vi bruger dernæst
en computerstyret optimiseringsteknik til at bestemme det bedste valg af operation hvad angår
modstandsdygtigheden overfor differentiel- og lineær kryptoanalyse. Også i designretningen
præsenterer vi PRØST, en ny permutation af høj sikkerhed. Ved brug af eksisterende tredjeparts
operationsmodi giver vi seks forslag baseret på PRØST til den igangværende CAESAR konkurrence
for autentificeret kryptering med tilhørende data. Vi beskriver designkriterier, anvendelsesmodi
og beviser for sikkerheden.

Endelig, i tredje del studerer vi implementeringsaspekter af symmetrisk kryptering med fokus
på software af høj ydeevne. Navnligt analyserer og implementerer vi modi anbefalet af National
Institute of Standards and Technology (NIST), såvel som modi til autentificeret kryptering fra
CAESAR konkurrencen, når disse er instantieret med AES som det underliggende block cipher.
Den behandlede data i vores benchmarkings har størrelser som er repræsentative for typisk

v

vi RESUMÉ

internet traffik. Motiveret af en signifikant forbedring af specielle AES instruktioner i den seneste
mikroarkitektur fra Intel med kodenavnet Haswell, er vores implementeringer skræddersyet til
denne platform. Afslutningsvis introducerer vi comb scheduleren som anvender en look-ahead
strategi af lav overhead til parallelt at processere flere datastrømme. Vi viser at dette giver en
betydelig forøgning af throughput for sekventielle modi især, men også for paralleliserbare modi
til en mindre grad.

Acknowledgments

First and foremost, I wish to thank my supervisor Christian Rechberger, and my co-supervisor
Lars R. Knudsen. Your good spirits and relaxed approach to supervision made my past three years
a truly enjoyable experience. My thanks go also to Søren S. Thomsen, my first tutor during my
Master’s studies, and to Gregor Leander, who was my supervisor before leaving me in Christian’s
care. Your inspiration played a crucial role in sparking my interest for cryptology. I also thank
Anne Canteaut and Thomas Johansson for joining my committee, and Peter Beelen for chairing
it.

For the first year of my studies, I was fortunate to be part of the Danish-Chinese Center for
Applications of Algebraic Geometry in Coding Theory and Cryptography. During this time I had
the opportunity to discuss many topics outside my own area of research. Many thanks go to the
whole team for our endeavors around Shanghai, and for our late-night session with the Danish
Højskolesangbog around the piano in Skagen.

During the past three years, I have been fortunate to work on interesting topics with a
number of great people. I wish to thank my co-authors Mohamed Ahmed Abdelraheem, Javad
Alizadeh, Hoda A. Alkhzaimi, Elena Andreeva, Mohammad Reza Aref, Nasour Bagheri, Christof
Beierle, Andrey Bogdanov, Christoph Dobraunig, Maria Eichlseder, Praveen Gauravaram, Philipp
Jovanovic, Elif Bilge Kavun, Lars R. Knudsen, Stefan Kölbl, Abhishek Kumar, Gregor Leander, Atul
Luykx, Florian Mendel, Bart Mennink, Christian Rechberger, Somitra Kumar Sanadhya, Martin
Schläffer, Peter Schwabe, Tyge Tiessen, Elmar Tischhauser, Tolga Yalçın, and Kan Yasuda for the
fruitful collaboration.

I want to thank Vincent Rijmen for having me as a visiting researcher in the COSIC group at
Katholieke Universiteit Leuven for four months, during the last year of my studies. Thanks to all
the people in COSIC for giving me a warm welcome to their group, and to Péla Noé for helping
arrange my stay in Leuven. My special thanks go to Atul, Eva, Tomer and Michal for hosting me,
and for having beers with me.

To my former and current employees at the DTU crypto group, Mohamed Ahmed Abdelraheem,
Martin R. Albrecht, Hoda A. Alkhzaimi, Subhadeep Banik, Andrey Bogdanov, Julia Borghoff,
Christina Boura, Lars R. Knudsen, Stefan Kölbl, Gregor Leander, Christiane Peters, Christian
Rechberger, Arnab Roy, Tyge Tiessen, Elmar Tischhauser, and to visiting researchers Farzaneh
Abed, Ralph Ankele, Tomer Ashur, Takanori Isobe, Philipp Jovanovic, Florian Mendel, Bart
Mennink, Paweł Morawiecki, Sondre Rønjom, and Hongbo Yu: thank you all for the collaboration,
discussions and invaluable feedback. You have helped further my understanding of cryptology
more than anyone else.

vii

viii ACKNOWLEDGMENTS

To my childhood friends, the Insanity guys, who stand with me to this day: your grotesque
humor makes me laugh in ways nothing else can. Thank you so much.

I am deeply grateful to my family, my parents Edith and Hans, and my brothers Søren and
Ole. You have given me the opportunity and encouragement to pursue my ambitions. Thank you
for that. My thanks go also to the Schadegg family, my in-laws who have always shown a great
interest in my work.

Finally, to Sarah, my partner in this wonderful thing called life: you alone are my biggest
support of all. Thank you so much, for being who you are, and no one else.

Martin M. Lauridsen

Kgs. Lyngby, August 2015

Notation

By a bit we mean a value from the set {0, 1}, which we also identify with the finite field F2. We
use interchangeably several different representations of a binary string (of length n), which we
all identify with each other: as a string of n symbols from the alphabet {0,1}; as an integer
in the range 0, . . . , 2n − 1 written in any radix; as a vector in Fn

2; and as a element in the field
F2n = F2[x]/ f (x) where f (x) is an irreducible polynomial of degree n. For a binary string X ,
we use X i to denote the ith bit of X , where X0 denotes the least significant bit.

Letting K be a set (or another mathematical structure considered as a set) we denote vectors
with elements from K by K∗ when the length can be arbitrary (including zero); by K+ when
the length is positive; and by Km when the length is some positive integer m. For example, we
denote by Fn

2 the set of n-bit binary strings and F∗2 the set of binary strings of any length. We
let the notation extend to single symbols, such that e.g. 0n denotes the binary string consisting
of n zeroes. Strings in monospace font represent numbers written in hexadecimal (radix 16)
notation.

ix

x NOTATION

List of Symbols

N The natural numbers {1,2, 3, . . .}
N0 The natural numbers with zero N∪ {0}
Z The integers {. . . ,−2,−1,0, 1,2, . . .}
Zn The ring of integers modulo n; or the set {0, . . . , n− 1}
Fqn The finite field of size qn with q prime and n ∈ N
Perm(n) The set of all permutations on Fn

2
OPerm(n) The set of online permutations on Fn

2 (see Section 3.2.6)
]S The number of elements in the set S
X‖Y or X Y Concatenation of binary strings X and Y
X ⊕ Y Bit-wise addition of X and Y
X � Y Bit-wise multiplication of X and Y
X | Y Bit-wise OR of X and Y
X � Y Modular addition (modulus understood from context)
X � Y Modular subtraction (modulus understood from context)
X � k Binary left shift by k positions; or X is “much less than” k
X � k Binary right shift by k positions; or X is “much greater than” k
X≪ k Binary left rotation by k positions
X≫ k Binary right rotation by k positions
|X | Bit-length of X ; or absolute value of X
ε The empty binary string
ei Binary string with a 1-bit on position i and zeroes elsewhere
lsbk(X) The k least significant bits of the binary string X
msbk(X) The k most significant bits of the binary string X
padk(X) Padding binary string X

X
$←− S Sampling of X uniformly at random from a set S

Pr [E] Probability of an event E
E[X] Expected value of a random variable X
B(N , p) Binomial distribution with N samples of probability p
N (µ,σ2) Normal distribution with mean µ and variance σ2

xi

List of Abbreviations

AE(AD) Authenticated Encryption (with Associated Data)
AES Advanced Encryption Standard
AES-NI AES New Instructions
CAESAR Competition for Authenticated Encryption: Security, Applicability,

and Robustness
CBC Cipher Block Chaining
CCM Counter with CBC-MAC
CFB Ciphertext Feed Back
CTR Counter (mode of operation)
DDT Difference distribution table
DES Data Encryption Standard
ECB Electronic Code Book
GCM Galois/Counter Mode
IPsec Internet Protocol Security
IV Initialization vector
MAC Message Authentication Code
MILP Mixed-integer linear programming
NIST National Institute of Standards and Technology
NMR Nonce misuse resistance
NSA National Security Agency
SAC Strict avalanche criterion
SEM Single-Key Even-Mansour construction
SHA Secure Hash Algorithm
SSH Secure Shell
SSL Secure Sockets Layer
TLS Transport Layer Security
XE Xor-encrypt
XEX Xor-encrypt-xor

Contents

Abstract iii

Resumé v

Acknowledgments vii

Notation ix

Contents xiii

1 Introduction 1
1.1 Cryptographic Goals . 1
1.2 Symmetric Primitives .. 3

1.2.1 Block Ciphers .. 3
1.2.2 Stream Ciphers .. 10
1.2.3 Message Authentication Codes .. 11
1.2.4 Authenticated Encryption .. 13
1.2.5 Cryptographic Hash Functions .. 25

1.3 Cryptanalysis . 28
1.3.1 Adversarial Models . 28
1.3.2 Adversarial Goals . 30
1.3.3 Complexity Metrics . 31
1.3.4 Brute-Force Attacks .. 32
1.3.5 Differential Cryptanalysis . 34
1.3.6 Linear Cryptanalysis . 42
1.3.7 Meet-in-the-Middle Attacks .. 47
1.3.8 Algebraic Attacks.. 49

2 Cryptanalysis of Symmetric Primitives 51
2.1 Cryptanalysis of SIMON . 52

2.1.1 Specification of SIMON . 52
2.1.2 Differential Attacks .. 53
2.1.3 Round Function Differentials . 57
2.1.4 Search Heuristic for Differentials . 58

xiii

xiv CONTENTS

2.1.5 Differential Effect in SIMON . 59
2.1.6 Generic Extension by Two Rounds on Top ... 60
2.1.7 Key Recovery .. 61
2.1.8 Impossible Differentials . 63
2.1.9 Connections to Linear Trails . 71
2.1.10 Timeline of Cryptanalysis on SIMON . 73
2.1.11 Discussion and Conclusions.. 75

2.2 Cryptanalysis of PRESENT . 76
2.2.1 Motivation .. 77
2.2.2 A Model for Linear Distinguishers in the Key-less Setting.. 77
2.2.3 Specification of PRESENT . 81
2.2.4 Keys and Linear Hulls in PRESENT . 82
2.2.5 Application to PRESENT . 83
2.2.6 Discussion and Conclusions.. 88

2.3 Forgery and Key Recovery on Selected Authenticated Encryption Schemes 89
2.3.1 Cryptanalysis of AVALANCHE . 90
2.3.2 Cryptanalysis of RBS . 93
2.3.3 Discussion and Conclusions.. 98

3 Design of Symmetric Primitives 99
3.1 Permutations and Rotations in AES-like Ciphers .. 99

3.1.1 Introduction and Motivation .. 100
3.1.2 The AES and AES-like Ciphers .. 102
3.1.3 Bounding Differential- and Linear Hull Probabilities . 106
3.1.4 Equivalent Permutations .. 108
3.1.5 Mixed-Integer Linear Programming and Experimental Results 113
3.1.6 Optimal Solutions.. 115
3.1.7 Discussion and Conclusions.. 120

3.2 PRØST: Permutation-Based Authenticated Encryption .. 120
3.2.1 Introduction and Motivation .. 121
3.2.2 The PRØST Permutation .. 121
3.2.3 Cryptanalysis of Permutation .. 128
3.2.4 PRØST-based CAESAR Proposals . 130
3.2.5 Features .. 135
3.2.6 Security Goals and Proofs .. 135
3.2.7 External Analysis . 142
3.2.8 Discussion and Conclusions.. 143

4 Implementation Aspects 145
4.1 Motivation .. 146

4.1.1 Timeline of AES Implementations .. 147
4.2 Schemes Considered.. 148

4.2.1 NIST-recommended Modes .. 148
4.2.2 Authenticated Encryption Modes and CAESAR... 148

CONTENTS xv

4.3 The Intel Instruction Set and Haswell . 150
4.3.1 Instruction Pipelining .. 150
4.3.2 AES New Instructions .. 150
4.3.3 Improvements to Finite Field Multiplications.. 151
4.3.4 Classical vs. Haswell Multiplication.. 152
4.3.5 Haswell-Optimized Finite Field Doubling .. 152
4.3.6 General Considerations: AVX and AVX2 Instructions .. 154

4.4 Comb Scheduler: An Efficient Look-Ahead Strategy.. 154
4.4.1 Filling the Pipeline: Multiple Messages .. 156
4.4.2 Message Scheduling with a Comb ... 156
4.4.3 Latency vs. Throughput .. 159
4.4.4 Patenting .. 160

4.5 Pipelined NIST-recommended Modes .. 160
4.6 Pipelined Authenticated Encryption .. 161

4.6.1 Performance in the Real World .. 161
4.6.2 Traditional Approach: Sequential Messages of Fixed Lengths 163
4.6.3 Exploring the Limits: Upper Bounding the Combing Advantage 163

4.7 Discussion and Conclusions .. 166

5 Conclusions 167
5.1 Contributions .. 167
5.2 Open Problems and Future Work .. 168

A Truncated Difference Propagations for SIMON 171

B Cryptanalysis of PRESENT 173
B.1 Linear Hull Trail Counts.. 173
B.2 6-round Deterministic Phase for PRESENT . 173

C Analysis of Permutations in AES-like Ciphers 177
C.1 Optimality of the Black-Box Model .. 177
C.2 Experimental Results . 178

D Pseudo-code for PRØST Proposals 183

Bibliography 189

1
Introduction

In this chapter, we present an introduction to the concept of the symmetric cryptography. The
idea is, that after covering this chapter, the reader should be set with the necessary tools and
concepts to understand the results presented in subsequent Chapters 2 through 4.

First, in Section 1.1, we discuss the purpose of using symmetric cryptography and we provide
the setting in which the rest of the introduction is framed. Section 1.2 introduces the five most
important constructions in symmetric cryptography, four of which are major topics of this thesis.
While Section 1.2 discusses how the goals of cryptography as introduced in Section 1.1 can
be obtained, we turn to analyzing symmetric constructions using various attack techniques in
Section 1.3, under the term cryptanalysis.

1.1 Cryptographic Goals

To explain the fundamentals of cryptography and why we need them, we consider two parties
communicating over an insecure channel. We typically name the parties Alice and Bob1. The
channel is considered insecure, because Eve, the malicious adversary, is trying to thwart the goals
of Alice and Bob in any way possible. The very basic setup is depicted in Figure 1.1.

Eve

Alice Bob
Insecure communication channel

Figure 1.1: Two parties communicating over an insecure channel

1Alice and Bob are placeholder names that have found their way into any cryptography textbook, since their
introduction with the RSA paper in 1977

1

2 CHAPTER 1. INTRODUCTION

While, arguably, most people think cryptography is about keeping communications secret,
this is only part of the truth. In reality, cryptography provides three important properties that
guarantee the security of the communication between Alice and Bob. The three properties are:

• Confidentiality: When Eve is a passive adversary, meaning she listens to the communication
between Alice and Bob without modifying any transmitted data, it should not be possible for
her to infer anything about the messages exchanged between the communicating parties.

• Integrity. When Eve is an active adversary, meaning she can modify the data being
transferred over the insecure channel, the communicating parties should be able to detect
when such modification has occurred.

• Authenticity: When Eve is an active adversary, the communicating parties should be able to
verify that they are indeed communicating with whom they think they are communicating
with. In particular, it should not be possible for Eve to send messages to Bob, appearing as
though they originated from Alice, or vice versa.

A plethora of constructions in cryptography exist which try to obtain one or more of these
three properties in a wide range of applications. In general, we can categorize the constructions
into three groups: symmetric, asymmetric and unkeyed primitives. The symmetric primitives are
named so, because a prerequisite to use them is, that the communicating parties posses some
secret, shared information, which is used to secure the communication. This piece of information
is called a key. The security of the primitives completely fail if the key becomes known to an
unauthorized party. For this reason, these primitives are also referred to as secret-key primitives.
Correspondingly, the asymmetric primitives are constructions in which each communicating party
has a pair of keys: a private key which should be known only to the holder, and a public key
which can be freely given to anyone who wishes to communicate with the holder. For this reason,
asymmetric primitives are also referred to as public-key primitives. The benefit of the public-key
primitives are obvious: they can be used even without the assumption that the communicating
parties posses any shared data. Finally, the category of unkeyed primitives are constructions
which, as the name indicates, do not require neither a shared, secret key, nor a public key to
serve their purpose. Such purposes may include the generation of pseudo-random numbers or
computing a message digest (hashing).

In this thesis, we focus almost explicitly on symmetric primitives. In particular, we will be
discussing certain aspects of designing symmetric primitives, but also how one might attempt to
render such constructions insecure. We also discuss implementation aspects of these primitives;
a point which is becoming increasingly more important with the ubiquity of tiny computing
devices in our everyday lives. Besides our treatment of symmetric primitives, will also cover the
topic of the unkeyed primitive of cryptographic hash functions. In that regard, our discussions
on cryptographic hash functions will mostly be in relation to their construction from symmetric
primitives.

1.2. SYMMETRIC PRIMITIVES 3

1.2 Symmetric Primitives

Symmetric primitives can be considered the LEGO blocks of symmetric cryptography: we use
them to build something bigger. Typically, this means employment in protocols that enable
secure communication, such as Secure Shell (SSH), Secure Sockets Layer (SSL), Transport Layer
Security (TLS), Internet Protection Security (IPsec), and so on. In the following, we describe a
range of cryptographic primitives, with particular focus on symmetric primitives. We also discuss
cryptographic hash functions which are in fact unkeyed primitives. However, as the design and
analysis of the most widespread hash functions is closely related to that of symmetric primitives,
we consider them all under one umbrella.

As already mentioned, symmetric primitives is the name we use for cryptographic construc-
tions that have the prerequisite that the communicating parties share some particular piece of
secret information that no unauthorized party can know. We also hinted that this impracticality
is not present for the public-key primitives mentioned. What we did not mention is, that the
public-key primitives are several orders of magnitude slower than the symmetric primitives. Thus,
when two parties, e.g. a web browser and a web server, must start to communicate in practice,
one uses a mixture of both. In particular, a public-key primitive is used once to securely (but
slowly) exchange a piece of secret information, which can then be used as the secret key for the
much faster symmetric primitives.

In our following treatment, we pay special attention to block ciphers in Section 1.2.1 and
authenticated encryption schemes in Section 1.2.4, as this thesis to a large extent is about their
design, analysis and implementation. Finally, we cover cryptographic hash functions in the end,
which are strictly not symmetric primitives, but rather unkeyed.

1.2.1 Block Ciphers

In the world of symmetric primitives, block ciphers are extremely versatile building blocks which
can be used in the designs of many other cryptographic primitives, including stream ciphers,
hash functions and MACs (all of which we describe in the following). Returning to the three
goals of cryptography, the purpose of block ciphers is to provide confidentiality. A block cipher is
a cipher mapping a fixed-length input, called a block, together with a key, to an output block. We
give their formal definition next.

Definition 1 (Block cipher). Let κ and n be positive integers. A block cipher is an encryption
function

E : Fκ2 × Fn
2→ Fn

2

(K , M) 7→ C ,
(1.1)

which, for any fixed K ∈ Fκ2 , acts as a permutation on Fn
2. The parameter κ is called the key size or

key length, and the parameter n is called the block size. We refer to K , M and C, respectively, as
the key, the message (or plaintext) and the ciphertext. For a fixed key K, the inverse D = E−1 is
the associated block cipher decryption function.

We introduce the notation EK(·) = E (K , ·) and DK(·) = D(K , ·), and use them interchangeably
throughout this thesis. The generic depiction of a block cipher is illustrated in Figure 1.2. We

4 CHAPTER 1. INTRODUCTION

EM

K

C

Figure 1.2: A block cipher

remark that the correctness of a block cipher is given by the requirement that

∀K ∈ Fκ2 ,∀M ∈ Fn
2 : D(K ,E (K , M)) = M , (1.2)

which states that for a fixed K, DK is the inverse of EK . As stated by the definition, for a fixed
key K, we require that EK is a permutation on Fn

2. There are 2n! such permutations and 2κ

possible values for the key K . Thus, if 2κ� 2n! (which is always the case in practice), then the
encryption functions that are ever used are far from covering the family of all permutations on
Fn

2. For that reason, it is important that the number of actual encryption functions 2κ is large
enough that the adversary Eve is not able to determine the correct, secret value of K simply
by trying all possibilities. In practical systems, it is most common to have κ ≥ n. Typically,
we see values of κ ∈ {64,80,96,128,192,256} and for the block size it is most common that
n ∈ {64,128,256}. A recent study by the European Network and Information Security Agency
(ENISA) from 2014 [286] recommends that for block ciphers, the key size is κ≥ 128 and that
one should encrypt at most 2n/2 messages using the same key K . If Alice and Bob can agree on a
block cipher to use, together with a fixed key K ∈ Fκ2 of sufficient length, which is not known by
any unauthorized party, then their communication can remain confidential, provided the block
cipher is secure.

It is important to understand, that no one block cipher suits all purposes. The design choices
made for a particular block cipher directly influence not only the security, but also practical
aspects including efficiency and other platform-dependent characteristics such as implementation
size in hardware, production cost, etc. For example, an application might only realistically give
up a tiny portion of hardware circuit for cryptographic primitives, while still requiring that the
cryptographic implementation has a very high performance. In such a case, it may be that one
has to obtain these properties at a loss of security, which may or may not be acceptable in the
particular scenario. In the end, the choice of a block cipher for a particular application comes
down to a trade-off with many parameters involved.

Two important concepts to cipher design, identified by Claude Shannon in his seminal
paper [284] from 1949, are those of confusion and diffusion. Confusion refers to the relationship
between the message and the ciphertext; the relationship should be as complex as possible. A
modern interpretation of confusion, due to Massey [192], is that statistics on the ciphertext must
not depend on that of the plaintext, in a way which is exploitable by the cryptanalyst. We will
see examples in the following, of exactly how this is accomplished. The concept of diffusion says
that any statistical properties of the message, which potentially could reveal information about
the content of said message, should not be present in the ciphertext. Again, a more modern
interpretation loosely says that each bit message and key material should influence many bits
of the ciphertext. We remark that this implies that a block cipher should be highly non-linear.
For example, a block cipher where some bit of ciphertext depends linearly on some message bits

1.2. SYMMETRIC PRIMITIVES 5

and key bits, is weak because the particular key bits can be easily recovered. The consideration
of linear approximations involving message-, key- and ciphertext bits forms the basis of what is
known as linear cryptanalysis, an attack method we describe in Section 1.3.

In the following, we proceed with describing how block ciphers can be constructed. We limit
our treatment to what is known as iterated designs, as this is the prevailing design approach in
modern block ciphers.

Iterated Designs

Most modern block ciphers, and indeed all block ciphers considered in this thesis, follow an
iterated design strategy. In such a design, a core component is being iterated again and again, up
to a small change each time. Iterated designs are also often referred to as round-based designs,
as each iteration of the core component is called a round function, or round for short. As such,
the encryption function can be written as the composition of T rounds,

EK = FT−1(KT−1, ·) ◦ · · · ◦ F0(K0, ·), (1.3)

where Ft(Kt , ·) is the t th round and Kt is called the t th round key. To ensure the correctness of
the block cipher, we remark that each round function Ft is required to be a bijection on Fn

2. Let
us denote the bit length of each Kt by m. In many cases, this round key size equals the block
size, i.e. m= n, and T ·m is much larger than κ. As such, we need to expand the key K (called
the master key) into several round keys. This is accomplished by a key schedule algorithm, which
we denote by a function

KS : Fκ2 →
�

Fm
2

�T

K 7→ (K0, . . . , KT−1).
(1.4)

A particular subclass of iterated block ciphers are referred to as key-alternating ciphers. Here, the
round keys are not directly part of the round function itself as indicated in Eq. (1.3), but rather
the round keys are added (using the XOR operation) to the block state in between each round
function Ft . Such a construction is shown in Figure 1.3. Naturally, such a key-alternating design
implies that the round key size m equals the block size n. As indicated in Figure 1.3, extra round
keys are added before the first round function and after the last round function. Such keys are
called whitening keys. Their intention is, that an adversary should not be able to directly control
the input to- and output from the first- and last rounds, respectively. This helps to increase the
hardness of a type of attacks known as meet-in-the-middle (MiTM) attacks (see Section 1.3.7
and e.g. the work of Fouque and Karpman [135]). We remark, that for a key-alternating cipher,
one needs one more round key than the number of rounds, and thus the co-domain of the key
schedule algorithm of Eq. (1.4) would be

�

Fn
2

�T+1
.

The reason that iterated designs are particularly appealing is twofold. First, as the round
functions are nearly identical, this means that when implementing the block cipher, the code
can be reused in software implementations and the electrical circuit can be reused for hardware
implementations. This means that optimization efforts can be focused on the (comparatively)
small core component, i.e. the round function, in order to achieve an optimized overall imple-
mentation of the block cipher. Second, it is much easier to understand one small core component,

6 CHAPTER 1. INTRODUCTION

K

KS

M F0 F1 FT−2 FT−1 C· · ·
K0 K1 K2 KT−2 KT−1 KT

Figure 1.3: Key-alternating block cipher construction of T rounds

and how the overall block cipher behaves when it is repeated, than it is to understand a complex
composition of many different components. This yields obvious benefits to the designer of the
block cipher. If it is possible to predict, or even prove, how local properties of the core component
behave when iterated a number of times, this is of great help to the designer who wants to
determine how many round function applications are required to attain a certain security level.
On the other hand, cryptanalysts whose job it is to try to break ciphers, can also gain insight from
this very systematic design approach. Sometimes, this can lead to broken designs. In general, as
there is no way to effectively prove the security of a block cipher, we believe them to be strong
when they have stood the test of time without being broken. Especially, requirements for a good
block cipher are good design characteristics, and much cryptanalytic effort put into analyzing the
cipher, without it being broken. The iterated design approach follows the philosophy, known as
Kerckhoffs’ principle, that a cipher should be secure because it is well understood, and no feasible
attack has been found, rather than obscurity of the design [192, Chapter 1].

In iterated block cipher designs, we deal with three general types: Feistel ciphers, substitution-
permutation networks (SP-networks or SPNs for short) and Lai-Massey schemes. We briefly describe
each of the three in the following. Later in this thesis, we will see examples of the two former
types.

Feistel Ciphers

Feistel ciphers owe their name to Horst Feistel whom, when working for IBM, designed the
Lucifer cipher in 1973 [123]. The most well-known example of a Feistel cipher today is the
Data Encryption Standard (DES) [98] which was developed by IBM, based on Lucifer with
modifications by the National Security Agency (NSA) [175]. Other examples include FEAL [233],
Twofish [281], Camellia [27] and SIMON [40], the latter being a recent lightweight design by the
NSA. We discuss and present cryptanalytic results for the block cipher SIMON in Section 2.1.

During the encryption process, the state is typically maintained in two halves, called the left
and right halves, each of n/2 bits, and we write the state as (X t , Yt). A single round consists
of applying a cryptographically weak update function F to one of the halves (without loss of
generality, the left half X t) of the state, together with a round key. The output is added using
XOR to the other half of the state, and the two halves are swapped. Typically, the last round is
special, as the halves are not swapped, because this would only incur computational overhead.
As such, the general round function can be described as

�

X t+1, Yt+1

�

=
�

FKt
(X t)⊕ Yt , X t

�

. (1.5)

1.2. SYMMETRIC PRIMITIVES 7

X t Yt

X t+1 Yt+1

F

Kt

(a) Feistel construction

X t

S S S S· · ·

P

Kt

X t+1

(b) SP-network

X t Yt

H

F Kt

X t+1 Yt+1

(c) Lai-Massey scheme

Figure 1.4: Round functions for three common block cipher constructions

A round of a general Feistel construction is illustrated in Figure 1.4a. This round function is
iterated many times to obtain a cryptographically strong block cipher. A property of Feistel
ciphers that is very appealing to hardware implementations is, that encryption and decryption
look very similar, and indeed one needs just re-order the round keys to obtain one from the other.
With Feistel ciphers, the round function F is only ever applied in one direction, and thus, it needs
not be invertible.

Substitution-Permutation Networks

The widely acclaimed block cipher design approach of substitution-permutation networks, is
another paradigm following the iterated approach. In SPNs, the round function consists generally
of steps of three types:

1. Substitution: The current state (or parts of it) are substituted with new values in a non-
linear fashion, i.e. the new values should not have a linear expression in terms of the input
values. This step is typically implemented using substitution boxes, or S-boxes for short,
using a lookup table.

2. Permutation: An efficient permutation on Fn
2 is applied to the state. Typically, this is

accomplished using the combination of two steps. Firstly, the state bits are permuted either
by mapping bits to new positions in the state individually, or by mapping larger portions
(words) of the state to new positions, at the same time. Secondly, a linear mixing is applied
to the state, in which each transformed output bit of the state can be written as a linear
combination of bits from the input state. The linear mixing is typically accomplished by
multiplication by a binary matrix, or by a matrix over an appropriate finite field of size 2w

for some word size w.

3. Key addition: The round key Kt is mixed into the current state, most typically using the
XOR operation.

The general round function of an SP-network is illustrated in Figure 1.4b. The different types of
operations of the SPN round function serve different purposes. The purpose of the S-boxes are to

8 CHAPTER 1. INTRODUCTION

create non-linearity in the round function. Without these, it would be very easy to determine
precisely which bits of the ciphertext depend on each bit of the message. Coming back to
Shannon’s desirable properties of a cipher, the purpose of the key addition is to create confusion
and the purpose of the permutation is to create diffusion in the cipher.

The most prominent example of an SPN is the Advanced Encryption Standard (AES) [252].
In 1997, the necessity of a new encryption standard, eventually to become the AES, became
evident after cryptographic researchers found serious security flaws in the DES block cipher
in the mid 90s. The AES is a 128-bit block cipher standardized by the National Institute of
Standards and Technology (NIST), following a nearly five year long period from call for proposals
in January 1997 to standardization in November 2001. While the story of how the AES came
to be is a fascinating one, we will not dig into it here. Instead, we refer the interested reader
to [106]. The AES is comprised of three block ciphers using a block size of n = 128 and key sizes
κ ∈ {128,192,256}. These three block ciphers are a subset of the Rijndael block cipher family,
which was the winner from all the submissions, selected by NIST [252]. The name Rijndael
comes from the contraction of the names of its authors, Joan Daemen and Vincent Rijmen, two
Belgian cryptographers.

Currently, the AES is perhaps the most used block cipher in the world. What is very interesting
is that, contrary to the DES, the decision on the AES was a very public process, compared to
the DES. The design of the AES is particularly interesting, as it defines a new design approach
coined the wide-trail design strategy by Daemen and Rijmen [105]. This approach was a new
way, at the time, of obtaining confusion and diffusion in a block cipher. We describe the AES in
full detail in Section 3.1, where, in particular, we discuss symmetric primitives with a generalized
AES structure, and how we might choose good parameters for such primitives.

Lai-Massey Schemes

The final type of block cipher construction we describe are Lai-Massey schemes. Constructions
following this approach are not so widespread as the former Feistel and SPN constructions. A
prominent example includes the IDEA block cipher by Lai and Massey (for a description of IDEA,
see the thesis of Lai [200]).

Like Feistel ciphers, Lai-Massey schemes also split the block cipher state into two parts of n/2
bits each. Two functions, not necessarily invertible, are used,

H : Fn
2→ Fn

2

F : Fn/2
2 → Fn/2

2 .
(1.6)

The function H is called the half-round function and F is the round function. The state (X t , Yt) is
updated to produce (X t+1, Yt+1) as

(X ′t , Y ′t) = H(X t , Yt)

Tt = FKt
(X ′t � Y ′t)

(X t+1, Yt+1) = (X
′
t � Tt , Y ′t � Tt).

(1.7)

A single round of a general Lai-Massey scheme is depicted in Figure 1.4c.

1.2. SYMMETRIC PRIMITIVES 9

Modes of Operation

So far, in our treatment of block ciphers, we have been discussing encryption functions mapping
from Fn

2 to Fn
2, i.e. permutations on n-bit strings of data. Naturally, in real applications, commu-

nication to be encrypted has a size much larger than the typical block size of n= 128 bits. So
what happens in such a scenario? We need a way to extend the use of block ciphers to such use
cases. The solution is to use a block cipher mode of operation. We assume that we are given a
message, being a binary string of several bits. We can now split this string into blocks of n bits. If
the total length of the string is not a multiple of n, we employ a padding scheme to handle this
issue, such that the input becomes compatible with an integral number of block cipher calls.

At the time of writing, the perhaps most popular block cipher mode of operation is cipher
block chaining (CBC) together with the AES block cipher. For example, it is one of the most
frequently used cipher suite choices in the TLS protocol. Other prominent modes are electronic
code book (ECB), which is highly insecure and never recommended for use (as we shall see
below), ciphertext feed back (CFB) mode and counter (CTR) mode. We describe each of them
briefly in the following. The encryption of the ith message block Mi , using each of the four block
cipher modes CBC, ECB, CFB and CTR, is depicted in Figure 1.5.

Ci−1

Mi

EK

Ci

(a) CBC mode

Mi

EK

Ci

(b) ECB mode

Ci−1

EK

Mi

Ci

(c) CFB mode

IV‖i

EK

Mi

Ci

(d) CTR mode

Figure 1.5: Block cipher modes of operation

• CBC: The CBC mode of operation takes as input a number ` of message blocks M1, . . . , M`,
each of n bits. It also requires an n-bit initialization vector (IV). Encryption proceeds as
Ci = EK(Mi ⊕ Ci−1), where we define C0 = IV . With CBC, the ciphertext block Ci depends
only on the message blocks M1, . . . , Mi. As such, if the IV is used twice to encrypt two
different messages M1, . . . , M` and M ′1, . . . , M ′

`′ , and M ′1, . . . , M ′j are equal to M1, . . . , M j for
some j > 0, then the corresponding ciphertext blocks are equal, i.e. C ′i = Ci for 1≤ i ≤ j.

• ECB: As stated already, ECB is a very insecure mode of operation and should not be used.
The reason is, that the encryption of message block Mi does not depend on the encryption
of any other message block M j for j 6= i. As such, it operates by encrypting each message
block so Ci = EK(Mi), and the resulting ciphertext blocks are concatenated to form the
complete ciphertext. This means that an adversary can, for example, form arbitrary valid
message/ciphertext pairs, once she has observed any single message/ciphertext pair.

• CFB: Ciphertext feed back mode, like CBC, uses an IV value of n bits. The ith ciphertext
block, 1 ≤ i ≤ `, is obtained as Ci = EK(Ci−1)⊕ Mi, where we define C0 = IV . CFB has

10 CHAPTER 1. INTRODUCTION

the same chaining dependency property as CBC, which also means that any error in the
reception of Ci results in incorrect decryption of all following ciphertext blocks. A very
similar mode, output feedback mode (OFB), produces ciphertext in the same way, but sets
Ci = EK(Ci−1 ⊕Mi−1)⊕Mi .

• CTR: The CTR mode of operation is rather unlike the other modes mentioned. It still uses
an IV (called a nonce) of |IV |< n bits, which should not be repeated for different messages.
The nonce is concatenated with a counter value of n− |IV | bits, starting from zero, to form
an n-bit block. This block is now encrypted using the block cipher, and the output is XORed
to the message block to provide the ciphertext. For the next message block, the same nonce
is concatenated with a counter value increased by one, and so on. As such, in CTR mode,
the block cipher input is deterministic and does not depend on the message block at all.
Previously, there has been some discussion as to whether this deterministic input to the
block cipher is a bad idea. While CTR is a quite popular mode of operation, some argue
that properly managing a counter can be difficult in some applications. See [213] for a
discussion on CTR mode by Lipmaa, Rogaway, and Wagner.

1.2.2 Stream Ciphers

While block ciphers encrypt blocks of a fixed number of bits at a time, stream ciphers work by
encrypting single bits at a time. This is done by considering the message as a string of arbitrary
length |M | and combining the message with a so-called key stream, a binary string Z of length
|M |. We can define a stream cipher in the following way.

Definition 2 (Stream cipher). Let κ and η be positive integers. A stream cipher is given by a
function

S : Fκ2 × Fη2 × F∗2→ F∗2
(K , IV, M) 7→ C = M ⊕ Z ,

(1.8)

where Z is the key stream generated by the stream cipher.

A favorable property of stream ciphers is, that individual message bits can be encrypted on
the fly, which can be advantageous in real-time systems. Also, errors in transmission affect only
bits locally, so it does not propagate to other parts of the decrypted message, as we saw was the
case with e.g. CBC mode. This makes stream ciphers favorable in applications with a high error
rate.

One way to think about stream ciphers is, that they try to mimic the one-time pad, also
called the Vernam cipher. The one-time pad computes the ciphertext as C = M ⊕ K, where
|K |= |M |= |C |. Assuming the key is chosen randomly and never repeated, it can be shown that
the cipher is theoretically unbreakable, i.e. an attacker can do no better than try each combination
of the key [228, Section 1.5.4]. In terms of Eq. (1.8), the one-time pad uses a completely random
string Z , while a stream cipher generates a pseudo-random string Z .

Stream ciphers are motivated by the obvious impracticality of the one-time pad: one needs
to obtain just as many random bits as the number of bits in the message one wants to encrypt.

1.2. SYMMETRIC PRIMITIVES 11

Stream ciphers are stateful and use the secret key K, possibly in combination with an IV , to
maintain a state which is updated over time, and which at the same time produces bits for the
key stream Z . We remark that the CTR block cipher mode, discussed in Section 1.2.1, can be
considered as a stream cipher, in the sense that it generates a key stream Z , being the outputs
from the block cipher calls, and adds these using XOR to the message blocks to provide the
ciphertext blocks.

While there is much and more to be said about stream ciphers, we do not go into their
detail here. We suggest the interested reader to look into eSTREAM [250], an EU-funded project
running from 2004 to 2008, with the purpose of selecting a new range of stream ciphers suitable
for widespread use.

1.2.3 Message Authentication Codes

A Message Authentication Code, or MAC for short, can be considered as a keyed fingerprint
computed on a plaintext of any length. The purpose of the MAC is twofold: it should provide
integrity and authenticity.

Consider the scenario where Alice uses e.g. a block cipher to encrypt a message M to obtain
a ciphertext C , which she wants to send to Bob. If she computes a key-dependent MAC on the
message and attaches it to the ciphertext, Bob can, on the receiving end, first decrypt to obtain
the message and use his copy of the secret key to compute the MAC. If the MAC he computes
matches the one Alice attached to the ciphertext, he trusts that the message indeed came from
Alice. On the other hand, if the two MACs do not match, a modification happened to the MAC,
the ciphertext or both, when being transferred from Alice to Bob, be it due to a faulty channel or
the malicious adversary Eve.

We remark that a MAC, as we shall see, is a many-to-one function. Thus, it is mathematically
possible for Eve to find a ciphertext C ′ 6= C that decrypts to a message M ′ 6= M which has
the same MAC as M . In this case Bob will not be able to detect any suspicious behavior. The
important thing is that it should be hard for Eve to do this. Generally, the idea is that the problem
of providing a modified ciphertext together with a modified MAC which appears valid on Bob’s
end, without knowing the secret key, should be just as hard as finding the secret key. Functionally,
we define a MAC in the following.

Definition 3 (Message Authentication Code). Let κ and n be positive integers. A message authen-
tication code (MAC), is a keyed fingerprint (or hash) of a message of arbitrary length,

MAC : Fκ2 × F∗2→ Fn
2, (1.9)

where we use the short notation that MACK(·) =MAC(K , ·). The parameter κ is the key size and n
is the MAC size.

There are two main desirable properties of a MAC:

1. Computability: The MAC should be efficiently computable, and

2. Computation-resistance: Without knowledge of the secret key K , it should be computa-
tionally infeasible to determine a valid pair (M ,MACK(M)), even with the knowledge of
other valid (Mi ,MACK(Mi)) pairs, where each Mi 6= M .

12 CHAPTER 1. INTRODUCTION

A MAC which does not offer computation-resistance is said to be subject to MAC forgery,
i.e. an attacker can forge a valid pair (M ,MACK(M)) without knowledge of the secret key K.
Note, however, that this does not imply that the adversary is able to recover K, but the other
implication is, of course, true. That is, if the adversary is able to obtain the secret key K , she can
encrypt any message M of her choosing to get C = EK(M) and compute MACK(M).

When an adversary tries to thwart the purpose of a symmetric scheme, the attack usually
works in two phases. In the first phase, data is collected under some adversarial assumption.
In the second phase, the adversary attempts to use the collected data to obtain some goal. In
Section 1.3, we describe the concepts of adversarial assumptions and goals in detail. However,
for the purpose of understanding what a MAC should be able to provide, we discuss adversarial
assumptions and goals for them at this point. We consider three types of adversarial assumptions
when talking about the security of a MAC:

• Known-text, where the adversary is assumed to possess either one or several valid pairs
(Mi ,MACK(Mi)),

• Chosen-text, where the adversary is assumed able to obtain valid pairs (Mi ,MACK(Mi))
for Mi of her choosing, and

• Adaptively chosen-text, which is like a chosen-text assumption, except that the adversary
can choose each Mi depending on the values of previous pairs (M j ,MACK(M j)) for j < i.

We also make a distinction between the types of forgery, i.e. the adversarial goals, an attacker is
capable of doing. First, a selective forgery is when the adversary is able to (partially) choose a new
message M and provide the correct value of MACK(M). Second, an existential forgery is when
the adversary can provide a new valid pair, but she is not able to control the value of M . Clearly,
a selective forgery is the harder adversarial goal of the two, as it implies an existential forgery.

The canonical example of why MACs are required, and in particular why encryption is not
enough in itself, is the example of a bank transfer request. Say, Alice sends Bob an encrypted
message with her bank credentials because Bob owes her money. Without a MAC, Eve would
be able to manipulate, without being detected, the destination account to which Bob transfers
his owed amount. However, she can still do this even with a MAC, if she is able to forge.
Unfortunately, it is quite common in real applications to see encryption implemented without
any authentication or data integrity. This can, perhaps, be credited to introductory texts focusing
solely on the importance of encryption and decryption, and not stressing the importance of
integrity and authentication.

Popular MACs include CBC-MAC, hash-based MAC (HMAC) and parallelizable MAC (PMAC).
We briefly describe these in the following.

• CBC-MAC is a block cipher-based MAC algorithm, which operates by processing the message
blocks in CBC mode with IV = 0. Instead of producing any ciphertext output, the block
cipher outputs are fed back and added to the next message block, just as in regular CBC.
Finally, the output of the last block cipher call is taken to be the MAC value.

• HMAC uses not a block cipher but a hash functionH (we describe these in Section 1.2.5).
For now, think of H as a function H : F∗2 → Fn

2 with certain desirable properties. Now,

1.2. SYMMETRIC PRIMITIVES 13

HMAC uses certain padding values p1 and p2, and the MAC is computed on a message M
as

HMAC(M) =H (K‖p1‖H (K‖p2‖M)). (1.10)

• PMAC is a more recent design by Black and Rogaway [65]. It is a block cipher-based mode,
motivated by the inherently sequential nature of both CBC-MAC and HMAC. The PMAC
design, on the other hand, is fully parallelizable, which is highly desirable on modern,
high-end CPUs. The MAC is computed by XORing a mask (a particular, cleverly chosen
value) to each message block before applying the block cipher to each message block.
The outputs are then all XORed together, and a final block cipher call is made to provide
the MAC value. There are a few more details, but we do not describe those here. Most
importantly, the n-bit masks that are added to the message blocks need to all be different.

1.2.4 Authenticated Encryption

When a block cipher is combined with a MAC, we obtain what is called authenticated encryption.
This way of obtaining authenticated encryption, i.e. by combining two primitives, is called generic
composition. Another currently trending design approach in symmetric primitives is authenticated
encryption with associated data (AEAD). Such primitives essentially obtain the confidentiality
of encryption and the authenticity and integrity provided by a MAC, but the two are included
in the algorithm design from the beginning. It comes with the added functionality of allowing
authentication of data which is not encrypted (the associated data) which may include e.g.
information about the destination of an IP packet on a network, which must not be encrypted,
because otherwise routers would not be able to correctly forward the packet to its recipient.

At the time of writing there are two main players in the field of AEAD, and both are block cipher
modes of operation: Galois/Counter Mode (GCM) [121] and Counter with CBC-MAC (CCM) [120].
Both GCM and CCM, when used with the AES, are part of the TLS 1.2 cipher suite [114], and
thus are widely used. Currently, there is a massive ongoing effort in the cryptographic community,
channeled by Dan Bernstein, to identify a new portfolio of AEAD schemes which should improve
upon the current standards, and in particular, proposals must argue why they are better than
GCM used with the AES as the underlying block cipher (this combination is denoted AES-GCM).
The Competition for Authenticated Encryption: Security, Applicability, and Robustness (CAESAR)
started in 2012 and is still ongoing, with the tentative announcement of the final portfolio set to
the end of 2017.

In the following, we formally introduce the concept of authenticated encryption with as-
sociated data, and we continue to describe various construction mechanisms to obtain such
schemes.

Definition 4 (Authenticated encryption with associated data). Let κ,η and τ be positive integers.
An authenticated encryption scheme with associated data (AEAD scheme) is a tupleΠ = (K ,E ,D)
consisting of three algorithms:

1. K is the key derivation algorithm, which does not take any input, but returns a key K ∈ Fκ2
to be used by both E and D.

14 CHAPTER 1. INTRODUCTION

2. E is the encryption function, and is specified by

E : Fκ2 × Fη2 × F∗2 × F∗2→ F∗2 × Fτ2
(K , N , A, M) 7→ (C , T),

(1.11)

where K is the secret key, N is an η-bit nonce, A is associated data, which is to be authenticated
but not encrypted, and M is the message, the two latter both of arbitrary length. The encryption
function outputs a ciphertext C of arbitrary length together with a τ-bit tag T, which can be
thought of as a MAC on the associated data and message. The nonce is a value which, for a
fixed key K, must not be repeated.

3. D is the decryption function, and is specified by

D : Fκ2 × Fη2 × F∗2 × F∗2 × Fτ2 → F∗2 ∪ {⊥}

(K , N , A, C , T) 7→
¨

M , T = T ′

⊥ , T 6= T ′.
(1.12)

Here, K , N , A, C , T and M are as before, and T ′ is the verification tag computed by the
decryption function. The symbol ⊥ is used to indicate decryption failure. This symbol is
returned when the verification tag T ′ computed by the decryption function does not match
the tag T which was input to the function.

Note 1. While Definition 4 specifies K as an algorithm, we will sometimes abuse notation and use
K as the set of possible keys produced by the key derivation algorithm. For instance, we may write

K ∈K to mean some derived key, or K
$←−K to mean a randomly sampled key.

When Alice and Bob use an AEAD scheme to communicate, they are presumed to have already
exchanged a secret key K ∈ Fκ2 . Now, Alice computes (C , T) = EK(N , A, M) for her choices of
nonce, associated data and message. She sends the tuple (N , A, C , T) to Bob, who uses his own
copy of K to decrypt and obtain M = DK(N , A, C , T). When the AEAD scheme Π is secure, it
provides the guarantee that Eve is not able to learn the value of M (i.e. the scheme achieves
confidentiality), nor can she make modifications to the tuple that will not be detected by Bob on
the receiving end (i.e. the scheme provides integrity and authenticity).

Generic Composition

We already mentioned generic composition as a method to construct authenticated encryption
schemes by combining an encryption algorithm with an authentication algorithm. The most
typical choices of primitives fall on a block cipher (in a particular mode of operation) for
confidentiality, and a MAC for providing authenticity and integrity. In the following, we describe
three common approaches to generic composition.

Recall that both encryption and MAC computation require secret keys. As such, we assume
in the following not one but two (independent) keys: a key K0 for the encryption algorithm and
a key K1 for the MAC algorithm. We assume an encryption function EK0

: F∗2→ F∗2 and a MAC
function MACK1

: F∗2 → Fτ2 . We remark that all of the generic compositions described below
originally do not allow for associated data. However, there are straightforward extensions that
turn them into AEAD schemes, and these are the ones we describe.

1.2. SYMMETRIC PRIMITIVES 15

Encrypt-then-MAC (EtM). With EtM, Alice first encrypts her message to obtain the ciphertext.
She then computes the tag as a MAC on the associated data and ciphertext, which is sent to Bob
along with associated data and the ciphertext. On the receiving end, Bob first computes his tag
as a MAC on the associated data and ciphertext and compares it to the received tag. If the two
agree, he proceeds to decrypt the ciphertext to obtain the message. As such, in the encrypting
direction, Alice computes and sends

A‖C‖T = A‖EK0
(M)‖MACK1

(A‖EK0
(M)). (1.13)

Bob computes
T ′ =MACK1

(A‖C), (1.14)

and if T ′ = T , he proceeds to compute

M = DK0
(C), (1.15)

and finally obtains the message.
Encrypt-then-MAC has found use in IPsec [182], called encrypt-then-authenticate, and has

been adopted into the ISO/IEC 19772:2009 standard [130]. In 2014, Gutmann described in
RFC 7366 [153] a way to negotiate EtM in TLS 1.2 [114] and DTLS [1], in order to overcome
recently identified shortcomings of the MAC-then-Encrypt construction (see below).

From a theoretical standpoint, Bellare and Namprempre showed in [44] that EtM is the
only one of the three compositions we describe, which satisfies all the conditions of a secure AE
scheme. From the standpoint of efficiency, EtM has the nice feature that the tag can be verified
before decryption takes place. This is possible, because the tag is computed as a function of
the ciphertext (and associated data) directly, rather than the message. This means that forgery
attempts by an adversary can be discarded rapidly, without having to spend computational effort
on decryption before the tag can be verified. This highly desirable property is not shared by the
two next constructions, as we shall see.

MAC-then-Encrypt (MtE). With MtE, a tag is first computed as a MAC on the associated data
and message. The message and the tag are then encrypted, to obtain the resulting ciphertext
which is sent to the receiver together with the associated data. On the receiving end, Bob decrypts
and obtains the message and the original tag, and then computes his own version of the tag as a
MAC on the associated data and message, and compares the two. As such, the MtE construction
operations in the encrypting direction by Alice computing and sending

A‖C = A‖EK0
(M‖MACK1

(A‖M)). (1.16)

Bob computes
M ′‖T = DK0

(C) and T ′ =MACK1
(A‖M ′), (1.17)

and accepts the message if T ′ = T and rejects it otherwise.
MtE has found its widespread use in SSL [137], TLS [114], and DTLS [1]. In [195], Krawczyk

shows (by example) that while MtE is not generally secure, the construction is secure when the
encryption is either a block cipher in CBC mode (with a secure underlying block cipher) or a

16 CHAPTER 1. INTRODUCTION

stream cipher with a pseudorandom pad. Unfortunately, due to the way messages are padded in
SSL, this statement turned out in 2014 not to be true for CBC mode encryption [194].

When considering MtE, there are other major drawbacks. For example, and in contrast to
EtM above, the tag is not a function of the ciphertext, and as such one can not reject a wrong
tag until the whole message has been decrypted. This means that under circumstances where
many tags are wrong, a lot of effort is spent on decryption that effectively is useless. There is a
potential that this can be leveraged to perform Denial of Service (DoS) attacks, in which a server
fails to be able to function due to an overload of requests. More critically, the fact that the tag,
i.e. the output of the MAC, is part of the ciphertext itself, has shown to be exploitable in what is
known as padding oracle attacks, when encryption uses a block cipher in CBC mode. The original
attack from 2002 is due to Vaudenay [292], and the consequence is essentially that an adversary
can decrypt entire ciphertexts, under the assumption that the server leaks information about
whether or not decrypted message was padded correctly. More recent examples of padding oracle
attacks include the Lucky Thirteen attack [14] by AlFardan and Paterson in 2013, which used
information about code executing time (a so-called timing side-channel) as an oracle and used
this to exploit TLS and DTLS. In 2014, Möller, Duong, and Kotowicz found a padding oracle
attack called POODLE [240] on SSL 3.0. While most servers no longer use SSL 3.0, it is possible
that an attacker can force both the browser and the server to agree on using SSL 3.0, through
what is known as a downgrade attack.

Encrypt-and-MAC (E&M). When using E&M, the encryption and tag generation are completely
separate in the sense that Alice computes the ciphertext as the encryption of the message and
then computes the tag as a MAC on the associated data and message, and finally sends the
associated data, ciphertext and tag to Bob. On the receiving end, Bob decrypts the ciphertext to
obtain the message, and then computes his own tag from the associated data and message, and
accepts the message if the two tags agree. As such, in the encrypting direction, Alice computes
and sends

A‖C‖T = A‖EK0
(M)‖MACK1

(A‖M). (1.18)

Bob, on the receiving end, computes

M = DK0
(C) and T ′ =MACK1

(A‖M), (1.19)

and accepts the message if and only if T ′ = T .
Like the two other constructions covered, also E&M has found its way into widespread use

though the SSH protocol for encrypted text-based shell sessions on remote machines over a
network. In their 2002 paper [46], Bellare, Kohno, and Namprempre point out security issues
with the SSH Binary Packet Protocol (BPP) from a standpoint of provable security, and also
give suggestions for fixes of SSH implementations. Like MAC-then-Encrypt, E&M has the same
property that the ciphertext is not protected by the MAC, and like MtE, the tag can only be
verified after decryption.

Why Generic Composition? One might ask why it would ever be desirable to use generic com-
position for AEAD. One obvious upshot to the approach is, that one can essentially, independently,
pick the encryption function and the MAC algorithm. The security of the composition of the two

1.2. SYMMETRIC PRIMITIVES 17

relies on the security of either; no ad hoc security analysis of the composed scheme is necessary.
Another point is that one can choose components which have excellent performance on the target
platform.

With that said, we have clearly seen issues arising with generic compositions for authenticated
encryption, some of which we have pointed out above. As the idea of providing data integrity
and message authentication dates back to the 70s, generic composition is a very old idea (in a
cryptographic timeline). The philosophy has been, already for many years, that integrity and
authentication are absolutely necessary, and as such should be designed as part of the algorithm
to begin with. We have come a long way with the aforementioned GCM and CCM modes of
operation (which we describe in detail below), but more work is actively being done in the area,
most prominently with the ongoing CAESAR competition.

Nonce Misuse Resistance and Robustness

Correct use of an authenticated encryption scheme dictates that, for a fixed key K , a particular
nonce N is only used for a single query. In other words, a (K , N) pair must never repeat in
an encryption query. While this sounds simple enough, the practicality of implementing an
actual nonce can be quite difficult. For example, a hardware device may keep a counter variable
initialized to zero, which is incremented for each message encrypted, and use this as the nonce.
Then, if the key is changed, the counter can be reset to zero. However, it is not unthinkable
that such a device is manufactured with a single, static key K to be used during its operational
lifetime. If an attacker is able to force the device to restart, she can reset its counter, thereby
make nonces repeat for the same key.

Arguably, the assumption of a nonce in an AE scheme is somewhat convenient for the
cryptographer, but much less so for the implementer who actually has to make sure not to falsify
the nonce assumption. To that end, some AE schemes attempt to achieve some degree of nonce
misuse resistance (NMR), i.e. to maintain some security guarantees even in the case where a
(K , N) pair is used more than once. The question of what exactly the term nonce misuse resistance
should be taken to mean forms the basis of a quite heated debate in the cryptographic community
at the time of writing. Already with our commitment to this term, we risk stepping on a few toes.
At the root of the argument lies the fact that a plethora of AE schemes exist, all with various
features and properties that make them suitable for many different applications. As such, various
degrees of failure, in the event of nonce misuse, exist in different schemes. We highlight that we
use the term not as a binary property, but rather to mean that a scheme can achieve some level of
nonce misuse resistance.

While we will not go into the exact details of the security claims with respect to different
levels of nonce misuse resistance, we will describe them informally to the best of our ability in
the following. As a reference for this discussion, we use the recent work of Hoang, Reyhanitabar,
Rogaway, and Vizár [158].

First and foremost, the concept of nonce-based authenticated encryption (NAE) was defined
by Rogaway in [269]. We use NAE to denote the property that the nonce assumption must be
maintained: under nonce misuse, all security guarantees are forfeit. In [271], Rogaway and
Shrimpton give the definition of misuse resistant authenticated encryption (MRAE). Their idea is
that an AE scheme should do the best it can with the nonce it is given: nonces should not repeat

18 CHAPTER 1. INTRODUCTION

for a fixed key, but if it does, it should do as good as possible in such a circumstance. The MRAE
notion promises that, in the case of nonce misuse, the authenticity of the scheme remains, while
privacy is compromised in the sense that an adversary can detect the repetition of an (A, M) pair
if such pair has previously been used with the particular nonce [271, p. 383].

The concept of an online cipher is first described by Bellare, Boldyreva, Knudsen, and Nam-
prempre in [45]. The idea is to have a cipher which requires only constant memory, so it does
not depend on neither the length of message, associated data nor ciphertext. In particular,
message blocks M1, . . . , M` should be processed left-to-right, outputting ciphertext blocks along
the way, such that ciphertext block Ci, 1 ≤ i ≤ `, depends only on message blocks M1, . . . , Mi.
In [128], Fleischmann, Forler, and Lucks build upon this idea for an AE scheme, and define a
corresponding security notion online authenticated encryption, which we denote OAE12 in line
with [158]. Returning to the aforementioned debate on the meaning of nonce misuse resistance,
a point of critique on the OAE1 notion is the somewhat blurred understanding of exactly what
the notion is supposed to mean. This is reflected by the different variants given in [158, Section
8]: OAE1 and OAE1a through OAE1d. In this thesis, we consider OAE1a as equivalent to OAE1,
as the only difference is the primitive underlying the mode: one is a block cipher, the other a
permutation. In the event of nonce misuse, the promise made by OAE1 is, that if an adversary
observes the result of encrypting messages M = X‖Y and M ′ = X‖Y ′, where Y 6= Y ′, then the
fact that M and M ′ are equal on the first |X | bits is revealed. As such, we remark that the OAE1
notion lies between the NAE notion and the MRAE notion, with respect to how robust the scheme
is under nonce misuse. While [158] discusses other notions of security, the concepts of MRAE,
NAE and OAE1 suffice for our treatment of nonce misuse resistance.

Among the authenticated encryption schemes considered in this thesis, we will not be dealing
with any schemes offering MRAE security. Under the OAE1 banner, we describe below the
schemes COPA and APE as well as our own proposals PRØST-COPA and PRØST-APE (based on
the two former modes), which we introduce in Section 3.2. In the NAE category, we describe
GCM, CCM, OCB and OTR below. Furthermore, another of our own proposals, PRØST-OTR, is
introduced in Section 3.2 as well.

So far, we have discussed the robustness of an authenticated encryption scheme under nonce
misuse. However, other types of robustness are worth discussing as well. An AE scheme Π should
be implemented such that, if DK returns ⊥, either due to tampering with the associated data,
ciphertext or tag, or due to erroneous reception, the implementation must safely discard all
temporary values related to decryption. In particular, if the verification tag T ′ does not match the
presented tag T , the implementation must not leak any computed message bits. This topic is
being treated formally under the notion of release of unverified plaintext (RUP). While we do not
go into the robustness in the RUP scenario in this thesis, we remark that the topic is seeing an
increasing amount of attention at the time of writing, see e.g. [6, 25, 136].

Block Cipher Modes of Operation

The AEAD block cipher modes allow to choose an arbitrary block cipher and use it for authencated
encryption with associated data. We describe in the following some of the most well-known

2Originally called OAE in [128] but renamed OAE1 in [158] due to the correction of an error in the security
definition

1.2. SYMMETRIC PRIMITIVES 19

AEAD block cipher modes, starting with the aforementioned GCM and CCM. Besides GCM and
CCM, we describe three modes: OCB, OTR and COPA. The treatment of the two latter modes
will be useful when we discuss our CAESAR competition proposal PRØST in Section 3.2.

Note that, unlike generic composition, the AEAD modes described here have authenticity and
integrity built in to begin with. This also means that, opposed to the generic compositions above,
the schemes require a single key K ∈ Fκ2 , which we assume was provided by the key derivation
algorithm K . They use a single block cipher, which we denote E : Fκ2 × Fn

2 → Fn
2. We assume

associated data blocks A1, . . . , Ak and message blocks M1, . . . , M`.

Galois/Counter Mode (GCM). GCM is a design by McGrew and Viega [224]. At the time of
writing, it is the most commonly used AEAD block cipher mode of operation, and is, in almost
all cases, used with AES-128 as the underlying block cipher. It is one-pass, meaning it iterates
over the data once (as opposed to e.g. CCM below), and offers no security in the event of nonce
misuse, i.e. it falls into the NAE category. GCM is used in a wide range of applications including
TLS 1.2 [114, 278] and NSA Suite B Cryptography [8]. Furthermore, it has been standardized
by NIST in Special Publication 800-38D in 2007 [121].

Besides a block cipher, GCM uses multiplication by elements of the finite field F2n , specified
by a particular irreducible polynomial. Encryption essentially works in CTR mode, so GCM
maintains a counter variable J which is initialized based on the nonce N . For every message
block, the counter J is increased, and each ciphertext block is obtained as Ci = EK(Ji)⊕Mi for
i = 1, . . . ,`. For authentication, one first computes H = EK(0n). In a procedure called GHASH,
a tag is computed over the associated data and ciphertext by adding each block to a running
variable X , which is then updated by multiplication over F2n by the constant H. Finally, the
authentication tag is computed as T = H ⊕EK(X ⊕ (|A|‖|C |)), thus making the tag depend also
on the length of associated data and ciphertext.

An appealing part of AES-GCM is that implementations in high-end general-purpose CPUs
can achieve very high performance. This is mainly due to the hardware acceleration on Intel
platforms since their Westmere microarchitecture launched in 2010, which introduced AES
New Instructions (AES-NI) [146]. These are very fast instructions for encryption using AES.
Furthermore, the pclmulqdq instruction allows for highly optimized implementations of the
finite field multiplication used by GCM. In fact, these hardware optimizations mean that other
block cipher modes for AEAD, as we shall see, also recommend use with the AES, and also
employ multiplication in F2n . We go deeper in the discussion of fast implementations, also
for GCM, in Chapter 4. While GCM using the AES as the underlying block cipher has really
nice implementations on high-end CPUs, it is in general very complicated to implement on
platforms not offering special hardware acceleration instructions. This is especially true when
the implementation must be constant-time, i.e. it should not leak any timing information. For a
discussion on this topic, see e.g. the attack by Bernstein [49] and resistant implementations by
Käsper and Schwabe [198].

Given its popularity and widespread use, there are several cryptanalytic results on GCM
that we should mention at this point. In the line of weaknesses arising due to the polynomial
hashing in GCM, i.e. the GHASH function, the first observation by Joux [176] shows that one
can recover the hashing key H by using pairs of messages authenticated using the same nonce N .

20 CHAPTER 1. INTRODUCTION

Since GCM was not designed to be secure under nonce misuse, this is referred to as the forbidden
attack. In [125], Ferguson showed that when encrypting messages of 2` blocks, GCM provides in
fact only τ− ` bits of authentication security, where τ is the tag size. Handschuh and Preneel
propose in [154] a method to recover the hashing key in polynomial hashing (including GHASH).
Furthermore, they formalize weak keys for GCM. In [275], Saarinen uses a similar concept of
weak keys which lead to a hashing key H of low order, to provide cycling attacks on GHASH. This
concept was taken further and formalized by Procter and Cid in [263]. Meanwhile, most of the
results described were not constructive, in the sense that they show only the existence of weak
keys and polynomials allowing forgeries. This issue was addressed in 2015 by Abdelraheem,
Beelen, Bogdanov, and Tischhauser [3], providing the first universal forgery attacks on GCM that
does not require the misuse of nonces.

Concerning the security proofs for GCM, Iwata, Ohashi, and Minematsu revisited the security
proofs for GCM in 2012 [167]. They pointed out flaws in the original security proofs for GCM,
but also provided means to fix them. Also, they show that GCM has better security bounds when
the nonce length is η= 96 bits.

On the implementation side, a bug in OpenSSL pointed out by Gueron and Krasnov [149]
which allowed message forgeries was thankfully identified in time before making it into production
code.

Offset Code Book (OCB). OCB is a one-pass AEAD mode supporting a block size of n= 128
bits. Again, it falls in the NAE category, so it is not secure in the event of nonce misuse. It is based
on the xor-encrypt-xor (XEX) tweakable block cipher construction by Rogaway [270]. It exists in
three versions: OCB1 by Rogaway, Bellare, Black, and Krovetz [273]; OCB2 by Rogaway [270];
and OCB3 by Krovetz and Rogaway [196]. We remark that throughout this thesis, we take OCB to
mean the latest version, OCB3. The AEAD mode AES-OCB (OCB3 with AES-128 as the underlying
block cipher) is, at the time of writing, a second-round candidate in the CAESAR competition.
AES-OCB implemented on high-end CPUs supporting AES-NI, obtains a performance even better
than AES-GCM. This can be accredited to the fact that OCB is parallelizable in both encryption and
authentication, whereas GCM is parallelizable in encryption (due to the CTR mode of operation)
but sequential in the GHASH part. Furthermore, OCB has extremely low overhead, which means
it performs well even for short messages. We discuss the performance of OCB in greater detail in
Chapter 4, where we also elaborate on how short and long messages impact performance.

OCB is a patented design, but in 2013 the licensing was relaxed, allowing now use in open-
source software, general use in non-military software and also including a particular license for
OpenSSL [134], see [268].

Ferguson presented in [124] a collision attack on OCB1 which implies that the data encrypted
under a single key should be limited to 232 blocks, or about 68 GB. It is debatable whether this is
much of a limitation in practice.

Counter with CBC-MAC (CCM). CCM is a design by Whiting, Housley, and Ferguson [120, 296],
and is part of the IEEE 802.11i standard [163] (as a variant called CCMP for use with WPA2),
IPsec [160] and TLS 1.2 [114, 222]. The motivation behind CCM was to provide a candidate for
IEEE 802.11i which, unlike OCB, was not encumbered by patent licensing issues.

1.2. SYMMETRIC PRIMITIVES 21

As indicated by the name, it is a combination of CTR mode encryption and CBC-MAC for
authentication, combined in a MAC-then-Encrypt manner. Like GCM, it is in the NAE category,
so security fails under nonce misuse. Contrary to GCM, it is two-pass, meaning a pass is first
made over the message to authenticate and then again over the message and tag to encrypt, as is
characteristic for the MtE approach. Note however, that unlike the MtE generic composition, CCM
uses a single key K for both CTR mode encryption and the CBC-MAC. This is secure, provided
the same nonce (which is used as the initial counter for CTR mode encryption) is not repeated
for the same key K .

Being two-pass, it is clear that CCM lacks performance in comparison to both GCM and
OCB. Besides this obvious deficit, other issues concerning CCM are discussed by Rogaway and
Wagner in [272]. As an example critique, the authors point out that CCM is not online (this is a
consequence of being two-pass). Other problems concerning more subtle details such as byte
orientation, parameters and nonce lengths are also discussed. As an alternative to CCM, Bellare,
Rogaway, and Wagner propose the EAX mode of operation in [47].

Offset Two-Round (OTR). The OTR mode is a design by Minematsu [232]. It is, like OCB,
at the time of writing a second-round CAESAR competition candidate. As already mentioned,
OTR too is in the NAE category of modes, not giving any security guarantees under nonce
misuse. Encryption works by considering two consecutive message blocks as a unit, and these
are encrypted in a two-round Feistel cipher (hence the name), in which the round function is
composed of a block cipher call combined with a masking, thus following the xor-encrypt (XE)
tweakable block cipher construction by Rogaway [270]. As such, each pair of two consecutive
message blocks are encrypted completely independently from any other message blocks, implying
that the scheme is easily parallelizable. In OTR, associated data is processed in a PMAC-like
fashion to generate a separate tag for associated data. The final authentication tag is computed
using an XEX construction on a checksumΣ computed over every second message block, combined
with masking by the associated data tag and some additional masking. It makes a single block
cipher call per block of associated data and message, and as such is a one-pass scheme, like GCM
and OCB. An interesting feature of OTR is, that due to the Feistel structure, it does not need to
implement the block cipher decryption function to obtain the AEAD scheme decryption function.
This is a property not found in OCB, but also found in GCM and CCM, which employ encryption
in CTR mode.

Due to the parallizable structure of OTR, it is able to obtain a performance nearly as high as
OCB on high-end CPUs. Again, we refer to Chapter 4 for the details and performance figures.
The OTR mode, together with COPA (described next), form two out of three of the underlying
modes for our CAESAR proposal PRØST. As such, we shed more light on those two modes, and
describe them in greater detail, when we cover the PRØST proposal in Section 3.2.

COPA. Finally, COPA is an AEAD block cipher mode of operation by Andreeva, Bogdanov, Luykx,
Mennink, Tischhauser, and Yasuda [21]. COPA makes two block cipher calls per block of message,
and can be seen as the composition of two XEX tweakable block ciphers. Indeed this formulation
is used for the security proof in [21]. Also, COPA is an online scheme, in the sense that ciphertext
blocks can be released even though all message blocks have not yet been encrypted. Like OTR,

22 CHAPTER 1. INTRODUCTION

the way that COPA processes associated data is very much like the PMAC construction. COPA too,
when combined with AES-128, is at the time of writing a second-round candidate in the CAESAR
competition, under the name AES-COPA. When nonces are misused, COPA offers the OAE1 notion
of security, thus leaking equality of block-aligned prefixes for M = X‖Y and M ′ = X‖Y ′.

COPA has received attention from the cryptographic community which has resulted in a
couple of observations. In the COPA paper, the success probability for a forgery is shown to be
2−n, where n is the block size of the cipher. In [214], Lu presents universal forgery attacks nearly
meeting the birthday bound, i.e. with a probability slightly larger than the claimed 2−n. In [242],
Nandi gives a forgery attack of about 2n/3 queries, breaking the security claims of the design. He
also revisits the security proofs and gives a new proof of integrity meeting that same bound.

Sponge Constructions

In Section 1.2.5 below, we describe cryptographic hash functions which is an unkeyed primitive
for providing a fixed-length fingerprint of a variable-length input. Two very common and NIST-
standardized hash functions are Secure Hash Algorithm-1 (SHA-1) and the SHA-2 family, both
defined in [253]. The latter being from 2001, NIST found in 2007 that SHA-2 needed replacing
by a new standard to be called SHA-3, which was to be identified through a public competition,
much similar to the AES competition.

During the SHA-3 competition [243], a novel design approach to symmetric primitives saw
the light of day. So far, the constructions we have seen have all been based on block ciphers,
but with KECCAK [51], the eventual winner of the SHA-3 competition, the designers used a new
approach based on a fixed size permutation in their sponge constructions. Unlike block ciphers,
these constructions do not require designing a key schedule algorithm, and can easily consume
arbitrary length inputs and provide arbitrary length outputs. As such, the sponge constructions
are very versatile, and can be used to define block ciphers, stream ciphers, hash functions (as
with KECCAK), and also AEAD schemes, as we describe here. With KECCAK, permutations have
become tremendously popular building blocks for symmetric schemes in general, many of which
more or less resemble the sponge construction, which we describe next.

Conventionally, a sponge is a construction which consists of two phases: the absorption phase
and the squeezing phase. During absorption, all the input is mixed into the sponge state over
several rounds. During squeezing, bits of the state are extracted over several rounds, until the
required amount of output has been obtained. In order to allow for continuous absorption and
squeezing, a duplex mode for the sponge construction has been defined. Here, essentially one
block is consumed and one block is squeezed, per round. This is useful for AEAD schemes, as
this allows them to be online. In the following, we take a closer look at a sponge construction in
duplex mode, when we describe the APE scheme for AEAD. As was the case with OTR and COPA,
one of the PRØST proposals for the CAESAR competition described in Section 3.2 uses APE as a
mode of operation for a permutation to obtain an AEAD scheme, which is why we introduce it
here.

Duplex Mode. The primary component of a sponge construction (in duplex mode) is a permu-
tation P specified by

P : Fn
2→ Fn

2. (1.20)

1.2. SYMMETRIC PRIMITIVES 23

Furthermore, we need a padding function

padr : Fk
2→ Fr

2, 0≤ k < r, (1.21)

which maps inputs of strictly less than r bits to outputs of exactly r bits. There are some
requirements that padr must satisfy in order to be secure, and in particular it must be sponge-
compliant (see [52, Definition 1]). We remark at this point that the padding function used for
our PRØST proposal for AEAD, which we introduce in Section 3.2, is sponge-compliant, but has a
slightly different signature than that of Eq. (1.21).

We refer to an n-bit input to- and output from P as a state, denoted by S. During operation,
the state is partitioned into two parts: the rate part of the most significant r bits, and the capacity
part of the least significant c bits, and as such, n= r + c. The rate part of the state is the only
part which is ever directly modified (when absorbing) or exposed (during squeezing), at any
time during operation. Informally, this means that one can tweak the security of the construction
depending on how one chooses r and c, and particularly the ratio between them. A round of the
duplex construction consists of an application of P to the state. For an n-bit value X , we use X r
to refer to the rate part and X c to refer to the capacity part.

For an input to the duplexed sponge X and its corresponding output Y , we write

X = X1‖ · · · ‖X` and Y = Y1‖ · · · ‖Y`, (1.22)

with X i and Yi all less than r bits. We initialize the duplexed sponge by setting S = 0n. One
now proceeds by duplexing, i.e. applying rounds to absorb the X i and squeeze the Yi in the order
i = 1, . . . ,` as

S = P((Sr ⊕ padr(X i))‖Sc) and (1.23)

Yi = lsbli (Sr). (1.24)

As such, with Eq. (1.23) we absorb X i and with Eq. (1.24) we squeeze from the state to obtain
Yi, where li is the required bit-length of Yi. Figure 1.6 shows a general sponge construction in
duplex mode.

IVr

IVc

X1 Y1

padr lsbl1

P

X2 Y2

padr lsbl2

P

X3 Y3

padr lsbl3

P

· · ·

· · ·

X` Y`

padr lsbl`

P

Figure 1.6: General duplex mode sponge construction

24 CHAPTER 1. INTRODUCTION

APE. The APE scheme is a design by Andreeva, Bilgin, Bogdanov, Luykx, Mennink, Mouha, and
Yasuda [24]. It was marketed as “the first permutation-based authenticated encryption scheme
that is resistant against nonce misuse”. Again, it is debatable how this should be understood. In
the notions introduced above, APE offers OAE1 security, just the same as COPA.

APE, as specified in [24], supports fractional data, i.e. it can handle cases where |A|, |M | or
both are not a multiple of r bits. As such, the scheme is in compliance with our notion of an
AEAD scheme of Definition 4. However, in the following, we describe APE where |A| and |M | are
both assumed to be multiples of r. This allows us to describe APE in a simpler and more elegant
way, and in our application of the APE mode in the context of PRØST in Section 3.2, we avoid
these complications by always applying padding to the inputs A and M , thus handling fractional
data in a much simpler way than having special cases for the mode itself.

APE follows a sponge construction in duplex mode. The size of the secret key K is κ = c bits,
so it fits in the capacity part of the state. The length of the authentication tag is τ= c bits. The
nonce N is considered to be part of the associated data A. In the terminology of the duplexed
sponge, APE processes associated data and message by setting X = A‖M , such that |X i|= r for
i = 1, . . . , k+ `. There are, however, two modifications:

1. Instead of initializing S as 0n, it is initialized as

S = 0r‖K . (1.25)

This change is made to make the state depend on the secret key K to begin with.

2. After processing all associated data, i.e. after absorbing Xk, one computes

S = S ⊕ (0r+c−1‖1), (1.26)

i.e. the least significant bit of the state is flipped before Xk+1 is absorbed. This is done to
create a so-called domain separation between the processing of blocks from A and blocks
from M . Without this, an attacker could trivially provide a valid forgery by setting e.g. the
last block of A to the first block of M , i.e. by using A′ = A1, . . . , Ak−1 and M ′ = Ak, M1, . . . , M`.

The squeezing lengths are set to

li =

¨

0 ,1≤ i ≤ k

r , k < i ≤ k+ `,
(1.27)

and ciphertext is obtained as
C = Yk+1‖ · · · ‖Yk+`. (1.28)

As such, nothing is effectively squeezed during the processing of associated data, while ciphertext
blocks are squeezed during the processing of blocks from M . Finally, the authentication tag is
obtained as

T = Sfinal
c ⊕ K , (1.29)

where Sfinal is the output state from which Yk+` was obtained. In Section 3.2, we give a pictorial
description of APE, when instantiated using the PRØST permutation.

1.2. SYMMETRIC PRIMITIVES 25

1.2.5 Cryptographic Hash Functions

A commonly used analogy in cryptography is that between cryptographic hash functions and
the Swiss army knife. Of course, there is a lot of truth in this comparison. Cryptographic hash
functions are highly versatile, even more so than block ciphers, and are useful in countless of
applications.

While this thesis will not deal with cryptographic hash functions in great detail, we neverthe-
less give a brief introduction below. In particular, we focus on ways they can be constructed from
block ciphers, as this aspect from cryptographic hash function design is of particular interest in
relation to our key-less cryptanalysis of the block cipher PRESENT in Section 2.2.

Definition 5 ((Cryptographic) hash function). Let n be a positive integer. A (cryptographic) hash
functionH is a function mapping bit-strings of arbitrary length to bit-strings of a fixed length n,

H : F∗2→ Fn
2. (1.30)

Henceforth, we talk simply about hash functions with the cryptographic prefix implied. The
cryptographic adjective of Definition 5 implies that the function must satisfy three main security
goals, problems which should be hard to solve for a particular functionH :

1. Pre-image resistance: Given Y ∈ Fn
2, it should be hard to find X ∈ F∗2 such that Y =H (X),

2. Second pre-image resistance: Given X ∈ F∗2 and Y ∈ Fn
2 such that Y =H (X), it should

be hard to find X ′ 6= X ∈ F∗2 such that Y =H (X ′), and

3. Collision resistance: It should be hard to find X , X ′ ∈ F∗2 with X 6= X ′ such thatH (X) =
H (X ′).

One can think of the output ofH as a fingerprint or digest of the arbitrary-length input. As
such, hash functions can be used to provide integrity of data, in the sense that if the input if
modified even the slightest, the hash will be significantly different. This is useful in applications
where integrity is desired, but authenticity is assumed. For example, if a user downloads a file
from a web server, the web server can provide a hash of the file while is assumed to be correct,
and the user can compute his own hash of the downloaded file to verify its integrity.

When a hash function does not exhibit any analytical weaknesses with respect to (second) pre-
image resistance, the expected effort required to provide a (second) pre-image is O(2n). However,
due to the birthday paradox (see e.g. [192, Chapter 4]), there is a simple algorithm to find
collisions for a hash functionH in time O(2n/2). One simply computes two lists containing the
hash values of randomly chosen inputs. If the lists have size 2n/2, there is a very high probability
that the two lists have at least one element in common, implying a collision. Thus, the digest size
n should be large enough that 2n/2 computations of H is computationally infeasible. Typical
hash sizes are n = 160 bits, as is the case for SHA-1 [253], or one of n ∈ {224,256,384,512}
bits, which is the case for both the SHA-2 and SHA-3 families [253, 254].

26 CHAPTER 1. INTRODUCTION

Construction of Hash Functions from Block Ciphers

At this point, we turn our discussion of hash functions to their design, and in particular we
describe how they can be constructed from block ciphers. First, we give the definition of one-way
collision-resistant compression functions.

Definition 6 (One-way collision-resistant compression function). Let w, n and m be positive
integers. A one-way collision-resistant compression function is a function

F : Fw
2 × Fn

2→ Fm
2 , (1.31)

which has the properties that it is easily computable, and is resistant to pre-image attacks, second
pre-image attacks and collision attacks.

For simplicity, we leave out the one-way collision-resistant prefix for the remainder of this
thesis. Compression functions are named so, because typically w + n > m, and as such, F
compresses the inputs into fewer output bits.

As mentioned, hash functions should be able to consume inputs of arbitrary length and provide
an output of a fixed length. Thus, let M ∈ F∗2 be one such input and let F be a compression
function as specified by Definition 6, where we set w= m. We can split M into blocks of n bits
each, denoted by M1, . . . , M`. If the last block M` has a length |M`| < n, we apply a padding
function such that |padn(M`)| = n. Let IV ∈ Fm

2 be an initialization vector, as we know from block
cipher modes of operation. We can construct a hash functionH from the compression function
F by applying what is called the Merkle-Damgård construction, an approach first described in
the thesis of Merkle [230], and later proven secure in independently by Damgård [109] and
Merkle [231]. The Merkle-Damgård construction works as follows. We iteratively apply F to a
chaining value which we denote Hi, 1 ≤ i ≤ `+ 1, together with Mi, to obtain the next value
Hi+1. We initially set H1 = IV , and each time we compute Hi+1, we absorb the message block
Mi . Finally, we obtain the value H`+1, which we take as the output of the hash functionH . We
illustrate the Merkle-Damgård construction in Figure 1.7. The construction is widely used, and
indeed is the basis for the hash functions MD5 [266], SHA-1 and SHA-2 [253].

IV

M1

F

M2

F · · ·

M`

F H (M)

Figure 1.7: The Merkle-Damgård construction

We have now seen how a hash functionH can be constructed from a compression function
F , but we have not discussed how to construct a compression function. As it turns out, using a
block cipher to construct F is a very popular approach, and we describe three common ways to
do it next. An illustration of the three approaches is given in Figure 1.8. For the following three
constructions, let E : Fκ2 ×Fn

2→ Fn
2 be a block cipher and let M ∈ F∗2 be a message to be hashed.

Davies-Meyer (DM). With the Davies-Meyer (DM) construction, the message blocks are used
as the key for the block cipher. Thus, the input message M is split into blocks of κ bits rather than

1.2. SYMMETRIC PRIMITIVES 27

Mi E

Hi

Hi+1

(a) Davies-Meyer

Hi g E

Mi

Hi+1

(b) Matyas-Meyer-Oseas

Hi g E

Mi

Hi+1

(c) Miyaguchi-Preneel

Figure 1.8: Three common compression function constructions from block ciphers. The
black triangle on the block cipher indicates key input.

n bits, i.e. we have |Mi|= κ. The chaining values Hi+1 are computed from Mi and the previous
value Hi by first encrypting Hi using the block cipher under the key Mi, and adding the result
using XOR to Hi itself. As such, we have

Hi+1 = EMi
(Hi)⊕Hi , 1≤ i ≤ `. (1.32)

The final hash H`+1 has a length equal to the block size n of E . The construction is attributed to
Davies by Winternitz in [297, 298] and to Meyer by Davies and Price in [110]. When κ > n, it
was shown by Black, Rogaway, and Shrimpton [66] that it requires approximately 2n encryptions
for a (second) pre-image attack and about 2n/2 encryptions for a collision attack, for the hash
function constructed using DM.

Matyas-Meyer-Oseas (MMO). The Matyas-Meyer-Oseas (MMO) construction was proposed in
1985 by Matyas, Meyer, and Oseas [221]. It can be considered the dual to the Davies-Meyer
construction, in the sense that the chain values Hi are used as key values and message blocks Mi
are used as inputs to the block cipher. As such, we split M into n-bit blocks M1, . . . , M`, and we
compute Hi+1 from Hi and Mi as

Hi+1 = Eg(Hi)(Mi)⊕Mi , 1≤ i ≤ `. (1.33)

Here, g : Fn
2→ Fκ2 is a function mapping the chaining value from the size of the output block to

the size of the key required by the block cipher. If n= κ, we take g to be the identity function.
The MMO construction has been adapted into the ISO/IEC 10118-2 standard [131].

Miyaguchi-Preneel (MP). The Miyaguchi-Preneel (MP) construction was proposed indepen-
dently by Miyaguchi, Iwata, and Ohta [234] and Preneel, Govaerts, and Vandewalle [262] in
1989. The MP construction can be thought of as an extension to MMO, because the only difference
is that to compute Hi+1 we also XOR the previous chaining value Hi . As such, we split the input
message M into n-bit blocks M1, . . . , M`, and we compute Hi+1 from Hi and Mi as

Hi+1 = Eg(Hi)(Mi)⊕Mi ⊕Hi , 1≤ i ≤ `, (1.34)

where, again, g : Fn
2→ Fκ2 is a function that allows the output of E to be mapped to a κ-bit value

which can be used as key for E .

28 CHAPTER 1. INTRODUCTION

1.3 Cryptanalysis

In Section 1.1, we introduced the cryptographic goals of confidentiality, integrity and authenticity.
The art of cryptanalysis essentially evolves around trying to break one or more of those three
properties in a cryptographic scheme. This is done by uncovering properties which allow an
attacker to achieve some adversarial goal (we consider types of goals below), with a computational
complexity below that which would be considered ideal for the primitive in question.

At a very high level, we consider two separate schools of cryptanalysis. First, we have con-
ventional attacks, in which the cryptanalyst attempts to identify some particular structure or
property of the design, which can be leveraged to accomplish some adversarial goal. Second,
implementation attacks is a type of cryptanalysis that somehow exploits a particular implemen-
tation of a cryptographic primitive. Attacks under the side-channel umbrella cover e.g. timing
attacks, where one precisely measures the time required to perform specific parts of the algorithm;
power analysis attacks, in which the attacker uses measurements of the power consumed by the
implementation; or acoustic attacks, where measurements of the sounds emitted by hardware
components can be used to determine what is happening in the implementation. Some imple-
mentation attacks are more intrusive. For example, one can use specialized and very expensive
equipment to modify in a controlled manner what happens during operation. An example would
be differential fault analysis, where one can inject a fault into the operation of the primitive in
order to obtain (parts of) the internal state. A recommendable introductory book to the topic
of power analysis attacks is by Mangard, Oswald, and Popp [216]. In this thesis, we focus on
cryptanalysis of the conventional kind. However, we shall briefly discuss countermeasures to
side-channel cryptanalysis, i.e. steps that can be taken in implementations to avoid such attacks,
when we introduce the AEAD scheme PRØST in Section 3.2.

Before we can discuss what is meaningful cryptanalysis, we need to provide a setting for
the discussion. In particular, we must define in what ways the adversary can interact with the
primitive, and what knowledge she has about the system as a starting point (the adversarial
model). We must also define the goals the adversary can try to obtain, and introduce metrics
related to the cryptanalytic effort an adversary must make to compromise a system. We cover all
of these points in the following.

1.3.1 Adversarial Models

In order to properly assess the severity of an attack on a cryptographic algorithm, we must
necessarily consider in what ways the adversary is assumed to be able to interact with (an
implementation of) the primitive.

First and foremost, we must assume that the cryptanalyst knows all details of the cryptographic
primitive in question, except the user-supplied secret key K (when such is present). As already
mentioned, this requirement is known as Kerckhoffs’ principle, and is a reinterpretation of
requirements for a cipher defined in 1883 by Kerckhoffs [179].

Besides Kerckhoffs’ principle, we consider five types of adversarial models, listed by the
strength of their assumptions (going from weaker to stronger):

1. Ciphertext-only attack: The attacker is able to obtain ciphertexts produced by EK . In
this scenario, the attacker must combine this information with some knowledge about the

1.3. CRYPTANALYSIS 29

message being encrypted, in the form of redundancy.

2. Known-plaintext attack (KPA): The attacker is capable of obtaining ` message/ciphertext
pairs (Mi , Ci) such that Ci = EK(Mi) for i = 1, . . . ,`.

3. Chosen-ciphertext attack (CCA): In this scenario, the attacker is able to obtain messages
M1, . . . , M` corresponding to Mi = DK(Ci), where the Ci are ciphertexts of her choosing.

4. Chosen-plaintext attack (CPA): The CPA attack is the dual to the CCA, in the sense that
the attacker can obtain ` ciphertexts corresponding to ` chosen messages, i.e. she obtains
Ci = EK(Mi), for i = 1, . . . ,`, where the Mi are of her choosing.

5. Adaptive CCA and CPA: The adaptive version of CCA is like a regular CCA, except the
attacker can choose the value of C j depending on the obtained pairs (Mi , Ci) with 1≤ i <
j ≤ `. The adaptive CPA is symmetric to the adaptive CCA, but in the encryption direction.

Note that the adversarial models described here can be considered as generalizations of the
assumptions described when we discussed the security properties of a MAC in Section 1.2.3.
The distinction between the practicality of attacks in the different models listed should be clear.
Simply being able to observe ciphertexts, as in the ciphertext-only attack, is a much more practical
assumption than that of e.g. the CPA. As we move down the list, the control the attacker has
over the primitive in question greatly increases. Thus, it is to be expected that this control can
be leveraged to obtain more powerful cryptanalytic attacks. These two factors, the adversarial
model versus the power of the attack presented, must be weighed against each other, when
assessing the severity of the attack.

Separate from the models listed above, we also consider different models as to what the
attacker knows about the secret key (if present), before the attack commences. To that end,
when describing a cryptanalytic attack, we use one of the models described above in conjunction
with a description of what the attacker knows about the key material. The latter can be one of
the following:

1. Secret-key model: The attacker is assumed to know nothing about the secret key K which
is used to provide the security goals for the cryptographic primitive. Doubtless, this is the
most common model of assumption on the key in practice, and definitely also the most
practical one.

2. Related-key model: In the related-key model, an attacker is allowed to analyze the
cryptographic primitive under not a single key K, but under a range of different keys
K1, . . . , Km. As indicated by the name, the keys are related in some sense. We make a
distinction between whether the attacker can choose this relation herself, or whether she
simply knows how the keys are related. The key relations themselves can take various
forms. For example, keys K1 and K2 may be related by α ∈ Fκ2 by K2 = K1 ⊕ α. Other
types of relations could be rotations so e.g. K2 = K1≪ v or arithmetic relations such as
K2 = K1 � v.

3. Known-key model: In the known-key model of attacks, the attacker is assumed to actually
know the key K . While this assumption may seem a little odd, as effectively everything has

30 CHAPTER 1. INTRODUCTION

been given up to the attacker already, there are examples (as we shall see in Section 2.2)
where such a model is meaningful. In the known-key model, the adversarial goal necessarily
becomes to show some sort of structural weakness in the design, which does not depend
directly on the particular key.

4. Chosen-key model: Like the known-key model, the attacker also has knowledge of the
key K in the chosen-key model. The only difference between the two is, that rather than
being given the key, she can freely choose the key herself, when she wants to exhibit the
weakness.

5. (Key-less model): What we refer to as the key-less model is nothing but the union of
the known-key and chosen-key models above. In Section 2.2, we present results in the
key-less model with particular focus on the standardized block cipher PRESENT. Effectively,
cryptanalysis for primitive in the key-less model will attempt to achieve much the same
goals as cryptanalysis for a hash function, with it also being a key-less primitive by design.
We remark that some literature, e.g. the work by Lamberger, Mendel, Rechberger, Rijmen,
and Schläffer [203] refer to this model as the open-key setting.

1.3.2 Adversarial Goals

When we consider a cryptanalytic attack, perhaps the most important thing about it, and indeed
what concerns the designers and users of the primitive the most, is the adversarial goal achieved.
From the attackers point of view, she wants to break the primitive as badly as possible. Of course,
for a good design this should not be possible. However, there are other goals that she might be
able to achieve, which are less severe. To that end, we give a hierarchy of adversarial goals for
block ciphers, ranked by severity, as introduced by Knudsen and Robshaw [192]:

1. Key recovery/total break: The attacker is able to recover the secret key K for the sym-
metric primitive in question.

2. Global deduction: The attacker is able to determine a function F which is functionally
equivalent to either EK or DK , without knowing the secret key K .

3. Local deduction: The attacker is able to determine a single pair (M , C) s.t. C = EK(M),
where neither M nor C have previously been observed.

4. Distinguisher: The attacker is able to efficiently distinguish between the cryptographic
primitive in question, and an ideal version of the same primitive. Using a block cipher as an
example, the attacker must be able to decide, given the obtained data, if she is interacting
with a specific instantiation of the block cipher, or a random permutation on n bits.

We remark that the goals for other primitives may differ slightly. For example, for stream ciphers,
we can consider the goal of recovering the internal state which, for such a primitive certainly
is devastating, but not nearly as bad as recovering the secret key. As already hinted, the order
above is by severity. This also means, that a key recovery implies all the other goals. In particular,

Key recovery⇒ Global deduction⇒ Local deduction⇒ Distinguisher. (1.35)

1.3. CRYPTANALYSIS 31

Thus, a shortcut for a designer to argue for the security of a cryptographic primitive is to show that
a distinguishing attack is not possible. If this is true, then obviously none of the other adversarial
goals can be achieved. This observation also forms the basis of a topic in cryptography called
provable security, where constructions using primitives can be shown to be secure, provided that
the underlying primitive is indistinguishable from an ideal primitive. The prime example of an
application of provable security is block cipher modes of operation. In Section 3.2, when we
introduce the PRØST AEAD scheme, we will touch further upon provable security when we show
that the constructions are secure assuming that the underlying PRØST permutation is ideal.

1.3.3 Complexity Metrics

Once a cryptanalytic attack has been found on a primitive, the most interesting question is: what
is the attack complexity? To compare the attack against a brute-force attack (i.e. an attack simply
trying all possible key values K, see below) obtaining the same adversarial goal, we need to
first answer this question. Indeed, if the attack complexity turns out to be higher than that
required by a brute-force approach, we do not consider it a valid attack to begin with. As already
hinted, we want to assess the attack on how much data it requires, e.g. in terms of the number of
observed ciphertexts or chosen messages. In general, we consider three metrics when evaluating
the complexity of a cryptanalytic attack:

1. Time: The first thing usually considered for an attack is the time required to perform it.
Of course, the time complexity naturally requires an attached unit. Sometimes, if an attack
can be practically verified, the unit is universal time. However, cryptanalytic attacks tend
to have a theoretically estimated time complexity, and to that end, one uses other units
such as basic CPU instructions, or perhaps evaluations of the underlying primitive. It is
important to note that time complexity alone does not properly describe the complexity
of an attack. For example, it is not unthinkable that an attack may require a much lower
time complexity than e.g. the required memory. When analyzing time complexity, we
refer to offline time complexity and online time complexity, respectively. The offline time
complexity describes the time required for the attack before any message/ciphertext pairs
are observed (this is also referred to as the pre-computation phase), while the online time
complexity refers to the time spent using the obtained data to achieve the cryptanalytic
goal (also referred to as the online phase). We will see examples of both offline- and online
time complexity below, when we describe a generic type of attack called time-memory
trade-offs.

2. Memory: Like the time complexity, the amount of memory required by an attack is
extremely important. One can not precisely say whether a higher time complexity is worse
than a higher memory complexity. For example, a time complexity of about 240 operations
may be completely practical for a single, high-end desktop machine. Meanwhile, even
though 240 bytes of memory, amounting to about 1 TB, is a very reasonable size for a hard
drive these days, an attack requiring random read/write access to a data structure of such
a size on the disk could render the memory complexity the bottleneck of the attack, even
with improving technology such as solid state disks. Typically, the memory complexity
is measured in some concise type, such as bytes. Other times, the complexity will occur

32 CHAPTER 1. INTRODUCTION

without a unit, e.g. as the number of elements in a hash table. In such cases, one can
roughly estimate the concise complexity by using e.g. the block size of a block cipher as
the size of single element.

3. Data: When describing the adversarial models above, we have already touched upon the
concept of data complexity. It refers to the data points, i.e. either messages, ciphertexts,
or a combination of both, which the attacker has obtained, whether the attack model is
ciphertext-only, KPA, CCA, etc. When the data complexity covers all pairs of message and
ciphertext for the cryptographic primitive, we say that the attack uses the full code book.
For example, if an attack requires that all 2n pairs (Mi , Ci) are available for an n-bit block
cipher, it uses the full code book.

1.3.4 Brute-Force Attacks

An attack that theoretically will always succeed at finding the secret key for a symmetric primitive
is the brute-force attack or exhaustive search. Thus, the first item on the primitive designer’s
checklist is to make sure that such an attack is computationally infeasible.

As the computational power with a fixed monetary cost increases over time, brute-force attacks
become increasingly feasible for a fixed key size κ. The estimation due to Moore’s law is that the
computational power doubles every 18 months. While Moore’s law certainly is a valid approach
to deciding on a safe key size, a more in-depth study such as the parameter recommendations by
the European Network and Information Security (ENISA) [286] is recommendable for designers.
For another overview of recommended key sizes, see [70].

It is also worth pointing out that the problem of exhaustive search for the secret key allows
straightforward parallelization. Such initiatives have been seen e.g. with the DES Cracker [133]
and COPACOBANA [197], which are dedicated hardware for exhaustive key search in the DES
block cipher [251].

The expected time complexity of a brute-force attack is 2κ−1. The unit corresponds to the
time required to initialize the primitive, e.g. running the key schedule for a block cipher or initial
clocking for a stream cipher, plus the time required to encrypt a couple of messages, that will
be used to check whether the key guess was correct. The data and memory complexities for a
brute-force attack are negligible, as only a couple of message/ciphertext pairs are required to
verify a potential key guess.

Time-memory Trade-offs

In the following, we describe a special class of brute-force attacks called time-memory trade-
offs. With this approach, we trade off some of the high time complexity with an increased
memory complexity, compared to the standard brute-force approach above. While the brute-force
approach has a high time complexity and negligible memory complexity, we can imagine another
extreme, where the attacker prepares a dictionary containing (EK(M), K) for all possible K ∈ Fκ2 .
Both the offline time complexity and the memory complexity is O(2κ). Then, when observing
C = EK(M), the attacker can perform a lookup into the dictionary with an online time complexity
of O(1) to determine the correct value of K .

1.3. CRYPTANALYSIS 33

A trade-off between the two extremes, first described by Hellman [155] is possible, which
allows an attacker to reduce the time complexity of an exhaustive search by sacrificing memory.
Like the dictionary attack, the time-memory trade-off also requires pre-computation, i.e. offline
computations. The trade-off works by constructing a table T of pairs from Fκ2 ×Fκ2 . Let M denote
a fixed, chosen message. The attacker computes s chains of key guesses, with t key guesses in
each chain. These key guesses are denoted Ki, j for 1≤ i ≤ s and 1≤ j ≤ t. We start by setting
randomly chosen initial guesses Ki,1 for all chains i. Now, we compute each chain by using the
recursion

∀i ∈ {1, . . . , s},∀ j ∈ {2, . . . , t} : Ki, j = F
�E (Ki, j−1, M)

�

, (1.36)

where F : Fn
2→ Fκ2 is a reduction function. The table T is composed of the set

T =
�

(Ki,1, Ki,t) | 1≤ i ≤ s
	

, (1.37)

i.e. we store in the pair consisting of the first and last key guess of each chain. The offline time
complexity involved in this pre-computation is 2st calls to E with, presumably, a new key each
time, and a memory complexity of 2sκ bits.

Now, for the online phase of the attack, when the attacker intercepts the ciphertext C = EK(M)
for a chosen message M , she computes K ′ = F(C). The key insight is, that if K ′ appeared as
any of the Ki, j values in the chains from the offline phase, with j ≥ 2, she is able to determine
a key candidate. To see why this is true, assume that Ki, j = K ′ for some i and j ≥ 2. Then, by
definition,

F(EK(M)) = F
�E (Ki, j−1, M)

�

, (1.38)

and thus Ki, j−1 is a candidate for the secret key K. Of course, if F is many-to-one, there is a
certain risk that Eq. (1.38) holds, but Ki, j−1 6= K. In such a case, we have what we call a false
alarm. With this observation, the approach of the attacker is to first check if K ′ appears anywhere
among the Ki,t values stored in T . If it does, this means she can compute the key candidate
Ki,t−1 by starting from the beginning of the chain Ki,1 (which is stored in the table), and compute
the chain forwards, just like in the pre-computation, to obtain the candidate. However, if K ′

did not appear as any of the Ki,t values, she will move on to check the penultimate key guess in
each chain, Ki,t−1, 1 ≤ i ≤ s, and see if any of those equal K ′. This can be done by checking if
F(EK ′(M)) appears as any Ki,t where 1≤ i ≤ s. If so, she can again obtain the key candidates by
applying E now s− 2 times from the chain starting point. She proceeds like this until, at some
key guess in some chain Ki, j , with j ≥ 2, she hopefully finds K ′.

The details of analyzing the complexity and success probability of the attack is beyond the
scope of this thesis. For the details, we refer to e.g. [192, Chapter 5]. We state that both the
online time complexity and the memory complexity are in the order of 22κ/3.

Various extensions and modifications of the original time-memory trade-off have appeared
over the years. For example, Rivest introduced the use of distinguished points, in which the
end-points are required to take a particular form, e.g. that the last significant bits should equal
zero [267]. Such points are chosen as the Ki,1, and the endpoints are obtained not necessarily
after t computations, but until a new distinguished point is obtained. The distinguished points
technique yields fewer memory accesses in the online phase of the attack, since distinguished
points are fewer and further apart. However, the very same fact makes the analysis of the

34 CHAPTER 1. INTRODUCTION

approach harder, since the chains do not all have the same length, contrary to those of Hellman’s
basic approach. Another refined approach by Oechslin [249] called rainbow tables use not the
same reduction function F in the chain computations, but rather several functions F1, . . . , Ft ,
one for each link of the chain. Compared to Hellman’s approach, the implications are that the
online time complexity is halved, while keeping the same key coverage, pre-computation time
and memory complexity [192, Chapter 5].

1.3.5 Differential Cryptanalysis

One of the most powerful tools available to the cryptanalyst is differential cryptanalysis. It was
introduced by Biham and Shamir in the early 90s as a way of analyzing block ciphers, but much
of its appeal lies in the applicability to essentially any symmetric primitive, including stream
ciphers, authenticated encryption schemes and hash functions. Biham and Shamir noted that the
block cipher DES, designed by IBM, would be vulnerable to differential cryptanalysis with a few
modifications. This is particularly interesting, as Coppersmith, one of the co-designers of DES,
wrote a paper in 1994 making it evident that IBM were aware of the technique even in 1974.

In a nutshell, the idea of differential cryptanalysis is to consider pairs of messages (M , M ′)
and their corresponding ciphertexts (C , C ′), and utilize a correlation between how M is related
to M ′ and how C is related to C ′. The correlation can be used to define a distinguisher, which in
turn can be used to perform a key recovery attack, as we shall see. Our treatment in the following
will be somewhat formal, as we introduce the necessary concepts and describe distinguishers,
key recovery attacks and variants of differential cryptanalysis. In Section 2.1, we turn the theory
to practice when we analyze the recent block cipher SIMON using techniques introduced in this
section.

Definition 7 (Difference). Let n be a positive integer and let X , X ′ ∈ Fn
2. We define the (XOR-)

difference between X and X ′ as
α= X ⊕ X ′. (1.39)

For a difference α, we refer to the bits of α that equal 1 as the active bits.

We remark that in some applications of differential cryptanalysis, other notions than the
XOR-difference make sense, e.g. one might consider the difference defined by X � X ′.

Definition 8 (Differential). Let n and m be positive integers and let F be a vectorial Boolean
function F : Fn

2 → Fm
2 . A differential is a pair of differences (α,β) ∈ Fn

2 × Fm
2 where α is called

the input difference between two inputs to F, and β is called the output difference for the two
corresponding outputs from F.

We also denote by α
F−→ β a differential (α,β) over F , and we write α

F−→
X
β to denote the

event F(X)⊕F(X ⊕α) = β for some X ∈ Fn
2. A pair of inputs (X , X ′) is said to be a right pair if and

only if α
F−→
X
β; otherwise, we refer to the pair as a wrong pair. In differential cryptanalysis, the

main problem for the attacker is to determine differentials which yield an unexpected correlation.
To that end, we need to discuss probabilities for differentials.

1.3. CRYPTANALYSIS 35

Definition 9 (Differential probability). Let n and m be positive integers. Let F : Fn
2 → Fm

2 be a
vectorial Boolean function, and let (α,β) ∈ Fn

2 ×Fm
2 be a differential. The differential probability of

(α,β) over F, denoted DPF (α,β), is defined as

DPF (α,β) = Pr
X

�

α
F−→
X
β

�

, (1.40)

where the probability is taken over X ∈ Fn
2.

Definition 10 (Impossible differential). Let n and m be positive integers. Let F : Fn
2 → Fm

2 be a
vectorial Boolean function, and let (α,β) ∈ Fn

2 × Fm
2 . The pair (α,β) is said to be an impossible

differential with respect to F if and only if DPF (α,β) = 0.

We also use the notation α
F−/−→ β to denote an impossible differential (α,β) for F .

Definition 11 (Expected differential probability). Let κ and n be positive integers. Let E : Fκ2×Fn
2→

Fn
2 be a block cipher and let (α,β) ∈ Fn

2 ×Fn
2 be a differential. The expected differential probability

of (α,β) over E , denoted EDPE (α,β), is defined as

EDPE (α,β) = 2−κ
∑

K∈Fκ2
Pr
X

�

α
EK−→
X
β

�

, (1.41)

where the probabilities are taken over X ∈ Fn
2.

As we already discussed in our introduction of block ciphers, most modern designs apply
iteratively a round function which is cryptographically weak, in order to define the full encryption
function. In the context of differential cryptanalysis, this allows an adversary to consider also
differences in the internal states of the block cipher between rounds. In particular, the cryptanalyst
can consider how differences behave over the round function, and extrapolate how the behavior
extends to the full encryption function. To that end, we introduce the notion of a differential
characteristic next.

Definition 12 (Differential characteristic). Let T and n be positive integers, denote by F0, . . . , FT−1
vectorial Boolean functions

Ft : Fn
2→ Fn

2, 0≤ t < T, (1.42)

and let F = FT−1 ◦ · · · ◦ F0. A tuple (α0, . . . ,αT) ∈ (Fn
2)

T+1 is called a differential characteristic or
differential trail for the function F, which we also denote by

α0
F0−→ α1

F1−→ · · · FT−2−−→ αT−1
FT−1−−→ αT . (1.43)

Fix a key K ∈ Fκ2 and let EK be a T -round iterated cipher using round keys K0, . . . , KT−1. As
such, each Ft(Kt , ·), 0 ≤ t < T , is an n-bit vectorial Boolean function. We illustrate a T -round
differential characteristic for EK in Figure 1.9.

36 CHAPTER 1. INTRODUCTION

M F0 F1 FT−2 FT−1 C

α0

K0

α1

K1

α2

· · ·

· · ·
αT−2

KT−2

αT−1

KT−1

αT

M ′ F0 F1 FT−2 FT−1 C ′

Figure 1.9: A differential characteristic (α0, . . . ,αT) for a T -round iterated block cipher

Definition 13 (Differential characteristic probability). Let T , n and κ be positive integers and
denote by F0, . . . , FT−1 vectorial Boolean functions

Ft : Fn
2→ Fn

2, 0≤ t < T, (1.44)

and let F = FT−1 ◦ · · · ◦ F0. Let (α0, . . . ,αr) be a T-round differential characteristic over F and let
F̃t be shorthand for the composition of the first t + 1 functions, i.e.

F̃t = Ft ◦ · · · ◦ F0, 0≤ t < T. (1.45)

The differential characteristic probability of (α0, . . . ,αT) over F, denoted DCPF (α0, . . . ,αT), is
defined as

DCPF (α0, . . . ,αT) =

Pr
X

�

α1 = F̃0(X)⊕ F̃0(X
′)∧ · · · ∧αT = F̃T−1(X)⊕ F̃T−1(X

′) | α0 = X ⊕ X ′
�

, (1.46)

where the probability is taken over X ∈ Fn
2. When F is an iterated cipher, the probability is

furthermore taken over the key K ∈ Fκ2 .

Definition 14 (Markov chain). Let X1, . . . , Xk be a series of discrete random variables. We say that
X1, . . . , Xk form a Markov chain if and only if for all i = 1, . . . , k− 1, it holds that

Pr
�

X i+1 = x i+1 | X i = x i ∧ · · · ∧ X1 = x1

�

= Pr
�

X i+1 = x i+1 | X i = x i

�

. (1.47)

In words, a Markov chain has the property that the probability distribution of the random variable
X i+1 does not depend on the outcome of X1, . . . , X i. This property is usually referred to as the
memory-less property. Furthermore, if it holds that for all x , x ′ in the sample space, the probability

Pr
�

X i+1 = x ′ | X i = x
�

(1.48)

is independent of the index i, then the Markov chain is said to be homogeneous.

Definition 15 (Markov cipher). Let EK = FT−1(KT−1, ·)◦· · ·◦F0(K0, ·) be a T-round iterated cipher.
We say that EK is a Markov cipher if and only if for all t = 0, . . . , T − 1, it holds that

DCPFt
(α,β) (1.49)

is independent of the choice of input X for all α,β ∈ Fn
2 when K

$←− Fκ2 .

1.3. CRYPTANALYSIS 37

If EK is a Markov cipher and the round keys are independent and drawn uniformly at random,
then the sequence of differences F̃t(M)⊕ F̃t(M ′) for t = 0, . . . , T−1 form a homogeneous Markov
chain [202]. Thus, in a Markov cipher, no matter what particular one-round characteristic
we consider, the DCP does not depend on the particular input, assuming the key was chosen
uniformly at random. The differential characteristic probability of Definition 13 can be extremely
difficult to estimate in modern block ciphers. However, in a Markov cipher where the round keys
are independent and generated uniformly at random, the DCP can be computed as a product of
the DCP for each round:

DCPE (α0, . . . ,αT) =
T−1
∏

t=0

DCPFt
(αt ,αt+1). (1.50)

While modern block ciphers are typically not designed to be Markov ciphers, it turns out that
computing the DCP as the product of the single-round characteristic probabilities is, in many
cases, a very good approximation [56]. Indeed, the DES and the AES with independent round
keys are Markov ciphers [192, Chapter 8]. While this inaccuracy is somewhat unsatisfying from
an academic point of view, it is the best tool we have to estimate the DCP of a single differential
characteristic for an iterated cipher.

At this point, we note that there is a natural relationship between the concept of a characteristic
and that of a differential. In a sense, a differential for an iterated cipher captures a set or collection
of characteristics, in the sense that the differential (α0,αT) corresponds to the characteristic
(α0,?, . . . ,?,αT), where a ? denotes any value in Fn

2. As such, DPE (α0,αT) over an iterated
cipher E can be computed in terms of the characteristic probabilities as

DPE (α0,αT) =
∑

α1∈Fn
2

∑

α2∈Fn
2

· · ·
∑

αT−1∈Fn
2

DCPE (α0,α1, . . . ,αT−1,αT), (1.51)

which, when E is a Markov cipher, can be computed as

DPE (α0,αT) =
∑

α1∈Fn
2

∑

α2∈Fn
2

· · ·
∑

αT−1∈Fn
2

T−1
∏

t=0

DCPFt
(αt ,αt+1). (1.52)

In the secret-key model under CPA assumptions, only messages and ciphertexts are available
to the attacker. In particular, she has no knowledge about the internal state, i.e. values of the
state during encryption. To that end, the differential probability rather than the probability of a
single characteristic is what matters to the cryptanalyst. However, even under the assumptions of
a Markov cipher, accurately determining the differential probability can be extremely hard. This
is in part because of the possible choices of the input mask and output mask (α0,αT), but also
because it is hard to get a clear view of how many characteristics with the same input/output
masks that contribute with a positive probability towards the differential probability.

Distinguishers

While an attacker using differential cryptanalysis usually faces the problem of key-recovery of a
single, secret key, the differential probability is taken over all possible keys K ∈ Fκ2 . To overcome
this issue, one usually has to make an assumption. We state this assumption in the words of
Knudsen and Robshaw [192].

38 CHAPTER 1. INTRODUCTION

Assumption 1 (Hypothesis of stochastic equivalence). The hypothesis of stochastic equivalence
states that for essentially all T -round differentials (α,β) of high probability, it holds that

Pr
M

�

α
EK−→
M
β
�

≈ Pr
M ,K ′

�

α
EK′−→
M
β
�

(1.53)

is true for a significant fraction of the key values K ∈ Fκ2 , where the probabilities are taken over
M ∈ Fn

2 and K ′ ∈ Fκ2 .

Informally, the hypothesis states that for a vast majority of the keys, differential probabilities
behave as the probabilities taken over all keys.

Consider now a block cipher E , let (α,β) be a T -round differential for E , and let p =
DPE (α,β). For an attacker to provide a distinguisher on E , we require that p � 2−n. Given
that this holds, a very simple approach now lets an adversary distinguish EK from an ideal
permutation. It works as follows. We consider an oracle denoted O as a function that the attacker
can interact with by asking it to provide the output C = O (M) for some input M . From the
beginning, the oracle commits to either returning outputs from an ideal permutation on each
input, or it returns the actual encryptions of the inputs obtained using EK . In the end, the goal
of the adversary is to correctly guess which of the two strategies the oracle has committed to.
The first step of the adversary is to ask the oracle for outputs on p−1 pairs of inputs (M , M ⊕α)
and obtains corresponding outputs (C , C ′) = (O (M),O (M ⊕α)) from the oracle. If the adversary
finds that C ⊕ C ′ = β for some pair (C , C ′), she guesses that the oracle was interacting with EK ,
and otherwise that the output was from an ideal permutation. To see why this approach makes
sense, note that in p−1 queries, we expect to see one pair (C , C ′) for which C ⊕ C ′ = β , as per
the probability of the differential. Next, we describe how such a distinguisher can be turned into
a key-recovery attack.

Key Recovery

We consider a T -round key-alternating block cipher E , with a secret key K ∈ Fκ2 . We use a
(T − 1)-round differential (α,β) of probability p = DPE (α,β) and we assume that E is a Markov
cipher. In the following, we describe how to turn a distinguisher on T − 1 rounds of E , using the
differential (α,β), into a key-recovery attack.

M F0 FT−1 C

M ′ F0 FT−1 C ′
α

K0 K1

· · ·

· · ·

KT−1

β

KT

Figure 1.10: Key recovery for a T -round key-alternating block cipher using a (T − 1)-
round differential (α,β)

Consider the illustration of E with the differential indicated in Figure 1.10. Let us denote by
γ the number of possible candidates for the last round key KT . We assume a CPA scenario where

1.3. CRYPTANALYSIS 39

the attacker has obtained N ciphertext pairs (Ci , C ′i), corresponding to the encryption under EK
of N chosen message pairs (Mi , M ′i), 1≤ i ≤ N .

The attacker initializes a list of γ counters denoted T0, . . . , Tγ−1; one for each possible guess
of KT , and sets them all to zero. Now, the attacker starts by guessing the value of the last round
key. Letting K̃T denote the guessed value, she iterates over K̃T = 0, . . . ,γ− 1. She uses each key
guess to decrypt each ciphertext pair (Ci , C ′i) for one round, i.e. she computes for i = 1, . . . , N the
values

X i = F−1
T−1(Ci ⊕ K̃T) and X ′i = F−1

T−1(C
′
i ⊕ K̃T). (1.54)

For each fixed guess K̃T , she increases the counter TK̃T
by one each time she observes a pair

(X i , X ′i) where X i ⊕ X ′i = β , because each such pair corresponds to a right pair (Mi , M ′i) for that
particular key guess. This process is repeated for each possible key guess K̃T .

As the differential is assumed to have probability p for the correct key, the expected counter
value for the correct round key KT is E[TKT

] = N p. If we denote by p′ the probability that a
given pair is right with respect to the differential (α,β), for a wrong key K ′T 6= KT , then for such
a key the expected counter value is E[TK ′T] = N p′. If the attacker found a good differential, then
p� p′, and hence the counter value for the correct round key KT is expected to be significantly
higher than that of the wrong key guesses (and in fact close to N p), and the attacker should be
able to distinguish the correct key guess KT from the wrong ones, based on this difference.

Assuming that the attacker has been able to correctly determine the last round key KT , she
can proceed in exactly the same way to try to recover the penultimate round key KT−1 (now using
a (T − 2)-round differential), and so on, until enough round key material has been recovered
to reconstruct the master key K ∈ Fκ2 (assuming the key scheduling algorithm is injective, and
reminding that the algorithm generally expands few bits to many). The process of recovering the
round key KT , using a (T − 1)-round differential (α,β), is summarized as Algorithm 1.

Algorithm 1: DIFFERENTIALKEYRECOVERY

Data: Pairs (Mi , M ′i) and (Ci , C ′i) with 1≤ i ≤ N , s.t. Mi ⊕M ′i = α, Ci = EK(Mi) and
C ′i = EK(M ′i) and differential (α,β)

Result: Guess K̂ for the round key KT
1 Initialize counters T0, . . . , Tγ−1 to zero
2 for K̃T = 0, . . . ,γ− 1 do // Iterate over key guesses
3 for i = 1, . . . , N do
4 if F−1

T−1(Ci ⊕ K̃T−1)⊕ F−1
T−1(C

′
i ⊕ K̃T−1) = β then

5 TK̃T−1
← TK̃T−1

+ 1
6 end
7 end
8 end
9 K̂ ←minv{|Tv − N p|}

10 return K̂

Consider a pair of inputs (M , M ′) used by the attacker, where M ⊕M ′ = α. Of course, the
attacker does not know whether this is a right pair or a wrong pair, but we know that if it is

40 CHAPTER 1. INTRODUCTION

a right pair, it will suggest the correct key by increasing the corresponding counter, while if it
is a wrong pair, it will not increase the counter. For wrong pairs, we generally assume that the
key guesses K̃T for which the counter was increased, are randomly distributed. In particular, we
assume that the counters for wrong keys will be sampled fromB(N ,γ−1). This is known as the
hypothesis of wrong-key randomization. We do not fully justify it in the thesis at hand, but one can
think of trying to peel off the last round FT−1, using a wrong key guess, as essentially applying
another round of the cipher. For a more detailed discussion on the wrong-key randomization
hypothesis, see e.g. [13, 192, 202].

The event that a right pair suggests the correct value for KT can be thought of as a signal.
When we identify a pair which suggests a wrong value for KT , we can think of it as noise, because
it clouds the separation of the correct key from the wrong ones. In order to establish a successful
attack, the signal to noise ratio needs to be diverge sufficiently from 1. A rule of thumb, when
using a standard differential attack as outlined above to recover a single round key, is that one
needs to use c/DPE (α,β) message pairs (Mi , M ′i) such that M ⊕ M ′ = α, where c is a small
constant, in order to mount a successful attack. As such, this is the magnitude of the data
complexity, and the time complexity is in the same order of magnitude. The memory complexity
can be significant, even just for maintaining counters, if the number of candidates γ for KT is
very large. We remark that sometimes, differential attacks can be tailored such that the adversary
may get away with recovering the last round key only in parts. This facilitates lowering both
the time and memory complexity significantly, while the data complexity remains unchanged, as
this depends on the probability of the differential used. With all this said, the analysis presented
is based on the assumption that E is a Markov cipher. In reality, this is almost never the case.
Furthermore, we assumed the round keys to be independent, which is also not realistic in practice.

The problem of determining characteristics, let alone differentials, of high probability, is
generally very hard. While generic approaches do exist, the attacker must usually, at the very
least, adapt a generic approach to fit the cipher at hand, if not explicitly exploit some particular
structure of it. In Section 2.1, we put the theory introduced here into practice, when we present
a range of results using differential cryptanalysis on the recent block cipher SIMON.

Variants

In the following, we describe some variants of differential cryptanalysis that, in some cases, may
either decrease the complexities of an attack, or increase the number of rounds an attacker is
able to cover with the analysis. We describe impossible differentials, truncated differentials and
higher-order differentials. We go into detail with the two former variants, when we consider them
with respect to the block cipher SIMON in Section 2.1.

Truncated Differentials. The term truncated differentials comes from the idea, that we can
introduce uncertainty into the concept of a difference as we know it from Definition 7.

Definition 16 (Truncated difference). Let n be a positive integer. An n-bit truncated difference is
a value α ∈ {0, 1,?}n. When ? does not occur in α, it has the same meaning as a regular difference.
However, a ? indicates an unknown bit, i.e. it represents either a zero or a one.

1.3. CRYPTANALYSIS 41

As an example with n = 4, the truncated difference α = (0,1,?,?) captures four possible
differences {(0,1,0,0), (0,1,0,1), (0,1,1,0), (0,1,1,1)}. In a sense, a truncated difference is
nothing else than a stronger and more flexible way to express expected differences between
states during the encryption of two messages M , M ′. When considering a non-linear part of a
cipher, with a truncated difference, we are able to express a differential transition of probability
one. This is most easily seen by example, so let us consider a simple S-box S defined by Table 1.1.
We usually express S-boxes by a table in hexadecimal notation, but to highlight the point, we
give it here in binary notation.

Table 1.1: Example 3-bit S-box given in binary notation

X 000 001 010 011 100 101 110 111
S(X) 100 110 011 000 001 010 111 101

Let us consider a difference α = (0, 0, 1) going into S. By inspection, we see that the possible
output differences are β ∈ {(0, 1, 0), (0, 1, 1)}, each occurring with probability p = 1/2. In other
words, we have DCPS(α,β) = 1/2. However, by noting that the first two bits of the possible
output differences agree, we see that DCPS(α, (0,1,?)) = 1. Now, to take the analysis one
step further, one could consider how the truncated difference (0, 1,?) behaves again over S, by
considering the same analysis for both values of β as an input difference. As such, truncated
differentials are on one hand a way of boosting the differential probability, but on the other hand,
ultimately extract less knowledge about the system. We remark that with truncated differentials,
key recovery attacks would work in the same way as with a regular differential.

Impossible Differentials. As already stated, an impossible differential is a differential (α,β) of
probability zero, i.e. DPE (α,β) = 0. One way to obtain an impossible differential is to combine
two differentials: (α,δ) which covers the first part of the cipher, and (γ,β) which covers the
last part. Both differentials should have probability one, and should be chosen such that the
difference δ conflicts with the difference γ. Thus, when combined, the overall differential (α,β)
has probability zero – it is impossible.

Most commonly, but not always, the approach to constructing the differentials of probability
one would be using truncated differentials. For example, one could imagine finding truncated
differentials (α,δ) and (γ,β), both of probability one, but such that there is a position i where
δi = 0 and γi = 1, or the other way around, thus creating the conflict to obtain the impossible
differential.

To perform a key recovery attack with an impossible differential, the procedure is much the
same as with an ordinary differential. The crucial difference (no pun intended) is, that when
we make guesses for the last round key K̃T−1, we go backwards one round, and we check for
each message pair (M , M ′), where M ⊕M ′ = α, and each corresponding ciphertext pair (C , C ′)
observed, whether F−1

T−1(K̃T−1, C)⊕ F−1
T−1(K̃T−1, C ′) = β . If this is the case, we know that K̃T−1

can not be the correct key KT−1, because under this key, the differential (α,β) is impossible.
As already mentioned, we shall see how impossible differentials, implicitly using truncated
differentials, can be applied to the block cipher SIMON in Section 2.1.

42 CHAPTER 1. INTRODUCTION

Higher-Order Differentials. The concept of higher-order differentials generalizes that of dif-
ferentials, as considered so far. Its application in block cipher cryptanalysis is due to work by
Lai [201] and Knudsen [188]. It was shown by Lai that the ordinary differential is a special case
of a higher-order derivative, in the sense that

∆αF(X) = F(X ⊕α)⊕ F(X) (1.55)

is the first-order derivative in the definition of a d th order derivative given by

∆(d)α1,...,αd
F(X) =∆αd

(∆(d−1)
α1,...,αd−1

F(X)). (1.56)

For example, a second-order differential using differences α1 and α2 is defined as

F(X)⊕ F(X ⊕α1)⊕ F(X ⊕α2)⊕ F(X ⊕α1 ⊕α2). (1.57)

The idea of Knudsen to apply higher-order derivatives to block cipher cryptanalysis is based on
the observation that taking derivatives decreases the degree of a function. As such, if E is a block
cipher of degree d, then the (d +1)st order derivative of EK as given by Eq. (1.56) at any input X
point equals zero.

We do not go into the details of key recovery attacks using higher-order differentials. Instead,
we refer the interested reader to e.g. [188, 192, 201]. The application of higher-order attacks in
practice are rather uncommon. One example worth mentioning, however, is the KN-cipher [248]
by Nyberg and Knudsen, which was designed to be resistant towards ordinary differential
cryptanalysis, but which was broken using a higher-order attack, as shown by Jakobsen and
Knudsen [170]. MISTY1, a design by Matsui [218], is another example cipher susceptible to
higher-order attacks, as shown by e.g. Babbage and Frisch [35] and Bar-On [37].

1.3.6 Linear Cryptanalysis

When introducing differential cryptanalysis above, we mentioned that it is one of the most
powerful tools available to the cryptanalyst. The same can be said of linear cryptanalysis, which
is the topic for this section. While differential cryptanalysis is a CPA attack, since the attacker
needs to choose message pairs (M , M ′) with a particular difference, linear cryptanalysis has the
advantage of being a KPA.

Linear cryptanalysis was pioneered by Matsui in 1993, when it was applied to the DES block
cipher [217]. More recently, a lot of work analyzes the links between differential- and linear
cryptanalysis, and we touch briefly on this at the end of this section. While differential cryptanal-
ysis considered pairs of messages and ciphertexts (M , M ′) and (C , C ′), linear cryptanalysis uses
messages and their corresponding ciphertexts, but not in pairs.

In a nutshell, linear cryptanalysis is about making linear approximations to non-linear com-
ponents of a cipher. Such a linear approximation will be expressed in terms of the message M ,
the ciphertext C and the secret key K (or the round keys in the case of an iterated cipher). To
properly introduce the concept, we start off with some notation.

Definition 17 (Linear mask). Let n be a positive integer. A linear mask, or just mask, is a value
α ∈ Fn

2. The bits of a mask α which equal 1 are called the active bits.

1.3. CRYPTANALYSIS 43

An n-bit linear mask serves the purpose of selecting particular bits (the active bits) from
an n-bit value X ∈ Fn

2. Letting α = αn−1‖ · · · ‖α0 and X = Xn−1‖ · · · ‖X0, this is done when we
compute the inner product, denoted 〈α, X 〉, where the parity of the masked bits is computed as

〈α, X 〉=
n−1
⊕

i=0

αiX i . (1.58)

Definition 18 (Linear trail). Let T and n be positive integers and denote by F0, . . . , FT−1 vectorial
Boolean functions

Ft : Fn
2→ Fn

2, 0≤ t < T, (1.59)

and let F = FT−1 ◦ · · · ◦ F0. A tuple (α0, . . . ,αT) ∈ (Fn
2)

T+1 is called a linear trail, or simply trail,
for the function F. We refer to α0 as the input mask and to αT as the output mask. The values
αt , 0< t < T, are referred to as intermediate masks.

Informally, a linear trail expresses for t = 0, . . . , T − 1 that the parity of particular bits of the
input to Ft is equal to the parity of particular bits of the output of Ft . This is expressed in the
masks αt and αt+1. Naturally, we are interested in the probability that such linear approximations
hold, not just for each of the rounds but also for the trail as a whole. To that end, we make the
following definition.

Definition 19 (Trail correlation). Let T , n and κ be positive integers and denote by F0, . . . , FT−1
vectorial Boolean functions

Ft : Fn
2→ Fn

2, 0≤ t < T, (1.60)

and let F = FT−1 ◦ · · · ◦ F0. Let (α0, . . . ,αT) be a T-round linear trail over F and let F̃t be shorthand
for the composition of the first t + 1 functions, i.e.

F̃t = Ft ◦ · · · ◦ F0, 0≤ t < T. (1.61)

For t = 0, . . . , T − 1, we define the correlation of (αt ,αt+1) over Ft , denoted CorrFt
(αt ,αt+1), as

CorrFt
(αt ,αt+1) = 2 · Pr

X

�〈X ,αt〉= 〈Ft(X),αt+1〉
�− 1, (1.62)

where the probability is taken over X ∈ Fn
2. When Ft is the round function of an iterated cipher, the

probability is furthermore taken over the round key.

Under the assumption that for t = 0, . . . , T − 1, the round correlations CorrFt
(αt ,αt+1) are

independent, a method called the piling-up lemma (see e.g [217, Lemma 3] by Matsui) is useful
for determining the combined linear trail correlation over F which, when written in terms of
correlations, is given by

CorrF (α0, . . . ,αT) =
T−1
∏

t=0

CorrFt
(αt ,αt+1). (1.63)

Next, we define what we mean by a Markov cipher, but this time in the framework of linear
cryptanalysis.

44 CHAPTER 1. INTRODUCTION

Definition 20 (Markov cipher (for linear cryptanalysis)). Let EK = FT−1(KT−1, ·) ◦ · · · ◦ F0(K0, ·)
be a T-round iterated cipher. We say that EK is a Markov cipher, with respect to linear cryptanalysis,
if and only if for all t = 0, . . . , T − 1, it holds that

�

�

�

�

Pr
X

�〈X ,αt〉= 〈Ft(Kt , X),αt+1〉
�− 1

2

�

�

�

�

, (1.64)

where the probability is taken over X ∈ Fn
2, is independent of X for any pair of masks (αt ,αt+1) ∈

Fn
2 × Fn

2, when K
$←− Fκ2 .

With our introduction of differential cryptanalysis we saw that Markov ciphers are particu-
larly well-behaved when it comes to analyzing the probabilities involved, and thus the success
probabilities and complexities associated with the attack. With our definition of Markov ciphers,
in terms of linear cryptanalysis, it is no different, because for a Markov cipher with independent
round keys, we can obtain the trail correlation as the product of the round correlations as in
Eq. (1.63). In general, this assumption does not strictly hold, but the cryptanalyst makes the
assumption regardless, as it is the best tool available to assess the resistance of a cipher towards
linear cryptanalysis.

When introducing differential cryptanalysis, we saw that an attacker is not particularly
concerned with a specific characteristic, but rather a differential. This, too, can be translated to
linear cryptanalysis, where we again are not particularly concerned with the parity of particular
bits in the internal state, but rather the correlation between the parity of particular bits of the
message M and ciphertext C = EK(M). To that end, we introduce linear hulls in the following.

Definition 21 (Linear hull). Let T be a positive integer and let α0 and αT be linear masks. A
T-round linear hull with input mask α0 and output mask αT , denoted LHT (α0,αT), is the set of
linear trails with input mask α0 and output mask αT , but where the intermediate masks can take
any value.

While we defined the notion of correlation for a trail, it extends naturally to a linear hull as
well. In particular, the linear hull correlation for LHT (α0,αT) over E is defined as

CorrE (LHT (α0,αT)) =
∑

s∈LHT (α0,αT)

CorrE (s)

=
∑

s∈LHT (α0,αT)

(−1)sgn(s)|CorrE (s)|, sgn(s) =

¨

0 ,CorrE (s)≥ 0

1 ,CorrE (s)< 0.
(1.65)

We also remark that a 1-round linear hull reduces to a 1-round linear trail, as there are no
intermediate masks. This reduction carries over naturally to correlations, so in such a case
CorrE (LH1(α0,α1)) = CorrE (α0,α1). When the linear hull input/output masks are understood
from the context, we write for simplicity CorrE for the linear hull correlation.

For a vectorial Boolean function F : Fn
2 → Fm

2 , note that a linear hull LHT (α,β), where
(α,β) ∈ Fn

2 × Fm
2 , defines a T -round linear relation between an input X and F(X), which we

denote R F
α,β : Fn

2→ F2, where

R F
α,β(X) =

¨

1 , 〈X ,α〉= 〈F(X),β〉
0 , 〈X ,α〉 6= 〈F(X),β〉. (1.66)

1.3. CRYPTANALYSIS 45

When R F
α,β(X) = 1 we say the relation is satisfied for input X and otherwise it is not. We will

use this terminology in Section 2.2, when we consider linear cryptanalysis of the block cipher
PRESENT.

In general, an attacker using linear cryptanalysis is interested in determining a linear hull
(α,β) which maximizes the absolute correlation |CorrE (LHT (α,β))|. While the number of trails
in a linear hull, denoted]LHT (α,β), does not depend on the secret key K, the sign sgn(s) of
each trail s ∈ LHT (α,β) does.

Distinguishers and Key Recovery

Obviously, a non-zero correlation of a linear hull LHT (α,β) leads directly to a distinguishing
attack. Consider the scenario where the attacker interacts with an oracle O by providing inputs
and requesting outputs. The oracle either represents the instantiation of E with a particular fixed
key K, or it samples the outputs from an ideal permutation. The attacker should now guess,
solely based on N queried inputs Mi and the corresponding outputs Ci = O (Mi), whether the
oracle was interacting with EK or not. To do this, the attacker initializes two counters T0 and
T1, both to zero. She checks each pair (Mi , Ci) and in particular computes 〈Mi ,α〉 ⊕ 〈Ci ,β〉, and
when it equals zero she increases T0 and otherwise she increases T1. The distinguisher comes
from the fact that if the oracle was not interacting with EK , we expect that both T0 and T1 have
values very close to N/2. However, if one of T0 or T1 is close to 1

2 N(CorrE + 1), we expect that
the oracle was interacting with EK . To be able to correctly identify the correct key guess, the
number of pairs N used should be in the order of c/Corr2

E , where c is a small constant [192,
Chapter 8].

With differential cryptanalysis, we saw that a distinguisher could be used to define an attack
recovering (parts of) the last round key. With linear cryptanalysis, we can do the same thing.
Let E be a T -round key-alternating cipher, i.e. consisting of round functions F0, . . . , FT−1 using
round keys K0, . . . , KT . Furthermore, we denote by γ the number of key candidates for (parts
of) the last round key KT and consider a (T − 1)-round linear hull LHT−1(α,β). We initialize 2γ
counters Tv,0 and Tv,1, 0≤ v < γ, to zero. Just as the approach with differential cryptanalysis,
the attacker iterates over all γ possible key guesses K̃T . She then computes backwards using
that guess for the last round, and computes 〈M ,α〉 ⊕ 〈F−1

T−1(C ⊕ K̃T),β〉. If it equal zero, she
increases the counter TK̃T ,0, otherwise she increases TK̃T ,1. We make the assumption that under
an incorrect key guess K̃T , either of the counters TK̃T ,0 and TK̃T ,1 have a probability of 1/2 to
be increased. When this procedure is repeated for many message/ciphertext pairs (M , C), the
assumptions imply that for the correct key KT , the magnitude of either TKT ,0 or TKT ,1 is expected
to be significantly higher than N/2. The attack is summarized as Algorithm 2.

Like its differential counterpart, linear cryptanalysis too is a very powerful cryptanalytic tool.
As described, it can be used to attempt the goal of key recovery, the most severe compromise to a
block cipher possible. We also saw that linear cryptanalysis can be used simply to distinguish
the block cipher from an ideal primitive. In Section 2.2, we apply linear cryptanalysis to the
standardized block cipher PRESENT. Rather than considering the cipher in the secret-key model,
we will apply our analysis in the key-less model, as described in Section 1.3.1 above. As we shall
see, the key-less model is an interesting case study if the block cipher under analysis is used to
construct a compression function in the MMO mode.

46 CHAPTER 1. INTRODUCTION

Algorithm 2: LINEARHULLKEYRECOVERY

Data: Pairs (Mi , Ci) with 1≤ i ≤ N , s.t. Ci = EK(Mi) and a linear hull LHT−1(α,β)
Result: Guess K̂ for the last round key KT

1 for v = 0, . . . ,γ− 1 do
2 Initialize counters Tv,0 and Tv,1 to zero
3 end
4 for K̃T = 0, . . . ,γ− 1 do // Iterate over key guesses
5 for i = 1, . . . , N do
6 w← 〈Mi ,α〉 ⊕ 〈F−1

T−1(Ci ⊕ K̃T),β〉 ; // Compute parity
7 TK̃T ,w← TK̃T ,w + 1
8 end
9 end

10 K̂ ←maxv

�

Tv,0, Tv,1

	

11 return K̂

Variants

There are not as many widely applied variants of linear cryptanalysis as there is for its differential
counterpart. However, we mention briefly a few in the following.

In [177], Kaliski and Robshaw propose to use not a single, but multiple linear approximations
for the same internal key bits. Thus, with each approximation, we get more suggested values
for the targeted key bits, and can thus reduce the data complexity. Hermelin, Cho, and Nyberg
introduced in [157] a new application of linear cryptanalysis using multidimensional linear
approximations, with an application to a version of the block cipher SERPENT [57] reduced to 4
rounds. One interesting property of their approach is, that one does not need the assumption
of statistical independence of the approximations used, contrary to the approach of Kaliski and
Robshaw.

Above, we saw impossible differentials as a variant where we consider differentials of prob-
ability zero, and use these to filter out round key candidates that are certainly wrong. The
dual to this idea, in the setting of linear cryptanalysis, was first investigated by Bogdanov and
Rijmen in [74]. Under the term zero-correlation attacks, they show how linear approximations of
correlation zero can be used to mount key-recovery attacks on reduced-round AES-192, AES-256
and CLEFIA-256.

As we have already seen several times, there are similarities between concepts and approaches
in differential and linear cryptanalysis. At the time of writing, a very active research topic attempts
to uncover the links between the two approaches. While we do not go into further details here,
we refer the interested reader to e.g. the works by Chabaud and Vaudenay [91] and Blondeau and
Nyberg [67, 68]. With this said, there are also places where the two concepts differ significantly.
For example, we have seen that the differential probability increases with each characteristic
contained, while for a linear hull this is not true, as the linear hull correlation depends also on
the particular sign of each trail correlation.

1.3. CRYPTANALYSIS 47

1.3.7 Meet-in-the-Middle Attacks

Next we describe a very generic attack approach called meet-in-the-middle (MitM) attacks. Con-
sider a cipher which takes a key consisting of two independent parts, K = (K0, K1), and which
uses two keyed functions F0 and F1 to define encryption as

E : Fκ2 × Fκ2 × Fn
2→ Fn

2

(K0, K1, M) 7→ F1(K1, F0(K0, M)).
(1.67)

Such an approach is very naturally called double encryption. While the classical way of describing
a MitM attack (see e.g. [192, Chapter 5]) considers such a scheme, the applicability of such an
attack in practice is debatable. A more recent approach to meet-in-the-middle attacks, under a
more realistic assumption, was defined by Bogdanov and Rechberger in [73] using the 3-subset
meet-in-the-middle attack. We describe this in the following.

Consider a T -round iterated block cipher EK using a secret key K ∈ Fκ2 , consisting of round
functions F0(K , ·), . . . , FT−1(K , ·). We let ϕi, j = F j−1(K , ·) ◦ · · · ◦ Fi(K , ·) denote the application of
rounds i through j − 1, with 0≤ i < j ≤ T . Consider splitting the encryption function into two
parts: EK = ϕα,T ◦ϕ0,α, with 0< α < T . We consider two sets of key bits,

K0 =
�

Ki | key bit Ki used by ϕ0,α

	

and

K1 =
�

Ki | key bit Ki used by ϕα,T

	

.
(1.68)

Then we let Am = K0 ∩ K1 denote the key bits that are used in both ϕ0,α and ϕα,T . We also
let A0 = K0\Am and A1 = K1\Am denote the key bits which are only used in ϕ0,α and ϕα,T ,
respectively. The attack works in two phases, which we describe next.

MitM Phase

It follows from the definitions that by guessing the bits in A0 and Am, one can compute all of
ϕ0,α, and similarly for ϕα,T . Thus, the MitM phase progresses as specified in Algorithm 3. We
consider a single message/ciphertext pair (M , C) and let am, a0 and a1 denote particular guesses
of the bits of Am, A0 and A1, respectively.

The algorithm proceeds by first fixing a guess am of the key bits required by both ϕ0,α and
ϕα,T . For each such guess, we initialize two sets U and V . The set U will hold the values of
ϕ0,α(M) which are obtainable after combining each guess for a0 with the current guess for am.
Correspondingly, the set V contains the possible values ϕ−1

α,T (C) obtainable from any guess a1
combined with the current guess of am. The algorithm MATCH-IN-THE-MIDDLE, which we do
not describe in pseudo-code, takes the two sets U and V , and determines which of the key
guesses for a0 are compatible with which key guesses for a1, in the sense that the corresponding
values of ϕ0,α(M) and ϕ−1

α,T (C) can match at the point where round Fα is about to commence.
The compatible combinations of a0 and a1 are returned in a list by the MATCH-IN-THE-MIDDLE

algorithm, and the resulting combinations are paired with the current value for am to specify a
full key candidate, which is stored in K̂ .

48 CHAPTER 1. INTRODUCTION

Algorithm 3: MEET-IN-THE-MIDDLE

Data: A single message/ciphertext pair (M , C), s.t. C = EK(M)
Result: List of key candidates K̂

1 K̂ ← ;
2 foreach guess am of key bits in Am do
3 U , V ← ;
4 foreach guess a0 of key bits in A0 do U ← U ∪ �(ϕ0,α(M), a0)

	

5 foreach guess a1 of key bits in A1 do V ← V ∪ �(ϕ−1
α,T (C), a1)

	

6
�

(a0,i , a1,i)
	`

i=1←MATCH-IN-THE-MIDDLE(U , V)
7 K̂ ← K̂ ∪ �(am, a0,i , a1,i) | 1≤ i ≤ `	
8 end
9 return K̂

Key Testing Phase

While the MitM phase above uses only a single message/ciphertext pair, the key testing phase
requires the availability of several pairs. In this phase, the key candidates K̂ remaining from the
MitM phase are tested in a brute-force manner, using N message/ciphertext pairs (Mi , Ci), 1≤
i ≤ N , until the single correct key K has been found. The number of pairs N needed, and hence
the data complexity of the attack, is determined by (see [73])

N =
¡

κ

n

¤

, (1.69)

while the memory complexity is defined by that required by the MATCH-IN-THE-MIDDLE algorithm.
We remark that if]A0 +]A1 > 2, and both are non-empty, then the attack is more efficient than a
simple brute-force attack, given that the probability for a wrong key candidate to survive the
matching is sufficiently low.

Further Developments

In recent years the MitM attack has evolved in different directions, especially with applications
to the AES. In this line, Demirci and Selçuk showed in 2008 an attack on 7 rounds of AES-192,
and 8 rounds of AES-256 [111]. The result on AES-192 is improved in 2010 to cover 8 rounds
by Dunkelman, Keller, and Shamir [118]. In [77], Bogdanov, Khovratovich, and Rechberger
introduce a new sophisticated variant of a MitM attack coined the biclique attack. With their
approach, they for the first time present key-recovery attacks on the full version of each AES
variant, albeit with a marginal time complexity, effectively shaving off around 2 bits of security
for each variant. Derbez, Fouque, and Jean improve in [112] the best known attacks on 7-round
AES-128 and 8 rounds of AES-192 and AES-256, respectively.

Meanwhile, we remark that the improvements in MitM attacks have not only been applicable
to block ciphers, but also hash functions (see e.g. the pre-image attacks on Skein-512 and the
SHA-2 family [186]).

1.3. CRYPTANALYSIS 49

1.3.8 Algebraic Attacks

While we will not be applying algebraic attacks in this thesis, we nevertheless describe the attack
vector briefly here, due to its interesting and very different nature, compared to other attack
vectors described so far.

Let K be a field and let K[X1, . . . , Xm] be a polynomial ring in m variables over K. With
algebraic attacks, the first step is to express the behavior of the cipher by k non-linear polynomials
f1, . . . , fk ∈ K[X1, . . . , Xm]. In the second step, one solves the system of equations

f1(X1, . . . , Xm) = 0

f2(X1, . . . , Xm) = 0
...

fk(X1, . . . , Xm) = 0

(1.70)

in order to determine the values of the variables representing the secret key of the cipher, thereby
breaking it. In general, solving such a system of multivariate non-linear polynomials is an NP-hard
problem (see e.g. [138, Appendix A7.2] for the case K = F2). In practice, one typically uses
either a SAT solver or Gröbner basis computations to solve the system. If one uses a SAT solver,
the system of equations is modeled as a Boolean satisfiability problem, which is an NP-complete
decision problem, and an off-the-shelf solver is used to try to break the system. A Gröbner basis
is a special mathematical structure that relates to the polynomials f1, . . . , fk in such a way, that if
this basis can be found, the set of solutions to Eq. (1.70) can be efficiently found.

In general, algebraic cryptanalysis is not a successful attack vector for block ciphers, and
certainly does not compare to differential- and linear cryptanalysis. However, counterexamples
do exist, such as the attack on KeeLoq by Courtois, Bard, and Wagner [103]. Algebraic attacks
have been more successfully applied to stream ciphers. The work of Courtois and Meier gives a
high-level overview of application to stream ciphers [102] with examples on the Toyocrypt and
LILI-128 ciphers. In [30], Armknecht provides improvements on previous work by Courtois [101]
on fast algebraic attacks, and provides results on the E0 key stream generator from the Bluetooth
standard [162].

2
Cryptanalysis of Symmetric Primitives

Having introduced many important concepts of symmetric cryptography in Chapter 1, covering
the goals and purposes of symmetric cryptography, over design approaches to different primitives,
to cryptanalysis including adversarial assumptions, we now turn to applying cryptanalysis to
specific primitives. In particular, in the following three sections, we present recent cryptanalytic
results on two block ciphers. The first, SIMON, is a recent design by the NSA. We show some
attacks using differential cryptanalysis, and show connections to linear cryptanalysis for these.
Secondly, we consider the standardized block cipher PRESENT in the adversarial model of the
key-less setting. We define a new model for distinguishers using linear cryptanalysis under this
assumption, and apply it to PRESENT. Finally, the last section covers cryptanalysis of AE(AD)
schemes. We show first a very generic attack that can be used in our case to completely recover the
secret key for the round-one CAESAR candidate AVALANCHE. Finally, we perform a key-recovery
attack against an AE scheme RBS, using a very interesting design property which, as we show,
introduces a fatal weakness.

At first, it may seem strange to cover cryptanalysis of symmetric primitives in this chapter,
before we turn to covering their design in Chapter 3. However, as a designer of a new symmetric
primitive it is of utmost importance to understand which attacks might be applicable to the
design, to be able to choose design parameters leading to a good combination of security and
performance. Arguably, designing an excellent new primitive is the hardest task possible for a
researcher in symmetric cryptography. The cryptanalytic results presented in this chapter should
make the reader more comfortable with the concepts of differential- and linear cryptanalysis, as
well as some generic techniques from Section 2.3, to better appreciate the design choices made
in Chapter 3.

51

52 CHAPTER 2. CRYPTANALYSIS OF SYMMETRIC PRIMITIVES

2.1 Cryptanalysis of SIMON

In June 2013, researchers from the NSA published on the ePrint archive two lightweight block
cipher designs named SIMON and SPECK. In this section, we apply the concepts of differential
cryptanalysis, with a variant of impossible differentials as introduced in Section 1.3.5, to the
block cipher SIMON. We also describe a connection to linear cryptanalysis of SIMON, and give an
overview of how analysis of SIMON has progressed since its publication in 2013.

Publications

The results presented in this section are from:

[16] Javad Alizadeh, Hoda A. AlKhzaimi, Mohammad Reza Aref, Nasour Bagheri, Praveen
Gauravaram, Abhishek Kumar, Martin M. Lauridsen, and Somitra Kumar Sanadhya.
Cryptanalysis of SIMON Variants with Connections. In Nitesh Saxena and Ahmad-
Reza Sadeghi, editors, Radio Frequency Identification: Security and Privacy Issues - 10th
International Workshop, RFIDSec 2014, Oxford, UK, July 21-23, 2014, Revised Selected
Papers, volume 8651 of Lecture Notes in Computer Science, pages 90–107. Springer, 2014.

[19] Hoda A. Alkhzaimi and Martin M. Lauridsen. Cryptanalysis of the SIMON Family of
Block Ciphers. Cryptology ePrint Archive, Report 2013/543, 2013.

The RFIDsec paper [16] is the merged result of the ePrint report [19] and the work of Alizadeh,
Bagheri, Gauravaram, Kumar, and Sanadhya [15].

Author Contribution

Among the results presented in this section, the author is partly responsible for all results on:
differential cryptanalysis; impossible differentials; analysis of differential effect in SIMON; and
search heuristic implementation. The observation and results described in Section 2.1.9, which
describes connections between differential- and linear cryptanalysis in SIMON, is the work of [15].

2.1.1 Specification of SIMON

SIMON is a family of lightweight block ciphers designed by the NSA, with the aim of providing a
cipher optimized for hardware performance [40, 41]. The design of SIMON is a classical Feistel
construction as introduced in Section 1.2, operating on two (n/2)-bit halves in each round, thus
the block size is n bits. Each round of SIMON applies a non-linear, non-bijective, and hence
non-invertible function

F : Fn/2
2 → Fn/2

2

X 7→ ((X≪ 8)� (X≪ 1))⊕ (X≪ 2)
(2.1)

to the left half of the state. The output of F is added, using XOR, to the right half along with a
round key, and the two halves are swapped.

Variants of SIMON exist for different parameters of key size, block size and number of rounds.
The name of each SIMON variant with its parameters are presented in Table 2.1. The meaning

2.1. CRYPTANALYSIS OF SIMON 53

of the number of key words m, and index into z, will be made clear when we describe the key
schedule for SIMON next.

Table 2.1: Members of the SIMON family and their parameters

Block size Key words Key size Rounds Seq.
Cipher n m κ T z j

SIMON32/64 32 4 64 32 z0

SIMON48/72 48 3 72 36 z0

SIMON48/96 48 4 96 36 z1

SIMON64/96 64 3 96 42 z2

SIMON64/128 64 4 128 44 z3

SIMON96/92 96 2 92 52 z2

SIMON96/144 96 3 144 54 z3

SIMON128/128 128 2 128 68 z2

SIMON128/192 128 3 192 69 z3

SIMON128/256 128 4 256 72 z4

Key Schedule

A T -round variant of SIMON uses T round keys K0, . . . , KT−1 that are extracted from a secret
master key K of κ = mn

2 bits through the SIMON key schedule algorithm. We refer to m as the
number of key words for the particular SIMON variant. The key schedule works on m ∈ {2, 3, 4}
(n/2)-bit word registers. To start off, the m key words of the master key K are loaded into registers
K0, . . . , Km−1, which also equal the first m round keys. Given the key words Kt−1, . . . , Kt−m, the
next round key Kt is determined in slightly different ways, depending on the value of m. For
m ∈ {2, 3}, Kt is computed by cyclically rotating Kt−1 by 3 and 4 positions to the right, respectively.
These two rotated versions of Kt−1 are now XORed together with Kt−m, a constant c and another
constant z j

t to obtain Kt . Specifically, when m ∈ {2,3}, we have for t = m, . . . , T − 1 that

Kt = (Kt−1≫ 3)⊕ (Kt−1≫ 4)⊕ Kt−m ⊕ c ⊕ z j
t , (2.2)

where c = 2n/2 − 4 = fff · · ·fc is a fixed constant and z j
t is the t th bit of the binary string z j

(see Table 2.2). The constants z j are derived using three 5× 5 matrices over F2. For the details,
see the specification [40]. When the number of key words is m= 4, the computation is slightly
different, as we compute

Kt = (((Kt−1≫ 3)⊕ Kt−3)≫ 1)⊕ ((Kt−1≫ 3)⊕ Kt−3)⊕ Kt−m ⊕ c ⊕ z j
t . (2.3)

The three variants of the SIMON key schedule are illustrated in Figure 2.1.

2.1.2 Differential Attacks

To begin our analysis of SIMON, we consider ordinary differential cryptanalysis as we described it
in Section 1.3. In particular, we start by considering iterated differentials, i.e. where one finds

54 CHAPTER 2. CRYPTANALYSIS OF SYMMETRIC PRIMITIVES

z j
t
⊕
c

≫ 3

≫ 1

Kt−1 Kt−2

(a) m= 2 key words

z j
t
⊕
c

Kt−1 Kt−2 Kt−3

≫ 3

≫ 1

(b) m= 3 key words

z j
t
⊕
c

Kt−1 Kt−2 Kt−3 Kt−4

≫ 3

≫ 1

(c) m= 4 key words

Figure 2.1: The SIMON key schedule for the cases m ∈ {2,3,4}. The computation of
round key Kt depends on Kt−1 and Kt−m, and also Kt−3 in the case of m= 4.

Table 2.2: The z j vectors used in the SIMON key schedule

j z j

0 11111010001001010110000111001101111101000100101011000011100110
1 10001110111110010011000010110101000111011111001001100001011010
2 10101111011100000011010010011000101000010001111110010110110011
3 11011011101011000110010111100000010010001010011100110100001111
4 11010001111001101011011000100000010111000011001010010011101111

some differential (α,α), and then uses the fact that the input difference equals to the output
difference, in order to repeat it several times over more rounds of the cipher.

For the SIMON family of block ciphers, we are interested in one of two properties of F for
constructing the iterated differentials. Firstly, we consider pairs of (n/2)-bit differences (α,β),
for which the combined probability DCPF (α,β) ·DCPF (β ,α) is maximized. We refer to this as
a type-1 iterated characteristic. Secondly, we may consider looking for a characteristic using a
single difference α, for which DCPF (α,α) is maximized. We refer to this as a type-2 iterated
characteristic. For type-1 characteristics, we can construct a 6-round iterative characteristic,
while for type-2 we get a similar 3-round characteristic. We illustrate both a type-1 and type-2
iterative characteristic in Figure 2.2.

With our introduction in Chapter 1, we saw that a designer of a block cipher uses a non-linear
component to introduce non-linearity in the cipher. We saw that this could be accomplished in
SP-networks using S-boxes. In Feistel schemes, and indeed also in SIMON, this non-linearity is
introduced using the bitwise AND operation denoted �. When performing differential cryptanal-
ysis on SIMON, we are thus interested in how an input difference behaves over F with respect
to the non-linearity in F . Consider two inputs X and X ⊕ α to F . We would like to analyze
the probability that the output difference is β given the input difference α, i.e. we consider a
characteristic (α,β) over F . Due to the specification of F of Eq. (2.1), we know that a single bit
of β depends on 2 bits of the input X and 3 bits of the input difference α, due to the relation

∀i ∈ {0, . . . , n/2− 1} : βi = αi−8X i−1 ⊕αi−1X i−8 ⊕αi−1αi−8 ⊕αi−2, (2.4)

where all indices are computed modulo n/2. The canonical way of determining the differential
probabilities over a non-linear component is to construct what is known as a difference distribution

2.1. CRYPTANALYSIS OF SIMON 55

F Kt

F Kt+1

F Kt+2

F Kt+3

F Kt+4

F Kt+5

α 0

β α

0 β

β 0

α β

0 α

α 0

(a) A 6-round iterated characteristic using
two input/output relations

F Kt

F Kt+1

F Kt+2

α 0

α α

0 α

α 0

(b) A 3-round iterated characteristic using
a single input/output relation

Figure 2.2: Type-1 and type-2 iterated differential characteristics for SIMON. The values
indicated in the states are differences.

table (DDT). Essentially, this is a matrix D where the element Dα,β gives the number of inputs X
to the function F , such that F(X)⊕ F(X ⊕α) = β . When the sizes of the domain and co-domain
of the non-linear component are not too big, we can construct such a DDT. For S-boxes, this is
almost always feasible, as they usually take inputs of at most 8 bits. However, for the SIMON F
function we can not in general construct the DDT, as the complexity of doing so is O(2n) memory
and time. However, for n = 32 we are able to construct the DDT for F using 8 GB of memory
with an unsigned 16-bit data type for the entries. As such, we can determine the best pairs (α,β)
as above for the type-1 characteristic. We find 16 such pairs (α,β) (see Table 2.3) each with the

56 CHAPTER 2. CRYPTANALYSIS OF SYMMETRIC PRIMITIVES

same combined probability

DCPF (α,β) ·DCPF (β ,α) =
256
216
· 2048

216

= 2−13. (2.5)

By squaring this probability, we find that 2−26 is the probability of the 6-round type-1 characteristic
shown in Figure 2.2a, when using such an (α,β) pair.

Table 2.3: Best possible (α,β) pairs for type-1 differential characteristics obtained for
SIMON32/64

α β DCPF (α,β) DCPF (β ,α) α β DCPF (α,β) DCPF (β ,α)

0045 051e 2−5 2−8 1401 7814 2−5 2−8

008a 0a3c 2−5 2−8 1e05 4500 2−8 2−5

0114 1478 2−5 2−8 2280 8f02 2−5 2−8

0228 28f0 2−5 2−8 2802 f028 2−5 2−8

028f 8022 2−8 2−5 3c0a 8a00 2−8 2−5

0450 51e0 2−5 2−8 4011 8147 2−5 2−8

08a0 a3c0 2−5 2−8 5004 e051 2−5 2−8

1140 4781 2−5 2−8 a008 c0a3 2−5 2−8

As the difference β does not appear in neither the input- nor output difference of the type-1
characteristic, we may instead think of it as a 6-round differential, where the difference β can
take on any possible value. As such, we can search for the best difference α, s.t. the quantity

∑

β∈Fn/2
2

DCPF (α,β) ·DCPF (β ,α) (2.6)

is maximized. Doing so, we find that for n= 32, there are four such differences

α ∈ {1111,2222,4444,8888} (2.7)

which maximize Eq. (2.6). These values forα represent 3-round differentials of probability 2−11.19,
where we do not care about the intermediate differences. In other words, they correspond to
type-2 characteristics considered as differentials. When putting two such differentials together,
we get a 6-round differential of probability at least 2−2·11.19 = 2−22.38, which is similar to the
type-1 characteristic considered as a differential, except that after 3 rounds, we expect a difference
of α‖0.

When the block size is n > 32, determining the full DDT is computationally infeasible.
However, a method by Dinur, Dunkelman, Gutman, and Shamir [115] computes the diagonal of
the DDT for a function G : Fm

2 → Fm
2 with a time and memory complexity of O(2m). Thus, by using

this approach, we can obtain results for n= 48 as well, with a time and memory requirement
of about 224 applications of the SIMON F function. The diagonal entries of the DDT represent
the iterative characteristics (α,α). The idea of the approach is as follows. A hash table H is

2.1. CRYPTANALYSIS OF SIMON 57

used, which maps values X ⊕ F(X) to a list holding the X values giving this difference. The table
H is constructed by iterating over all X ∈ Fn/2

2 . After this, by construction, any pair of distinct

X , X ′ ∈ Fn/2
2 in the list associated with the same difference are values s.t. X ⊕ F(X) = X ′ ⊕ F(X ′).

In other words, α= X ⊕ X ′ is the diagonal entry under consideration. However, to compute the
actual differential probability, we must again iterate over all X ∈ Fn/2

2 and check how many times
F(X)⊕ F(X ⊕α) = α. Using this approach, for n = 32 and n = 48, we obtain a list of the best
diagonal differential probabilities, presented in Table 2.4.

Table 2.4: Best diagonal entries of the DDT for n ∈ {32,48}

n DCPF (α,α) Differences α

32 2−8 5555, aaaa, ac0e, 1d58, ab03, 581d,
3ab0, 6075, 5607, 0eac, b03a, 7560,
c0ea, 03ab, eac0, 81d5, 0756, d581

48 2−12 555555, aaaaaa, 0e22ac, 1c4558,
388ab0, 711560, c45581, e22ac0,
88ab03, 115607, 22ac0e, 45581c,
ab0388, b0388a, 560711, 8ab038, . . .

From the probabilities given in Table 2.4, it is evident that already for n = 32, the differential
characteristic probability DCPF (α,α) is too low to be exploitable for an attack. For example, for
just a 3-round type-2 differential, we would have a combined probability of (2−n/2)2 = 2−n, and
the required data complexity would be c · 2n for a small constant c, thus exceeding the full code
book. We remark that the table suggests that the best probability for a diagonal entry in the DDT
is 2−n/4, however this is speculation.

2.1.3 Round Function Differentials

Consider an (n/2)-bit input difference α = X ⊕ X ′ to F , where hw(α) = 1. As the XOR operation
is invariant with respect to rotation, we consider without loss of generality α= 0 · · ·01. Recall
that F(X) left rotates X by eight and one positions respectively, applies binary AND to those two,
and to the result of that XORs the left rotation of X by two positions. Due to the rotation by
two and the XOR, the output difference β = F(X)⊕ F(X ′) will, for this particular α, certainly
have an active bit on position 2, i.e. β2 = 1. Also, on positions 1 and 8, there may be active bits
in the output difference (in fact each case occurs, on both bits independently, with probability
1
2). As the AND operation is non-linear with respect to differences, which of the cases actually
occur depends on the inputs X and X ′. This observation means that we can describe the output
difference β from using an input difference α in truncated form as

β = 0n/2−9‖ ? 000001 ? 0, (2.8)

where a ? denotes an unknown bit, just like when we discussed truncated differentials in
Section 1.3.

58 CHAPTER 2. CRYPTANALYSIS OF SYMMETRIC PRIMITIVES

This approach of determining a truncated output difference which holds with probability one
can be generalized to arbitrary input differences, and each time we put a ? on a position we lose
certainty about that particular bit of the output difference. Note, that this also provides a means
of determining all feasible (i.e. with a positive probability) output differences, given some input
difference, which in general is very useful for differential analysis. We will use this observation
in the following section, and when we consider impossible differentials in Section 2.1.8.

2.1.4 Search Heuristic for Differentials

In the following, we consider organizing differential characteristics in a graph structure. A graph
Γ = (V, E) consists of a set of vertices V and a set of edges E. Vertices are labeled by an (n/2)-bit
difference and an edge is an ordered relation between two vertices α and β , denoted e(α,β).
The edge set is then defined as

E =
�

e(α,β) | α,β ∈ V ∧DCPF (α,β)> 0
	

. (2.9)

In other words, if we consider a vertex α then there is an edge going from α to a vertex β , if
and only if β is a feasible output difference over the SIMON round function F , when using input
difference α.

When considering differential cryptanalysis, such a graph naturally occurs. Consider a fixed
input difference α, which we represent by a vertex in V . Over F , we know that there are several
possible output differences β , each of them representing a vertex in V . As the induced graph is
very large, much larger than we can hope to examine, we define a search heuristic to discover
differentials of high probability. We describe this in the following. First of all, we limit the number
of rounds T for which we search for differentials. Starting with α, we progress in a depth-first
manner, searching through characteristics until we have gone T rounds and end up in an output
difference which we denote β . Such a characteristic is modeled by a path of length T from α to
β in the graph. Along the way, we keep track of the characteristic probability and add it to the
output difference β in a lookup table. At the same time, we keep running score of the best seen
output difference, for the fixed α, in terms of differential probability.

Naturally, one can not hope to exhaustively try all input differences α and still examine a
significant part of the paths of length T starting from α. To that end, we maintain an array
containing the best characteristic probability seen, for each distance from the input difference α
in the graph, corresponding to each number of rounds 1, . . . , T . We heuristically bound the search
at round t, by allowing it only to go to round t + 1 if the computed characteristic probability
for level t + 1 is within some fraction ω away from what is so far the best observed probability,
which is stored in the array. If this is not the case, we cut off that part of the current depth-first
search and backtrack to the previous round.

We determine experimentally, for each variant of SIMON, the constant fraction ω used in
the bounding, which gives the best result. Note that this method of cutting off sub-graphs
helps keep the Hamming weight of the differences low, because the characteristic probability
drops exponentially with increasing Hamming weight. Furthermore, we considered only input
differences α of low Hamming weight, as these have less feasible output differences in the
beginning, which are also of low Hamming weight. As such, we do not claim to have found the
best differentials for any SIMON variant using the approach described, but our results certainly

2.1. CRYPTANALYSIS OF SIMON 59

do provide lower bounds. An overview of differential attack parameters and complexities, due to
our differentials found with the search heuristic described, can be found in Table 2.5.

Table 2.5: Summary of our differential cryptanalysis results on SIMON

Rounds Complexity

Cipher Attacked Total Data Memory Time

SIMON32/64 16 32 229.48 216.00 226.48

SIMON48/72 18 36 246.42 224.00 243.25

SIMON48/96 18 36 246.42 224.00 243.25

SIMON64/96 24 42 262.01 232.00 258.43

SIMON64/128 24 44 262.01 232.00 258.43

SIMON96/92 29 52 287.53 248.00 283.67

SIMON96/144 29 54 287.53 248.00 283.67

SIMON128/128 40 68 2124.80 264.00 2120.47

SIMON128/192 40 69 2124.80 264.00 2120.47

SIMON128/256 40 72 2124.80 264.00 2120.47

2.1.5 Differential Effect in SIMON

Due to the small block- and key size of SIMON32/64, we are able, for a given number of rounds
T , to use the search heuristic of Section 2.1.4 above, to determine lower bounds on the expected
differential probability EDPE (α,β) for a particular differential (α,β), as specified in Definition 11.
The 12-round differential leading to our 16-round differential attack on SIMON32/64, as described
in Table 2.5, is

(α,β) = (0001‖0000,0100‖0000). (2.10)

For this differential, we found that EDPE (α,β)> 2−29.481. The reason that the bound is not tight
(i.e. we have a strict inequality) is twofold. Firstly, due to cutting off parts of the graph during
the search, a large portion of characteristics belonging to some differential are never considered.
Secondly, the search was, in some cases, stopped before considering all characteristics, even
when using the pruning as just described, due to time limitations imposed on jobs run on the
high-performance cluster used for the search.

An interesting question we are able to answer using the presented search method, for the
smallest version SIMON32/64, is how strong the differential effect is. That is, we can determine
whether, in one extreme the contribution to the EDP is due to a few (or even a single) charac-
teristics of high probability, or rather, in the other extreme, is the result of clustering of many
characteristics of lower probability.

With our search approach, we keep track of the number of characteristics of probability p in
the range]p; 2p] belonging to a given differential. This is accomplished by mapping blog2 pc to a
counter, and increasing the counter whenever a new characteristic in the differential of probability
p is discovered. We note that the search, and hence the characteristic counting, is stopped at the
same point as for differential search, i.e. when obtain the bound EDPE (α,β) > 2−29.481. The

60 CHAPTER 2. CRYPTANALYSIS OF SYMMETRIC PRIMITIVES

−48 −46 −44 −42 −40 −38 −36

0

5,000

10,000

blog2 DCP(α,?, . . . ,?,β)c

N
um

be
r

of
ch

ar
ac

te
ri

st
ic

s

−36

−34

−32

lo
g 2

of
co

nt
ri

bu
ti

on
to

ED
P
E(
α

,β
)

Chararacteristic count
Contribution to EDP

Figure 2.3: Analysis of the differential effect in the 12-round differential (α,β) =
(0001‖0000,0100‖0000) for SIMON32/64

resulting distribution of the number of characteristics and their probabilities are shown in the left
axis of Figure 2.3. The figure also shows a division of the characteristics of probability]p; 2p]
on the bottom axis, and their total contribution to the EDP as the function value on the right
axis. We see a low frequency of characteristics of probability 2−44 to 2−36. In fact, we find just
one characteristic of blog2 pc= −36 and four characteristics of blog2 pc= −37. While these few
characteristics do provide an accumulated probability of approximately 2−36 + 4 · 2−37 ≈ 2−34.42,
the majority of the EDPE (α,β) is due to the vast number of characteristics of probability p s.t.
blog2 pc ∈ {−47, . . . ,−39}. As mentioned, there is only a single characteristic of probability 2−36,
which is a factor of approximately 26.5 from the bound on EDPE (α,β). This might give us an
indication that the theoretical bound on the EDP, chosen initially by the designers, is based on
a provable bound on the characteristic probability, which is close to the 2−36 for 12 rounds, as
seen above.

In Figure 2.4 we show the results where the same experiment is performed, however with
characteristic probability frequencies for all differentials for SIMON32/64 with EDPE (α,β)> 2−33

observed during our search. A total of 53 differentials were found. We clearly observe the same
substantial differential effect for all 53 cases. Based on this, we conclude that at least for
SIMON32/64, there is a prominent clustering of characteristics of lower probability, i.e. a strong
differential effect. This could lead to a better understanding of the constraints imposed by the
designers of SIMON, especially for smaller block sizes, when considering security bounds against
certain attacks such as a differential cryptanalysis.

2.1.6 Generic Extension by Two Rounds on Top

In the following, we describe a generic approach to extend a particular form of differential by
two rounds for SIMON, without any loss of differential probability. Consider a (T − 2)-round
differential, where the input difference is of the form α‖0. As the difference is zero on the right

2.1. CRYPTANALYSIS OF SIMON 61

−48 −46 −44 −42 −40 −38 −36
2−40

2−38

2−36

2−34

blog2 DCP(α,?, . . . ,?,β)c

C
on

tr
ib

ut
io

n
to

ED
P
E(
α

,β
)

Figure 2.4: Contribution to the EDPE (α,β) in SIMON32/64 from characteristics of
probability in]p; 2p] averaged over 53 differentials (α,β) with EDPE (α,β) > 2−33.
The error bars show the minimal and maximal contribution to EDPE (α,β) over all 53
differentials (α,β).

half of the input, the corresponding input difference to F in the previous round is necessarily
zero. As such, we can extend the (T − 2)-round property to a (T − 1)-round property by using
the input difference 0‖α instead. Moreover, consider two chosen messages M = X‖Y and
M ′ = X ′‖Y ′, and set X ′ = X ⊕α. By suffering the overhead of computing F(X) and F(X ′), we can
set Y ′ = F(X)⊕ F(X ′), thus canceling the differences to get a difference of zero on the left half
of the state after the first round. In other words, by choosing a message M = X‖Y and setting

M ′ = X ′‖Y ′
= (X ⊕α)‖(Y ⊕ F(X)⊕ F(X ⊕α)), (2.11)

we have a difference of α‖0 after two rounds with probability one. This extends the (T−2)-round
property to one for T rounds, without reducing the differential probability, but with the overhead
of just two applications of F .

2.1.7 Key Recovery

As described in Section 1.3, when using a differential for key recovery, one would normally attack
a T -round version of the cipher using a (T − 1)-round differential. However, as the round key
addition is performed after the application of F in each round for SIMON, we will in fact do
key recovery on a T -round version of SIMON by using a (T − 2)-round differential. We refer to
Figure 2.5 in our explanation of the key recovery in the following.

Assume that the output difference of the (T − 2)-round differential is α‖0 as shown at the
top of the figure. Furthermore, let an output ciphertext pair be CL‖CR and C ′L‖C ′R, for which
the corresponding input message pair have a chosen difference dictated by the differential. We
initialize a counter TK̃T−1

for each possible key guess K̃T−1 to zeroes. Referring to Figure 2.5, as

62 CHAPTER 2. CRYPTANALYSIS OF SYMMETRIC PRIMITIVES

F KT−2

F KT−1

α 0

X , X ′ Y, Y ′

CL , C ′L CR, C ′R

...

Figure 2.5: Recovery of round key KT−1 on SIMON

we can compute F , we may determine

Y ⊕ Y ′ = F(CR)⊕ F(C ′R)⊕ CL ⊕ C ′L , (2.12)

and check whether this difference matches the difference α dictated by the differential. If this is
the case, then the message pair is assumed to be a right pair. By trying all possible values K̃T−1
for the last round key, we may partially decrypt a given ciphertext pair for one round to obtain
the actual values of X‖Y and X ′‖Y ′, under the assumption that KT−1 = K̃T−1. Again, as we can
evaluate F , we can check if

F(Y)⊕ F(Y ′)⊕ X ⊕ X ′ (2.13)

equals zero. If this is the case, then the current guess K̃T−1 can be considered a candidate for the
correct round key, and we increment the counter TK̃T−1

.
Denoting the differential probability by p, the process above is repeated using cp−1 chosen

message pairs, for some small constant c. In the end, a ranking of key candidates by their counter
values TK̃T−1

provides the attacker with the most probable key guesses for the attacked last round
key, as we described in Section 1.3. Next, we discuss the complexity of the attack described.

Complexity

As described in our introduction of differential cryptanalysis in Section 1.3, the data complexity
of the classical differential attack is cp−1, where p is the differential probability and c is a small
constant. For the attack presented on SIMON32/64, the data complexity is 229.48 chosen pairs
for T = 16 rounds of the cipher, as shown in Table 2.5. As for the (online) time complexity, it
is defined by the total number of encryption queries performed for all filtered pairs, using all
possible 2n/2 values K̃T−1 for the last round key, i.e. it is

c
p
· γ2κ · 2

T
, (2.14)

where γ is the probability that a pair survives the filtering, which is 2−n/2. This will yield a time
complexity of 2c

T p encryption query equivalents for SIMON variants. As for the memory needed

2.1. CRYPTANALYSIS OF SIMON 63

for the key recovery attack in the presented cases, it equals the number of key guesses which is
2n/2 words of memory.

2.1.8 Impossible Differentials

Some applications of impossible differentials to Feistel schemes require that the round function F
is a bijection. A prominent example of this is the general 5-round property presented by Knudsen
in the proposal for the 128-bit block cipher DEAL [189]. However, the F function of SIMON is
not a bijection, and indeed the impossible differentials we present in the following do not rely on
it being so.

Previously, we saw how one can determine the feasible output differences of the F function
of SIMON, using a fixed input difference, in the sense that we can determine the truncated output
difference. We also saw that all possible output differences all occur with equal probability. We
are interested in investigating for how many rounds a particular input difference can go before
we are uncertain about all output difference bits, i.e. before ? symbols appear on all positions
so the difference is completely truncated. Intuitively, using an input difference of Hamming
weight one will be the best approach, as each active bit in the input difference gives rise to
1, 2 or 3 active bits in the output difference (ignoring the possibility of cancellations, which
is less predictable). For n ∈ {32,48,64}, we exhaustively tried all possible input differences
and confirmed this intuition. For n = 32 and n = 64, there was another pattern of Hamming
weight two, namely 0 · · ·0101, and any rotation of this, that covered equally many rounds in
one direction, before being completely truncated. However, as there was no occurrence of both
zeroes and ones in the last truncated difference, the resulting impossible differential would cover
less rounds than when using a Hamming weight one input difference.

Table 2.6: Truncated differential pattern propagation for SIMON using block sizes
n ∈ {32,48, 64}, with an input difference 0 · · ·01‖0 · · ·0

(a) n= 32

Rounds Left halves Right halves

0 0000000000000001 0000000000000000
1 0000000*000001*0 0000000000000001
2 00000**00001**0* 0000000*000001*0
3 000***0*01*****0 00000**00001**0*
4 0******1******0* 000***0*01*****0
5 **************** 0******1******0*

(b) n= 48

Rounds Left halves Right halves

0 000000000000000000000001 000000000000000000000000
1 000000000000000*000001*0 000000000000000000000001
2 0000000*00000**00001**01 000000000000000*000001*0
3 00000**0000***0*01***0** 0000000*00000**00001**01
4 000***0*0**************1 00000**0000***0*01***0**
5 0*********************** 000***0*0**************1
6 ************************ 0***********************

(c) n= 64

Rounds Left halves Right halves

0 00000000000000000000000000000001 00000000000000000000000000000000
1 00000000000000000000000*000001*0 00000000000000000000000000000001
2 000000000000000*00000**00001**01 00000000000000000000000*000001*0
3 0000000*00000**0000***0*01***0*0 000000000000000*00000**00001**01
4 00000**0000***0*0******1******0* 0000000*00000**0000***0*01***0*0
5 000***0*0**********************0 00000**0000***0*0******1******0*
6 0*****************************0* 000***0*0**********************0
7 ******************************** 0*****************************0*

Table 2.6 shows how the truncated differences progress over the rounds of SIMON for block

64 CHAPTER 2. CRYPTANALYSIS OF SYMMETRIC PRIMITIVES

sizes n ∈ {32, 48, 64}. We refer to Appendix A for the remaining cases. All progressions use the
same input difference 0 · · ·01‖0 · · ·0. Other input differences of Hamming weight one yield a
progression of truncated differences that are rotated correspondingly. Taking the n = 32 case
as an example and referring to Table 2.6a, we see that after 5 rounds of SIMON, we have with
probability p = 1 the truncated output difference

****************‖0******1******0*. (2.15)

By left rotating the right half of this truncated difference by 7 or 9 positions, one of the 0-bits
will be shifted to the position of the 1-bit. Due to the symmetry of decryption and encryption of
the Feistel scheme, we find that this provides us with two impossibility properties,

0001‖0000 E−/−→ (0001≪ 7)‖0000 and (2.16)

0001‖0000 E−/−→ (0001≪ 9)‖0000, (2.17)

where E denotes T = 10 rounds of SIMON32/64. With this, we find two impossibility properties
for each input difference of Hamming weight one, i.e. n/2 in total. This property for the rotation
by q = 7 is depicted in Figure 2.6. In the further description of the attack, we denote by Q the
set of indices for such rotations of the output difference, relative to the input difference, and
hence]Q is the number of impossible differentials using one input difference. For example with
SIMON32/64, we have Q = {7,9}.

2.1. CRYPTANALYSIS OF SIMON 65

F K0

F K1

F K2

F K3

F K4

0000000000000001 0000000000000000

0000000*000001*0 0000000000000001

00000**00001**0* 0000000*000001*0

000***0*01*****0 00000**00001**0*

0******1******0* 000***0*01*****0

**************** 0******1******0*

F K5

F K6

F K7

F K8

F K9

*01*****0000***0 1******0*0******

00001**0*00000** *01*****0000***0

*000001*00000000 00001**0*00000**

0000000010000000 *000001*00000000

0000000000000000 0000000010000000

0000000010000000 0000000000000000

Figure 2.6: A 10-round impossible differential for SIMON32/64. Tracing truncated
output differences in respectively forward and backward directions give a contradiction
on the right half truncated mask after 5 rounds, where a 0-bit overlaps with a 1-bit.

Note that the analysis described so far uses an input difference of the form α‖0. Thus, the
impossible differentials described in this section can trivially be extended by two rounds on top
of probability one, as described in Section 2.1.6, yielding an extra 2 rounds for the impossible
differential. Referring to Table 2.6, we see that for other values of n, we do not have both a 0-bit
and 1-bit in the last truncated difference. Thus, we can not use this for obtaining an impossibility

66 CHAPTER 2. CRYPTANALYSIS OF SYMMETRIC PRIMITIVES

property, because we need to make a 0-bit overlap with a 1-bit to do so. We can, however, trace
back to the last round where the truncated output difference on the right half contains a 1-bit,
and match this up with the last truncated output difference containing a 0-bit. Of course, this
forfeiture means the impossible differential covers less rounds.

F K0

α 0

F KT−3

F KT−2

F KT−1

α≪ q, q ∈Q 0

X , X ′ Y, Y ′

CL , C ′L CR, C ′R

...

(T
−2
)-

ro
un

d
im

po
ss

ib
le

di
ff

er
en

ti
al

Figure 2.7: Key recovery attack with impossible differentials on SIMON

Key Recovery

As it was described for key recovery using a regular differential, we again attack a T -round
variant of SIMON using a (T − 2)-round property. We refer to Figure 2.7 for an illustration of the
attack. Consider a pair of ciphertexts CL‖CR and C ′L‖C ′R. The first filter in the recovery we can
apply, is to test whether

Γ = F(CR)⊕ F(C ′R)⊕ CL ⊕ C ′L (2.18)

equals the right half of one of the]Q impossible differentials, i.e. if it equals some α≪ q, where
q ∈Q. If this is the case, we try all values K̃T−1 of the last round key KT−1 and partially decrypt
for one round to obtain the 1-round decrypted pair (X‖Y) and (X ′‖Y ′). We may now test if

F(Y)⊕ F(Y ′)⊕ X ⊕ X ′ (2.19)

equals zero. If this is the case, then the candidate K̃T−1 for KT−1 can be discarded forever as
a possible last round key. After using many impossible differentials, our hope is that very few
candidates for the last round key remain. The attack procedure is presented as Algorithm 4.
Next, we turn to analyzing the complexity of the attack.

2.1. CRYPTANALYSIS OF SIMON 67

Algorithm 4: SIMON-IMPOSSIBLEDIFFERENTIALKEYRECOVERY

Data: A set of rotation indices Q, relative to input difference α yielding impossible
differentials

Result: A set of remaining key candidates S for last round key
1 S ← Fn/2

2
2 Construct a “basis” X of 2` messages
3 for j = 0, . . . , n/2− 1 do
4 α← 0 · · ·01≪ j
5 foreach M ∈ X do
6 M ′← (ML ⊕α)‖

�

MR ⊕ F(ML)⊕ F(ML ⊕α)
�

7 C ←EK(M), C ′←EK(M ′)
8 Γ ← F(CR)⊕ F(C ′R)⊕ CL ⊕ C ′L
9 if Γ ∈ {α≪ q | q ∈Q} then

10 foreach K̃T−1 ∈ S do // Iterate over remaining key guesses
11 X‖Y ← CR‖

�

F(CR)⊕ CL ⊕ K̃T−1

�

12 X ′‖Y ′← C ′R‖
�

F(C ′R)⊕ C ′L ⊕ K̃T−1

�

13 if F(Y)⊕ F(Y ′)⊕ X ⊕ X ′ = 0 then
14 S ←S \{K̃T−1} // Remove impossible key candidate

15 end
16 end
17 end
18 end
19 end
20 return S

Complexity

In the following, we give our analysis of the key recovery complexity for the impossible differential
attack, in terms of data, memory and time, given in terms of equivalent number of T -round
encryption queries. During our analysis, we refer to the line numbers of Algorithm 4, as well as
Eq. (2.18) and Eq. (2.19).

As the messages of the basis X are queried once and stored in memory, the data and memory
complexity for line 2 is 2` data and 2` memory. By choosing X in a way that we avoid using
a particular pair twice in the form of (M , M ′) and (M ′, M), the total number of plaintext pairs
used for the attack is

n
2
· 2`, (2.20)

where the factor n/2 comes from the possible rotations of the left half of the input difference
α= 0 · · ·01≪ j, j = 0, . . . , n− 1. As the number of input differences we iterate over in line 3 is
n/2, and]X = 2`, the number of M ′ constructed and queried in lines 6 and 7 is n

2 ·2`. These M ′

are used once and not stored in memory, hence the total memory complexity of the attack is 2`

for storing X , and the total data complexity is 2` + n
2 · 2` =

� n
2 + 1

�

2`.

68 CHAPTER 2. CRYPTANALYSIS OF SYMMETRIC PRIMITIVES

Expected Number of Remaining Keys. When using a particular message pair (M , M ′) with
corresponding ciphertext pair (C , C ′) in lines 6 through 17, we first check if the difference Γ
matches one of the right halves of the]Q impossible differences. Assuming that Γ is uniformly
distributed with probability mass function 2−n/2, the probability of entering the if statement of
line 9 is

]Q
2n/2

, (2.21)

and as such, the expected number of pairs passing the filtering of Eq. (2.18) is

n
2
· 2` ·]Q

2n/2
. (2.22)

Consider now a wrong guess K̃T−1 for the last round key KT−1. We know already that for the
correct key KT−1, the probability of the if statement of line 13 being true is zero, due to the miss-
in-the-middle property of the impossible differential attack. However, under the assumption that
for a wrong key guess K̃T−1, the difference of Eq. (2.19) is uniformly distributed, the probability
of discarding a wrong key, using a single pair, is 2−n/2, and thus the probability of not discarding
it is 1− 2−n/2. Assuming independence of the probabilities of discarding a wrong key, for each of
the n

2 · 2` pairs, the expected number of remaining keys]S after using all pairs is

E[]S] = 2n/2
�

1− 2−n/2
�

n
2 2`]Q2−n/2

. (2.23)

Time Complexity. For every pair used in lines 10 through 16, i.e. those pairs satisfying Γ ∈
{α≪ q | q ∈Q}, we must try as many keys as there are currently in S . The fraction of the set
S which is not discarded by using a single such pair equals the probability that some pair does
not discard some wrong key. This probability is computed as

1−Pr[wrong key K̃T−1 discarded by some pair]

= 1− Pr[pair discards K̃T−1 | Γ ∈ {α≪ q | q ∈Q}] · Pr[Γ ∈ {α≪ q | q ∈Q}]
= 1− 2−n/2 ·]Q

2n/2

= 1−]Q
2n

. (2.24)

2.1. CRYPTANALYSIS OF SIMON 69

As such, the expected number of 1-round partial decryptions made during the course of the
attack, using n

2 2` = n2`−1 pairs, is determined as

2n/2 + 2n/2 ·
�

1−]Q
2n

�

+ 2n/2 ·
�

1−]Q
2n

�2

+ · · ·+ 2n/2 ·
�

1−]Q
2n

�
n
2 2`−1

= 2n/2

n
2 2`−1
∑

i=0

�

1−]Q
2n

�i

= 2n/2 ·
1−

�

1−]Q
2n

�
n
2 2`

1−
�

1−]Q
2n

�

= 23n/2 ·
1−

�

1−]Q
2n

�
n
2 2`

]Q
. (2.25)

Evaluating this expression numerically is computationally intensive for larger values of ` and n.
For the numerator of Eq. (2.25), we can use the fact that

lim
x→∞

�

1− k
x

�x

= e−k. (2.26)

We write 2` as 2` = c2n for some constant c. Then

lim
2n→∞23n/2 ·

1−
�

1−]Q
2n

�
n
2 2`

]Q
= 23n/2 · 1− e−

1
2]Qcn

]Q

= 23n/2 · 1− e−]Qn2`−n−1

]Q
. (2.27)

We use the approximation of Eq. (2.27), when computing Eq. (2.25) is too intensive. For the
attack, the time complexity is determined as the total effort spent in the 1-round partial decryption
phase, converted to the equivalents of T -round encryption queries. As such, the total complexity
in terms of T -round encryptions equals the expression from either Eq. (2.25) or Eq. (2.27), scaled
by 2

T .
In Table 2.7 we present our results for recovering the last round key using impossible

differentials, for all variants of SIMON. The results given all use the full code book, i.e. a data
complexity of 2n. Note from Table 2.7, that in the best case we expect to reduce the number of
candidates for the last round key to 14.1%, while in the worst case we only reduce it to 38.29%.
For the cryptanalyst, such reductions of the last round key space are not quite satisfying, and
indeed we choose not to label the analyses as attacks per se. Nevertheless, we feel the analysis is
interesting enough to merit inclusion in this section. In the original paper [19], we give figures
for the complexities in the case that the number of remaining keys is expected to be 1% of the
round key space, but we note that in this case, the data complexity exceeds that of the full code
book.

70 CHAPTER 2. CRYPTANALYSIS OF SYMMETRIC PRIMITIVES

Table 2.7: Results for key recovery attack on SIMON using]Q · n
2 impossible differentials.

The complexities indicated with a † are computed using the approximation of Eq. (2.27).

Rounds

Cipher Attacked Total Rem. keys]Q Data Memory Time

SIMON32/64 14 32 15.22% 2 232 227.91 246.76

SIMON48/72 15 36 38.29% 1 248 243.36 271.30

SIMON48/96 15 36 38.29% 1 248 243.36 271.30

SIMON64/96 16 42 14.38% 2 264 258.96 †294.78

SIMON64/128 16 42 14.38% 2 264 258.96 †294.78

SIMON96/144 19 52 14.10% 2 296 290.39 †2142.78

Experimental Verification

For the case n = 32, the block size is small enough that we may actually implement and verify the
impossible differentials analysis. Thus, we provide in [18], among other cryptanalytic function-
alities, our C++ implementation of the key-recovery attack on T = 14 rounds of SIMON32/64,
using the 12-round impossible differential.

Table 2.8: Results from key recovery experiments on SIMON32/64 using the parameters
of Table 2.7. The column]S gives the number of remaining key candidates, while the
last column gives the same in terms of percentage of 2n/2.

]S Time (sec.) Rem. keys

3805 1619 5.81%
789 1636 1.20%
2455 1655 3.75%
607 1615 0.93%
1600 1634 2.44%
344 1152 0.52%
1536 1190 2.34%
2937 1172 4.48%
3170 1268 4.84%
5259 1207 8.02%

In Table 2.8, we present the results of 10 experimental runs, the time for each run and the
size of the output S , with its corresponding percentage of the full round key space. Figure 2.8
shows how the size of]S progressed over the course of the attack, when using different rotation
amounts on the input difference. From our experiment, we actually observe that the attack gives
fewer remaining key candidates than expected from our analysis and from Table 2.7.

2.1. CRYPTANALYSIS OF SIMON 71

0 2 4 6 8 10 12 14 16

0

2

4

6

·104

Rotation q of α= 0 · · ·01

R
em

ai
ni

ng
ke

ys
]S

Figure 2.8: Progression of the average size of]S for the key recovery attack on
SIMON32/64 using the parameters of Table 2.7, as a function of the rotation amount on
the input difference (input difference used is α= 0 · · ·01≪ j, j = 0, . . . , n/2− 1). The
progressions are from the experimental results of Table 2.8, and the error bars show the
maximum respectively minimum number of keys remaining.

2.1.9 Connections to Linear Trails

Denote by∆{i1,...,ik} ∈ Fn/2
2 a binary string of n/2 bits which has active bits in exactly the positions

i1, . . . , ik. In the following, we compute all indices modulo n/2. Consider a difference α input to
the round function F . From Section 2.1.3 we know that if αi = 1, then this active bit toggles an
active bit in position i + 2 with probability one, and can also toggle bits in the output difference
in positions i + 1 and i + 8, where each of the 22 = 4 combinations occur with equal probability.
As such, the observation can be described as

DPF (∆{i},∆{i+2}) = 1/4

DPF (∆{i},∆{i+1,i+2}) = 1/4

DPF (∆{i},∆{i+2,i+8}) = 1/4

DPF (∆{i},∆{i+1,i+2,i+8}) = 1/4

, 0≤ i < n/2. (2.28)

If we analyze the F function with respect to linear cryptanalysis, we remark that bit i of
an input can be approximated by a linear combination of bit i − 1, i − 2 and i − 8, but always
including bit i − 2, much like for the differential characteristic. As such, we find that

CorrF (∆{i},∆{i−2}) = 1/2

CorrF (∆{i},∆{i−1,i−2}) = 1/2

CorrF (∆{i},∆{i−2,i−8}) = 1/2

CorrF (∆{i},∆{i−1,i−2,i−8}) = −1/2

, 0≤ i < n/2. (2.29)

We remark the connection between the differential equations of Eq. (2.28) and the linear ap-
proximations of Eq. (2.29): there is a correspondence (in order) of each of the four equations.

72 CHAPTER 2. CRYPTANALYSIS OF SYMMETRIC PRIMITIVES

This observation allows us to turn any differential characteristic for SIMON into a corresponding
linear trail. Define a function

act : Fn/2
2 →P (Zn/2)

X 7→ {i | X i = 1, i ∈ Zn/2},
(2.30)

where P denotes the power set. In words, act(X) is the set of active bit indices of X . We give as
Algorithm 5 the procedure for converting a differential characteristic in SIMON to a linear trail.

Algorithm 5: SIMON-DIFFERENTIALCHARACTERISTICTOLINEARTRAIL

Data: T -round differential characteristic
�

αL
0‖αR

0, . . . ,αL
T‖αR

T

�

1 for t = 0, . . . , T do
2 SL

t ← act(αR
t), SR

t ← act(αL
t) // Note the swapping of left and right

3 end

4 if act(αR
0) 6= ; then a

$←− act(αR
0) else a

$←− act(αL
0)

5 Pick b ∈ {0, . . . , n/2− 1}
6 for t = 0, . . . , T do // Adjust indices
7 SL

t ← {b− s+ a mod n/2 | s ∈ SL
t }

8 SR
t ← {b− s+ a mod n/2 | s ∈ SR

t }
9 end

10 for t = 0, . . . , T do
11 γL

t ←∆act(SL
t)

, γR
t ←∆act(SR

t)

12 end
13 return

�

γL
0‖γR

0, . . . ,γL
T‖γR

T

�

Figure 2.9 gives a small example of converting a 2-round differential characteristic for
SIMON32/64 into a corresponding linear trail, using Algorithm 5, where we use the values a = 0
and b = 0. Note that in the differential characteristic, we use two times the first relation of
Eq. (2.28) and for the linear trail we use two times the first relation of Eq. (2.29). As such, with
the linear trail, we approximate two round key bits using the system of equations

X 2
14 ⊕ K1

14 ⊕ Y 1
14 ⊕ X 1

0 = 0

Y 1
14 ⊕ X 0

14 = 0

X 1
0 ⊕ K0

0 ⊕ Y 0
0 ⊕ X 0

2 = 0,

(2.31)

where X t‖Y t , 0≤ t < T , denotes the input to round t, X T‖Y T denotes the output from the last
round, and K t denotes the round key of round t. Combining these equations, we finally obtain
the equation

X 0
2 ⊕ X 0

14 ⊕ Y 0
0 ⊕ X 2

14 = K0
0 ⊕ K1

14. (2.32)

2.1. CRYPTANALYSIS OF SIMON 73

F K0

F K1

∆{0} 0

∆{2} ∆{0}

∆{0,4} ∆{2}

(a) Differential characteristic

F K0

F K1

0 ∆{0}

∆{0} ∆{14}

∆{14} ∆{0,12}

(b) Converted linear trail

Figure 2.9: Sample 2-round differential characteristic for SIMON32/64, i.e. with n = 32
(left) and the corresponding converted linear trail (right)

2.1.10 Timeline of Cryptanalysis on SIMON

When the majority of the results presented in this section were made public, it was among the first
cryptanalytic results available on the block cipher SIMON. Indeed, our work [19] was published
on the ePrint archive the same day as that of Abed, List, Lucks, and Wenzel [5]. Unsurprisingly,
due to the high-profile nature of SIMON, it has received much cryptanalytic attention since. We
provide here a brief summary of such work, up until the time of writing.

In [5], the authors provide the first differential cryptanalysis on SIMON on up to 14 rounds
of SIMON32/64, as well as results on other variants. Building on [63] (see below), the authors
updated their results in a later version, and are able to break up to 18 rounds of SIMON32/64.
Furthermore, results using linear cryptanalysis were included, but breaking fewer rounds.

Combining the work of [5], Abed, List, Lucks, and Wenzel present in [7] results on both
SIMON and SPECK, breaking e.g. up to 18 rounds on SIMON32/64. Parallel to this work, Biryukov,
Roy, and Velichkov employ in [63] a technique termed threshold search, an automated search
method for differential characteristics in ARX ciphers, to SIMON and SPECK. In their paper, the
results of [5] are improved, so e.g. a differential attack on 19 rounds of SIMON32/64 is provided.
Furthermore, methods to efficiently determine the differential probability of the AND operation
was presented, and the differential effect in SIMON was studied further.

In [291], Tupsamudre, Bisht, and Mukhopadhyay show, quite unsurprisingly, that SIMON is
susceptible to fault attacks. In particular, the last round key can be recovered, assuming n/2
bit-faults or n/8 byte faults, depending on the model.

Wang, Wang, Jia, and Zhao give in [293] new differential attacks using a new dynamic
key-guessing technique, to provide improved results on all SIMON variants, e.g. breaking up to 21
rounds of SIMON32/64.

In [2] by Abdelraheem, Alizadeh, Alkhzaimi, Aref, Bagheri, Gauravaram, and Lauridsen,
the linear analysis provided in [16] is improved upon, in particular using correlation matrix
techniques. Improved results on a range of SIMON variants are exhibited, including linear hulls
which cover up to 21 rounds of SIMON32/64.

Shi, Hu, Sun, Song, Qiao, and Ma provide in [285] mixed-integer linear programming (MILP)

74 CHAPTER 2. CRYPTANALYSIS OF SYMMETRIC PRIMITIVES

models to determine differentials and characteristics in SIMON variants, thereby improving on the
first results presented in [2] (the latter was later updated to match the number of rounds broken
by [285]). This work is in fact somewhat related to what we present in Section 3.1, where we
will be employing MILP models to determine bounds on resistance of certain primitives against
differential- and linear attacks.

In [84, 85], Boura, Naya-Plasencia, and Suder provide a new generic approach to impossible
differential cryptanalysis of block ciphers. The work is motivated by the fact that, due to the
complicated nature of impossible differentials, results using these attack vectors often provide
incorrect analyses of complexities. With respect to SIMON, the authors point out that our analysis
using impossible differentials above use a data complexity exceeding the full code book. While we
pointed this out in Section 2.1.8, it mistakenly went unremarked in the original publication [19].
With respect to concrete results on SIMON, the authors provide impossible differential attacks
on all variants, covering e.g. 19 rounds of SIMON32/64 and 30 rounds of SIMON128/256. We
remark that the impossible differential used for the result on SIMON32/64 is exactly equal to the
one we describe in Section 2.1.8 (see [85, Appendix A.3]), but using additional tricks to reduce
the data complexity and cover more rounds.

Parallel to [84, 85], the work [288] by Sun, Hu, Wang, Qiao, Ma, and Song uses again MILP
models to determine differentials and characteristics in SIMON48/72, among others. With respect
to SIMON48/72 and SIMON48/96, the authors provide a 15-round differential characteristic of
probability 2−53 and a differential of probability 2−41.96. An incremental work by Sun, Hu, Wang,
Wang, Qiao, Ma, Shi, Song, and Fu is given in [289].

In [294], Wang, Liu, Varici, Sasaki, Rijmen, and Todo present impossible differential crypt-
analysis of SIMON variants, but perhaps more interestingly, for the first time, zero-correlation
attacks (which we mentioned briefly in Section 1.3.6) and integral attacks are applied to the
SIMON family. Among the most interesting results is the zero-correlation attack covering 20
rounds of SIMON32/64 and the integral attack covering 21 rounds of SIMON32/64.

Interestingly, going away from the trend of solely differential- and linear cryptanalysis,
Ahmadian, Rasoolzadeh, Salmasizadeh, and Aref give in [10] results on SIMON32/64 using
dynamic cube attacks, a variant of algebraic attacks described in Section 1.3.8. While this
approach is able to break up to 18 rounds only, the attack vector is nevertheless an interesting
take on the analysis of SIMON.

In [115], Dinur, Dunkelman, Gutman, and Shamir consider ways to analyze the difference
distribution table of a function, when it can not be completely determined, e.g. when the block size
is too large. One of the methods used in the paper is the same as the one described in Section 2.1.2.
With respect to SIMON, the authors consider existing differential characteristics of [7, 63, 288],
and show that the characteristic probabilities can be improved, using the techniques presented.

Ashur provides in [31] a new approach to computing the correlation of short linear hulls in
SIMON. This approach is used to iterate several such linear hulls into a single longer super-trail
which builds on those of [2]. The correlation approximation of this trail is better than those
previously considered, albeit still not tight.

In [94], Chen, Wang, and Wang provide impossible differential attacks on 19 rounds of
SIMON32/64 and 20 rounds of SIMON48/72. The attacks use the full code book and time
complexities corresponding to about 258.9 and 271.2, respectively.

2.1. CRYPTANALYSIS OF SIMON 75

Attacks on up to 26 rounds of SIMON64/128 using truncated differentials are described by
Mourouzis, Song, Courtois, and Christofii in [238]. For that particular member of the SIMON

family, their attacks cover two more rounds than our work described in this section, using a
slightly different attack vector.

In [92], Chen and Wang re-use the dynamic key-guessing technique of [293], this time in the
framework of linear cryptanalysis, to present improved linear hulls for SIMON. For example, their
new linear hull covers up to 23 rounds of SIMON32/64, and up to 53 rounds of SIMON128/256.

The most recent work on SIMON, at the time of writing, is that of Kölbl, Leander, and
Tiessen [199]. Here, the authors consider a generalized class of the SIMON round function, and
provide an exact analysis of such a function with respect to differential- and linear cryptanalysis.
Furthermore, a SAT/SMT solver is employed to search for optimal differential characteristics and
linear trails in SIMON. The authors also build on our discussion of the differential effect in SIMON,
and an analysis of the choice of rotation constants for the SIMON round function is undertaken.

2.1.11 Discussion and Conclusions

In this section, we have taken some of the concepts introduced in Section 1.3, and applied them
to the lightweight block cipher SIMON. In particular, we considered properties of the SIMON

round function, especially with respect to the difference distribution table, in order to present
some very basic differential characteristics. We then went on to describe a search heuristic, based
on a graph theoretic description of characteristics in SIMON, and used this to determine the
differentials found that give our best attacks, c.f. Table 2.5. After touching upon the observed
differential effect in SIMON32/64, a fact which is further investigated in [199], we used truncated
differential characteristics to construct impossible differentials over several rounds of SIMON

variants. Meanwhile, our analysis of the complexities show, that using our basic observations
and the full code book for the attack, the remaining number of candidates for the last round key
is still expected to be as low as 14.1% for SIMON96/144, but as high as 38.29% for SIMON48/72
and SIMON48/96. While the results on impossible differentials given in [19] reduce the expected
number of remaining keys to 1% of the space of the last round key, they use a data complexity
exceeding the full code book, which was pointed out and corrected in [84, 85]. Due to the
tremendous amount of papers giving cryptanalytic results on SIMON, in a relatively short time
frame, we gave also a comprehensive overview of such results, up until the time of writing.

With the discussion of the cryptanalysis performed on SIMON since 2013, it should be clear
that the attacks presented in this section are not the best published, neither do we claim them so.
While it seems that small improvements are constantly be made to attack complexities, and even
sometimes increase the number of rounds being attacked, no analysis so far is close to breaking
any full variant of the SIMON family, and indeed SIMON seems very solid. Some people in the
cryptographic community argue that we should stop analyzing SIMON. For example, Appelbaum
said [29]:

SIMON and SPECK should not even be reviewed by anyone in the community, because
it dignifies [the designs] and wastes the cycles – the brain cycles – of intelligent
people, by going to look at a thing that is produced by a bad actor agency [(the
NSA)].

76 CHAPTER 2. CRYPTANALYSIS OF SYMMETRIC PRIMITIVES

On this, we take the opposite standpoint: as the specification [40] does not provide much in
terms of design criteria and cryptanalysis (and especially for this reason), we believe that analytic
results from the community are essential in order to shed light on those aspects of the cipher. This
is particularly important if the cipher is proposed for standardization, should such considerations
become relevant. With the work presented herein, we believe we have taken a good first step
towards better understanding the security of SIMON.

With respect to future work on SIMON, much is still desired. While most works focus on
providing better differential- or linear cryptanalysis, or both, some works such as [199] strive to
bring forth an understanding of the design choices made. We believe much more of such work
is required to draw a fulfilling picture of why SIMON looks the way it does. This is especially
true with respect to the SIMON key schedule algorithm, which has been left mostly untouched by
cryptanalysts thus far.

2.2 Cryptanalysis of PRESENT

In Section 1.2.5, we saw how compression functions and hash functions can be constructed from
a block cipher. The approaches we mentioned involved using one of three compression function
constructions: Davies-Meyer, Matyas-Meyer-Oseas or Miyaguchi-Preneel, and iterating it using
the Merkle-Damgård construction. In Section 1.3, we discussed what adversarial goals an attacker
may want to obtain, and under what assumptions she can do so. We also introduced the topic of
linear cryptanalysis, a way of analyzing cipher by utilizing linear approximations to the non-linear
components of the cipher. In this section, we combine all of the things mentioned. In particular,
we consider the block cipher PRESENT in the key-less setting with the adversarial goal of providing
a distinguisher for this cipher. As we shall see when we describe the motivation in more detail
below, our analysis is applicable if one uses the PRESENT block cipher in the Matyas-Meyer-Oseas
construction for a compression function. While this describes the application itself, the major
part of the contribution in this section is the first ever definition of a meaningful framework,
in which linear cryptanalysis can be used to define a distinguisher in the key-less setting. We
describe this framework, or model as we call it, in detail in Section 2.2.2, while Section 2.2.5
describes the application of the model to PRESENT.

Publication

The results presented in this section are from:

[207] Martin M. Lauridsen and Christian Rechberger. Linear Distinguishers in the Key-less
Setting: Application to PRESENT. In Leander [210], pages 217–240.

Author Contribution

The author contributed towards defining the model for linear distinguishers in the key-less setting,
which we present in Section 2.2.2. Furthermore, the author contributed towards applying the
key-less linear distinguisher to the standardized block cipher PRESENT in Section 2.2.5, by using
previous results in conjunction with the model and further analysis. The author is responsible
for the C++ code for aid of analysis and experimental verification, available as [208].

2.2. CRYPTANALYSIS OF PRESENT 77

2.2.1 Motivation

Even though block ciphers have been used for a very long time, either implicitly or explicitly, to
construct hash functions, a separate study of the security of block ciphers where the key is either
known or under control of the adversary, has started only recently. Knudsen and Rijmen proposed
so-called known-key distinguishers [191]. Later Biryukov, Khovratovich, and Nikolic [60] and
Lamberger, Mendel, Rechberger, Rijmen, and Schläffer [203] proposed open- or chosen-key
models to evaluate the security of block ciphers.

Even though these models often exhibit a rather contrived looking property, and evade a
formally rigorous definition1 (a property they share with collision attacks), cryptanalysts largely
agree that these distinguishers are useful and interesting. Indeed, techniques developed to
improve the original known-key distinguishers from [191], such as the rebound attack, later
led to collision attacks on various hash functions by Khovratovich, Naya-Plasencia, Röck, and
Schläffer [184], Mendel, Rechberger, Schläffer, and Thomsen [226] and [203]. Also, the findings
in the open-key model from [60] were later used to find the first related-key key-recovery
attacks on AES-256 and AES-192 in works by Biryukov, Dunkelman, Keller, Khovratovich, and
Shamir [61] and Biryukov and Khovratovich [58].

Sometimes distinguisher descriptions are merely motivated by the fact that they can be
formulated, as e.g. the 7-round known-key distinguisher on AES from [191], where byte-level
zero-sums are used as a distinguishing property. Another example is the rotational rebound
attack on reduced Skein by Khovratovich, Nikolic, and Rechberger [185], where the existence of
rotational collisions with errors is defined as a distinguishing property. Sometimes, however, they
are better motivated, e.g. by the construction of near-collisions or the subspace distinguishers
of [203, 204] or limited-birthday distinguishers by Gilbert and Peyrin [142], that resemble some
generalization of the concept of near-collisions.

The distinguisher we propose below comes with a new motivation that stems from pre-image
attacks on hash functions or compression functions2. As an example, consider the compression
function construction using a single call to a block cipher in Matyas-Meyer-Oseas mode. As we
saw in Section 1.2.5, the ith message block Mi is compressed by using it as the plaintext input
when computing the next chaining value Hi+1 using Hi as the cipher key, i.e. Hi+1 = EHi

(Mi)⊕Mi .
If an attacker can determine a relation stating that the jth bit of Mi equals the jth bit of EHi

(Mi)
with a high probability, then it is likely that the jth bit of Hi+1 equals zero. In a pre-image attack,
if the target pre-image is zero at position j, this then leads to an advantage over brute-force
search.

2.2.2 A Model for Linear Distinguishers in the Key-less Setting

In the following, we give our definition of a model for key-less linear distinguishers. Essentially,
the model captures the possibility of distinguishing any block cipher in the key-less setting, given
that a linear relation (in the form of a linear hull) of sufficiently high absolute correlation for
a reasonable fraction of the key space Fκ2 , is available. The notions of Definitions 22 and 23

1One exception being the work of Andreeva, Bogdanov, and Mennink [22]
2We emphasize here that the application to PRESENT in Section 2.2.5 will not be a pre-image attack

78 CHAPTER 2. CRYPTANALYSIS OF SYMMETRIC PRIMITIVES

are largely inspired by the recent work of Gilbert on pushing further known-key attacks on the
AES [141].

The following definition of α-separability formalizes how a linear relation, combined with a
set of inputs for a permutation π : Fn

2→ Fn
2, can exhibit a significant deviation from the behavior

of a random permutation.

Definition 22 (α-separability). LetP be a set of permutations from Fn
2 to Fn

2 and letπ ∈ P denote a
particular, fixed permutation fromP . Let S ⊆ Fn

2 be a subset of size Λ and let δ,γ ∈ Fn
2\{(0, . . . , 0)}

be non-zero linear masks.
Without checking each input, each X i ∈ S has an (a priori) associated probability pi =

Pr
�Rπ

δ,γ(X i) = 1
�

that the linear relation is satisfied for that particular input. Let X =]�X ∈
S | Rπ

δ,γ(X) = 1
	

, then E[X] =∑Λi=1 pi . We say that the tuple (P ,π,S ,Rπ
δ,γ) is α-separable if

and only if

Pr
π

�
�

�

�E[X]− Λ
2

�

�

�≥pΛ
�

≥ α, (2.33)

where the probability is taken over π ∈ P .

Definition 23 ((T ,Λ,α)-intractability). Let P be a set of permutations from Fn
2 to Fn

2 and let
π ∈ P denote a particular, fixed permutation from P . Let S ⊆ Fn

2 be a subset of size Λ and
let δ,γ ∈ Fn

2\{(0, . . . , 0)} be non-zero linear masks. We say that the tuple (P ,π,S ,Rπ
δ,γ) is

(T ,Λ,α)-intractable if and only if it is impossible, for any algorithmA to

1. Commit to a choice of non-zero linear masks δ′,γ′ ∈ Fn
2\{(0, . . . , 0)}, and

2. When given access to a fixed pair Π,Π−1 with Π
$←− Perm(n), construct a set S ′ of size Λ in

time T , s.t. the tuple (Perm(n),Π,S ′,RΠ
δ′,γ′) is α-separable.

Note 2. For our distinguisher model, the notion of one time unit corresponds to a single evaluation
of the respective permutation or its inverse.

With the definitions of α-separability and (T ,Λ,α)-intractability in hand, we are ready to
formulate our proposed key-less linear distinguisher.

Definition 24 (Key-less linear distinguisher). Let E : Fκ2 × Fn
2 → Fn

2 be a block cipher and let
Ê = {EK | K ∈ Fκ2} denote the set of permutations due to choices of the key K ∈ Fκ2 . Let EK denote
some fixed permutation from Ê . Fix non-zero linear masks δ,γ ∈ Fn

2\{(0, . . . , 0)} and letA be an
algorithm producing in time T a set S ⊆ Fn

2 of size Λ. Then the tuple (A , Ê ,EK ,S ,T ,REK
δ,γ,α) is

said to be a key-less linear distinguisher if and only if (Ê ,EK ,S ,REK
δ,γ) is both α-separable and

(T ,Λ,α)-intractable.

Note 3. In all of the definitions above, the fixed linear masks δ,γ ∈ Fn
2\{(0, . . . , 0)} are chosen by

the algorithmA , but the choice must be made before the production of the input set S commences.
In the context of distinguishing a block cipher, the adversary commits to δ and γ and then obtains
access to EK upon which the production of the subset S in time T begins. The parameter α directly
expresses a lower bound on the fraction of the permutations π ∈ P for which the key-less linear
distinguisher is valid. The time T allowed to construct S is a parameter chosen by the adversary.

2.2. CRYPTANALYSIS OF PRESENT 79

Analysis

In the following, we analyze and argue that the key-less linear distinguisher is meaningful. First,
informally, the notion of α-separability expresses that for a concrete permutation π : Fn

2→ Fn
2, one

can provide a linear relation which captures, for some constructed set of inputs, a significant non-
random behavior in a permutation which is supposed to behave randomly. The significant part is
captured by the requirement that the number of inputs satisfying the relationRπ

δ,γ should deviate

from what is expected in the ideal case by at least
p
Λ. This reflects the usual requirement in

linear cryptanalysis, that the data complexity is inversely proportional to the squared correlation,
as we saw in Section 1.3.6. Second, on top of that, Definition 23 captures the notion that for

a random permutation Π
$←− Perm(n), it should not be possible, in the same amount of time,

to provide such a relation with a set of inputs which exhibits the same significant non-random
behavior.

With respect to Definition 23, one of the components to analyzing our proposed key-less linear
distinguisher is to answer the following question: what is the upper bound on the probability α′

that an algorithmA , when given access to the fixed pair Π and Π−1, can produce in time T a set
S ′ ⊆ Fn

2 of size Λ, together with a pre-determined relationRΠ
δ,γ, such that (Perm(n),Π,S ′,RΠ

δ,γ)
is α′-separable? Our analysis answers this question in the following, and it implicitly provides
a lower bound on α for when a concrete permutation π : Fn

2 → Fn
2 ∈ P (in the notation of

Definitions 22 and 23) can be shown to be (T ,Λ,α)-intractable, for fixed T and Λ. We begin
our analysis with Lemma 1.

Lemma 1. In the notation of Definition 23, let δ′,γ′ ∈ Fn
2\{(0, . . . , 0)} be fixed non-zero linear

masks, and let then an algorithmA be given access to Π,Π−1, where Π
$←− Perm(n). The optimal

way forA to construct S ′ ⊆ Fn
2 of size Λ in time T is the following:

1. Construct an arbitrarily chosen set Q ⊆ Fn
2 of size T

2. Partition Q into Q1 =
�

X ∈ Q | RΠ
δ′,γ′(X) = 1

	

and Q0 =
�

X ∈ Q | RΠ
δ′,γ′(X) = 0

	

by
querying Π(X) for all X ∈Q (this has time complexity T).

3. Set S ′ equal to the larger of the sets Q0 and Q1.

4. Fill up S ′ with arbitrarily chosen inputs from Fn
2\Q until]S ′ = Λ.

Proof. As Π
$←− Perm(n), the particular choice of δ′,γ′ ∈ Fn

2\{(0, . . . , 0)} does not affect the
analysis. The most informationA can learn about Π in time T is to obtain T pairs (X ,Π(X)),
as is done when determining Q and its image under Π. In order to optimally shift the balance of
the expected number of inputs of S ′ satisfying RΠ

δ′,γ′ away from Λ/2,A should take the larger

of Q1 and Q0 and pool it with randomly chosen inputs X ∈ Fn
2 for which the value of RΠ

δ′,γ′(X)
is not known.

Continuing our analysis, assuming an algorithmA constructs S ′ as in Lemma 1, we deter-
mine an upper bound on the value α′ as a function of Λ and T , such that the resulting tuple
(Perm(n),Π,S ′,RΠ

δ′,γ′) is α′-separable. We give this result in Theorem 1.

80 CHAPTER 2. CRYPTANALYSIS OF SYMMETRIC PRIMITIVES

Theorem 1 (Generic success probability). Let A ,Π,δ′,γ′,S ′ and T be as in Lemma 1, where
T ≤ 4

p
Λ, and let X =]�X ∈ S ′ | RΠ

δ,γ(X) = 1
	

. Then

Pr
�
�

�

�E[X]− Λ
2

�

�

�≥pΛ
�

= 2−T ·

T −2
p
Λ

∑

k=0

�T
k

�

+
T
∑

k=2
p
Λ

�T
k

�

 . (2.34)

Proof. First, note that]Q1 ∼ B
�T , 1

2

�

. We want to determine the probability that we have
�

�E[X] − Λ2
�

� ≥ pΛ. The consideration is split into two cases depending on whether or not
]Q1 ≥ T /2.

Case]Q1 ≥ T /2. In this case, we know that at least]Q1 of the Λ inputs satisfy the relation.
Thus, E[X] = E[Z] +]Q1 where Z ∼B�Λ−]Q1, 1

2

�

. As such, E[X] = (Λ+]Q1)/2, and the
requirement

�

�E[X]− Λ2
�

�≥pΛ is equivalent to either]Q1 ≥ 2
p
Λ or]Q1 ≤ −2

p
Λ, the latter not

being possible as]Q1 is non-negative.

Case]Q1 < T /2. In this case, we know that there are at least T −]Q1 of the Λ inputs
that do not satisfy the relation. Thus, E[X] = E[Z] where Z ∼ B�Λ−T +]Q1, 1

2

�

. As such,
E[X] = (Λ − T +]Q1)/2, and the requirement

�

�E[X] − Λ2
�

� ≥ pΛ is equivalent to either
]Q1 ≥ T + 2

p
Λ or]Q1 ≤ T − 2

p
Λ, the former not being possible as]Q1 ≤ T .

In both cases considered, there is one event which makes the inequality
�

�E[X]− Λ2
�

�≥pΛ
true. The combined probability of those two events is

Pr
�

]Q1 ≥ 2
p
Λ
�

+ Pr
�

]Q1 ≤ T − 2
p
Λ
�

= 2−T ·

T −2
p
Λ

∑

k=0

�T
k

�

+
T
∑

k=2
p
Λ

�T
k

�

 , (2.35)

and from this, the result follows.

Note 4. The requirement T ≤ 4
p
Λ in the statement of Theorem 1 arises because otherwise the

two sums would overlap and add the same terms twice. The probability which is derived as a
function of Λ and T provides a lower bound on α for when, in the notation of Definition 23, a
tuple (P ,π,S ,Rπ

δ,γ) can be (T ,Λ,α)-intractable. By using the normal approximation of]Q1, i.e.

]Q1 ∼N
�T

2 , T4
�

, one obtains a very precise and easily-computable approximation of the probability
as

1−Φ
�

N
�T

2
,
T
4

�

, 2
p
Λ

�

+Φ

�

N
�T

2
,
T
4

�

,T − 2
p
Λ

�

.

Corollary 1. Let A be an algorithm which, after a choice of non-zero linear masks δ,γ ∈
Fn

2\{(0, . . . , 0)} is fixed, is given access to some permutation π : Fn
2→ Fn

2 from P .
When T < 2

p
Λ and P = Perm(n), it is impossible forA to produce in time T a set S ⊆ Fn

2
of size Λ s.t. the tuple (P ,π,S ,Rπ

δ,γ) is α-separable for any α > 0.

On the other hand, when T ≥ 4
p
Λ and P = Ê (in the notation of Definition 24), then it is

impossible forA to produce in time T a set S ⊆ Fn
2 of size Λ s.t. the tuple (A ,P ,π,S ,T ,Rπ

δ,γ,α)
is a key-less linear distinguisher for any α > 0.

2.2. CRYPTANALYSIS OF PRESENT 81

Proof. The first result follows directly from Theorem 1 when observing that the both sums are
zero when T < 2

p
Λ. The second result follows from Theorem 1 when observing that the sums

equal one when T = 4
p
Λ, which makes (T ,Λ,α)-intractability impossible.

Note 5. The key-less linear distinguisher specified in Definition 24 does not ask to provide outputs.
Thus, it is not ruled out to give a valid key-less linear distinguisher without pre-computation, i.e. to
have T = 0. Indeed, one of the concrete applications we show to the block cipher PRESENT does not
need any computations.

From Corollary 1 it follows that when no pre-computation is allowed, i.e. when T = 0, any
algorithm A producing a set S ⊆ Fn

2 together with any relation REK
δ,γ for a permutation EK ∈ Ê ,

where δ,γ ∈ Fn
2\{(0, . . . , 0)}, yields a key-less linear distinguisher (A , Ê ,EK ,S ,T ,REK

δ,γ,α) for
some α > 0. Note, however, that the parameter α measures how likely such a distinguisher is to
succeed for a specific key. For example, when α is very low, one might have a valid key-less linear
distinguisher for many rounds, but for a tiny fraction of the key space. As such, when T = 0, such
a key-less linear distinguisher is to be taken with a grain of salt, depending on the value α. In the
following discussions, we always provide together with our distinguishers the parameter α, to make
clear the lower bound on the fraction of the key space for which it is valid.

Having analyzed the generic case, we move on to stating in Theorem 2 a necessary condition
for when, for a particular fixed π ∈ P and non-zero linear masks δ,γ ∈ Fn

2\{(0, . . . , 0)}, an
algorithm A can construct S ⊆ Fn

2 of size Λ in time T , s.t. the tuple (P ,π,S ,Rπ
δ,γ) is a

α-separable.

Theorem 2. Let π ∈ P and fix non-zero linear masks δ,γ ∈ Fn
2\{(0, . . . , 0)}. Let S ⊆ Fn

2 be a
subset of size Λ. Then the tuple (P ,π,S ,Rπ

δ,γ) can be α-separable for α > 0 if and only if the

absolute correction |Corrπ| of Rπ
δ,γ satisfies |Corrπ| ≥ 2/

p
Λ. Furthermore, the largest α for which

α-separability is obtained, is given by

α= Pr
�|Corrπ| ≥ 2/

p
Λ
�

. (2.36)

Proof. LetX = �X ∈ S | Rπ
δ,γ(X) = 1

	

. ThenX ∼B�Λ, 1
2+

Corrπ
2

�

. We haveα-separability if and

only if Pr
�
�

�E[X]− Λ2
�

�≥pΛ
�

≥ α. Thus, we require either E[X]≥ Λ
2 +
p
Λ or E[X]≤ Λ

2 −
p
Λ.

Since E[X] = Λ
2 +Λ ·Corrπ/2, this happens exactly when |Corrπ| ≥ 2/

p
Λ. From this, the results

follow.

2.2.3 Specification of PRESENT

PRESENT is a 64-bit iterated block cipher, designed by Bogdanov, Knudsen, Leander, Paar,
Poschmann, Robshaw, Seurin, and Vikkelsø [75] for use in lightweight applications such as
radio-frequency identification (RFID) tags and wireless sensor networks, and has been standard-
ized as ISO:29192-2:2012 [132]. Its use in compression function designs, for example using
the Davies-Meyer construction, is e.g. studied and advocated for by Bogdanov, Leander, Paar,
Poschmann, Robshaw, and Seurin in [76]. The size of the master key κ is either 80 or 128 bits,
and the respective block ciphers are denoted PRESENT-80 and PRESENT-128. Both ciphers are

82 CHAPTER 2. CRYPTANALYSIS OF SYMMETRIC PRIMITIVES

iterated constructions of T = 31 rounds. The PRESENT key schedule algorithm takes a master
key K ∈ Fκ2 and produces 32 κ-bit round keys, but only the 64 most significant bits are used in
the key addition of each round. We denote the 64 most significant bits used by K0, . . . , K31. For
the details of the key scheduling algorithm, we refer to the specification [75].

S S S S S S S S S S S S S S S S

Figure 2.10: A single round of PRESENT

The structure of PRESENT is a key-alternating substitution-permutation network, repeating
the round function

Ft(Kt , X) = P(S(X ⊕ Kt)), 0≤ t < T, (2.37)

where X is the 64-bit state input, S is the parallel application of 16 identical 4-bit S-boxes and P
is a fixed bitwise permutation3. The full cipher is composed of T = 31 applications of the round
function followed by addition of a post-whitening key (the last round key K31), so

EK(M) = F30(K30, ·) ◦ · · · ◦ F0(K0, ·)(M)⊕ K31. (2.38)

An illustration of a single round of PRESENT is given in Figure 2.10. The PRESENT S-box is
specified in Table 2.9 and the bit-permutation P is defined s.t. bit i, 0≤ i ≤ 63, is moved to bit
P(i) where

P(i) = 16 · (i mod 4) + 4 ·
�

i
16

�

+
�

i mod 16
4

�

. (2.39)

Table 2.9: The 4-bit PRESENT S-box in hexadecimal notation

X 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(X) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

2.2.4 Keys and Linear Hulls in PRESENT

One of the first thorough treatments of linear cryptanalysis on PRESENT is by Ohkuma [255].
This work defines optimal linear trails, using solely masks of Hamming weight one. Furthermore,
64 optimal hulls using these trails are specified, along with the number of trails in each hull. The
absolute correlation for one of Ohkuma’s T -round optimal trails s is given by |CorrEK

(s)| = 2−2T .
In our introduction of linear cryptanalysis in Section 1.3.6, we stated with Eq. (1.65) that the
linear hull correlation depends on the sign of the trail correlations. To that end, we make the
following assumption for our analysis.

3S and P are called sBoxLayer and pLayer, respectively, in the specification [75]

2.2. CRYPTANALYSIS OF PRESENT 83

Assumption 2. Consider a linear hull LHT (δ,γ) for a block cipher E . For any fixed key K ∈ Fκ2 ,
we assume that for any two trails s, s′ ∈ LHT (δ,γ), where s 6= s′, the signs sgn(s) and sgn(s′) are
independent Bernoulli random variables with p = 1

2 .

We note that this assumption has been experimentally verified for PRESENT, see e.g. the work
of Bulygin [87] and Leander [209].

Considering a particular T -round optimal hull LHT (δ,γ), let λ+T respectively λ−T denote
the number of trails s in the hull for which sgn(s) = 0, respectively sgn(s) = 1. We also let
λT =]LHT (δ,γ), i.e. λT = λ+T + λ

−
T . By Assumption 2, for a fixed key K ∈ Fκ2 , we have

λ+T ∼B
�

λT , 1
2

�

, which for sufficiently large λT is well approximated by λ+T ∼ N
�λT

2 , λT
4

�

. Let

Z = λ+T − λ−T = 2λ+T − λT . Thus, Z is normally distributed with µ = 2 · λT
2 − λT = 0 and

σ2 = 22 · λT
4 = λT , so Z ∼N (0,λT). When |Z | ≥ N for some N , where 0≤ N ≤ λT , the absolute

linear hull correlation is
|CorrEK

| ≥ N · 2−2T . (2.40)

Thus, there is a clear trade-off between the lower bound on |CorrEK
| and the probability that

a randomly chosen K ∈ Fκ2 yields such a lower bound. For the λT values, we refer to [255]
or Table B.1 in Appendix B. For a fixed number of rounds T , using the analysis above, λT can
be used directly to determine a lower bound on |CorrEK

| and the probability that for a random
K ∈ Fκ2 this bound is obtained.

Table 2.10 gives, for various probabilities α and number of rounds T the value β such that
α= Pr[|CorrEK

| ≥ β]. Table B.2 in Appendix B gives the same data points for T ∈ {1, . . . , 31}.

Table 2.10: Values log2 β s.t. α= Pr
�|CorrEK

| ≥ β� for a T -round variant of PRESENT

α

T 0.01 0.05 0.10 0.30 0.50 0.70 0.90 0.95 0.99

7 −9.55 −9.94 −10.20 −10.86 −11.48 −12.29 −13.91 −14.91 −17.23
11 −14.74 −15.14 −15.39 −16.06 −16.68 −17.48 −19.10 −20.10 −22.43
16 −21.27 −21.66 −21.92 −22.58 −23.20 −24.01 −25.63 −26.63 −28.95
24 −31.71 −32.11 −32.36 −33.03 −33.65 −34.46 −36.07 −37.07 −39.40
26 −34.33 −34.72 −34.97 −35.64 −36.26 −37.07 −38.68 −39.69 −42.01
28 −36.94 −37.33 −37.58 −38.25 −38.87 −39.68 −41.30 −42.30 −44.62
31 −40.85 −41.25 −41.50 −42.17 −42.79 −43.60 −45.21 −46.22 −48.54

Example 1. For T = 28, we have λ28 = 45170283840. Thus, with probability α = 0.30, a
randomly chosen K ∈ Fκ2 yields that one of Ohkuma’s optimal hulls has |CorrEK

| ≥ 2−38.25.

2.2.5 Application to PRESENT

In this section we give key-less linear distinguishers on PRESENT for varying parameters: the
number of rounds T ; the pre-computation time T ; the size Λ of the set S produced; and
the lower bound α on the fraction of the key space for which they are valid. PRESENT has

84 CHAPTER 2. CRYPTANALYSIS OF SYMMETRIC PRIMITIVES

previously received attention in the context of key-recovery attacks, especially with respect to
linear cryptanalysis. For existing results besides [87, 209, 255], we also refer to the work of
Cho [95], on which our results build. The attack described is completely independent of the key
size used, and hence also of the key schedule algorithm.

Probabilistic Phase

In this section we present key-less linear distinguishers on PRESENT using the model introduced in
Section 2.2.2. We refer to approach described here as the probabilistic phase, which is combined
with a deterministic phase below, to extend the distinguishers for three more rounds. The
distinguishers we present here do not use any pre-computation, i.e. in the notation of the model,
we have T = 0. Corollary 1 implies in this case that when |CorrEK

|> 0, the tuple produced by
any algorithmA is always (T ,Λ,α)-intractable for some α > 0, and hence a valid distinguisher.
The results match those of distinguishers used in previous key-recovery attacks, and are as such
of limited interest. We hope the discussion below makes it easier to follow (and appreciate) the
real use of the model introduced, namely the case with the deterministic phase below, when we
do some, albeit very little, pre-computation.

Let ei ∈ Fn
2 denote a binary string with a 1-bit on position i and zeroes elsewhere. In the

following, let REK
δ,γ be the linear relation used, where δ = γ= e21, which is one of the optimal

linear hulls for PRESENT identified by Ohkuma. Also, letA be an algorithm constructing S ⊆ Fn
2

by picking Λ arbitrary X ∈ Fn
2. In Table 2.11 we give, for various Λ and number of rounds T ,

lower bounds α on the fraction of the key space, s.t. (A , Ê ,EK ,S ,T = 0,REK
δ,γ,α) are key-less

linear distinguishers.

Table 2.11: Lower bounds α on the fraction of the key space Fκ2 susceptible to key-less
linear distinguishers using T = 0, and the specified Λ and number of rounds T . A dash
indicates that α < 0.00.

Rounds T

Λ 10 11 12 13 14 15 16 17 18 19 20 21 22 23

240 0.96 0.89 0.74 0.41 0.04 − − − − − − − − −
244 0.99 0.97 0.93 0.84 0.61 0.21 − − − − − − − −
246 0.99 0.99 0.97 0.92 0.80 0.53 0.12 − − − − − − −
252 1.00 1.00 1.00 0.99 0.97 0.94 0.85 0.63 0.24 − − − − −
254 1.00 1.00 1.00 0.99 0.99 0.97 0.92 0.81 0.55 0.14 − − − −
256 1.00 1.00 1.00 1.00 0.99 0.98 0.96 0.90 0.77 0.46 0.07 − − −
262 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97 0.93 0.82 0.58 0.17 −
263 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.95 0.87 0.69 0.33 0.02
264 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.96 0.91 0.78 0.49 0.09

Note, that the α parameter from Table 2.11 gives immediately the probability that such a
T -round key-less linear distinguisher without pre-computation for PRESENT is valid in practice,
for a fixed chosen- or known key K ∈ Fκ2 . As examples, we see that with Λ = 240, the probability

2.2. CRYPTANALYSIS OF PRESENT 85

of having a valid key-less linear distinguisher for 13-round PRESENT with a fixed key K is at least
α = 0.41. Another example is a key-less linear distinguisher on 22-round PRESENT which is valid
for a fraction of at least α= 0.33 of the key space, using Λ= 263.

Extension by Deterministic Phase

Next, we describe how one can use pre-computation to extend the key-less linear distinguishers
from above, to cover three more rounds with no degradation to the valid key space fraction α. In
the notation of the model, we now have T > 0, which in turn means that (T ,Λ,α)-intractability
is no longer granted for free by Corollary 1, unless T is below 2

p
Λ.

We describe in the following the algorithmA which will construct the set of inputs S . The
algorithm we give will construct S such that each X ∈ S is guaranteed to follow the linear trail
(e21,e21,e21,e21) over the first three rounds of the cipher. We remark that this choice of trail is
not unique; several others choices are possible, this is but one example. We refer to the approach
we describe as the deterministic phase.

S S S S S S S S S S S S S S S S

F0

S S S S S S S S S S S SS S S S

F1

S S S S S S S S S S S S S S SS

F2

Figure 2.11: Construction of S for 3-round PRESENT using the trail (e21,e21,e21,e21).
The highlighted parts show the S-boxes and key bits involved in the construction. The
trail is indicated by the thick dotted line.

For notation, in round t ∈ {0, 1, 2}, let St, j denote the jth S-box of round Ft (counting from
right to left) and let Kt, j denote the jth least significant bit of the round key Kt , where all
indices start from zero. Consider then S2,5 which is highlighted in Figure 2.11. By inspection,
the PRESENT S-box has 10 inputs X which satisfy 〈X , (0, 0, 1, 0)〉= 〈S(X), (0, 0, 1, 0)〉 and hence
follow the trail (e21,e21) over the round F2, no matter what the inputs on the other S-boxes
are. By adding the key bits K2,23‖ · · · ‖K2,20 to each X , we can trace those back through the

86 CHAPTER 2. CRYPTANALYSIS OF SYMMETRIC PRIMITIVES

permutation layer of the round F1. For each value of X ⊕ (K2,23‖ · · · ‖K2,20), we now have a
particular value on output bit 1 of each of the S-boxes S1,7, . . . , S1,4, as indicated in Figure 2.11.
By the bijectivity of the S-box, it holds that for each of these S-boxes, half the inputs will give the
desired output bit. However, for the S-box S1,5 we have the extra requirement that the input bit
on position 1 should equal the output bit on position 1, and only 5 inputs satisfy both properties
simultaneously. As such, we can trace each of the ten values for X back through round F1 and
also adding the key bits K1,31‖ · · · ‖K1,16 to obtain 10 · 83 · 5 = 25600 inputs to rounds F2 ◦ F1
which follow the trail (e21,e21,e21) by construction. By tracing each of these values back through
round F0 the same way, and adding the full round key K0, algorithm A has a construction of
the set S which consists of inputs which follow the trail (e21,e21,e21,e21) over three rounds
with probability one. Using this approach to constructing S , the size of the set can be up to
Λ = 25600 · 815 · 5 = 4503599627370496000 ≈ 261.97. As such, if one should wish to use a
smaller Λ for the key-less linear distinguisher, this is also possible, simply by leaving out elements
in the construction of S .

Table 2.12: Tight values α such that
�Ê ,EK ,S ,REK

δ,γ

�

is α-separable, where EK is T -

round PRESENT for a fixed, known K ∈ Fκ2 (and thus EK ∈ Ê)

Rounds T 18 19 20 21 22 23 24 25 26
α 0.998 0.995 0.988 0.970 0.926 0.819 0.571 0.162 0.001

Consider EK being T -round PRESENT for a particular fixed K ∈ Fκ2 , and thus EK ∈ Ê . LetA be
an algorithm for constructing S using the 3-round deterministic phase described, with Λ≈ 261.97

for one of Ohkuma’s optimal linear hull relations REK
δ,γ. Table 2.12 gives, for various number

of rounds T , the highest possible α s.t.
�Ê ,EK ,S ,REK

δ,γ

�

is α-separable as per Definition 22. Of

course, in order for the key-less linear distinguisher
�A , Ê ,EK ,S ,T ,REK

δ,γ,α
�

to be valid, it also

has to hold that the tuple
�Ê ,EK ,S ,REK

δ,γ

�

is (T ,Λ,α)-intractable as per Definition 23, where T
is the time required byA to construct the set S .

Below, we show that the time T required to construct S byA is equivalent to T = 409641
16T

calls to a T -round PRESENT encryption oracle. As such, we have that T < 2
p
Λ, and from

Corollary 1, it follows that
�Ê ,EK ,S ,REK

δ,γ

�

is (T ,Λ,α)-intractable. In [207], we give examples
of experimental verification of the key-less linear distinguishers presented on 9-round PRESENT.
The code for this experimental verification is available as [208].

Time Complexity. In this section we analyze the computational complexity, i.e. the time T
required byA to construct S in the deterministic phase of Section 2.2.5. In order to measure
the time T spent in this phase, we determine the number of S-box lookups performed byA and
then compare this to the number of S-box applications for a full call to the encryption oracle.

Let us consider all S-boxes as being different for generality, as the complexity in this case
will certainly upper bound the case where they are all equal. In particular, since the key is
known, this allows us to consider the key addition as part of the S-boxes. The analysis follows
the construction of S by A itself, starting from round F2 and working its way up (referring

2.2. CRYPTANALYSIS OF PRESENT 87

again to Figure 2.11). To determine the 10 inputs to S2,5,A performs one lookup into this S-box.
For each of these 10 values, one bit is traced back to an S-box of round F1, so this adds 10 · 4
S-box lookups. Finally,A has 25600 inputs to round F1 for which it traces one bit back to each
of the 16 S-boxes of round F0, contributing by 25600 · 16 S-box lookups.

In total, the number of lookups is 1+ 10 · 4+ 25600 · 16 = 409641. Now, comparing to
the number of S-box lookups involved with a call to a T -round PRESENT oracle, the number of
lookups would be 16T , not counting key scheduling. As such, we find that the time T spent by
A for constructing S is T = 409641

16T .

Memory Complexity. The memory complexity, though not a formal part of the key-less linear
distinguisher model, is at a practical level. The storage of the set S can be encoded efficiently as
follows. We define three sets

Q = {X | X1 = S(X)1},
S0 = {X | S(X)1 = 0}, and

S1 = {X | S(X)1 = 1}.
(2.41)

In a set L we store the 25600 inputs which follow the trail (e21,e21) over F2 ◦ F1. Let X =
X15‖ · · · ‖X0 denote one such 16-bit from L. The corresponding set of inputs to F0 is now
determined as the Cartesian product

SX15
× · · · × SX6

×Q ∩ SX5
× SX4

× · · · × SX0
. (2.42)

The storage of Q, S0 and S1 take up 5 bytes, 4 bytes and 4 bytes, respectively. The storage of L
takes up 50 KB.

Overview of Selected Distinguishers and Discussion

Here, we consider key-less linear distinguishers applying the deterministic phase combined
with the probabilistic phase, using Λ ≤ 261.97. Let w2 and w1 denote the number of inputs to
F2 and F1 used by A in the construction of S . Then w2 ≤ 10 and w1 is constrained by w2
since w1 ≤ 83 · 5w2. Further, Λ ≤ 815 · 5w1 and the time T required by A to construct S is
T = 1+4w2+16w1

16T for T -round PRESENT. Obviously, for a fixed target size Λ, minimizing w1 yields
the lower time complexity T .

Using these simple observations, we give in Table 2.13 an overview of selected results for
key-less linear distinguishers on T -round PRESENT. We give the size Λ of S ⊆ Fn

2 constructed by
A , the time T required to do so, and the parameter α (implicitly, as we give α · 2128) for the
distinguisher, i.e. the lower bound on the fraction of the key space for which the distinguisher
is valid. As such, the table is representative for PRESENT-128. Entries for PRESENT-80 can be
directly determined with the same T and α · 280. Note, however, that for 27-round PRESENT-80
using Λ= 261.97, α · 280 < 0, so one can distinguish at most 26 rounds of PRESENT-80.

What is evident from Table 2.13 is, that there is a clear limit to how many rounds can be
distinguished using a particular Λ. This shows in the diagonal line through the table. Another
observation is that for a fixed Λ, there is a clear drop in the fraction of the key space α for which
the distinguisher works between T and T + 1 rounds. For example, with Λ= 261, we see a drop

88 CHAPTER 2. CRYPTANALYSIS OF SYMMETRIC PRIMITIVES

Table 2.13: Overview of parameters for key-less linear distinguishers on PRESENT. The
entries give, for each Λ and each total number of rounds T , a pair (log2T , log2(α ·2128))
s.t. algorithmA can construct S in time T and result in a key-less linear distinguisher
for at least a fraction α of the key space. Here, we indicate for PRESENT-128 the number
of keys supporting the distinguisher. The equivalent number for PRESENT-80 is obtained
as α · 280. A dash indicates that α · 2128 < 0.

Rounds T

Λ 14 18 22 25 26 27 28

222 − − − − − − −
225 − − − − − − −
228 (−3.4,70.9) − − − − − −
231 (−3.4, 119.2) − − − − − −
234 (−3.4, 126.2) − − − − − −
237 (−3.4, 127.5) − − − − − −
240 (−3.4, 127.8) (−3.8, 107.1) − − − − −
243 (−3.4, 127.9) (−3.8, 124.3) − − − − −
246 (−3.4, 128.0) (−3.8, 127.1) − − − − −
249 (−1.7, 128.0) (−2.1, 127.7) (−2.4,75.1) − − − −
252 (0.9,128.0) (0.5,127.9) (0.3, 119.8) − − − −
255 (3.9,128.0) (3.5,128.0) (3.2, 126.3) − − − −
258 (6.9,128.0) (6.5,128.0) (6.2,127.5) (6.0,103.1) − − −
261 (9.9,128.0) (9.5,128.0) (9.2,127.8) (9.0,123.7) (9.0,108.5) (8.9, 21.0) −
261.97 (10.8, 128.0) (10.5, 128.0) (10.2,127.9) (10.0, 125.4) (9.9,117.1) (9.9, 71.8) −

from 2108.5 keys supporting the distinguisher for 26 rounds to just 221 keys for 27 rounds. What
is also apparent is that in all cases, T is much less than 2

p
Λ, indeed sometimes T < 1, so by

Corollary 1, (T ,Λ,α)-intractability is for granted.
One thing worth discussion is the time complexity T . This is the time, converted to equivalent

calls to a T -round encryption oracle, required by the key-less linear distinguisher algorithmA to
construct the set S . In a scenario where one would verify the distinguisher for a concrete block
cipher EK , i.e. for a particular value of K , one would need to determine the value of the random
variable X of Definition 22. What we denote as the verifying complexity in this case is dominated
by Λ, because this is the number of inputs to the permutation that needs to be evaluated in order
to determine X .

2.2.6 Discussion and Conclusions

In this section we have formalized the notion of distinguishers for block ciphers using linear
cryptanalysis in the key-less setting, i.e. where the block cipher is instantiated with a single known
or chosen key. The introduced key-less statistical distinguisher based on linear cryptanalysis led to
a wide variety of results on the ISO-standardized block cipher PRESENT. For example, we provide

2.3. FORGERY AND KEY RECOVERY ON SELECTED AE SCHEMES 89

a linear distinguisher of up to 26 and 27 rounds of PRESENT-80 and PRESENT-128, with respective
computational complexities of about 29 and 210, and verifying complexities of about 261 and
261.97, for both PRESENT variants. The very low computational complexity made a practical
verification possible for a reduced number of rounds, but also leaves room for improvements.
For example, an open question is whether it is possible to extend the deterministic phase of
Section 2.2.5 to cover more rounds, while still keeping the time T in the order of 230 to allow
for a valid distinguisher, c.f. Corollary 1.

While PRESENT was chosen because it is a somewhat high profile cryptanalytic target, and the
fact that relatively long useful linear hulls exist, we point out that the new distinguisher model is
not specifically tailored for it. For example, KATAN, a cipher design by Cannière, Dunkelman,
and Knezevic with a very different round transformation and design philosophy, exhibits linear
effects as described in the specification paper [88], which makes it another interesting target for
an application of the techniques introduced in this section.

More research is needed on the relations between the use of degrees of freedom and the
number of rounds that can be sidestepped, as e.g. in our deterministic phase. Even though there
is no good theoretical understanding of this yet, the literature already contains many data points
for differential properties. The linear counterpart seems different and interesting enough to
warrant a separate study, see also Appendix B.

The techniques we developed for the presented distinguisher might also have applications to
pre-image attacks that are inspired by linear cryptanalysis, or at least to somewhat speed-up brute-
force pre-image search. It will be interesting to see how this approach compares to other such
methods, e.g. the biclique approach [77] and the bruteforce-like cryptanalysis of Rechberger [264].
Also, the approach presented here naturally and directly applies to permutations which have
become an increasingly important primitive in their own right, also due to the popularization of
the sponge construction, which we described in Section 1.2.4.

Finally, to round up this section, we highlight a very recent work of Blondeau, Peyrin,
and Wang [69], which closely relates to the work described in this section. The authors give
distinguishers on full PRESENT (for both key sizes) in the known-key model using differential
cryptanalysis. The framework, and differential distinguishers used, are based on the work of
Blondeau and Nyberg [68]. As such, the considerable contribution of [69] which allows to reach
the full number of rounds, is a new approach to a meet-in-the-middle layer which, in many
aspects is very similar to the deterministic phase described for our distinguisher above.

2.3 Forgery and Key Recovery on Selected Authenticated
Encryption Schemes

In this section, we present attacks on two separate AE(AD) schemes. The first is AVALANCHE, a
first-round proposal for the CAESAR competition, designed by Alomair [20]. The second scheme
is a design by Jeddi, Amini, and Bayoumi called RBS [172]. While AVALANCHE supports associated
data, RBS does not. The attacks we describe are able to fully recover all the key material, so it is
the worst break possible of such a scheme, as it allows to encrypt, decrypt and forge arbitrary
data. The attack for AVALANCHE is described in Section 2.3.1, while we describe the attack on

90 CHAPTER 2. CRYPTANALYSIS OF SYMMETRIC PRIMITIVES

RBS in Section 2.3.2. We remark that AVALANCHE was not among the designs moving two the
second round of the CAESAR competition.

Publication

The results presented in this section are from:

[79] Andrey Bogdanov, Christoph Dobraunig, Maria Eichlseder, Martin M. Lauridsen, Florian
Mendel, Martin Schläffer, and Elmar Tischhauser. Key Recovery Attacks on Recent
Authenticated Ciphers. In Diego F. Aranha and Alfred Menezes, editors, Progress in Cryp-
tology - LATINCRYPT 2014 - Third International Conference on Cryptology and Information
Security in Latin America, Florianópolis, Brazil, September 17-19, 2014, Revised Selected
Papers, volume 8895 of Lecture Notes in Computer Science, pages 274–287. Springer,
2014.

Author Contribution

The paper [79] forming the basis for this section is a merged result of analysis on three au-
thenticated encryption schemes: AVALANCHE, CALICO and RBS. Together with Bogdanov and
Tischhauser, the author has contributed the analysis of AVALANCHE and RBS, described in Sec-
tions 2.3.1 and 2.3.2 respectively. The analysis of CALICO, which we do not cover herein, was
contributed by Dobraunig, Eichlseder, Mendel and Schläffer.

2.3.1 Cryptanalysis of AVALANCHE

First, we remind from Section 1.2.4 that we use N , A, M and C to denote nonce, associated data,
message and ciphertext for an AE(AD) scheme. As the specification of AVALANCHE leaves quite
some room for interpretation, we make the following assumptions on the design relevant to our
attacks:

1. The nonce has a length of η ∈ {80, 160, 128} bits for key lengths κ= n ∈ {128, 256, 192},
respectively,

2. The nonce N is randomly generated,

3. The counter c is initialized to c = 0,

4. The tag length is τ= 128, and

5. The (n+ 256)-bit key K consists of three independent parts K = (KP , k, p), where k and p
are 128 bits each.

AVALANCHE uses the AES to process a message M of ` blocks and associated data A of arbitrary
length, to produce a ciphertext C of `+ 1 blocks and an authentication tag T . All blocks have a
length of n bits. It does not support a public message number, rather a nonce N is generated
by the encryption algorithm itself. The secret key used in AVALANCHE is a tuple K = (KP , k, p),
where KP is a n-bit encryption key and k and p keys for authentication of 128 bits each. The

2.3. FORGERY AND KEY RECOVERY ON SELECTED AE SCHEMES 91

input to AVALANCHE is a 3-tuple (K , A, M) of key, associated data and message. The output is
a 4-tuple (N , A, C , T) of nonce, associated data, ciphertext, and tag. As such, AVALANCHE does
not strictly adhere to our definition on an AEAD scheme of Definition 4. The scheme uses two
main algorithms described in the following: PCMAC for message processing and RMAC for
processing associated data. The interfaces and outputs of the two algorithms are

(N , C , TP) = PCMAC(M) and TA = RMAC(A). (2.43)

The final tag T is then computed as T = TP ⊕ TA.

PCMAC and RMAC

The encryption with PCMAC is illustrated in Figure 2.12. The padded `-block message is denoted
by M1, . . . , M` and the ciphertext blocks by C0, . . . , C`. The number rand is generated at random.

EKP

N‖c rand

C0

EKP

N‖(c + 1) M1

C1

EKP

N‖(c + `) M`

C`

· · ·

Figure 2.12: Message processing with PCMAC

The output of RMAC is an intermediate tag TA of 128 bits. RMAC uses the secrets k and p,
p being a randomly chosen 128-bit prime and k chosen at random from {bp/2c+ 1, . . . , p− 1}.
The intermediate tag TA is determined as

TA = (1‖A) · k mod p. (2.44)

Recovering the PCMAC key

The critical part of PCMAC is that the encryption key for E (see Figure 2.12) depends on the
nonce and counter. This facilitates key collision attacks, similar to the one by Mendel, Mennink,
Rijmen, and Tischhauser on the AEAD scheme McOE-X [227]. Our attack works in an offline
phase and an online phase (see Algorithms 6 and 7). Both are called with the same, arbitrary
single-block message M . The offline phase outputs a list L which is used in the online phase. We
also note that this technique allows a free trade-off between time and memory by choosing the
list size ω accordingly.

92 CHAPTER 2. CRYPTANALYSIS OF SYMMETRIC PRIMITIVES

Algorithm 6: OFFLINE(M)

Data: Single-block message M
1 L← ;
2 for i = 1, . . . ,ω do
3 Choose new K = (KP , k, p) ∈ Fn+256

2
4 (N ,ε, C , T)← AVALANCHE(K ,ε, M)
5 L← L ∪ {(C1, KP , N)}
6 end
7 return L

Algorithm 7: ONLINE(M , L)

Data: Single-block message M , and list
L output from Algorithm 6

1 for i = 1, . . . , 2n/ω do
2 Obtain (N ,ε, C , T) for (M ,ε) from

oracle
3 if ∃(X , Y, Z) ∈ L : X = C1 then
4 return Y ⊕ ((N ⊕ Z)‖0n−η)
5 end
6 end
7 return Failure

In the offline phase we build a table of size ω of AVALANCHE encryptions of the same message
block, using different keys, mapping the first ciphertext block C1 to the secret KP , used in PCMAC,
and the nonce N . In the online phase we request the encryption of the same single-block message
M in total 2n/ω times. By the birthday paradox, we expect to see a collision in the oracle output
C1 in the online phase and the list L from the offline phase. As the nonce N is public, we can
then recover the secret key KP by adding it to the stored nonce Z and key Y . We can verify
candidate keys using an additional encryption. Obviously, choosing ω = 2n/2 gives the best
overall complexity, using just 2 · 2n/2 time and memory in the order of 2n/2 to store L.

Recovering the RMAC Secret Parameters

As explained, for RMAC we conservatively assume that the secret parameters k and p are
generated as independent 128-bit quantities. In fact, for this attack, these can be of arbitrary
length, without changing the attack complexity. We explain it in the following.

To recover (k, p), we first use the attack described above to recover the secret KP . We
furthermore ask for encryption and tag of some arbitrary message block: once with empty
associated data, i.e. A = ε, and once with A = 0, i.e. a single zero bit. Let the corresponding
outputs of AVALANCHE be (N ,ε, C , T) and (N ′, 0, C ′, T ′), where T = TP ⊕ TA and T ′ = T ′P ⊕ T ′A.
With KP in hand, we can ourselves compute TP and T ′P using PCMAC. Using the definition of
RMAC of Eq. (2.44), we observe that for the case where A= ε we directly obtain TA ≡ k mod p,
but since k ∈ {bp/2c+ 1, . . . , p− 1} we have k = TA. Now, for the case where A= 0, we find

T ′A ≡ (1‖0) · k mod p

⇔ T ′A ≡ 2k mod p

⇔ p = 2k− T ′A. (2.45)

We therefore obtain the secret parameters (k, p) of RMAC with a complexity of two one-block
encryption queries (on top of the complexity required to obtain KP , as described above). In
summary, we have recovered all n+ 256 bits of secret key material for AVALANCHE in about 2n/2

time and memory.

2.3. FORGERY AND KEY RECOVERY ON SELECTED AE SCHEMES 93

2.3.2 Cryptanalysis of RBS

RBS is an authenticated encryption scheme by Jeddi, Amini, and Bayoumi [172] proposed for use
in RFID tags. The idea of RBS is to insert the bits of a MAC, computed on the message, among
the message bits in key-dependent positions, to produce the authenticated ciphertext. Note, that
RBS is an AE scheme, and does not support associated data.

Specification

The RBS scheme is depicted in Figure 2.13. It takes as input a 64-bit message M and a 132-bit
key K to produce a 132-bit authenticated ciphertext C . Effectively, the key is split in two parts of
sizes which we denote n and m respectively: the least n significant bits are used for clocking the
MAC (which we describe in detail later) while the most significant m bits are used for initializing
a non-linear feedback shift register (NFSR) in the MAC. An NFSR is a component usually employed
in stream ciphers. They work by keeping a state of a particular number of bits, and they have
the functionality of being clocked. Each time the NFSR is clocked, it first computes a feedback bit
as a non-linear function in the state bits. Then the register is shifted by one position to the left,
outputting the most significant bit, and the feedback bit is put in the least significant position. If
the feedback function had been linear, we would have a linear feedback shift register (LFSR).

RBS uses n = 64 and m = 68, but we mostly use n and m for generality in the following. Note
that a requirement on the key K is that it has Hamming weight 68, and hence the size of the
key space is

�132
68

�≈ 2128.06. The RBS MAC takes either a 64-bit or 68-bit input to be processed,
along with the key K , and produces a 68-bit output. While RBS does not specify this, we assume
(without influence on our attack) that the second MAC output is truncated by taking the least
significant 64 bits to obtain the value denoted S in Figure 2.13a.

MAC MAC

M K K

K

CS

A

E
R

(a) RBS overview

Accumulator

NFSR

X i X i

Ki

(b) RBS MAC(K , X)

Figure 2.13: The RBS scheme

Consider A and R of Figure 2.13a as registers of 64 bits and 68 bits, respectively. For the
function E , the ith ciphertext bit, denoted Ci , is obtained as

Ci =

¨

lsb1(A) , Ki = 0

lsb1(R) , Ki = 1.
(2.46)

Each time a bit is taken from either A or R, to produce a ciphertext bit, the corresponding register
is right-rotated one position. As 132 bits are produced for the ciphertext, E effectively obtains C

94 CHAPTER 2. CRYPTANALYSIS OF SYMMETRIC PRIMITIVES

by inserting the bits of R (the MAC of the message), in order, among the bits of A at key-dependent
positions.

The RBS MAC. The MAC used in RBS, which we denote MAC(K , X), depicted in Figure 2.13b
where the input is denoted X , is a Grain-like design based on the MAC of Ågren, Hell, Johansson,
and Meier [9]. It is composed of a 68-bit NFSR and a 68-bit accumulator. In this work, we
consider the NFSR as having an arbitrary feedback function (and indeed the specification does
not provide one). When a MAC is computed, the NFSR is loaded with the most significant 68
bits of the key, i.e. K131‖ · · · ‖K64 and the accumulator is set to zero. To produce MAC(K , X), the
NFSR is clocked |X | times, i.e. it is shifted left and the least significant bit is set to the feedback
XORed with the input bit X i ⊕Ki where i = 0, . . . , |X | −1. The accumulator is updated if and only
X i = 1, by XORing the current NFSR state to it (we assume this is done prior to clocking the
NFSR). When |X |> 64, which is the case for the second MAC call, we assume that one re-uses
K63, . . . , K0 for clocking, until all of X is processed, although this makes no difference to our
attack.

The Attack

The attack on the RBS scheme we present in the following uses a single chosen plaintext and has
expected worst case time complexity 265 and negligible memory complexity. The attack is based
on the following two crucial observations.

Observation 1. When computing R =MAC(K , M), if M = 1, then it immediately follows from the
definition of the MAC that R= K131‖ · · · ‖K64, i.e. the 68 most significant bits of the key.

Observation 2. Assuming one knows Ka−1‖ · · · ‖K0 for some a with 1 ≤ a ≤ 132, then one can
determine the first `= hw(Ka−1‖ · · · ‖K0) bits of R, as the bits of R are directly mapped to C by the
Ki where Ki = 1. These in turn correspond to the first ` bits of K131‖ · · · ‖K64. These can in turn be
used to determine more of R, and so on.

Combined, these observations imply that for M = 1, i.e. a single 1-bit, we know that R =
K131‖ · · · ‖K64. When guessing any number of the least significant key bits, a number of bits of R
and thus of K131‖ · · · ‖K64, equal to the Hamming weight of the guess, can be directly obtained
from C .

Definition 25 (Free bit iteration). The ith free bit iteration, with i ≥ 0, refers to the number of
bits obtained “for free” in an iteration as described in Observation 2.

Thus, the 0th free bit iteration refers to the analysis of how many free bits are obtained from
the initially guessed key bits; the 1st free bit iteration refers to how many free bits are obtained
from the ones obtained from the 0th free bit iteration, and so on. For i ≥ 0, in the ith free bit
iteration, we let `i denote the expected number of free bits obtained and let δi denote the expected
density of 1-bits in the remaining unknown bits, after obtaining the `i free bits. We then obtain
the following result.

2.3. FORGERY AND KEY RECOVERY ON SELECTED AE SCHEMES 95

Lemma 2. Let Ka−1‖ · · · ‖K0 be the initially guessed key bits and let `0 = hw(Ka−1‖ · · · ‖K0). Then

δi =
m−∑i

j=0 ` j

n+m− a−∑i−1
j=0 ` j

, i ≥ 0 and

`i = `i−1δi−1, i ≥ 1. (2.47)

Proof. In the ith free bit iteration, a+
∑i−1

j=0 ` j bits have already been guessed, so the denominator

of δi is what remains unknown. The key bits guessed thus far have Hamming weight
∑i

j=0 ` j , so
the 1-bits density among the last bits is δi .

The number of bits expected to obtained for free in iteration i + 1 is determined by the
expected Hamming weight of the free bit portion just obtained in iteration i, which in turn is
`iδi .

We now derive a closed formula for the quantity `i by observing that the ratios `i+1/`i
between consecutive elements of the sequence are actually constant, i.e. independent of i. We
formally prove this in the following lemma.

Lemma 3. Let a and `0 be such that m− `0 6= n+m− a and n+m− a 6= 0. With the notations of
Lemma 2, we have for i ≥ 1 that

`i =
�

m− `0

n+m− a

�i

`0. (2.48)

Proof. We prove the claim by induction. For i = 1, Eq. (2.47) yields `1 =
� m−`0

n+m−a

�

`0 =
� m−`0

n+m−a

�1
`0. Assuming Eq. (2.48) holds for all k ≤ i, we have

`i+1 =
m−∑i

j=0 ` j

n+m− a−∑i−1
j=0 ` j

· `i

=
m− `0

∑i
j=0

� m−`0
n+m−a

� j

n+m− a− `0
∑i−1

j=0

� m−`0
n+m−a

� j ·
�

m− `0

n+m− a

�i

`0. (2.49)

For r 6= 1, the geometric series
∑N

i=0 r i is equal to (rN+1 − 1)/(r − 1). Instantiating this with
r = a

b yields
N
∑

i=0

�

a
b

�i

=

� a
b

�N
a− b

a− b
and

N−1
∑

i=0

�

a
b

�i

=

� a
b

�N
b− b

a− b
. (2.50)

Since
� m−`0

n+m−a

� 6= 1, we can apply this to the two sums in Eq. (2.49), yielding

`i+1 =
m− `0 ·

�

m−`0
n+m−a

�i
(m−l0)−(n+m−a)
−`0−n+a

n+m− a− `0

�

m−`0
n+m−a

�i
(n+m−a)−(n+m−a)
−`0−n+a

·
�

m− `0

n+m− a

�i

`0, (2.51)

96 CHAPTER 2. CRYPTANALYSIS OF SYMMETRIC PRIMITIVES

which can be reformulated to

=

m(−`0−n+a)−`0

�

m−`0
n+m−a

�i
(m−`0)+`0(n+m−a)

−`0−n+a

(n+m−a)(−`0−n+a)−`0

�

m−`0
n+m−a

�i
(n+m−a)+`0(n+m−a)

−`0−n+a

·
�

m− `0

n+m− a

�i

`0, (2.52)

and collecting common terms gives

=
(m− `0)

�

� m−`0
n+m−a

�i
`0 + n− a

�

`0 + n− a
· `0 + n− a

(n+m− a)
�

� m−`0
n+m−a

�i
`0 + n− a

� ·
�

m− `0

n+m− a

�i

`0

=
�

m− `0

n+m− a

�

·
�

m− `0

n+m− a

�i

`0

=
�

m− `0

n+m− a

�i+1

`0, (2.53)

as claimed.

Note, that the preconditions of the previous lemma do not impose a limitation for the
evaluation of the `i for relevant values of a. For instance, with a = n, the closed formula holds
for any 1 ≤ `0 ≤ m, and the remaining case `0 = 0 is trivial since all remaining unknown bits
must be equal to one.

Optimal Number of Initially Guessed Key Bits. The closed formula of Lemma 4 also yields an
estimate for the optimal number of key bits a that should be guessed initially, so as to minimize
the complexity of a key recovery attack. Specifically, we should choose a < n+m such that

`0

∞
∑

i=0

�

m− `0

n+m− a

�i

(2.54)

reaches n+m− a, the number of still unknown bits. Since

`0

∞
∑

i=0

�

m− `0

n+m− a

�i

=
1

1− � m−`0
n+m−a

�
`0

=
�

n+m− a
`0 + n− a

�

`0, (2.55)

this means that the optimal choice of a should be such that
�

n+m− a
`0 + n− a

�

`0 = n+m− a

⇔ a = n or a = n+m. (2.56)

Note, however that this only holds asymptotically, and it is expected that slightly more than n bits
will need to be guessed to determine the remaining part of the key. For RBS, this suggests that an

2.3. FORGERY AND KEY RECOVERY ON SELECTED AE SCHEMES 97

initial guess of around n = 64 key bits should be sufficient to determine all remaining 68 key
bits. In order to determine how many more bits than n we should guess, a more careful analysis
of the progression of the `i ’s is needed. In the following, we develop a conservative estimate.

Lemma 4. Let a and `i be as in Lemma 2. Let L(a,`0) = (`0, . . . ,`t) be the series of `i defined
from a and `0 such that t is the largest integer s.t. `t ≥ 1. When guessing a initial key bits, the
expected number of extra free bits obtained is determined as

∑t−1
j=0 ` j and the expected Hamming

weight of these bits is determined as
∑t

j=0 ` j .

Proof. This follows directly from the definition of `i and L(a,`0).

Algorithm 8: RBS-KEYRECOVERY

Data: Number of initial key bits to guess, a
1 C ← RBS(M = 1)
2 for `0 =max{0,64− a}, . . . ,min{68, a} do
3 forall the guesses of K ′a−1‖ · · · ‖K ′0 of Hamming weight `0 do
4 Let L = (`0, . . . ,`t), where t is the largest integer s.t. `t ≥ 1

5 Ξ←max{0, 132− a−∑t−1
j=0 ` j} // # of bits yet unknown

6 Φ←max{0,68−∑t
j=0 ` j} // # of 1-bits remaining

7 forall the
�

Ξ
Φ

�

remaining candidates for K ′131‖ · · · ‖K ′131−Ξ+1 do
8 if C = RBS(M = 1) under the key K ′131‖ · · · ‖K ′0 then
9 return K ′131‖ · · · ‖K ′0 as the correct key K

10 end
11 end
12 end
13 end

Theorem 3. Let a,`i and L(a,`0) be as in Lemma 4. Let w(a) denote the worst case expected
complexity of key recovery when a is the number of key bits initially guessed. Then

w(a) =
min{68,a}
∑

`0=max{0,a−64}

�

a
`0

�

�

max
�

0, b132− a−∑t−1
j=0 ` jc

	

max
�

0, b68−∑t
j=0 ` jc

	

�

. (2.57)

Proof. When initially guessing Ka−1‖ · · · ‖K0, the Hamming weight of this guess, `0, is bounded
below by max{0, a− 64}, because when a > 64, the Hamming weight must be positive by the
pigeon-hole principle. The Hamming weight `0 is bounded above by either a or 68.

There are
� a
`0

�

ways to distribute the `0 ones over Ka−1‖ · · · ‖K0. For each of these, the
rightmost binomial coefficient of Eq. (2.57) gives the number of ways to place the remaining
1-bits among the unknown bits for this fixed combination of (a,`0). We take the sums of the ` j

as
�∑

j ` j

�

for a conservative estimate of the complexity. Summing over all the possible `0 for a
fixed a, the result follows.

98 CHAPTER 2. CRYPTANALYSIS OF SYMMETRIC PRIMITIVES

0 50 100

65

75

85

95

105

115

125

Number of guessed bits a

lo
g 2

w
(a
)

(a) Plot as a function of a

a log2 w(a)

61 68.24
62 67.32
63 66.22
64 65.27
65 65.00
66 66.75
67 68.39
68 71.18
69 72.83
70 76.03

(b) Data points for the best values of a

Figure 2.14: Expected worst time complexity for key recovery in RBS as a function of
the number of bits initially guessed, denoted a

Key Recovery. We summarize the resulting key recovery attack on RBS as Algorithm 8. It
remains to determine the number of key bits a that should be guessed initially. Figure 2.14 shows
the base-2 logarithm of the expected worst case complexity w(a). While Figure 2.14a shows a
plot of w(a) with a ∈ {1, . . . , 131}, Figure 2.14b gives a numerical illustration of the best values
for a giving the lowest complexity. From the data, we find that guessing a = 65 bits gives the
lowest key recovery complexity of 265.

2.3.3 Discussion and Conclusions

We have presented key recovery attacks on two recent authenticated ciphers: AVALANCHE and RBS.
The former was a round-one candidate in the ongoing CAESAR competition for authenticated
encryption schemes, while the latter is a proposal for use in lightweight applications.

While AVALANCHE makes use of the AES, which is a solid primitive, we stress that the attacks
presented here are purely structural, i.e. the weaknesses are present due to the way the primitives
are combined and not the primitives themselves. For AVALANCHE, the key recovery is possible
due to the nonce being used as (part of) the key material, thus facilitating a key collision attack.
For RBS, we used a guess-and-determine approach. In all cases, the key was recovered with a
complexity of at most square root of the brute-force effort. Our attacks allows an adversary to
perform forgeries in both cases, and also to the decrypt arbitrary ciphertexts.

We remark that in [79], we give an attack very similar to the one presented on AVALANCHE,
on another round-one CAESAR proposal, CALICO. However, due to the similarity of the two
attacks, we opted not to include the latter here.

3
Design of Symmetric Primitives

In the previous chapter, we saw examples of the application of various cryptanalytic attack vectors
to block ciphers and authenticated encryption schemes, in a range of different applications and
with varying adversarial models and goals. The two tasks of cryptanalyzing a particular symmetric
primitive on one hand, and that of designing a new excellent primitive on the other hand, are
inextricably linked: to be able to motivate the design choices made, one must understand the
possible security violations that can occur, under various assumptions. One could argue that
designing a new good symmetric primitive is harder than trying to break one. After all, to provide
a cryptanalytic result, one needs to find a single property that can be lifted to an attack, while
the designer needs to consider all possible attacks including, to some extent, the capabilities of
existing attacks in the future.

In this chapter, we turn towards design aspects of symmetric primitives. We cover two results,
which go in somewhat different directions. First, in Section 3.1, we consider generalizations of
the widely acclaimed AES block cipher, and how a particular operation used in such ciphers can be
optimized. Second, we introduce our round-one proposal for the ongoing CAESAR competition
for authenticated encryption schemes in Section 3.2. Our proposal is called PRØST, and is based
on a newly designed and highly secure permutation.

3.1 Permutations and Rotations in AES-like Ciphers

In this section, we consider ciphers which have a structure inspired by the AES, the widely used
block cipher described in Section 1.2.1. We develop a structured approach to analyzing the
permutation layer, i.e. the generalized ShiftRows-like operation, for AES-like ciphers with respect
to diffusion and resistance towards differential- and linear cryptanalysis. For this, we start by
defining a general framework for AES-like ciphers. Note that we do not restrict to the case where
permutation is identical in all rounds; rather we allow for different choices of the permutation in

99

100 CHAPTER 3. DESIGN OF SYMMETRIC PRIMITIVES

different rounds. Moreover, we first consider arbitrary word-wise permutations and later restrict
ourselves to word-wise rotations of the rows. The latter have the appeal of being efficiently
implementable on many modern CPUs.

Publication

The results presented in this section are from:

[42] Christof Beierle, Philipp Jovanovic, Martin M. Lauridsen, Gregor Leander, and Christian
Rechberger. Analyzing Permutations for AES-like Ciphers: Understanding ShiftRows. In
Kaisa Nyberg, editor, Topics in Cryptology - CT-RSA 2015, The Cryptographer’s Track at the
RSA Conference 2015, San Francisco, CA, USA, April 20-24, 2015. Proceedings, volume
9048 of Lecture Notes in Computer Science, pages 37–58. Springer, 2015.

Author Contribution

The contributions of the author presented in this section are: definition of an AES-like cipher;
contributing to all reduction results and their proofs, as presented in Section 3.1.4; the mixed-
integer linear programming model to solve for bounds on active S-boxes; contributing to the
search algorithm for optimal parameters, as described in Section 3.1.5; and obtaining parts of
the experimental results presented in Section 3.1.5 and summarized in Appendix C.

3.1.1 Introduction and Motivation

Since 2000 with the standardization of Rijndael as the AES [252], an astonishing number of new
primitives using components similar to the AES have seen the light of day. Examples of such
include, but are not limited to: block ciphers 3D by Nakahara Jr. [178], Anubis by Barreto and
Rijmen [38], LED by Guo, Peyrin, Poschmann, and Robshaw [152], mCrypton by Lim and Kork-
ishko [211] and PRINCE by Borghoff, Canteaut, Güneysu, Kavun, Knezevic, Knudsen, Leander,
Nikov, Paar, Rechberger, Rombouts, Thomsen, and Yalçın [83]; hash functions like Whirlpool by
Barreto and Rijmen [39], ECHO by Benadjila, Billet, Gilbert, Macario-Rat, Peyrin, Robshaw, and
Seurin [48], Grøstl by Gauravaram, Knudsen, Matusiewicz, Mendel, Rechberger, Schläffer, and
Thomsen [139], LANE by Indesteege, Andreeva, Cannière, Dunkelman, Käsper, Nikova, Preneel,
and Tischhauser [161], PHOTON by Guo, Peyrin, and Poschmann [151], Twister by Fleischmann,
Forler, Gorski, and Lucks [126]; as well as components of CAESAR candidates PAEQ by Biryukov
and Khovratovich [59], PRIMATEs by Andreeva, Bilgin, Bogdanov, Luykx, Mendel, Mennink,
Mouha, Wang, and Yasuda [23], PRØST by Kavun, Lauridsen, Leander, Rechberger, Schwabe,
and Yalçın [181], and STRIBOB by Saarinen [277]. This can largely be attributed to the seminal
wide-trail design strategy [105] which was introduced along with Rijndael and its predecessor
SQUARE by Daemen, Knudsen, and Rijmen [107] for the first time.

The wide-trail strategy is an elegant way of ensuring good diffusion properties and at the
same time allow designers to easily give bounds on the resistance towards differential- and linear
cryptanalysis. Additionally, another advantage is that it decouples the choice of the non-linear
layer and the linear layer to a large extent: in a nutshell, any good S-box combined with any
good linear layer will result in a cipher resistant against linear- and differential attacks.

3.1. PERMUTATIONS AND ROTATIONS IN AES-LIKE CIPHERS 101

For AES-like ciphers, including all the above mentioned designs, the linear layer itself is
composed of two parts: one resembles the AES MixColumns operation and the other resembles
the AES ShiftRows operation. The MixColumns-like operation is a matrix multiplication of the
columns of the state and the ShiftRows-like operation is a permutation of the words of the state.
For the former, the criteria are well understood. All that is required here is that this operation has
a suitably high branch number. While we define the concept formally below, in short the branch
number corresponds to the minimal sum of the number of active S-boxes in an input/output
column, provided an active input column, and the number of active S-boxes is the essential
tool for bounding the success probability of linear- and differential attacks. In stark contrast,
for the operation resembling ShiftRows, the situation is significantly less clear. Basically, the
ShiftRows-like operation highly influences the number of active S-boxes when considering more
than two rounds only. Understanding the bounds for more than two rounds is crucial for many
good designs. With a well-chosen ShiftRows-like operation it is usually possible to derive much
stronger bounds for more rounds than the trivial bound one gets by multiplying the two-round
bound by half the number of rounds.

In the case of the AES (and others including [48, 59, 83]) one uses a so-called superbox
argument to prove strong bounds on four rounds of the cipher. For others, the problem is modeled
as a mixed-integer linear programs like in [23, 181, 237]which allows the computation of bounds
for an (in principle) arbitrary number of rounds for a given choice of the ShiftRows-like operation.
However, no structured approach for analyzing the influence of the ShiftRows-like operation on
the security of the cipher has been undertaken previously. The results so far remain ad hoc and
specific to a given choice of parameters. Considering the large number of designs following this
approach, this shortcoming is quite surprising and unsatisfactory from a scientific perspective. In
particular, the choices made are often not optimal and not based on an adequate understanding
of the implications.

First, and as a core contribution to a structured approach, we simplify the problem of
determining good permutations for AES-like ciphers by introducing the notion of equivalent
permutation parameters. It is intuitively clear that many choices of the permutation will lead
to the same behavior of the cipher. One such example is changing the order of the rotation
constants for the ShiftRows operation in the AES, i.e. rotate the first row by 3, the second by
2, and so on. We will make this intuition precise and, as will be shown below, discover more
involved examples of the above. The notion of equivalence will imply the same lower bound on
the number of guaranteed active S-boxes. This is interesting theoretically, as it allows to simplify
the problem. For example, we prove that a general permutation can never yield better results
than a permutation that operates on the rows individually. Furthermore, using this notion of
equivalence, we derive a normalized representation of any word-wise rotation of the rows. This
allows to significantly reduce the problem domain and thus the search space for a computational
approach.

In the second part of our analysis, we use this normalized representation in a combination
with solving mixed-integer linear programs using the IBM ILOG CPLEX library [100]. The
source code for this part is available as [43]. This results in optimal parameter suggestions for
a wide range of AES-like ciphers. In particular, it allows us to suggest improved parameters
for Rijndael-192, Rijndael-256, PRIMATEs-80 and PRØST-128 on this front. Finally, given our
extensive experimental results, we conjecture an optimal lower bound on the number of active

102 CHAPTER 3. DESIGN OF SYMMETRIC PRIMITIVES

S-boxes possible for specific cases of the state geometry. Those parameters are such that they
allow for an iterative version of the superbox argument mentioned above. We also provide a
permutation which guarantees this conjectured optimal bound. In contrast to prior work, e.g.
that of ECHO and PAEQ, this permutation layer is generic and, more importantly, realized with
cyclic row rotations only, thus allowing for an easy and efficient implementation.

3.1.2 The AES and AES-like Ciphers

When introducing the concept of block ciphers in Section 1.2.1, we mentioned the AES and how
it is a very frequently used block cipher today. In this section, we go into the details of the AES,
and describe exactly how, and why, it works like it does. As mentioned previously, the AES is a
family of three block ciphers, AES-128, AES-192 and AES-256. All have a block size of n= 128
bits, and the key sizes are κ ∈ {128, 192, 256}, according to the naming of the cipher. The AES
ciphers are a subset of the Rijndael family, the entrant to the AES competition by Daemen and
Rijmen [104]. In the following, we first specify the AES algorithm, discuss some of the choices
made by the designers, and finally we introduce our concept of AES-like ciphers, a generalization
of the AES, which we will be analyzing in the remainder of this section.

The AES

The AES operates on blocks of n= 128 bits. Let X ∈ Fn
2 denote an AES state. The state is split

into 16 words of m = 8 bits (i.e. one byte) each, denoted X0, . . . , X15. The words are arranged in
a 4× 4 state, as shown in Figure 3.1. Table 3.1 gives an overview of the parameters for the three
AES ciphers.

X0

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

Figure 3.1: The AES state

Table 3.1: Overview of AES parameters

Cipher Block size n Key length κ Rounds T

AES-128 128 128 10
AES-192 128 192 12
AES-256 128 256 14

The AES is a key-alternating block cipher, using round keys K0, . . . , KT derived using a key
schedule algorithm from the κ-bit master key K . A round function Ft : Fn

2 ×Fn
2→ Fn

2 is applied a

3.1. PERMUTATIONS AND ROTATIONS IN AES-LIKE CIPHERS 103

total of T times. The first T − 1 rounds are defined by

Ft(Kt+1, X) = AddRoundKey(Kt+1) ◦MixColumns ◦ ShiftRows ◦ SubBytes(X), 0≤ t < T − 1,
(3.1)

while the last round FT−1 is different, as it omits the MixColumns operation:

FT−1(KT , X) = AddRoundKey(KT) ◦ ShiftRows ◦ SubBytes(X). (3.2)

The application of the round functions are preceded by adding the round key K0 as a pre-whitening
key. As such, the AES is specified by

EK(X) = FT−1(KT) ◦ · · · ◦ F0(K1)(X ⊕ K0). (3.3)

Each of the operations SubBytes, ShiftRows, MixColumns and AddRoundKey used in the round
functions Ft , are described in the following. For more details on the design criteria described in
the following, we refer to [106].

SubBytes. The SubBytes operation is the non-linear part of the cipher. The AES uses an 8-bit
S-box to achieve this non-linearity. By the Rijndael finite field, we mean the finite field defined by
F28 = F2[x]/(x8 + x4 + x3 + x + 1). We consider words of the state as being elements in this
field. Letting X ∈ F28 , the S-box used in the AES is specified by an affine transformation of the
inverse Y = X−1 of X in the Rijndael finite field,

S(X) =

1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1

·

Y7
Y6
Y5
Y4
Y3
Y2
Y1
Y0

+

0
1
1
0
0
0
1
1

, (3.4)

where for X = 0 one defines X−1 = 0.
The S-box used in the AES was chosen according to two criteria. First, it should be highly

non-linear, and in particular the linear correlation and difference propagation should be as low
as possible. The S-box chosen has the property that the highest possible differential probability
is 2−6, while the highest possible linear correlation amplitude is 2−3; both are optimal for 8-bit
S-boxes (see e.g. Nyberg [246]). Second, the algebraic expression for the S-box should be
complicated, when expressed in F28 . This is achieved by employing the affine transformation
on the inverse. Furthermore, the S-box has no fixed points nor any opposite fixed points, i.e.>X ∈ F28 : X ⊕ S(X) ∈ {00,FF}.

ShiftRows. In order to obtain diffusion in the cipher, the AES uses the ShiftRows operation in
conjunction with the MixColumns operation (see below). The ShiftRows does what the name

104 CHAPTER 3. DESIGN OF SYMMETRIC PRIMITIVES

suggests: it shifts (cyclically) the rows of the 4× 4 state. The shift direction is right to left1, and
the row shift amount are given by the vector (0, 1, 2, 3). As such, the ShiftRows operation maps
a state X as shown in Figure 3.2.

X0

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

ShiftRows

X0

X5

X10

X15

X4

X9

X14

X3

X8

X13

X2

X7

X12

X1

X6

X11

Figure 3.2: The AES ShiftRows operation

The design criteria for the chosen shift amounts are that (i) they should all be different (this
is to achieve optimal diffusion, as we shall also see later in this section), and (ii) they should give
good resistance to truncated differential attacks and saturation attacks. We do not consider those
two last points any further in this section. We remark that Rijndael with 7 or 8 state columns,
which is not a part of the AES, employ other shift amounts, in particular (0, 1, 2, 4) and (0, 1, 3, 4),
respectively.

MixColumns. As mentioned, diffusion in the AES is obtained via a combination of ShiftRows
and MixColumns. The MixColumns operation is a linear mixing, working on each column inde-
pendently. Thus, where the ShiftRows operation moves words to different columns, MixColumns
mixes the words inside each column in a linear way. Specifically, the MixColumns operation
works by multiplying each column of the state from the left by a 4× 4 matrix defined over the
Rijndael finite field. The MixColumns matrix M , with entries given in hexadecimal notation for
bytes, is defined by

M =

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

. (3.5)

Thus, in the MixColumns operation for j = 0, . . . , 3, we update column consisting of words
X j , X j+4, X j+8 and X j+12, as

X j
X j+4
X j+8
X j+12

7→ M ·

X j
X j+4
X j+8
X j+12

. (3.6)

The MixColumns operation fits with the choice of a state of 4 words per column, as to obtain
good performance on 32-bit architectures. However, high performance on 8-bit architectures
is also a design criteria for the operation. For the cryptographic properties, the transformation
was chosen as to be linear over F2, and to have good diffusion properties. Furthermore, the
branch number is five (we define this notion formally in Definition 30), which is the highest

1We remark that in our analysis below, we consider a left-to-right shift direction

3.1. PERMUTATIONS AND ROTATIONS IN AES-LIKE CIPHERS 105

obtainable for such a transformation. As we shall see later in this section, this fact can be used
together with the wide-trail design strategy, to obtain good bounds on the resistance towards
differential- and linear cryptanalysis. Note that the low coefficients in M means that MixColumns
is very efficiently implementable: multiplication by 01 has no cost; multiplication by 02 is a
single left shift followed by a conditional XOR; and multiplication by 03 can be implemented as
multiplication by 02 plus another XOR by the operand. While the inverse of the MixColumns
operation is efficient, it is not as efficient, because the coefficients of the corresponding matrix
are not as low as those of M .

AddRoundKey. The AddRoundKey operation in AES simply XORs the provided n-bit round
key to the n-bit state. As such, in the specification of the Ft of Eq. (3.1) and Eq. (3.2) above,

AddRoundKey(K)(X) = X ⊕ K . (3.7)

AES-like Ciphers

As already stated, this section looks into a particular design criteria of what we call AES-like
ciphers. These are ciphers which generalize the AES, and even Rijndael (which is a superset of
the AES), to allow arbitrary state sizes and more freedom in the operations used. We define them
formally next.

In the following, we refer to binary strings of m bits as words. As an example above, we saw
that the AES uses words of m = 8 bits. We consider words as elements of the finite field F2m . We
refer to M × N matrices with word entries as states. For a state X we use X i to denote the ith

row of X , and X i, j denotes word in the jth column of X i. As such, and in contrast to the AES
above, we use two indices for state words, rather than one. For an M × N difference X , we use
the symbol with a tilde on top, e.g. X̃ , to denote the activity pattern of X , an M × N matrix over
F2 where X̃ i, j = 1 if X i, j 6= 0 and X̃ i, j = 0 otherwise. We describe formally our notion of AES-like
ciphers in Definition 26.

Definition 26. An AES-like cipher is a block cipher EK which is parametrized by a fixed key K ∈ Fκ2 ,
the state dimension M ×N, the word size m, the number of rounds T , and a permutation parameter
π= (π0, . . . ,πT−1), where each πt is a permutation on ZM ×ZN (i.e. it permutes the words of a
state). The AES-like cipher is composed of round functions Ft , s.t. EK = FT−1 ◦ · · · ◦ F0. Each round
function is given by

Ft = AddRoundKeyt ◦Permuteπt
◦MixColumnst ◦ SubBytes, 0≤ t < T. (3.8)

The four bijective transformations on the state used in the round function are defined in the following.

1. SubBytes substitutes each word of the state according to one or several S-boxes S : F2m → F2m .

2. MixColumnst applies, in round t, for all columns j ∈ ZN left-multiplication by an M ×M
matrix Mt

j over F2m:

MixColumnst : (F2m)M×N → (F2m)M×N

∀ j ∈ ZN :
�

X0, j · · · XM−1, j
�T 7→Mt

j ·
�

X0, j · · · XM−1, j
�T

,
(3.9)

106 CHAPTER 3. DESIGN OF SYMMETRIC PRIMITIVES

where multiplication in F2m is defined by an arbitrary irreducible polynomial from F2[x] of
degree m.

3. Permuteπt
permutes, in round t, the words within the state due to a given permutation πt .

We use the notation that for a position (i, j) ∈ ZM ×ZN in the state, πt(i, j) gives the new
position of that word under the permutation πt :

Permuteπt
: (F2m)M×N → (F2m)M×N

∀i ∈ ZM ,∀ j ∈ ZN : X i, j 7→ Xπt (i, j).
(3.10)

4. AddRoundKeyt performs word-wise XOR to the state using the t th round key.

Subsequently, we omit the AddRoundKeyt operation of Definition 26 from consideration, as
it does not affect diffusion properties nor resistance towards differential- and linear cryptanalysis
of the AES-like cipher. Note also, that for generality we consider in Definition 26 an arbitrary
word permutation Permuteπt

while later we will, for efficiency reasons, restrict ourselves to
row-wise rotations of the words, as in the ShiftRows operations of the AES.

3.1.3 Bounding Differential- and Linear Hull Probabilities

In the analysis we present, we are concerned with two security aspects of an AES-like cipher,
namely diffusion on the one hand and resistance against differential- and linear attacks on the
other hand. We formally define our notations for both criteria in the following.

Diffusion

As we described in Section 1.2, the concept of diffusion is about complicating the relationship
between the ciphertext bits and plaintext bits. When designing a cipher, it is desirable to obtain
what we call full diffusion after as few rounds as possible. Indeed, the number of rounds chosen
for a cipher is often determined partly by this number.

Definition 27 (Diffusion degree). For a function F : Fk
2→ Fn

2, we define the diffusion degree d(F)
for F as the fraction of bits in the image under F that depend on each bit of the pre-image, i.e.

d(F) =
1
n
·]� j ∈ Zn | ∀i ∈ Zk : ∃X ∈ Fk

2 : F(X ⊕ ei) j 6= F(X) j
	

, (3.11)

where F(X) j denotes the jth bit of F(X). We say that F obtains full diffusion when d(F) = 1.

Definition 28 (Diffusion-optimality). Fix the state dimensions M × N. Consider a permutation
sequence π for an AES-like cipher which obtains full diffusion after t rounds. We say that π is
diffusion-optimal if there exists no π′ 6= π which obtains full diffusion after t ′ < t rounds.

3.1. PERMUTATIONS AND ROTATIONS IN AES-LIKE CIPHERS 107

Differential/Linear Cryptanalysis for AES-like Ciphers

As we saw in Section 1.3, there are some similarities between differential- and linear cryptanalysis.
In particular, they both are based on finding characteristics or trails of good probability. In the
following, we use always the word trail to cover both, and indeed our analysis is equally applicable
to analyze both the resistance towards differential- and linear cryptanalysis. We focus, however,
on the differential case.

The probability (respectively correlation) of the trails can be upper bounded by lower bound-
ing the number of active S-boxes in any trail. Here, an S-box is active in a given trail if it has a
non-zero input difference (respectively mask). In general, if p is the largest probability (respec-
tively correlation) for the S-box to satisfy a differential- or linear property, and any trail has at
least k active S-boxes, then the trail property holds with probability (respectively correlation) at
most pk. This approach to ensuring resistance against linear and differential attacks is the basis
of the wide-trail design strategy as introduced by the Rijndael designers Daemen and Rijmen
in [105]. The second important merit of the wide-trail strategy is, that it allows to treat the
S-box and the linear layer of the cipher as black boxes, as long as they fulfill certain conditions.
In our analysis of AES-like ciphers, we follow both aspects of this philosophy. The designer is
interested in having the lightest trail being as heavy as possible, so as to set the upper bound on
the trail probability (respectively correlation) as low as possible. Indeed, knowing this probability
is essential when determining the number of rounds for the cipher in the design phase. We give
definitions of trails and trail weights in the following.

Definition 29 (Trail and trail weight). For an AES-like cipher EK using m-bit words and state
dimension M ×N, a T-round trail is a (T +1)-tuple (X 0, . . . , X T) ∈ �(F2m)M×N

�T+1
and the weight

of the trail is defined as
∑

t∈ZT

∑

i∈ZM

∑

j∈ZN

X̃ t
i, j . (3.12)

A pair of inputs X , X ′ ∈ (F2m)M×N are said to follow the (differential) trail (X 0, . . . , X T) over T
rounds if and only if X 0 = X ⊕ X ′ and for all t = 1, . . . , T it holds that

X t = (Ft−1 ◦ · · · ◦ F0)(X)⊕ (Ft−1 ◦ · · · ◦ F0)(X
′). (3.13)

Note from Definition 29 that the weight of a trail corresponds exactly to the number of active
S-boxes over those T rounds.

Definition 30 (Branch number). For a linear automorphism θ : (F2m)M → (F2m)M , the differential
branch number Bθ is defined as

Bθ = min
X ,X ′∈(F2m)M

X 6=X ′

(

∑

i∈ZM

α̃i + β̃i

)

, α= X ⊕ X ′,β = θ (X)⊕ θ (X ′). (3.14)

In the context of an AES-like cipher EK , we say EK has branch number B if and only if

B =min
�

BMt
j · | j ∈ ZN , t ∈ ZT

	

, (3.15)

where Mt
j · denotes the automorphism defined by left multiplication by Mt

j .

108 CHAPTER 3. DESIGN OF SYMMETRIC PRIMITIVES

In order to calculate a useful lower bound on the number of active S-boxes in an efficient way,
our focus of this work is on the Permuteπt

part of the round function. The SubBytes operation
will be considered as using an arbitrary S-box S : F2m → F2m , and the analysis will be independent
of the specific instance of S. Each of the Mt

j matrices used in the MixColumns operation will
be considered as black-box linear operations, under the requirement that the AES-like cipher
has branch number B. A formal definition of that idea is given in the following. For a T -round
permutation parameter π = (π0, . . . ,πT−1), letßAESM ,N (π, B) denote the set of all M×N AES-like
ciphers over T rounds with branch number B using π0, . . . ,πT−2 in the first T − 1 rounds. The
reason for not including πT−1 is that our proofs in the following use the fact that for different
permutation sequences we can re-model one AES-like cipher into another, up to the last round,
and up to changing MixColumns operations (but maintaining the branch number).

Definition 31. We say that the sequence of permutations π= (π0, . . . ,πT−1) tightly guarantees k
active S-boxes for branch number B if and only if there is a valid trail of weight k for some EK ∈
ßAESM ,N (π, B) and there is no valid trail of weight k′ < k, with k′ > 0, for some E ′K ∈ßAESM ,N (π, B).

We denote this property by π
B−→ k.

Definition 32 (Trail-optimality). A sequence of permutations π= (π0, . . . ,πT−1) with π
B−→ k is

said to be trail-optimal if there exists no π′ = (π′0, . . . ,π′T−1) s.t. π′
B−→ k′ where k′ > k.

Appendix C provides a proof that the number of tightly guaranteed active S-boxes is really
independent of the specific S-box instantiations. From Definition 31, it follows that the number
of guaranteed active S-boxes is always a lower bound for the actual minimum number of active
S-boxes in any concrete instantiation of an AES-like cipher.

3.1.4 Equivalent Permutations

In the following, we present a range of results which simplifies the problem of identifying
good permutation parameters π for AES-like ciphers by showing when different permutation
parameters are equivalent with respect to resistance towards differential- and linear attacks.
Obviously, for a fixed branch number, many different π will tightly guarantee the same number
of active S-boxes. Thus, identifying conditions under which two different permutation sequences
π 6= π′ tightly guarantee the same bound is significant: for a theoretical understanding, this
approach simplifies the problem while for a computer-aided search for a good π parameter,
this significantly reduces the search space. In Definition 33, we specify what it means for two
permutation sequences to be equivalent.

Definition 33 (Equivalence of permutation sequences). Two permutation sequences π,π′, for a
T-round AES-like cipher are said to be equivalent, denoted π ∼ π′, if and only if for all possible
branch numbers B, the equality ßAESM ,N (π, B) =ßAESM ,N (π′, B) holds. Intuitively, this means that
for all AES-like ciphers using π, there is an AES-like cipher using π′ which it is functionally identical
to, up until the last round.

We remark that, using this notion of equivalence, one can transform each cipher EK using π
into a cipher E ′K using π′ such that EK = τ ◦ E ′K for a permutation τ on the state words. Thus,

3.1. PERMUTATIONS AND ROTATIONS IN AES-LIKE CIPHERS 109

equivalence will imply the same number of tightly guaranteed active S-boxes for all possible
fixed branch numbers B.

Equivalences for Permutation Sequences

In order to prove the reduction to a normalized form on the round permutations, we show a
range of observations in the following. First, Lemma 5 is a combinatorial result on permutations
on Cartesian products.

Lemma 5 (Representation of permutations on Cartesian products). Every permutation πt on the
words of an M × N state can be represented as πt = γ′ ◦φ ◦ γ where γ,γ′ are permuting the words
within each column (separately from other columns) and φ is permuting the words within each row
(separately from other rows).

Proof. Let TA, TB, TC , TD ∈ (ZM ×ZN)M×N s.t. TAi, j
= (i, j) and let TB, TC and TD be defined s.t.

TB = γ(TA), TC = φ(TB), and TD = γ′(TC), i.e.

TA
γ−→ TB

φ−→ TC
γ′−→ TD. (3.16)

To show the result, we let TD = πt(TA) and show how to construct the permutations such that
TD = (γ′ ◦φ ◦ γ)(TA). We first observe the following two properties which must hold:

1. TB must be a matrix where, within each column j ∈ ZN , it holds that (i) the second
coordinate of each point is equal to j, because γ only permutes within each column of TA
and (ii) the set of first coordinates cover all of ZM , because TB is a permutation of ZM ×ZN .

2. TC must be a matrix where, for each column j ∈ ZN , the points in column j of TC are the
same as those in column j of TD. This is required because otherwise it is impossible to go
between TC and TD using a permutation operating in each column.

If we can determine a matrix TB with property (1) and a row permutation φ s.t. TC = φ(TB) has
property (2), we are clearly done, because TA and TD can be obtained from TB respectively TC by
applying a permutation moving the words inside each column.

For a matrix A∈ (ZM ×ZN)M×N , let Q(A) be an N ×N matrix for which Q(A)i, j is the number
of occurences of j ∈ ZN in the second coordinate of the points in column i ∈ ZN of A. As Q(TB)
and Q(TC) are both magic squares of weight M , it follows from the Birkhoff-von Neumann
Theorem (see e.g. [32, p. 164]), that one can decompose Q(TC) into a sum of M permutation
matrices, and thus

Q(TC) = P0 + · · ·+ PM−1. (3.17)

Let φ be a permutation within each row, defined by applying Pi to row i ∈ ZM . Then Q(φ(TB)) =
Q(TC).

What is left to show is that there exists a TB obtained by moving words inside the columns of
TA s.t. the first coordinates in each column j of TC is correct, given the fixed permutation φ. To
see this, consider the case where TC requires a point (a, b) to be in column j. Clearly, (a, b) is in
column b of both TA and TB. Now, let Pi be such that it moves some point in position (a′, b) of

110 CHAPTER 3. DESIGN OF SYMMETRIC PRIMITIVES

TB from column b to column j of TC . If (a′, b) = (a, b), then (a, b) does not need to be moved
within column b from TA to TB by γ, but if (a′, b) 6= (a, b), one can use γ to move (a, b) to (a′, b)
so it ends up in column j of TC . As each point (a, b) will only be present once in TC , it can be
moved once between TA and TB and never moved again. This procedure holds for all points
(a, b), and as such the result follows2.

Lemma 6 (Equivalence under permutations within columns). Let π = (π0, . . . ,πT−1) be a
permutation sequence for a T-round AES-like cipher EK and let γ,γ′ be arbitrary permutations on
the words within the each column of a state. Then, for all t = 0, . . . , T − 1, it holds that

π∼ (π0, . . . ,γ′ ◦πt ◦ γ, . . . ,πT−1). (3.18)

In particular, the number of tightly guaranteed active S-boxes is invariant under inserting permuta-
tions, before and after any πt , which act on the columns of the state separately.

Proof. Fix the branch number B and let EK ∈ßAESM ,N (π, B). We consider any round t ∈ ZT .
We first show that π∼ π′ = (π0, . . . ,πt ◦ γ, . . . ,πT−1). Let E ′K be like EK but using permutation

sequence π′, with rounds denoted F ′t , t ∈ ZT . Thus, E ′K ∈ßAESM ,N (π′, B). It holds that

F ′t = Permuteπt
◦Permuteγ ◦MixColumnst ◦ SubBytes. (3.19)

Since γ operates on the columns separately, one can define

MixColumns′t = Permuteγ ◦MixColumnst , (3.20)

which in turn is a linear layer for an AES-like cipher with the same branch number, and we have

F ′t = Permuteπt
◦MixColumns′t ◦ SubBytes. (3.21)

Now, E ′K is a cipher which uses the permutation sequence π and thus E ′K ∈ßAESM ,N (π, B). The
other inclusion follows the same way by applying γ−1.

For showing the case ofπ′ = (π0, . . . ,γ′◦πt , . . . ,πT−1), the argument is parallel. By combining
the two, the result follows.

Definition 34 (ρ-alternating permutation sequence). Let T and ρ be positive integers and consider
a T-round AES-like cipher EK . The vectorπ = (π0, . . . ,πρ−1)T is called a ρ-alternating permutation
sequence over T rounds, if EK alternatingly repeats the πi permutations over T rounds, such that
the permutation πi , 0≤ i < ρ, is used in rounds t where t ≡ i mod ρ, 0≤ t < T.

As an easy result, one obtains Theorem 4, which we state without proof.

Theorem 4 (Reduction to permutations on the rows). Let π = (π0, . . . ,πρ−1)T be a ρ-alternating
permutation sequence. Then one can construct a π′ = (π′0, . . . ,π′ρ−1)T with π ∼ π′, s.t. for each
t ∈ Zρ, it holds that π′t permutes only the words within each row of the state.

2We would like to thank John Steinberger for aiding with this proof

3.1. PERMUTATIONS AND ROTATIONS IN AES-LIKE CIPHERS 111

Equivalences for Rotation Matrices

Until this point we have focused on AES-like ciphers with arbitrary word-wise permutations
Permuteπt

as part of the round function. However, due to their implementation characteristics,
such general permutations are not suitable for designs of cryptographic primitives. To that end,
we limit ourselves from this point on to AES-like ciphers where the permutation operation of the
round function cyclically rotates each row of the state from left-to-right using a rotation matrix as
specified in Definition 35.

Definition 35 (Rotation matrix). Consider an AES-like cipher where the permutation operation in
the round function consists of cyclic word-wise rotations of each state row. For such a cipher, we
define a rotation matrix as a matrix σ ∈ Zρ×M

N , where ρ is a positive integer, such that

1. If ρ = T, then σt,i denotes the rotation amount for row i ∈ ZM in round t, and

2. If ρ < T, then we have the further requirement that the rotation constants alternate, such
that σk,i denotes the rotation amount for row i ∈ ZM in rounds t where t ≡ k mod ρ,

where, without loss of generality, we let the rotation direction be left-to-right.

As rotation matrices are a special case of arbitrary permutations, we remark that the notion
of equivalence includes these as well. We simplify our notion of an AES-like cipher to only use
row-wise rotations in the permutation part of each Ft . In particular, we substitute the Permuteπt

operation by

ShiftRowsσt
: (F2m)M×N → (F2m)M×N

∀i ∈ ZM ,∀ j ∈ ZN : X i, j 7→ X i, j+σt mod ρ,i mod N .
(3.22)

Example 2. For the AES, we have M = N = 4 and ρ = 1 with σ =
�

0 3 2 1
�

.

Next, we continue by giving results on the equivalence of rotation matrices.

Lemma 7 (Equivalence under re-ordering of row entries). Let σ ∈ Zρ×M
N be a rotation matrix

and let ϑ0, . . . ,ϑρ−1 be arbitrary permutations such that ϑt permutes the elements in row t of σ.
Define σ′ s.t. ∀t ∈ Zρ : σ′t = ϑt(σt). Then σ ∼ σ′.

Proof. This directly follows from Lemma 6, as using σ′t is equivalent to using γ′ ◦ σt ◦ γ for
appropriate permutations γ′ and γ, permuting the words in each column of the state separately.

Lemma 8 (Equivalence under row-wise constant addition). Letσ ∈ Zρ×M
N be a rotation matrix and

let c0, . . . , cρ−1 ∈ ZN . Define a rotation matrix σ′ where ∀t ∈ Zρ,∀i ∈ ZM : σ′t,i = σt,i+ ct mod N.
Then σ ∼ σ′.

Proof. We split the proof into two cases, depending on the number of rounds.

112 CHAPTER 3. DESIGN OF SYMMETRIC PRIMITIVES

Case T ≤ ρ. If T < ρ, one can add constants to σT , . . . ,σρ−1, since these are never used
anyway. Thus, let us consider T = ρ. We give a proof by induction that one can add independent
constants ct , . . . , cT−1 to σt , . . . ,σT−1 to obtain an equivalent rotation matrix σ′, and proceed by
induction on t. Clearly, one can add a constant to σT−1 to obtain an equivalent σ′, since the set
ßAESM ,N (σ, B) does not cover the use of σT−1. Assuming the statement holds for t, . . . , T − 1,
we now prove that it is possible to add a constant ct−1 to σt−1 as well. Using the notation that
SR = ShiftRows, MC =MixColumns, SB = SubBytes and RSk is a rotation of the whole state
by k positions, we have

Ft ◦ Ft−1 = (SRσt
◦MCt ◦ SB) ◦ (RS−ct−1

◦RSct−1
) ◦ (SRσt−1

◦MCt−1 ◦ SB)

= SRσt
◦RS−ct−1

◦RSct−1
◦MCt ◦RS−ct−1

◦ SB ◦ (RSct−1
◦ SRσt−1

◦MCt−1 ◦ SB),
(3.23)

since RS−ct−1
commutes with SB. Now, since MC′t = RSct−1

◦MCt ◦RS−ct−1
defines a (just rotated)

linear column mixing, and since SRσt
commutes with RS−ct−1

, we have

Ft ◦ Ft−1 = (RS−ct−1
◦ SRσt

◦MC′t ◦ SB) ◦ (RSct−1
◦ SRσt−1

◦MCt−1 ◦ SB), (3.24)

and we see that by adding ct−1 to σt−1 and −ct−1 to σt we obtain an equivalent σ′. The result
now follows by induction, since the addition of −ct−1 to σt can be undone by the induction
assumption.

Case T > ρ. For the case T > ρ, let H be a T ×M matrix where Ht = σk when t ≡ k mod ρ.
For a T -round AES-like cipher EK , H and σ are clearly equivalent rotation matrices. From the
above, it follows we can add ct to row t of H, t ∈ ZT , and obtain an equivalent H ′. In particular,
adding the same ck to all rows t where t ≡ k mod ρ, we obtain H ′ which is equivalent to σ, and
has the property that H ′i = H ′j if i ≡ j mod ρ, and in particular the first ρ rows of H ′ equals σ′

and the result follows.

Theorem 5 (Equivalence for rotation matrices). Given a rotation matrix σ ∈ Zρ×M
N , one can

obtain an equivalent matrix σ′ ∈ Zρ×M
N for which the following holds simultaneously

1. Each row σ′t , t ∈ Zρ is ordered increasingly by value,

2. For all t ∈ Zρ it holds that σ′t,0 = 0 and

3. For all t ∈ Zρ it holds that σ′t,1 ≤ N
2 .

Proof. Points (1) and (2) follow directly from Lemma 7 and 8, respectively. For point (3), let
us assume without loss of generality that (1) and (2) hold, and take the case where M ≥ 2 and
consider the element σt,1 from some row σt , 0≤ t < ρ. If σt,1 >

N
2 , we add −σt,1 mod N and

the result follows from Lemmas 7 and 8.

Besides Theorem 5, we heuristically suggest a search for optimal rotation matrices to restrict
itself to matrices where all entries in a row are different, i.e. ∀t ∈ Zρ : σt, j = σt, j′⇔ j = j′, as
equal entries in some σt are redundant with respect to the diffusion properties of the cipher.

3.1. PERMUTATIONS AND ROTATIONS IN AES-LIKE CIPHERS 113

Moreover, when N is even, we require that σ contains at least one odd entry, because otherwise
even-numbered columns never mix with odd-numbered columns. In fact, extending this, we
require that σ should contain at least one element which does not divide N . However, due to the
very few cases, we deem that implementing this restriction is computationally more cumbersome
than actually including the cases.

We refer to a rotation matrix which satisfies the properties mentioned, plus properties (1)
through (3) of Theorem 5, as the normal form of its equivalence class of rotation matrices. In the
next section, we turn more practical, as we discuss an approach of actually obtaining results for
specific AES-like cipher instances.

3.1.5 Mixed-Integer Linear Programming and Experimental Results

As mentioned, in our consideration of the problem of bounding the number of active S-boxes in
a trail, for a particular AES-like cipher, we consider the S-boxes and linear layers as black box
operations. One advantage to modeling those operations as such is, that one can easily compute
useful lower bounds on the number of guaranteed active S-boxes using a mixed-integer linear
programming approach. We describe this approach next.

Formulating the MILP Program

In the following, we describe the mixed-integer linear program which models the problem of
determining the tightly guaranteed trail weight under a given rotation matrix σ ∈ Zρ×M

N . We give
the parameters, decision variables, the constraints and the target optimization in Model 1. We
remark that the use of a MILP model to determine bounds on the number of active S-boxes over
a cipher is a quite common approach. An example application to the AES is by Mouha, Wang, Gu,
and Preneel [237]. Other works employing MILP approaches include that of Borghoff, Knudsen,
and Stolpe [82], Bogdanov [71, 72] and Wu and Wang [300]. We note that Model 1 is specified
for the case where each Mt

j used in the MixColumnst operation is a maximum distance separable
(MDS) matrix, i.e. a matrix such that its left multiplication leads to a linear automorphism θ of
branch number Bθ = M + 1, as this is usually what is applied in designs. If, on the other hand,
non-MDS matrices are deployed, the model can be easily modified to cover these cases as well,
at the cost of a slightly more complicated model. Theorem 6 formalizes how Model 1 provides
us with the sought bound.

Theorem 6. The solution of Model 1 is always a lower bound on the number of tightly guaranteed
active S-boxes for an AES-like cipher with branch number B and rotation matrix σ. If the branch
number is optimal for the given dimensions and a linear mixing layer with this branch number exists
(and the word length m> log2(M + 2)), this provides a tight bound.

Proof. This follows from Corollary 3 in Appendix C.

Experimental Results

A major part of our contribution in this section consists of a wide range of optimal choices of
rotation matrices for various state geometries M × N , ρ and number of rounds T . For all our

114 CHAPTER 3. DESIGN OF SYMMETRIC PRIMITIVES

Model 1: MILP model for determining the guaranteed trail weight in an AES-like cipher
using the parameters specified

Parameters

Name Domain Description

M N Number of rows in state
N N Number of columns in state
T N Number of rounds
ρ N Number of rows in rotation matrix σ
B N Branch number of AES-like cipher
σ Zρ×M

N Rotation matrix

Decision variables

Name Domain Index domain Description

X̃ t
i, j F2 i ∈ ZM , j ∈ ZN , t ∈ ZT ∪ {T} X̃ t

i, j = 1 if and only if the word in position (i, j) is
active in the state input to Ft

at
j F2 j ∈ ZN , t ∈ ZT Auxiliary variable; at

j = 1 if and only if column j
has an active word in the state input to Ft

Minimize ∑

t∈ZT

∑

i∈ZM

∑

j∈ZN

X̃ t
i, j

subject to
∑

i∈ZM

∑

j∈ZN

X̃ 0
i, j ≥ 1 (1)

∀t ∈ ZT ,∀ j ∈ ZN :
∑

i∈ZM

X̃ t
i, j + X̃ t+1

i,(j+σt mod ρ,i) mod N ≥ B · at
j (2)

∀t ∈ ZT ,∀i ∈ ZM ,∀ j ∈ ZN : at
j ≥ X̃ t

i, j (3)

experiments, we concentrated on the case of MDS MixColumnst layers, i.e. AES-like ciphers with
optimal branch number. Using the heuristic approach from Section 3.1.4, i.e. by brute-forcing
the normal form of each equivalence class of rotation matrices, we provide optimal solutions for
the analyzed cases as per Theorem 6. The full table of results is given in Appendix C. The results
were obtained by an implementation iterating over all normal forms of rotation matrices, and for
each of them making a call to an MILP solver to obtain the optimal trail weight assuming that
particular rotation matrix. The solver used was IBM ILOG CPLEX [100]. We remark that our
program can be made to work with other solvers such as Gurobi [287]. The source code for our
program is available as [43].

We highlight in Table 3.2 results which suggest improvements for some existing AES-like
primitives. We see that in some cases, direct replacement of σ yields better (i.e. increased)
bounds, while in other cases one must increase ρ to obtain better bounds. Among our findings

3.1. PERMUTATIONS AND ROTATIONS IN AES-LIKE CIPHERS 115

are tight bounds which are not a multiple of the branch number for an even number of rounds.
This implies that there exists some MDS linear mixing layers such that the lightest valid trail
contains a two-round subtrail of weight more than B. Thus, some optimal trails have non-optimal
transitions locally.

Table 3.2: Improvements for existing AES-like primitives. An entry (ρP ,BP)/(ρM ,BM)
gives ρ and the number of tightly guaranteed S-boxes B in a T -round trail for the
primitive (subscript P) and the modified primitive (subscript M), respectively. The †
symbol indicates results where only diffusion-optimal σ were tested, which means actual
obtainable bounds may be higher.

Rounds Rijndael-192 Rijndael-256 PRIMATEs-80 PRØST-128

5 – – (1,54)/(2, 56) –
6 (1, 42)/(1,45) (1,50)/(2,55) – (2,85)/(2,90)†

7 (1, 46)/(1, 48) – – (2,96)/(2, 111)†

8 (1, 50)/(1, 57) – – –
10 – (1,85)/(2,90) – –
12 (1, 87)/(1, 90) (1, 105)/(2,111) – –

3.1.6 Optimal Solutions

In this section we describe, for special cases of the state geometry, optimal solutions with respect
to both our main criteria, i.e. with respect to diffusion properties on one hand and resistance
towards differential- and linear attacks on the other hand.

Diffusion-Optimal Rotation Matrices

Under the assumptions that each S-box S : F2m → F2m and each Mt
j matrix has the property that

each output bit depends on each input bit, we describe in the following a way of tracking the
diffusion properties for an AES-like cipher EK . Let z denote an arbitrary fixed bit of an input
to EK . When, in the beginning of a round, a single bit in a column depends on z, then each
bit in the column will depend on z after applying MixColumnst ◦ SubBytes. Thus, with fixed
parameters M , N and σ, determining how many rounds t are required to obtain full diffusion
reduces to answering how many rounds are required to have at least one bit depending on z in
each column: if this is obtained after t ′ rounds then full diffusion is obtained after t = t ′ + 1
rounds. This is formalized in the following.

Definition 36 (Sumset). Let G be an additive group and let A, B ⊂ G. We define the sumset, written
A+ B, as

A+ B = {a+ b | a ∈ A∧ b ∈ B}, (3.25)

where the sum is over G. We write kA for the sumset A+ A+ · · ·+ A with k terms.

116 CHAPTER 3. DESIGN OF SYMMETRIC PRIMITIVES

Theorem 7. Consider an AES-like cipher with fixed parameters M , N ,ρ and σ. Let without loss of
generality z denote a bit in the word X0,0 for an input X . Let α(t)i , 0≤ i < ρ, denote the number
of times σi is used in a ShiftRows operation during t rounds of the cipher. Then, after T rounds,
the indices of columns which contain bits depending on z are given by the sumset

α(T)0σ0 +α(T)1σ1 + · · ·+α(T)ρ−1σρ−1, (3.26)

where addition is over ZN , and where we abuse notation and consider σt as a subset of ZN .

Proof. Let S−1 = {0}. We recursively define St = {v + s | s ∈ St−1 ∧ v ∈ σt mod ρ} for t ≥ 0,
where addition is in ZN . Note that the set St corresponds exactly to the sumset α(t)0σ0 + · · ·+
α(t)ρ−1σρ−1. Clearly, S0 = {v | v ∈ σ0} is the set of indices of columns that contain words
depending on z after round F0. Now, assume that St contains the column indices which has some
word depending on z after Ft . Then, after applying MixColumnst+1, all words in columns j ∈ St
depend on z. Now, when we apply ShiftRowsσt+1 mod ρ

, the words depending on z are moved
exactly to the indices given in St+1, and thus the result is obtained by induction.

Corollary 2. Consider an AES-like cipher with fixed parameters M , N ,ρ and σ. If t ′ is the smallest
positive integer s.t. the sumset α(t ′)0σ0 + · · ·+α(t ′)ρ−1σρ−1 over ZN generates all of ZN , then the
cipher obtains full diffusion after t = t ′ + 1 rounds.

Proof. The proof follows from Theorem 7. Note that we chose the input bit z from the word X0,0.
If it would be chosen from an arbitrary word X i, j , the corresponding sumset would be shifted by
some constant c. However, these are the same sumsets for all possible c, since they generate all
of ZN .

Theorem 8. When N = Mρ, a diffusion-optimal rotation matrix is σ ∈ Zρ×M
N s.t. σt,i = i ·M t for

(t, i) ∈ Zρ ×ZM , i.e.

σ =

0 1 2 · · · M − 1
0 M 2M · · · (M − 1)M
0 M2 2M2 · · · (M − 1)M2

...
...

...
. . .

...
0 Mρ−2 2Mρ−2 · · · (M − 1)Mρ−2

0 Mρ−1 2Mρ−1 · · · (M − 1)Mρ−1

, (3.27)

or any σ′ where the rows of σ are permuted. These obtain full diffusion after ρ + 1 rounds.

Proof. By Theorem 7, the set of indices of columns containing a word depending on z after ρ
rounds is given by the sumset σ0 + · · ·+σρ−1 over ZN . This sumset has Mρ = N sums, and thus
equals ZN if and only if no two sums in the sumset are equal. To see why this is the case, consider
constructing M -adic numbers using the sums in the sumset. We pick exactly one element from
each row of σ and add them. As the elements in row t are σt =

�

0M t 1M t · · · (M − 1)M t
�

,
the choice for the sum from σt is the t th least significant digit in the M -adic representation of
that number. In other words, the rows of σ form a base for the M -adic number system, and we
can form any number up to

∑ρ−1
t=0 (M − 1)M t = N − 1 with it. Since Mρ elements cannot be

generated using less than ρ parameters in the sumset, the diffusion-optimaltiy of σ follows.

3.1. PERMUTATIONS AND ROTATIONS IN AES-LIKE CIPHERS 117

Example 3. Theorem 8 implies that the AES has a diffusion-optimal choice of σ =
�

0 3 2 1
�

for its parameters N = M = 4 and ρ = 1.

Trail-Optimal Solutions

In this section, we first state Theorem 9 which is of particular interest because of the large number
of AES-like ciphers with square geometry, i.e. with M = N . Considering its statement, square
states can be understood quite well. We also give a conjecture on the optimality of guaranteed
trail weights for M ×M n AES-like ciphers over T = 2n+1 rounds and give a construction which
matches the conjectured bound.

Theorem 9 (Optimality for square geometries). Letσ be a rotation matrix in normal form operating
on a square state of dimension M × M. Then the number of tightly guaranteed active S-boxes is
invariant under increasing ρ. In particular, any σ has σ ∼ �0 1 · · · M − 1

�

. Furthermore,
assuming the existence of at least one MDS linear layer and the word length m> log2(M + 2), we

have σ
M+1−−→ k(M + 1)2 over 4k rounds for all k ∈ N.

Proof. As for any ρ > 1, each row σt of a rotation matrix σ in normal form will equal
�

0 1 · · · M − 1
�

, or any permutation hereof, this is equivalent to having ρ = 1 by Lemma 7.
In order to prove the second statement, we first apply the Four-Round Propagation Theorem [105,
Theorem 3] of the AES in a repeated manner, which provides the stated k(M + 1)2 as a lower
bound. It is left to argue that there exists a valid 4k-round trail of weight k(M + 1)2 for some EK
using the specific parameters. Therefore, we first define a four-round trail X of weight (M + 1)2

as

X =

 1 0 ··· 0
0 0 ··· 0
...

...
...

...
0 0 ··· 0

!

,

 1 0 ··· 0
0 1 ··· 0
...

...
...

...
0 0 ··· 1

!

,

 1 1 ··· 1
1 1 ··· 1
...

...
...

...
1 1 ··· 1

!

,

 1 0 ··· 0
0 0 ··· 1
...

...
...

...
0 1 ··· 0

!

,

 1 0 ··· 0
0 0 ··· 0
...

...
...

...
0 0 ··· 0

!!

. (3.28)

By repeating this structure k times, one can define a 4k-round trail of weight k(M + 1)2. For the
validity of this trail for some EK , one can see that it is obtainable by only using the identity as the
S-box and existing mixing steps, applying Corollary 3 in Appendix C.

Theorem 9 implies that a designer of an AES-like primitive who wants to improve upon
the bound for a square dimension necessarily has to choose a rotation parameter σ consisting
of at least one σt which breaks the normal form structure. Intuitively, this would not only
provide a worse bound but also worse diffusion properties. However, giving an argument for
the trail-optimality considering all possible rotation matrices (respectively permutations), seems
quite difficult. For the special case of a hypercubed geometry, we give Conjecture 1.

Conjecture 1. Let n be a positive integer. Given the state dimension M × M n for an AES-like
cipher, then a trail-optimal choice of the permutation sequence π over T = 2n+1 rounds yields

π
M+1−−→ (M + 1)n+1.

118 CHAPTER 3. DESIGN OF SYMMETRIC PRIMITIVES

The Superbox Argument. The superbox argument is a commonly used proof technique to
lower bound the number of active S-boxes in an AES-like cipher over a certain number of rounds.
It has been used for the AES but also for ECHO [48] and PAEQ [59]. One uses the fact that
for a clever choice of the rotation matrix, the round operations can be commuted such that
some part of the encryption first works locally, in parallel, on parts of the state which we call
superboxes. Next, the superboxes are combined using state-wide operations which effectively mix
the superboxes together, only to split the state into superboxes again, working with the localized
operations. Such a large structure is referred to as a megabox, and covers four rounds of the
cipher.

One can show that if a superbox has active input, there are at least B active S-boxes in the
first two rounds inside this superbox. Now, with the right choice of rotation matrix, the operation
that combines the superboxes again imply that for the next two rounds, the total number of active
superboxes is at least B. From this, one obtains a four-round lower bound of B2. This concept,
which is the idea behind the Four-Round Propagation Theorem [105, Theorem 3], can be easily
generalized by iteration for appropriate dimensions of state in the AES-like cipher, and with
an appropriately chosen rotation matrix. We stress, however, that choosing the rotation matrix
correctly for the given state dimension is of paramount importance to assuring the argument
that one has e.g. B active superboxes in a megabox (or equivalently for higher dimensions).

As mentioned, in Theorem 10, we give a construction which achieves the bound given in
Conjecture 1. Note that (especially for a cubed state dimension) this approach is not new in itself.
Our main point here is that, in clear distinction to prior work such as that of Daemen, Knudsen,
and Rijmen [108] and [59], we present an efficient way of implementing this idea by using cyclic
rotations only. For a better visualization, Example 4 illustrates this construction for M = 4 and
n= 3.

Theorem 10 (2n+1-round Propagation Theorem). There exists a rotation matrix σ ∈ Z2n×M
M n , such

that every (non-zero) valid 2n+1-round trail over all EK ∈ßAESM ,M n(σ, B) has a weight of at least
Bn+1. The rotations are given by

∀ j ∈ Zn : σ2n− j−2 = σ2n− j−1 =
�

0 M j 2M j · · · (M − 1)M j
�

and

∀ j ∈ Zn−1,∀i ∈ Z2n−(j+1) : σi = σ2n− j−3−i .
(3.29)

Proof. For n= 1, the statement is precisely the Four-Round Propagation Theorem for the AES.
Therefore, we first prove the result for the eight-round case, i.e. for n = 2. We need to show that

σ =

0 M 2M · · · (M − 1)M
0 M 2M · · · (M − 1)M
0 1 2 · · · M − 1
0 1 2 · · · M − 1

B−→B (3.30)

over eight rounds for aB ≥ B3. For the proof, we rely on a straightforward generalization of
the Four-Round Propagation Theorem to the dimension one higher than the standard AES, as
described previously. In particular, if one can partition the M ×M2 state into M sub-states of M
columns each (i.e. consider them as M ×M sub-states), such that in four consecutive rounds,
the ShiftRows operating in the first and second rounds shifts each such sub-state as if using the

3.1. PERMUTATIONS AND ROTATIONS IN AES-LIKE CIPHERS 119

vector
�

0 1 · · · M − 1
�

, with respect to considering that particular M × M sub-state, then
the number of guaranteed active S-boxes in each such sub-state over four rounds it at least B2

(assuming a non-zero input difference). Note that the rotations of the third and fourth round
have no impact on the four-round trail weight.

Figure 3.3: Positions of the 4 independent sets of columns in a 4× 16 state

Using the σ specified, the first four rounds of EK satisfies this property when the M sub-states
of size M ×M are taken to be every M th column of the state, as indicated for a 4× 16 state in
Figure 3.3. The same thing holds when considering the last four rounds separately.

Now, due to the way the row shifting of the third round combines with the column mixing
and row shifting of the fourth round, i.e. ShiftRowsσ3

◦MixColumns ◦ SubBytes ◦ ShiftRowsσ2
,

each M ×M sub-state mixes completely with each of the M ×M sub-states. As such, like in the
Four-Round Propagation Theorem, the sum of active M ×M sub-states from the third and fourth
round is at least B. Combining this observation with the generalized Four-Round Propagation
Theorem, the result of B · B2 follows.

The general case is now obtained by induction: in order to do the iteration to 2(n+1)+1 rounds,
one has to apply the 2n+1-round propagation.

Example 4. Let M = 4, n = 3 and B = 5. The state has geometry M ×N = 4×64. The guaranteed
trail weight of 625 active S-boxes over T = 16 rounds can be realized using the rotation matrix

σ =

0 16 32 48
0 16 32 48
0 4 8 12
0 4 8 12
0 16 32 48
0 16 32 48
0 1 2 3
0 1 2 3

. (3.31)

We remark that especially for higher dimensions, a rotation matrix following this construction
is not of much practical interest, as the diffusion properties are far from optimal. One open
question is whether it is possible, for general M , to obtain these bounds without using a rotation
matrix that allows a proof using a superbox-like argument. For the special case of M = 2 and
N = 4, we found the example rotation matrix

σ =

�

0 0 0 0 0 0 0 0
1 1 1 1 1 2 1 1

�T

, (3.32)

which contains no superbox structure, and which yields σ
3−→ 27 over T = 8 rounds.

120 CHAPTER 3. DESIGN OF SYMMETRIC PRIMITIVES

3.1.7 Discussion and Conclusions

For AES-like ciphers, the linear mixing layer, often denoted MixColumns, is very well understood:
one typically chooses mixing layers defined by MDS matrices to obtain optimal branch numbers.
In sharp contrast to this, no systematic approach has been conducted to understand how the
word-wise permutation layer in such ciphers affects the diffusion properties and resistance
towards differential- and linear attacks. With the work described in this section, we have taken a
large step to close that gap.

Specifically, we considered arbitrary word-wise permutations, with special focus on rotations
due to their elegant implementation characteristics. We formalized the concept of AES-like
ciphers, guaranteed trail weights and equivalence of permutation parameters and, using these
formalizations, proved a range of results which reduces the consideration to a special normalized
form. These results are employed in practice by connecting it with mixed-integer linear pro-
gramming models for determining the guaranteed trail weights. To that end, we give a range of
optimal word-wise rotations and improve on existing parameters for Rijndael-192, Rijndael-256,
PRIMATEs-80 and PRØST-128.

Using superbox-like arguments we are able, as a separate result, to show for specific state
geometries that a seemingly optimal bound on the trail weight can be obtained using cyclic
rotations only for the permutation layer, i.e. in a very implementation-friendly way. Also coming
out of our analysis is the observation that square state geometries are, in some sense, ideal when
it comes to solving the problem of determining the best word-wise rotations, as there is just one
solution which is optimal.

3.2 PRØST: Permutation-Based Authenticated Encryption

In this section, we describe the AEAD scheme PRØST which was a proposal for the CAESAR
competition, an ongoing effort in the cryptographic community channeled by Dan Bernstein. A
committee of members from both industry and academia are to select a final portfolio of new
AEAD schemes, which should improve upon the current standards. The second-round candidates
were announced on July 7, 2015, and PRØST was not among them.

Publications

The results presented in this section are from the PRØST CAESAR submission document [181]
and a technical addendum proving the security of PRØST [206]:

[181] Elif Bilge Kavun, Martin M. Lauridsen, Gregor Leander, Christian Rechberger, Peter
Schwabe, and Tolga Yalçın. Prøst. Submission to the CAESAR competition, 2014.

[206] Martin M. Lauridsen. Security Proofs for Prøst. http://proest.compute.dtu.dk/proofs.pdf,
2015.

Author Contribution

The author is one of the principal designers behind PRØST. Especially, the author contributed: the
determination of rotation offsets used in the ShiftPlanes operation (see Section 3.2.2); analysis

http://proest.compute.dtu.dk/proofs.pdf

3.2. PRØST: PERMUTATION-BASED AUTHENTICATED ENCRYPTION 121

of bounds on trail weights; analysis of diffusion properties; descriptions of the use of the PRØST

permutation in the existing modes of operation; proofs of security for the proposed schemes; and
parts of the reference implementations.

3.2.1 Introduction and Motivation

In the following, we specify PRØST, a new highly secure and efficient permutation with strong
security bounds, suitable for a wide range of platforms and modes. We show how the PRØST

permutation can be used in conjunction with existing AEAD modes of operation COPA and OTR,
which are block cipher-based, and APE, which is permutation-based, all of which we described in
Section 1.2.4. The combination of the PRØST permutation with those three modes of operation
comprise the AEAD proposals for the CAESAR competition, as described above.

3.2.2 The PRØST Permutation

This section defines the PRØST permutation. In the following, we let 2n denote the size of the
PRØST permutation. We remark, that this is in contrast to Section 1.2.4, where we used n to
denote the size of the permutation, when introducing the duplexed sponge construction. For the
PRØST submission document, we used PRØST-n to denote the permutation on 2n bits, because
n gives the security level in bits. In the treatment here, we stick to this notation despite the
confusion it may cause, as to adhere to the established notation. We expand on the theoretical
security claims and proofs for PRØST in Section 3.2.6.

The PRØST state S is considered as a three-dimensional block of height h, width w and depth
d, along the X , Y and Z axes, respectively, c.f. Figure 3.4g. When referring to the parts of the state,
we use the same nomenclature as for the KECCAK permutation [51], as specified by Figure 3.4.
We also refer to a lane of the state as a register.

(a) Row (b) Column (c) Lane (d) Slice (e) Plane (f) Sheet

Y

X

Z

(g) Axes

Figure 3.4: Nomenclature for PRØST state parts

With the orientation of the (X , Y, Z) axes, we use SX ,Y to refer to the d-bit register in row X
and column Y of a state S, and we use SX ,Y,Z to denote the Z th bit of SX ,Y . For PRØST, we always
have h = w = 4, so 2n = 16d. As such, the embedding of the state S into the (X , Y)-plane results
in a 4× 4 matrix

S =

S0,0 S0,1 S0,2 S0,3
S1,0 S1,1 S1,2 S1,3
S2,0 S2,1 S2,2 S2,3
S3,0 S3,1 S3,2 S3,3

, (3.33)

where each SX ,Y is a d-bit register.

122 CHAPTER 3. DESIGN OF SYMMETRIC PRIMITIVES

Note 6. We specify PRØST for d ∈ {16, 32}, so effectively we specify two permutations. To be sure to
avoid confusion, we mention again that we denote the permutation according to its security level,
which is half the state size, rather than the state size. As such, we denote the PRØST permutation on
2n bits by PRØST-n.

The PRØST permutation consists of compositions of permutations which we refer to as rounds,
borrowing from the design of iterated block cipher constructions. We denote the total number of
rounds by T . We use Ft : F2n

2 → F2n
2 to refer to round t, 0≤ t < T , which is defined as

Ft = AddConstantst ◦ ShiftPlanest ◦MixSlices ◦ SubRows. (3.34)

As such, PRØST-n is defined as

PRØST-n= FT−1 ◦ · · · ◦ F0. (3.35)

We describe mapping between state representations in F4×4×d
2 and F2n

2 , after describing the round
function components in the following. The parameters for the two permutations, PRØST-128 and
PRØST-256, are summarized in Table 3.3. We give the definition of each of the round operations
below.

Table 3.3: PRØST permutations and their parameters

Permutation State size 2n Register length d Rounds T

PRØST-128 256 16 16
PRØST-256 512 32 18

For PRØST, the main rationale was to design a permutation that is efficient in many platforms,
and to use a design approach that allows strong and easily verifiable security arguments. In
particular, PRØST follows the widely acclaimed wide-trail design strategy of the AES, as already
described in Section 3.1, however with a modification, as we shall see, since we use two different
ShiftRows-like operations instead of one. This leads to significantly better bounds on the best
differential- and linear trail probabilities, than otherwise possible. In particular as we shall
see, not considering the lack of a secret key, PRØST can be considered as an AES-like cipher as
specified in Section 3.1, using dimensions M = 4, N ∈ {16,32}, word size m= 4 and ρ = 2.

Efficiency of the permutation results from mainly two efforts. First, each component has been
optimized with respect to implementation cost. Second, the strong security of the design allows
to keep the number of rounds low. In the following, we introduce all the components making up
the PRØST round, as specified by Eq. (3.34), and motivate the design choice for each of them.

SubRows

To obtain non-linearity in the round function, PRØST uses a single 4-bit S-box S : F4
2→ F4

2 which
is given in Table 3.4. The SubRows operation substitutes each row of the state according to this
S-box. More precisely, a state S will be mapped to a state S′ where

3.2. PRØST: PERMUTATION-BASED AUTHENTICATED ENCRYPTION 123

Table 3.4: The 4-bit PRØST S-box in hexadecimal notation

X 0 1 2 3 4 5 6 7 8 9 a b c d e f
S(X) 0 4 8 f 1 5 e 9 2 7 a c b d 6 3

∀X ∈ Z4,∀Z ∈ Zd : S′X ,0,Z‖S′X ,1,Z‖S′X ,2,Z‖S′X ,3,Z = S
�

SX ,0,Z‖SX ,1,Z‖SX ,2,Z‖SX ,3,Z

�

. (3.36)

The S-box used for SubRows is very simple in terms of hardware- and software efficiency. If
we let X = X3‖X2‖X1‖X0 denote the input to S, then the new value of X3‖X2‖X1‖X0 = S(X) can
be computed as

t0 = X3, t1 = X2

X3 = X1 ⊕ (t0 � t1), X2 = X0 ⊕ (t1 � X1)

X1 = t0 ⊕ (X3 � X2), X0 = t1 ⊕ (X2 � X1).
(3.37)

Thus, computing S(X) requires 10 simple instructions. The concrete choice of S-box is the
result of a hardware assisted search though a significant subset of all possible S-boxes. Besides
being very efficient in terms of cycle count, this S-box is also optimal with respect to linear and
differential attacks. In particular, S was chosen among all S-boxes fulfilling the following criteria:

1. S is an involution, which prevents overhead of implementing two S-boxes (one for Ft and
one for F−1

t),

2. The maximal probability of a differential is 2−2,

3. There are exactly 24 differentials of probability 2−2,

4. The maximal absolute bias of a linear approximation is 2−2,

5. There are exactly 36 linear approximations of absolute bias 2−2, and

6. Output bits have algebraic degrees of 2,2, 3 and 3, respectively.

Having only one single S-box within one plane allows to implement the S-box application
using bit-slicing. To do this, one can for example keep all four lanes of a plane in four registers of
d bits each. By applying the operations of Eq. (3.37) on a register-basis, the S-box is applied to the
whole plane at once, using just ten instructions. Furthermore, keeping the S-boxes identical for
all planes and all rounds reduces the code space and avoids additional overhead. The increased
danger of symmetries throughout the cipher is countered by relatively heavy round constants, as
we shall see below.

In Section 1.3, we briefly mentioned a class of attacks called side-channel attacks. One
attack vector falling under this category is the differential power attack (DPA) invented by Kocher,
Jaffe, and Jun [193], which essentially allows an attacker to determine secret values during the
encryption process, by using several measurements of the power consumption of the encrypting

124 CHAPTER 3. DESIGN OF SYMMETRIC PRIMITIVES

device. One solution which is commonly employed to thwart DPAs is masking. The idea is
essentially that all sensitive variables during encryption are protected by operating on each of
them in conjunction with one or more randomly chosen masks. For example, if one has a sensitive
variable X0, one can mask it by operating instead on the variable X = X0 ⊕ X1 ⊕ · · · ⊕ Xd . The
problem now consists of modifying the description of the cipher, such as to account for the added
masking, to make sure that one obtains a functionally equivalent cipher. It turns out that for
linear operations, this can be obtained cheaply and without much effort, while for the non-linear
operations the cost is high in comparison. Much current research is going in the direction of
masking schemes for non-linear operations in cipher implementations that are secure against
differential power attacks. Some notable works include that of Coron and Goubin [99], Akkar
and Giraud [12], Golic and Tymen [145], and Schramm and Paar [282]. Under the term threshold
implementations, Nikova, Rechberger, and Rijmen introduce in [245] an approach to masking
which, unlike earlier techniques requires, random values only at the initialization, whereas
previous approaches need fresh randomness for each non-linear component. Their approach
is also effective in the presence of glitches, a type of short-lived fault occurring in hardware
components due to e.g. race conditions. While we do not go into the details here, a general rule
of thumb is that the larger the S-box is, the more costly it is to implement countermeasures for
DPA attacks. To that end, comparatively cheap countermeasure implementation for our 4-bit
S-box is one of the motivations for choosing such a non-linear operation in PRØST.

MixSlices

The MixSlices operation updates the state by multiplying each of the d slices arranged in a 16-bit
column vector, from the left, by a 16×16 matrix M over F2. As such, we obtain S′ =MixSlices(S)
as

∀Z ∈ Zd :

S′0,0,Z
S′0,1,Z
S′0,2,Z
S′0,3,Z
S′1,0,Z

...
S′3,2,Z
S′3,3,Z

= M ·

S0,0,Z
S0,1,Z
S0,2,Z
S0,3,Z
S1,0,Z

...
S3,2,Z
S3,3,Z

. (3.38)

The matrix M used for MixSlices is given by

M =

1 0 0 0 1 0 0 1 0 0 1 0 1 0 1 1
0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 1
0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0
1 0 0 1 1 0 0 0 1 0 1 1 0 0 1 0
1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1
0 1 0 0 0 0 1 0 1 0 0 0 1 1 0 0
0 0 1 0 0 0 0 1 0 1 0 0 0 1 1 0
0 0 1 0 1 0 1 1 1 0 0 0 1 0 0 1
0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 0
1 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0
0 1 1 0 0 1 0 0 0 0 0 1 0 0 1 0
1 0 1 1 0 0 1 0 1 0 0 1 1 0 0 0
1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0
1 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0
0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 1

. (3.39)

3.2. PRØST: PERMUTATION-BASED AUTHENTICATED ENCRYPTION 125

It is involutive, i.e. self-inverse, with Hamming weight hw(M) = 88. The matrix is MDS, so the
branch number is B = 5. From the perspective of differential- and linear cryptanalysis, this means
that if k > 0 is the number of active rows in a slice, then the corresponding slice of S′ has at least
5− k active rows. For the MixSlices operation, there are three major requirements:

1. The linear- and differential branch number should be B = 5,

2. The M matrix should have low density, and

3. As a heuristic to minimize implementation characteristics, for both encryption and decryp-
tion, the MixSlices operation should be an involution.

We elaborate on the first two requirements below.

High Branch Number. The main design goal of the MixSlices transformation is to follow the
wide-trail design strategy. Hence, MixSlices is related to an F2-linear error-correcting code over
F4

2 with minimum distance B = 5. Note that in our setting, the linear- and differential branch
numbers are identical. In other words, a difference in k > 0 rows of a slice will result in a
difference in at least 5− k rows in the same slice after one application of MixSlices. While this is
a good bound for 2 rounds, only the interaction with the ShiftPlanest operation guarantees an
overall secure design.

Low Density. The density, i.e. the Hamming weight of the M matrix, roughly corresponds to
the number of XOR operations that have to be performed when implementing MixSlices. It
is therefore a suitable metric when optimizing performance, both in software and hardware.
Among all 16×16 binary matrices, we searched through the involutive ones with branch number
B = 5 and with a particularly low Hamming weight. The best solution we were able to find
with our hardware assisted search had a Hamming weight of hw(M) = 88. Note that we cannot
guarantee that our matrix is actually optimal, as the minimal number of ones in such a matrix is
generally unknown.

ShiftPlanest

The ShiftPlanest operation rotates the registers of each plane of the state towards right (positive
Z direction) by a particular amount. In contrast to many existing designs, PRØST uses two
different sets of rotation constants, depending on the parity of the round number t; one for even
numbered rounds and one for odd numbered rounds. Again, this means in the notation of the
analysis of rotation matrices in AES-like ciphers of Section 3.1, that we use ρ = 2.

For round t with 0≤ t < T , the rotation constant for plane j with 0≤ j ≤ 3 is given by the
jth column of row t mod 2, denoted σt mod 2, j , of a 2× 4 rotation matrix σ over Zd . We use σ0
and σ1 to denote the first, respectively second row of σ. Thus, ShiftPlanest applied to a state S
in round t will result in a state S′ where

∀X ∈ Z4,∀Y ∈ Z4 : S′X ,Y =

¨

SX ,Y ≫ σ0,X , t even

SX ,Y ≫ σ1,X , t odd.
(3.40)

126 CHAPTER 3. DESIGN OF SYMMETRIC PRIMITIVES

Table 3.5: Rotation matrices σ for the ShiftPlanest operation for d = 16 and d = 32

d = 16 d = 32
�

0 2 4 6
0 1 8 9

� �

0 4 12 26
1 24 26 31

�

The particular rotation matrices are given in Table 3.5.
We posed two main design criteria for the ShiftPlanest transformation. Firstly, the rotation

constants should contribute to full diffusion after as few rounds as possible. Secondly, the
differential- and linear trails with fewest active S-boxes over a given number of rounds, should
have as many active S-boxes as possible, just as it was the case for our analysis in Section 3.1.
We remark that in fact the work on the choice of rotation constants for PRØST is what eventually
resulted in the work on the more generalized AES-like ciphers of Section 3.1.

The σ matrices for PRØST were found to be optimal in the sense that they give the best
diffusion, number of active S-boxes (see also Section 3.2.3) and implementation cost, for the
specified register lengths d. For register length d = 16 we obtain full diffusion after 3 rounds
and for d = 32 after 4 rounds. For lower bounds on the number of active S-boxes over various
number of rounds, we refer to Section 3.2.3.

With respect to implementation cost, we have optimized to have as many multiples of 8 as
possible among the rotation constants, as these can be implemented at no cost on 8-bit platforms
and cheaply on larger platforms. For the constants that are not multiples of 8, we seek minimize
their sum, as the implementation cost is proportional to the total sum of the constants. This sum,
not counting multiples of 8, is 22 for the d = 16 case and 88 for the d = 32 case, which roughly
translates to the implementation cost in cycles.

AddConstantst

In the AddConstantst operation, different round- and lane-dependent constants are XORed
to each lane. Let c0 = msbd(75817b9d) and c1 = msbd(b2c5fef0). In the following, let
j = 4X + Y , with X , Y ∈ Z4, so j is the lane index with 0 ≤ j ≤ 15. In round t, 0 ≤ t < T , we
have S′ = AddConstantst(S) with

∀X ∈ Z4,∀Y ∈ Z4 : S′X ,Y =

¨

SX ,Y ⊕ (c0≪ (t + j)) , j even

SX ,Y ⊕ (c1≪ (t + j)) , j odd.
(3.41)

The purpose of adding round constants is to make each round different. If the rounds are
all the same, denoted F , then fixed points X ∈ F2n

2 such that F(X) = X would extend to the
entire permutation. For example, if P = F10, then fixed points for F2 and F5 would also extend
to P. Therefore, one can expect several fixed points for P, whereas for an ideal (i.e. random)
permutation only a single fixed point is expected. By choosing round-dependent constants
for AddConstantst , we expect the number of fixed points to be close to 1. The two constants
75817b9d and b2c5fef0 are generated from the first 64 digits after the decimal points of π, as
illustrated by the code in Listing 3.1.

3.2. PRØST: PERMUTATION-BASED AUTHENTICATED ENCRYPTION 127

Listing 3.1: Code for generating constants c0 and c1

#include <s t d i n t . h>
#include <s t d i o . h>
const uint32_t p i [64] = {1 ,4 ,1 ,5 ,9 ,2 ,6 ,5 ,3 ,5 ,8 ,9 ,7 ,9 ,3 ,2 ,

3 ,8 ,4 ,6 ,2 ,6 ,4 ,3 ,3 ,8 ,3 ,2 ,7 ,9 ,5 ,0 ,
2 ,8 ,8 ,4 ,1 ,9 ,7 ,1 ,6 ,9 ,3 ,9 ,9 ,3 ,7 ,5 ,
1 ,0 ,5 ,8 ,2 ,0 ,9 ,7 ,4 ,9 ,4 ,4 ,5 ,9 ,2 ,3} ;

in t main(void) {
uint32_t c0 = 0;
u in t32_t c1 = 0;
in t i ;
for (i = 0; i < 32; ++i) {

c0 |= (p i [i] & 1) << i ;
c1 |= (p i [i+32] & 1) << i ;

}
p r i n t f (" c0 = 0x%08x\n " , c1) ;
p r i n t f (" c1 = 0x%08x\n " , c2) ;
return 0;

}

Mapping Byte Array to PRØST State

The PRØST state is a 4×4 matrix of d-bit registers. Inputs to an authenticated cipher, as specified
by the requirements of the CAESAR competition, are byte arrays. We now describe the mapping
of a byte array of 2n bits to a PRØST state, and back.

On a high level, we map words of length `= d/8 bytes to matrix coefficients. This is done
row first, column second. As such, the first ` bytes go into S0,0, the next ` bytes go to S0,1, and
so on. On a lower level, we map arrays of ` bytes to `-byte words. For this mapping we use
little-endian representation, since this is natively supported by the large majority of modern
computer architectures. For example, when we have d = 32, a register is `= 4 bytes long and
the first four bytes of the byte array bs are mapped to register S0,0 as

S0,0 = bs[3]‖bs[2]‖bs[1]‖bs[0], (3.42)

or, considering S0,0 as an integer, as

S0,0 =
3
∑

i=0

bs[i] · 28i . (3.43)

When putting this together we obtain that register SX ,Y of the PRØST state S with 0≤ X , Y ≤ 3 is
loaded from a byte array bs as

SX ,Y = bs[4`X + `Y + `− 1]‖bs[4`X + `Y + `− 2]‖ · · · ‖bs[4`X + `Y], (3.44)

or, again considering SX ,Y as an integer, as

SX ,Y =
`−1
∑

i=0

bs[4`X + `Y + i] · 28i . (3.45)

128 CHAPTER 3. DESIGN OF SYMMETRIC PRIMITIVES

The mapping of a state to a byte stream is done by the obvious inversion of this mapping.
Let g : F4×4×d

2 → F2n
2 be defined for a state S as

g(S) = S0,0‖S0,1‖ · · · ‖S3,2‖S3,3. (3.46)

When a PRØST state is XORed with a 2n-bit value X , we implicitly mean that X is XORed to the
state mapped to F2n

2 by g, i.e. X ⊕ g(S). Note that for all SX ,Y , the bits SX ,Y,0 and SX ,Y,d−1 are the
most- respectively least significant bits of SX ,Y .

3.2.3 Cryptanalysis of Permutation

In the following, we present our analysis of the PRØST permutation itself, with respect to some of
the most important aspects, seen from both a designers and attackers point of view. In particular,
we discuss the following aspects of the PRØST permutation: diffusion, strict avalanche criterion,
the avalanche effect, and its resistance towards differential- and linear cryptanalysis.

Diffusion

For our analysis, we assume that for the 4-bit S-box used, each of the 4 output bits depend on
each of the 4 input bits. Also, we assume that the MixSlices operation mixes the bits in a slice,
such that each output row depends on at least one bit from each input row. We remark that the
assumption on the S-box is not true for the PRØST S-box: letting X ′ = S(X), then X ′3 does not
depend on X0 and X ′2 does not depend on X3. While this will, to some extent, mean that our
analysis in the following is based on a too strong assumption, we deem that full diffusion will be
obtained after at most one more round than found.

After applying SubRows of the first round, all bits within a row are interdependent by
assumption. Applying MixSlices of the first round implies that we get bit interdependency
between all bits in the same slice. The ShiftPlanest operation cyclically shifts the planes by a
round-dependent amount, effectively mixing the slices. As SubRows and MixSlices take care of
mixing bits in slices in each round, the question becomes how many rounds are required to make
the plane shifting of ShiftPlanest create bit-interdependency between all planes.

When determining the choice of rotation matrix σ, we conducted an experiment trying out all
combinations of σ ∈ Z2×4

d , investigating the required number of rounds to obtain full diffusion.
For d = 16 we found that the best σ requires a minimum of 3 rounds for full diffusion, and there
are 4096 such matrices. For d = 32 a minimum of 4 rounds are required for full diffusion, and
there are 729088 rotation matrices σ obtaining this minimum. Unfortunately, there is no matrix
which obtains the best diffusion for both d = 16 and d = 32, hence the two parameter matrices
in Table 3.5, one for each case of d.

We remark that the method used here to determine the number of rounds required to
obtain full diffusion is essentially the same approach as the one using sumsets, as described in
Section 3.1.6.

Strict Avalanche Criterion and Avalanche Effect

For the purpose of investigating the strict avalanche criterion (SAC) and the avalanche effect in
the PRØST permutation, we conduct randomized experiments to measure the degree to which

3.2. PRØST: PERMUTATION-BASED AUTHENTICATED ENCRYPTION 129

these two properties are obtained. For PRØST-n, the statement of the avalanche effect is given by

∀i ∈ Z2n : 2−2n
∑

X∈F2n
2

hw
�

PRØST-n(X)⊕ PRØST-n
�

X ⊕ ei

�

�

= n, (3.47)

while the statement of the SAC is given by

∀i ∈ Z2n : Pr
j

�

PRØST-n(X) j 6= PRØST-n
�

X ⊕ ei

�

j

�

=
1
2

, (3.48)

where the probability is taken over the index j ∈ Z2n. To experimentally measure the extent to
which PRØST meets these two criteria, we sample a random subset X ⊂ F2n

2 . For 0≤ i, j < 2n,
define

ai, j =]
¦

X ∈ X | PRØST-n
�

X ⊕ ei

�

j 6= PRØST-n(X) j
©

and (3.49)

bi, j =]
¦

X ∈ X | hw
�

PRØST-n
�

X ⊕ ei

�⊕ PRØST-n(X)
�

= j
©

. (3.50)

We now define the degree of avalanche effect degava and degree of SAC degSAC as defined by
Serf in his investigation of the AES finalists [283],

degava = 1−
∑2n−1

i=0

�

�]X −1 ·∑2n−1
j=0 2 j bi, j − 2n

�

�

4n2
and (3.51)

degSAC = 1−
∑2n−1

i=0

∑2n−1
j=0

�

�2ai, j ·]X −1 − 1
�

�

4n2
. (3.52)

Our results show that we obtain SAC and avalanche effect degrees of degava = degSAC = 1.0
(which is ideal) after 2 to 3 rounds for d = 16 and 3 to 4 rounds for d = 32.

Bounds on Active S-boxes

As we saw in Section 3.1, the minimum number of active S-boxes for any trail over T rounds of a
primitive, in combination with the differential and/or linear properties of the S-box used, can be
used to derive upper bounds on the differential- and linear trail probabilities. As the work on
PRØST preceded the work of Section 3.1, we present in the following our analysis independently
of the more general analysis on the AES-like ciphers above. We also remark that the rotation
matrices providing the improvements for PRØST described in Table 3.2 of Section 3.1, have not
been adopted into the PRØST specification.

To lower bound the number of active S-boxes for d = 16 and d = 32, we model the propagation
of active S-boxes over a particular number of rounds as an integer programming problem, just
as it was done with Model 1 for the generalized AES-like ciphers. The particular choices of
σ ∈ Z2×4

d used in PRØST arise from solving this problem for randomly chosen subsets of the
rotation matrices σ giving optimal diffusion for d = 16 and d = 32 (see above), and choosing
those giving the best bounds. The findings for the minimal number of active S-boxes using the σ
matrices from Table 3.5, for various number of rounds, are given in Table 3.6.

130 CHAPTER 3. DESIGN OF SYMMETRIC PRIMITIVES

Table 3.6: Lower bounds on the number of active S-boxes for d ∈ {16, 32} for various
number of rounds. The number in parenthesis was the best obtained when the solver
stopped due to memory limitations.

Rounds T

d 4 5 6 7 8

16 25 41 85 96 105
32 25 41 105 169 (210)

3.2.4 PRØST-based CAESAR Proposals

In Section 1.2.4 we mentioned that symmetric primitives based on permutations are becoming
increasingly popular, most notably in sponge constructions used for AEAD schemes. We saw APE
as an example of such, and other examples include the pre-CAESAR SpongeWrap by Bertoni,
Daemen, Peeters, and Assche [52] and PPAE by Khovratovich [183]. In the CAESAR competition,
an abundance of other permutation-based designs have emerged. In particular, an exhaustive
list (besides PRØST) is: Artemia [17], Ascon [116], CBEAM [276], ICEPOLE [235], Ketje [53],
Keyak [54], Minalpher [280], NORX [34], π-Cipher [144], PRIMATEs [23], and STRIBOB [277].

In this section we describe our first-round proposals for the CAESAR competition, which all are
specific instantiations of AEAD schemes using the PRØST permutation as the underlying primitive.
Each of the instantiations are based on existing AE schemes. The proposals are summarized in
Table 3.7, which lists the specific instantiations, while the specifications in the following use the
general permutation size 2n for their descriptions.

Table 3.7: The PRØST CAESAR proposals, underlying PRØST permutation and their
rankings. The columns indicate the properties of the proposals: whether the scheme
is online in encryption and decryption (E and D); parallelizability (P); nonce misuse
resistance (NMR); easy constant-time implementation (CT); and cheap countermeasures
for against power analysis (CM).

Online

Rank Proposal Permutation E D P NMR CT CM

1 PRØST-COPA-128 PRØST-128 Ø Ø Ø OAE1 Ø Ø
2 PRØST-COPA-256 PRØST-256 Ø Ø Ø OAE1 Ø Ø
3 PRØST-OTR-128 PRØST-128 Ø Ø Ø NAE Ø Ø
4 PRØST-OTR-256 PRØST-256 Ø Ø Ø NAE Ø Ø
5 PRØST-APE-256[256,256] PRØST-256 Ø OAE1 Ø Ø
6 PRØST-APE-128[128,128] PRØST-128 Ø OAE1 Ø Ø

Throughout our description of the proposals, we use Pn as a compact notation for the
PRØST-n permutation. Multiplications are to be understood as working in the finite field F22n =
F2[X]/ f2n(X) defined modulo an irreducible polynomial f2n(X) over F2 of degree 2n. The

3.2. PRØST: PERMUTATION-BASED AUTHENTICATED ENCRYPTION 131

irreducible polynomials used for our proposals are given in Table 3.8. In the finite fields used,
multiplication by the constant 2 (shown in Algorithm 9) is particularly simple, as it involves only
a left shift by one position and a conditional XOR of the reduction polynomial, as we saw was
the case when describing the multiplication by 02 in the MixColumns operation of the AES.

Table 3.8: Defining polynomials for finite fields used in PRØST

Field Defining polynomial f2n(X) Hex

F2256 X 256 + X 10 + X 5 + X 2 + 1 425
F2512 X 512 + X 8 + X 5 + X 2 + 1 125

Algorithm 9: XTIME (multiplication by 2 in F22n)

Data: X ∈ F22n

Result: 2X
1 f256← 425
2 f512← 125
3 if msb1(X) = 1 then
4 return (X � 1)⊕ f2n
5 else
6 return X � 1
7 end

We remind from Section 1.2.4 that κ denotes the key length; η denotes the nonce length;
and τ denotes the tag length. None of our proposals use secret message numbers. Table 3.9 gives
the parameters for each of the proposals. We use k to denote the number of blocks of associated
data and ` to denote the number of message blocks (after padding) throughout. We remark that
the block size of each Mi , Ci and Ai are not always equal: for PRØST-COPA and PRØST-OTR, the
block size is 2n while for PRØST-APE the block size equals the rate r (see below). For a message
M , we write Mi, 1≤ i ≤ `, to denote the ith block of M , starting from the most significant end.
We use an equivalent indexing for a ciphertext C and associated data A.

Table 3.9: PRØST proposal parameters

Rank Proposal Block size κ η τ

1 PRØST-COPA-128 256 256 256 256
2 PRØST-COPA-256 512 512 512 256
3 PRØST-OTR-128 256 256 128 128
4 PRØST-OTR-256 512 512 256 256
5 PRØST-APE-256[256,256] 256 256 256 256
6 PRØST-APE-128[128,128] 128 128 128 128

132 CHAPTER 3. DESIGN OF SYMMETRIC PRIMITIVES

Ciphertext Expansion

With many other AEAD schemes, including many CAESAR proposals, we see that the schemes
look very simple at a first glance. However, when it comes to handling fractional data, i.e. when
either associated data A or message M have a length not fitting with the underlying primitive,
many proposals turn to overly complicated solutions. An example is COPA which uses the XLS
construction by Ristenpart and Rogaway [265]. However, as pointed out by Nandi in [241, 242]
the use of XLS in COPA allows for a distinguisher.

Motivated by avoiding pitfalls associated with special cases, and ease of implementation, we
choose for all the PRØST proposals to always do ciphertext expansion by applying padding to the
message (and associated data, if necessary), as the first thing before processing. In particular,
letting X ∈ F∗2 be a binary string, we use the padding function

padb : F∗2→ Fmb
2 , m, b ∈ N

X 7→ X‖10b−(|X |mod b)−1.
(3.53)

Thus, the padding appends a 1-bit followed by as many zeroes required to make |padb(X)| the
smallest multiple of b which is strictly greater than |X |. We remark that this padding function
is not identical to that introduced in Section 1.2.4, which mapped inputs of length at most
r − 1 bits, to outputs of length exactly r bits. This change is made, because the general duplex
construction allows blocks of varying lengths, while for our proposals, blocks will always have
identical lengths, so our padding works on the full string at once, rather than on a block basis.
The reasoning behind our choice to always employ ciphertext expansion is that:

• This approach is less prone to implementation errors, which are a frequent source of real-
world security break-downs. By effectively eliminating the special cases an implementation
has to be able to handle, chances of introducing implementation errors are diminished,

• Proposal implementations become easier to optimize in both software and hardware, which
in turn aids comparisons, and

• The impact on size of implementation can be significant. Be it code size in software or
control logic in hardware, the lower complexity of padding rules, compared to handling
special cases, leads to smaller implementations.

By allowing a minor ciphertext expansion, considering relevant packet sizes (we return to this in
Chapter 4), we achieve the advantages mentioned above, except in some corner use-cases. We
believe this is the right trade-off for most practical applications, and indeed will facilitate ease
of use. We remark that with ciphertext expansion, ciphertexts always have a length equal to a
multiple of the block size.

Block Cipher-based AEAD to Permutation-based AEAD

It is a well-known result that any permutation can be turned into a block cipher by plugging it into
what is called an Even-Mansour construction [122] named after the authors. Letting K = (K0, K1),
the construction uses a permutation P to define a block cipher as

EK(X) = P(X ⊕ K0)⊕ K1. (3.54)

3.2. PRØST: PERMUTATION-BASED AUTHENTICATED ENCRYPTION 133

When K0 = K1, the construction is called a Single-Key Even-Mansour construction (SEM) and is
due to Dunkelman, Keller, and Shamir [119]. As such, any block cipher-based AE scheme can be
turned into a permutation-based scheme by using this construction. For the purpose of using
PRØST-n in block cipher-based AEAD schemes, we use it in an SEM construction with a single,
fixed key K . As such, we define

P̃n,K : F2n
2 × F2n

2 → F2n
2

(K , X) 7→ Pn(X ⊕ K)⊕ K .
(3.55)

With this, we next define specific instantiations of authenticated encryption schemes based on
PRØST, both when the underlying scheme is block cipher- or permutation-based, either by using
it directly, or through P̃n,K .

PRØST-COPA-n

In this part, we give our specification of PRØST-COPA-n, the instantiation of the COPA AEAD
scheme using P̃n,K as the underlying block cipher. For PRØST-COPA-n the block size is 2n bits.
The resulting proposal PRØST-COPA-n offers OAE1 security, leaking block-aligned prefixes of
messages under nonce misuse. PRØST-COPA-n is a fully parallelizable, online AEAD scheme, and
uses the very efficient doubling of Algorithm 9, as opposed to general multiplication in F22n , for
the tweak values. The scheme uses two calls to PRØST-n and two doublings (i.e. multiplications
by 2) in F22n , per message block.

Figure 3.5: Encryption of ` message blocks with PRØST-COPA-n

M1

203L

P̃n,K

V

L P̃n,K

21 L

C1

· · ·

M2

213L

P̃n,K

P̃n,K

22 L

C2

M`

2`−13L

P̃n,K

P̃n,K

2`L

C`

The encryption of `message blocks is depicted in Figure 3.5 (processing associated data is not
shown). In the figure, the values V and L are output from the processing of associated data and
nonce. The complete description of encryption with authentication, decryption with verification
and processing of associated data for PRØST-COPA-n is given by Algorithms 14 through 16 in
Appendix D.

134 CHAPTER 3. DESIGN OF SYMMETRIC PRIMITIVES

PRØST-OTR-n

Next, we specify PRØST-OTR-n, which is the instantiation of OTR, as introduced in Section 1.2.4,
using P̃n,K as the underlying block cipher. For PRØST-OTR-n the block size is 2n bits. As we have
already seen, OTR uses 2-round Feistel constructions to encrypt two consecutive message blocks.
It uses one call to PRØST-n and half a doubling in F22n per message block.

Figure 3.6: Encryption of ` message blocks with PRØST-OTR-n, when ` is even

M1 M2

P̃n,K

P̃n,K

C1 C2

20 L

δ⊕ 20 L

M3 M4

P̃n,K

P̃n,K

C3 C4

21 L

δ⊕ 21 L

· · ·

M`−1 M`

P̃n,K

P̃n,K

C`−1 C`

2
`
2−1 L

δ⊕ 2 `2−1 L

PRØST-OTR-n inherits the features of OTR. In particular, it offers NAE security, so all security
claims are lost under nonce misuse. Comparing to schemes which offer e.g. OAE1 or even MRAE
security, the gain is performance. The proposal is online and completely parallelizable. It does not
require the inverse of the underlying primitive, due to the employment of the Feistel structure.

The encryption of ` message blocks, for even `, with PRØST-OTR-n is depicted in Figure 3.6.
In the figure, the value δ is the encryption of the padded nonce, i.e. δ = P̃n,K(pad2n(N)). The com-
plete description of encryption with authentication, decryption with verification and processing
of associated data for PRØST-OTR-n is given by Algorithms 17 through 21 in Appendix D.

PRØST-APE-n[r, c]

Besides the two block cipher-based AEAD schemes used in conjunction with the PRØST permuta-
tion, via the SEM construciton, we also propose to use PRØST in the APE mode of operation. As
we saw in Section 1.2.4, APE is a permutation-based AEAD scheme using the duplexed sponge
construction. As such, we have two parameters: the rate r and the capacity c. These are what
are indicated by the [r, c] part of the name PRØST-APE-n[r, c]. Thus, we have r + c = 2n. For
PRØST-APE-n[r, c] the block size is r bits.

PRØST-APE-n[r, c] is online in encryption, i.e. one does not need to know all message blocks,
and in particular the number of message blocks, before one can start encrypting. For decryption,
however, one starts decrypting the last ciphertext block first, and hence decryption is not online.
The fact that one decrypts in reverse implies the need for the inverse of the underlying permutation
as well.

Figure 3.7 illustrates the encryption and tag generation for ` message blocks of r bits each.
In the figure, the value IV = IVr‖IVc is the result of processing associated data and nonce, which
is not shown. The nonce N is effectively considered part of the associated data, and is prepended

3.2. PRØST: PERMUTATION-BASED AUTHENTICATED ENCRYPTION 135

IVr

IVc

M1 C1

1 Pn

· · ·

· · ·

M2 C2

Pn

M` C`

Pn K

T

Figure 3.7: Encryption and authentication of ` message blocks of r bits each, using
PRØST-APE-n[r, c]

to this. The complete description of encryption with authentication, decryption with verification
and processing of associated data for PRØST-APE-n[r, c] is given by Algorithms 22 and 23 in
Appendix D.

As we shall see, APE achieves privacy and integrity up to the bound 2c/2 in the ideal per-
mutation model. As such, the choice of rate and capacity influence performance and security,
in the sense that increasing capacity and decreasing rate will increase security and decrease
performance, and vice versa. We refer to Table 3.7 for the specific parameters of our proposals.
Under nonce misuse, PRØST-APE offers OAE1 security, just like PRØST-COPA.

3.2.5 Features

As already mentioned, the PRØST permutation is designed to be highly secure and with good
implementation characteristics. These properties are inherited by the proposals, as they directly
apply the permutation in a mode of operation. All the proposals suggested have the following
features in common:

• They are based on a large cryptographically secure permutation. This is arguably one
of the simplest, if not the simplest way, to build primitives for symmetric cryptography,
including authenticated encryption primitives. In particular, this avoids complicated and
often very inelegant considerations related to key schedules for traditional block cipher
based constructions, and

• They are based on a single permutation. Having a single permutation further avoids
considerations related to the independence of permutations.

3.2.6 Security Goals and Proofs

Next, we introduce some crucial concepts of security notions, and we use these to give proofs
of security for the proposed schemes. The proofs largely rely on the existing proofs for the
underlying modes of operation used. When considering the provable security of an AEAD scheme,
we consider two requirements:

1. The ciphertexts C produced by the AEAD scheme should be indistinguishable from the
output provided by an ideal primitive with the same functional signature. This security
notion is denoted IND-CPA (for indistinguishability under a CPA attack). The IND-CPA

136 CHAPTER 3. DESIGN OF SYMMETRIC PRIMITIVES

notion is what guarantees that the primitive provides confidentiality. In our notions and
proofs below, we refer to this property as either IND-CPA or privacy (in particular, either
priv or perm-priv for short).

2. It should not be possible for an adversary to be able to provide a valid ciphertext/tag pair
(C , T) without knowledge of the secret key K. In other words, the adversary must not
be able to forge. This security notion is denoted INT-CTXT (for integrity of ciphertext).
The notion of INT-CTXT is what guarantees that the primitive provides authenticity and
integrity. In our notions and proofs below, we refer to this property as either INT-CTXT
or authenticity (in particular, either auth or perm-auth for short).

We consider an AEAD scheme to be secure if and only if it satisfies both the IND-CPA and
INT-CTXT properties. Below in Definitions 40 through 43, we define the two notions formally,
both for block cipher- and permutation-based AEAD, and we put them into the context of our
PRØST proposals. Table 3.10 summarizes our security claims for our six proposals with respect
to privacy (the IND-CPA notion) and authenticity (the INT-CTXT notion). Note that for block
cipher-based proposals, the claimed security level is n bits for a proposal using PRØST-n, while
for the permutation-based PRØST-APE, the security level is c/2. We prove these bounds below.

Table 3.10: Proposal ranks and security claims (in bits) for our proposals for privacy
and authenticity

Rank Proposal Privacy Authenticity

1 PRØST-COPA-128 128 128
2 PRØST-COPA-256 256 256
3 PRØST-OTR-128 128 128
4 PRØST-OTR-256 256 256
5 PRØST-APE-256[256,256] 128 128
6 PRØST-APE-128[128,128] 64 64

Standard- and Ideal Model

When proving the security for a mode of operation, one proceeds under a set of assumptions,
usually captured by one of two possible models: the standard model or the ideal model.

With a proof in the standard model, the power of the adversary is only limited by the time
and computational power available. Nothing is assumed about the underlying primitive; rather,
the proof evolves around a security reduction, relating the security of the mode to the security of
the underlying primitive. In the standard model, the adversary is given access to the mode itself,
but can also compute as many primitive outputs as she wants, given the resource restrictions.
The outcome of a proof in this model is usually a security bound which is directly related to that
of the primitive, plus some additional gain in advantage for the adversary in distinguishing the
mode, due to the way the primitive is employed.

Proofs in the ideal model allow the adversary to interact with both an instantiation of the
mode itself on one hand, and of the underlying primitive on the other hand, so as to imitate the

3.2. PRØST: PERMUTATION-BASED AUTHENTICATED ENCRYPTION 137

fact that in the standard model she can compute primitive outputs on her own. The primitive
itself is modeled as an ideal (i.e. random) permutation. In particular, one typically models the
primitive using lazy sampling, where we imagine the adversary asking queries to a black box.
When the box is queried with an input not previously seen, it randomly picks an output that was
not chosen before, while on previously seen inputs it deterministically returns the corresponding
output. An important difference between proofs in the standard- and ideal models is, that in the
latter there is no security reduction. As such, one obtains a tangible bound, but which in turn
relies on the assumption of ideality of the primitive. In reality of course, the primitive used is
not ideal, and as such one generally prefers a proof in the standard model. However, there is
no known construction proven secure in the ideal model, which has been shown insecure when
instantiated (unless specifically constructed to prove such a point). We remark that in both cases,
concepts such as side-channel attacks and the possibilities of errors are completely abstracted
away from the model.

The sketch of our approach to the security proofs will be as follows. For all our proofs, we
assume PRØST to be an ideal permutation, so we work in the ideal model. Two of the suggested
modes of operation for PRØST are block cipher-based (COPA and OTR), while the last (APE) is
permutation-based. To that end, the security proofs for PRØST-APE are obtained via the security
proofs for the APE mode of operation, as they assume any ideal permutation. For COPA and
OTR the reference proofs are in the standard model, and as such involves a term Advsprp

E which
denotes the security of the underlying primitive (we define this notion below in Definition 39).
We prove in the ideal model a bound for Advsprp

E in the case where E = P̃n,K , and plug this into
the term for both the PRØST-COPA and PRØST-OTR security proofs, to obtain proofs in the ideal
model. The author would like to thank Bart Mennink for his tireless help in understanding the
following notions and their relation to the security proofs for the PRØST proposals.

Security Definitions

In the following, we give the canonical definitions of security that allow us to show the security
of our proposals with respect to privacy and authenticity.

Definition 37 (Distinguisher). Let k be a positive integer. We define a distinguisher D to be an
algorithm which is given access to a list of k oracles O = O1, . . . ,Ok which together represent one
of two systems. By DO1,...,Ok we denote that D has access to the particular list of oracles. First, a
fair coin is flipped to obtain a value b ∈ {0,1}. If b = 1, the oracles represent on one hand the
behavior of an instantiation of a concrete cryptographic scheme (called the real world), while if
b = 0, they represent an idealized version of the scheme on the other hand (called the ideal world).
The goal of the distinguisher D is to guess which is the case. We write (without loss of generality)
that DO1,...,Ok = 1 if the distinguisher guesses that b = 1, and DO1,...,Ok = 0 otherwise.

For extra notation, when used as oracles, we let \ denote an oracle which is an ideal version
of the AEAD encryption function, i.e. it returns a randomly sampled ciphertext/tag pair on each
call. Also, when the symbol ¤ is used as an oracle, we mean an oracle that always returns the
decryption failure symbol ⊥. For the security of PRØST-COPA, we will need the notion of an
online cipher. The notation is re-used from the security proof of COPA [21].

138 CHAPTER 3. DESIGN OF SYMMETRIC PRIMITIVES

Definition 38 (Online cipher). A cipher E : Fκ2 ×
�

F2n
2

�+→ �

F2n
2

�+
is said to be online if it has the

properties that

1. It is a permutation on every block of 2n bits, and

2. The output blocks are identical for two different inputs with a common prefix, i.e. EK(X‖Y)
and EK(X‖Y ′) are identical on the first |X | bits for any X , Y, Y ′ ∈ �F2n

2

�+
.

As such, an online cipher with a fixed key is a permutation on the blocks starting from block i and
onwards, and is determined by the first i − 1 blocks. We let OPerm(2n) denote the set of all such
online permutations π :

�

F2n
2

�+→ �

F2n
2

�+
. For APE, we use a slightly different online permutation,

see [24].

Definition 39 (Advantage compared to strong pseudo-random permutation). Let E : Fκ2 × Fm
2 →

Fm
2 be a block cipher. The sprp advantage (short for strong pseudo-random permutation) over E of

a distinguisher D is defined as

Advsprp
E (D) =

�

�

�Pr
K

�

DEK ,E−1
K = 1

�− Pr
π

�

Dπ,π−1
= 1

�

�

�

�. (3.56)

The probabilities are taken over K
$←− Fκ2 , π

$←− Perm(m) and any random choices made by D. We
denote by Advsprp

E (t, q) the maximum advantage taken over all distinguishers D that run in time t
and make q queries. Note: In the case where EK is the Single-Key Even-Mansour construction using
an ideal permutation P and key K, the distinguisher has also access to the underlying permutation
(in both directions) in both worlds (and thus access to four oracles). As such, in the real world,
(O1,O2,O3,O4) = (EK ,E−1

K , P, P−1), while in the ideal world (O1,O2,O3,O4) = (π,π−1, P, P−1). In
the ideal world, P and π are independent.

Definition 40 (IND-CPA advantage). Let Π be a block cipher-based AE scheme. The IND-CPA
advantage over Π of a distinguisher D is defined as

Advpriv
Π (D) =

�

�

�Pr
K

�

DEK = 1
�− Pr
\

�

D\ = 1
�

�

�

�. (3.57)

The probabilities are taken over K
$←−K , \ $←−OPerm(2n) and any random choices made by D. By

Advpriv
Π (t, q,σ,`) we denote the maximum advantage taken over all distinguishers D that run in

time t and make q queries, of length at most ` blocks, and of total length at most σ blocks.

Definition 41 (INT-CTXT advantage). Let Π be a block cipher-based AE scheme. The INT-CTXT
advantage over Π of a distinguisher D is defined as

Advauth
Π (D) =

�

�

�Pr
K

�

DEK ,E−1
K = 1

�− Pr
K

�

DEK ,¤ = 1
�

�

�

�. (3.58)

The probabilities are taken over K
$←− K and any random choices made by D. We denote by

Advauth
Π (t, q,σ,`) the maximum advantage taken over all distinguishers D that run in time t and

make q queries, of length at most ` blocks, and of total length at most σ blocks. We assume that D
does not make a decryption query (A, C , T) if it has made a query (A, M) to the encryption oracle
and obtained (C , T).

3.2. PRØST: PERMUTATION-BASED AUTHENTICATED ENCRYPTION 139

Definition 42 (IND-CPA advantage for permutation-based AE). Let Π be a permutation-based
AE scheme. The IND-CPA advantage over Π of a distinguisher D is defined as

Advperm-priv
Π (D) =

�

�

�Pr
K ,π

�

DEK ,π,π−1
= 1

�− Pr
\,π

�

D\,π,π−1
= 1

�

�

�

�. (3.59)

The probabilities are taken over K
$←−K , π

$←− Perm(2n),\ $←−OPerm(r), and any random choices
made by D. By Advperm-priv

Π (q, m) we denote the maximum advantage taken over all distinguishers
D making q queries totaling m blocks.

Definition 43 (INT-CTXT advantage for permutation-based AE). Let Π be a permutation-based
AE scheme. The INT-CTXT advantage over Π of a distinguisher D is defined as

Advperm-auth
Π (D) =

�

�

�Pr
K ,π

�

DEK ,E−1
K ,π,π−1

= 1
�− Pr

π

�

DEK ,¤,π,π−1
= 1

�

�

�

�. (3.60)

The probabilities are taken over K
$←−K , π

$←− Perm(2n), and any random choices made by D. By
Advperm-auth

Π (q, m) we denote the maximum advantage taken over all distinguishers D making q
queries totaling m blocks. We assume that D does not make a decryption query (A, C , T) if it has
made a query (A, M) to the encryption oracle and obtained (C , T).

Patarin’s H-coefficient Technique

For our proof of Lemma 9 in the following, we will rely on a proof technique due to Patarin [258]
called the H-coefficient technique. We state here the result as we need it and refer to [258] and
e.g. the work of Chen and Steinberger [93] for further details.

Let D be a distinguisher trying to distinguish between two worlds X and Y . The interaction
of D is captured by a transcript which is denoted ω. We let DX and DY denote the probability
distribution over transcripts when interacting with worlds X and Y , respectively. Let T be
the set of all feasible transcripts which is partitioned into a set of good and bad transcripts s.t.
T = Tgood∪Tbad. Now, consider a fixed distinguisher D and let ε be s.t. for all ω ∈ Tgood it holds
that

Pr[DX =ω]
Pr[DY =ω]

≥ 1− ε. (3.61)

Then, the H-coefficient technique says that Adv(D)≤ ε+ Pr[DY ∈ Tbad].

Lemma 9 (Security bound on SEM). Let P : F2n
2 → F2n

2 be an ideal permutation s.t. an adversary
can make at most ρ evaluations of P in time t and let P̃K denote the SEM construction using P and
key K. Then

Advsprp
P̃K
(t, q)≤ 2ρq

22n
. (3.62)

Proof. Let D be any distinguisher which can evaluate P at most ρ times in time t. For the proof
we use Patarin’s H-coefficient technique. Let X denote the real world in which D interacts with
the oracles (O1,O2,O3,O4) = (P̃K , P̃−1

K , P, P−1) and let Y denote the ideal world where D interacts

with (O1,O2,O3,O4) = (π,π−1, P, P−1) for K
$←−K and π

$←− Perm(2n).

140 CHAPTER 3. DESIGN OF SYMMETRIC PRIMITIVES

Denote by ωE = {(si , t i)}qi=1 the result of the interaction of D using q construction queries.
Similarly, the result of the interaction using ρ queries to P we denote by ωP = {(x i , yi)}ρi=1.
To ease the analysis, the key K is disclosed at the end of the experiment (in the ideal world, a
dummy key K is disclosed). We define a transcript as a tuple (ωE ,ωP , K) and a bad transcript is
such a tuple where it holds that

K ∈ {s⊕ x , y ⊕ t | (s, t) ∈ωE ∧ (x , y) ∈ωP}. (3.63)

Bounding Pr[DY ∈ Tbad]. There are ρ pairs (x , y) ∈ωP and for each of them we consider each
pair (s, t) ∈ωE . This means there are at most q ·ρ values for s⊕ x , any of which equals K with
probability 2−2n. A similar argument applies to the probability of there being a pair (x , y) and
(s, t) s.t. t ⊕ y = K . As such, we find Pr[DY ∈ Tbad]≤ 2qρ

22n .

Bounding Pr[DX = ω]/Pr[DY = ω] for ω ∈ Tgood. Consider some ω ∈ Tgood. Let ΩX and
ΩY denote all possible oracles in the real world and ideal world, respectively. Correspondingly,
let compatX and compatY denote oracles in ΩX , respectively ΩY , which are compatible with
transcript ω.

Since the key space has size 22n, and there are 22n! permutations on 2n bits, we have that
]ΩX = 22n · 22n! and]ΩY = 22n · �22n!

�2
. Now, ω ∈ Tgood implies that any tuple in ω defines a

unique input/output pair to P. As ωE ∪ωP consists of q+ρ tuples, the number of compatible
2n-bit permutations in the real world is]compatX = (2

2n − q − ρ)!. Correspondingly, in the
ideal world, the number of permutations compliant with P is (22n − ρ)! while the number
of permutations compliant with the construction queries is (22n − q)!. As such,]compatY =
�

22n − q
�

!
�

22n −ρ�!≤ �22n − q−ρ�!22n!. By definition, we find that

Pr[DX =ω] =
(22n − q−ρ)!

22n · 22n!

=
(22n − q−ρ)!22n!

22n · (22n!)2

≥]compatY

]ΩY
= Pr[DY =ω]. (3.64)

As such, we see Pr[DX = ω] ≥ Pr[DY = ω], so ε ≤ 0 and by applying Patarin’s H-coefficient
technique, we find that

Advsprp
P̃K
(t, q)≤ 2qρ

22n
. (3.65)

With the statement of Lemma 9 in hand, we move on to show the security of our proposals
next. In all three cases, we rely on the existing proofs for the modes of operation, when taking
the final step to apply them to using the PRØST permutation as the idealized underlying primitive.

3.2. PRØST: PERMUTATION-BASED AUTHENTICATED ENCRYPTION 141

PRØST-COPA-n

Theorem 11 (IND-CPA for PRØST-COPA-n). Assume that PRØST-n is an ideal permutation and
that an adversary can make at most ρ evaluations of the PRØST-n permutation in time t ′, where
t ′ ≈ t. Then

Advpriv
PRØST-COPA-n(t, q,σ,`)≤ 39(σ+ q)2

22n
+

8ρ(σ+ q)
22n

+
(`+ 2)(q− 1)2

22n
. (3.66)

Proof. The proof follows from combining the proof for privacy of COPA [21, Theorem 2] with
Lemma 9.

Theorem 12 (INT-CTXT for PRØST-COPA-n). Assume that PRØST-n is an ideal permutation and
that an adversary can make at most ρ evaluations of the PRØST-n permutation in time t ′, where
t ′ ≈ t. Then

Advauth
PRØST-COPA-n(t, q,σ,`)≤ 39(σ+ q)2

22n
+

8ρ(σ+ q)
22n

+
(`+ 2)(q− 1)2

22n
+

2q
2τ

. (3.67)

Proof. The proof follows from combining the proof for authenticity of COPA [21, Theorem 3]
with Lemma 9.

PRØST-OTR

The security proof for OTR by Minematsu [232] is technically in the ideal model, but it can be
considered as being in the standard model by admitting the term Advsprp

E (t ′, 2σ). In particular,
this occurs by modeling the encrypting of a block in OTR, with its masking, as an XE construction
(see the work by Rogaway [270]).

Theorem 13 (IND-CPA for PRØST-OTR-n). Assume that PRØST-n is an ideal permutation and
that an adversary can make at most ρ evaluations of the PRØST-n permutation in time t ′, where
t ′ ≈ t. Then

Advpriv
PRØST-OTR-n(t, q,σ,`)≤ 6(σ+ q)2

22n
+

4ρ(σ+ q)
22n

. (3.68)

Proof. The proof follows from combining three parts: the proof for privacy of OTR [232, Theorem
1] in the ideal model; the fact that the modeling of OTR using XE-blocks admits the term
Advsprp

E (t ′, 2σ) in the standard model (where t ′ ≈ t); and Lemma 9 which gives the term
Advsprp

E (t ′, 2σ).

Theorem 14 (INT-CTXT for PRØST-OTR-n). Assume that PRØST-n is an ideal permutation and
that an adversary can make at most ρ evaluations of the PRØST-n permutation in time t ′, where
t ′ ≈ t. Then

Advauth
PRØST-OTR-n(t, q,σ,`)≤ 6(σ+ q)2

22n
+

4ρ(σ+ q)
22n

+
q
2τ

. (3.69)

Proof. The proof follows from combining three parts: the proof for authenticity of OTR [232,
Theorem 2] in the ideal model; the fact that the modeling of OTR using XE-blocks admits the
term Advsprp

E (t ′, 2σ) in the standard model (where t ′ ≈ t); and Lemma 9 which gives the term
Advsprp

E (t ′, 2σ).

142 CHAPTER 3. DESIGN OF SYMMETRIC PRIMITIVES

PRØST-APE-n[r, c]

In this section we present security bounds for PRØST-APE-n[r, c]. The proofs of security for the
APE mode of operation from [24] assume an ideal permutation, thus under this assumption, the
security bounds for the APE construction carry directly over to PRØST-APE-n[r, c]. Note that the
security bounds do not depend on the time t used by the distinguisher. Indeed, the bounds hold
for the strongest type of distinguishers whose time complexity is unbounded; only the number of
queries q and their total length m matter.

Theorem 15 (IND-CPA for PRØST-APE-n[r, c]). Assume that PRØST-n is an ideal permutation.
Then

Advperm-priv
PRØST-APE-n[r,c](q, m)≤ m2

22n
+

m(m+ 1)
2c

. (3.70)

Proof. The proof is given in [24, Theorem 1].

Theorem 16 (INT-CTXT for PRØST-APE-n[r, c]). Assume that PRØST-n is an ideal permutation.
Then

Advperm-auth
PRØST-APE-n[r,c](q, m)≤ m2

22n
+

2m(m+ 1)
2c

. (3.71)

Proof. The proof is given in [24, Theorem 2].

3.2.7 External Analysis

Since its submission in early 2014, with the CAESAR competition being a high-profile topic,
PRØST has received a lot of attention from the cryptographic community. In the following, we
discuss the analyses published up until the time of writing.

In [90], Canteaut and Roué study improved bounds on the maximum expected differential prob-
ability (MEDP) and the maximum expected square correlation (MELP) for substitution-permutation
networks. Essentially, their work presents a framework for analyzing the upper bound on the
resistance of an SPN to differential- and linear cryptanalysis over 2 rounds. With respect to
PRØST, the authors consider an SPN with the same building blocks as the PRØST permutation,
and show bounds on the MEDP and MELP for two rounds of such an SPN.

An integral attack employing the Fast Fourier Transform (FFT) is presented on 8 rounds
of PRØST-128 and on 9 rounds of PRØST-256 by Todo and Aoki in [290]. Using the integral
distinguishers, the authors are able to perform key-recovery attacks, for the number of rounds
mentioned, on P̃n,K . The attack on P̃128,K has a complexity of 264 data and 280 time, while the
complexity for the attack on P̃256,K is 265 data and 280.9 time.

In [117], Dobraunig, Eichlseder, and Mendel show that forgery attacks are possible against
PRØST-OTR-n in the related-key model. That is, an attacker is assumed to be able to obtain inputs
(N , A, M) and corresponding outputs (N , A, C , T) for some fixed key K , and the attack then shows
that it is possible to forge valid outputs for an instantiation of PRØST-OTR-n with a key K ′ which
is related to K in a particular way. Referring to the illustration of PRØST-OTR-n of Figure 3.6,
the related-key forgery essentially works as follows. By choosing a related key K ′ = K ⊕∆, and
related (padded) nonce pad2n(N

′) = pad2n(N)⊕∆, where ∆ has zeroes on the least 2n−η bits,
the values δ and L in the figure become affected by ∆ in a controllable way. In particular, one

3.2. PRØST: PERMUTATION-BASED AUTHENTICATED ENCRYPTION 143

can choose different message blocks, modified by ∆ in a particular way, such that one obtains
the same ciphertexts. The details of the attack are slightly more complicated than that, but we
do not go into the details here. We remark, however, that the attacks presented in [117] do not
contradict the proofs of Section 3.2.6, as they do not cover the related-key setting.

In [180], PRØST-OTR-n is under further scrutiny as Karpman presents a way to turn a related-
key distinguisher on the Even-Mansour construction into a related-key key-recovery attack. With
this, the analysis is applicable to PRØST-OTR-n. It uses relations of two kinds for the key: XOR
and modular addition. We remark that neither of analyses presented in [117] nor [180] are
applicable to PRØST-COPA-n as it uses the encryption of zeroes, L = EK(02n), for encryption
and tag generation, and thus can not be modified via a change in the nonce, as is the case for
PRØST-OTR-n.

We already saw how the work of [42], as presented in Section 3.1, generalizes the analysis
of bounds on the resistance towards differential- and linear cryptanalysis of AES-like primitives,
including the PRØST permutation. With the analysis, we found that the choice for rotation matrix
in PRØST-128 is not optimal with respect to the considered metrics. However, we remark that the
optimized rotation matrix has not been adopted into a new version of the PRØST permutation.

Most recently, Mennink defines in [229] a tweakable block cipher XPX which generalizes a
range of existing constructions: Even-Mansour; the XEX construction of Rogaway; as well as the
tweakable Even-Mansour used in the CAESAR proposal Minalpher [280]. The XPX construction
is shown to be strong tweakable pseudo-random permutation under certain conditions on the
tweak space. Furthermore, and more interestingly, XPX is proven secure against related-key
attacks with various key relation functions, depending on the tweak space used. Of particular
interest to our proposal, it is shown that PRØST-COPA-n is secure against related-key attacks,
when either the key K ′ is related to K, PRØST-n(K ′) is related to PRØST-n(K), or both, by the
XOR with some value ∆.

3.2.8 Discussion and Conclusions

In this section we have described PRØST, our proposal for a new permutation-based scheme
for authenticated encryption with associated data. PRØST was submitted in March 2014 as a
first-round candidate to the ongoing CAESAR competition. The PRØST submission contains six
ranked proposals, employing three existing third-party modes of operations COPA, OTR, and
APE, in a combination with the PRØST permutation using two different permutation sizes.

A total of 57 submissions were made to the competition. During the first year after submission,
the cryptographic community were occupied analyzing the proposals. Often, total breaks were
made due to small mistakes such as lack of domain separation between processing of associated
data and message. In many cases, such observations led to submitters publishing updated
versions with minor tweaks on the CAESAR competition mailing list. In this, PRØST was no
exception, as we gave in January 2015 an updated version PRØST v1.1. For our case, the minor
tweaks consisted of: the choice to always do ciphertext expansion by padding, as explained in
Section 3.2.4; corrections regarding the number of rounds required to obtain full diffusion; and
other minor changes. We refer to http://proest.compute.dtu.dk for the PRØST v1.1 specification
containing the full list of changes. While some attacks could be subverted using only minor
tweaks, other times the attacks were more fatal, such as the key-recovery attacks described on

http://proest.compute.dtu.dk

144 CHAPTER 3. DESIGN OF SYMMETRIC PRIMITIVES

AVALANCHE in Section 2.3.1 and on CALICO in [79]. As mentioned, PRØST did not move to the
second round, despite the absence of any serious attacks.

While there certainly is room for improvements in PRØST, e.g. with respect to the enhanced
parameters for the ShiftPlanest operation of Section 3.1, we believe that the design and choice
of modes of operation is sound. In particular, we believe that the direction taken with respect
to using several round-dependent permutations is interesting, as it leads to better diffusion in
elongated state representations such as that of PRØST. As PRØST follows the wide-trail design
strategy, allowing to prove better bounds on the resistance towards attacks such as differential-
and linear cryptanalysis, this creates word alignment on the rows of the state. This can be seen
as contrary to KECCAK, which avoids word alignment, but where proving bounds is difficult.
We highlight as an open problem for future work a trade-off between the ability to prove good
bounds on one hand, and the absence of word alignment on the other hand.

4
Implementation Aspects

When discussing the implementation of a cryptographic algorithm, we necessarily need to do
so with one or several particular platforms in mind. Some applications such as RFID tags have
extremely limited resources available for cryptographic implementations, in terms of e.g. chip
area and power, and thus require specially tailored algorithms. Meanwhile, a popular web content
provider needs to service many connections simultaneously using fairly standard hardware, and
thus would like to use an encryption method which delivers high performance in software. In
this chapter, we do not consider hardware implementations; rather, our scope is high-speed
implementation of block cipher modes of operation.

With cryptography in general, but especially with symmetric cryptography, there is a strong
dependency between the development of cryptographic algorithms and that of computer technol-
ogy. Quite naturally, with off-the-shelf CPUs having an increasing computing power, the time it
takes to execute a cryptographic attack decreases. This is an example of how development in tech-
nology affects the design of a symmetric cryptography. However, advances made in cryptographic
research also influence the development of general-purpose computers. The prime example of
this is the decision, by leading chip manufacturer Intel, to include special hardware support for
the AES block cipher since the introduction of their Westmere microarchitecture in 2010. The
work presented in this chapter evolves around the use of exactly these special instructions.

The performance of symmetric primitives in software is extremely important. In the past
decades, the Internet has grown tremendously. We have seen a massive shift towards streamed
content, where e.g. a piece of music or a video is being played while the download progresses,
rather than being played locally from the disk. Examples of extremely popular services include
YouTube, Netflix, HBO, Hulu, Spotify and Pandora, to name a few. At any time, such providers
service an enormous user base over SSL/TLS connections, so it is of utmost importance that the
cryptographic algorithms used in those protocols have a high performance. In fact, historically
there has been reluctance to offer secure connections via SSL/TLS due to performance concerns.

145

146 CHAPTER 4. IMPLEMENTATION ASPECTS

However with the recent advances in this area, this is no longer true. For example, Adam Langley
of Google said [205]:

On our production frontend machines, SSL/TLS accounts for less than 1% of the
CPU load, less than 10 KB of memory per connection and less than 2% of network
overhead. Many people believe that SSL/TLS takes a lot of CPU time and we hope
the preceding numbers will help to dispel that.

This example highlights the point: optimizations in the performance of cryptographic algorithms
and implementations matter. Such efforts help minimize the cost of using e.g. SSL or TLS, which
could otherwise be significant, thereby effectively facilitating the use of encryption at a mass
scale.

The efforts to implement high-speed symmetric cryptography are focused on two levels: the
high-level choices and the low-level optimization, and their interaction. The former has to do with
particular choices of parameters in, for example, a cryptographic protocol for communication
over the Internet. In such a case, choices include mode of operation to use, the underlying
primitive, and block and key sizes. Those choices influence both the performance as well
as security. For the low-level optimizations, the implementer must make a choice about the
use of registers, instructions and their scheduling, so as to make the implementation perform
optimally. In this chapter, we will consider optimizations on both levels: we investigate the
performance obtained with several modes of operation, when implemented on a recent Intel
microarchitecture, employing instruction tailored scheduling of the aforementioned special AES
instructions available.

4.1 Motivation

In this chapter, we focus on high-performance software implementations of AES-based block
cipher modes of operation. In particular, we consider several NIST-recommended modes for both
encryption and AEAD, as well a single MAC. We also analyze the performance of all AES-based
schemes from the first round of the ongoing CAESAR competition. To that end, we note that only
modes using the full AES-128 are considered. We make this clarification, since some CAESAR
proposals use round-reduced variants of AES-128.

Given the very recent Intel microarchitecture codenamed Haswell, which provides interesting
optimizations for special instructions for the AES (we discuss these in detail in Section 4.3.2
below), we use Haswell as our target platform in this chapter. Traditionally, when benchmarking
the performance of block ciphers and modes, a single message of a particular length, i.e. a
particular number of blocks, is used. As we describe in greater detail later, this means that
parallelizable modes of operation such as CTR mode are able to achieve very good performance
figures, because they can operate on the many message blocks independently of each other.
However, this is not true for sequential modes of operation, and comparatively, they have a
quite bad performance. One of the major contributions of this chapter is, that we consider the
performance of AES-based modes of operation on Haswell, using multiple messages. In other
words, instead of adhering to the traditional thinking of the performance using a single message,
we now consider the performance under the assumption that several messages are available

4.1. MOTIVATION 147

for processing at once. In particular, we give a very simple and efficient algorithm, the comb
scheduler, for scheduling the processing of the message blocks. With this approach, we show that
sequential modes are able to achieve very good performance, even comparable to parallelizable
modes.

The structure of this chapter is as follows. First, we give an overview of previous work on fast
AES implementations, not considering modes of operation. We then continue to present the modes
we consider in this work. In Section 4.3, we describe, with a focus on Haswell, the aforementioned
special AES instructions that are available on modern Intel CPUs, and other concepts such as
instruction pipelining, which are crucial to understanding our proposed comb scheduler. In
Section 4.4, we describe the comb scheduler along with various considerations relating to it.
In Sections 4.5 and 4.6 we apply the comb scheduler to a range of NIST-recommended modes
and CAESAR proposals, respectively. Finally, we give our discussion and concluding remarks in
Section 4.7. In this chapter, all mentions of the AES is to be understood as AES-128.

4.1.1 Timeline of AES Implementations

Naturally, Rijndael won the AES competition not only because it is a very secure block cipher, but
also because it has excellent implementation characteristics on many platforms. However, the
story of optimized AES implementations only begins with its standardization in 2001.

The first commonly referred AES implementations in the literature are the table-based
implementations by Gladman [143]. His implementation in 2001 achieved a performance of
approximately 25 cycles per byte (cpb). In 2007, Matsui and Nakajima [220] provided bit-
sliced implementations performing at 9.2 cpb, however not counting the overhead associated
with converting between standard- and bit-sliced representations of the AES state. A year later,
in 2008, Bernstein and Schwabe obtained a table-based implementation of the AES, focusing
on micro-optimizations, performing at 10.5 cpb [50]. This is to be compared to Gladman’s
implementations now performing at about 16 cpb. Käsper and Schwabe provided optimized bit-
sliced implementations in 2009 [198], performing at 7 cpb, this including the overhead associated
with the aforementioned state conversion. As already stated, Intel’s first microarchitecture
Westmere implementing dedicated AES instructions was launched in 2010, achieving a very high
performance of 1.25 cpb. Since 2010, three new microarchitectures have been released by Intel
under the names Sandy Bridge, Ivy Bridge, and Haswell. On Sandy Bridge, AES implementations
using new instructions are performing at around 0.64 cpb. On the most recent architecture
Haswell, the performance of the AES is all the way down to 0.625 cpb. Since Sandy Bridge,
implementations of the AES can enjoy the extra instructions and larger register sizes provided by
the Advanced Vector Extensions (AVX) and AVX2. We describe these in more detail in Section 4.3.6.

Publications

The results presented in this section are from:

[80] Andrey Bogdanov, Martin M. Lauridsen, and Elmar Tischhauser. Comb to Pipeline: Fast
Software Encryption Revisited. In Leander [210], pages 150–171.

148 CHAPTER 4. IMPLEMENTATION ASPECTS

Author Contribution

The author is responsible for a large part of the twelve Haswell-optimized implementations of
block cipher modes of operation considered in this work. Furthermore, the author is responsible
for the principle behind the comb scheduler algorithm proposed in Section 4.4, which forms the
basis of the consideration of performance of AES-based modes in this chapter.

4.2 Schemes Considered

In the following, we outline the block cipher modes of operation that we analyze in this chapter.
We partition the modes into two groups: the NIST-recommended modes on one hand, and the
CAESAR proposals on the other hand.

4.2.1 NIST-recommended Modes

In its special publications SP-800-38A-D [121], NIST recommends the following modes of op-
eration: ECB, CBC, CFB, OFB and CTR as basic encryption modes; CMAC as authentication
mode; and CCM and GCM as authenticated encryption modes. In Section 1.2.1 we described the
encryption modes while GCM and CCM were covered in Section 1.2.4.

Cipher-based MAC (CMAC) is a block cipher-based MAC. At its core is XCBC, a MAC algorithm
designed by Black and Rogaway [64], which was submitted to NIST as an improvement to
CBC-MAC. Later refinements by Iwata and Kurosawa turned XCBC into One-Key CBC-MAC
(OMAC) [165]. Later, OMAC was refined into OMAC1 [166], which is equivalent to CMAC.
CMAC works by first computing two keys (K1, K2) from the master key K as

K1 =

¨

K0� 1 ,msb1(K0) = 0

(K0� 1)⊕ c ,msb1(K0) = 1
, and (4.1)

K2 =

¨

K1� 1 ,msb1(K1) = 0

(K1� 1)⊕ c ,msb1(K1) = 1,
(4.2)

where K0 = EK(0n) and c is a particular constant. Consider message blocks M1, . . . , M`. If
|M`|= n then we modify it by setting M` = M` ⊕ K1 and otherwise we set M` = padn(M`)⊕ K2.
Now, the MAC over the message is computed as T =msbτ(C`), where for i = 1, . . . ,`,

Ci = EK(Ci−1 ⊕Mi), (4.3)

and where we define C0 = 0n.

4.2.2 Authenticated Encryption Modes and CAESAR

Besides the widely employed and standardized modes CCM and GCM, a great number of modes
for authenticated encryption have been proposed, many of them being contestants in the currently
ongoing CAESAR competition. We give a brief overview of the AE modes in this study, with our
consideration split into two classes. In the first class we have the modes offering no security

4.2. SCHEMES CONSIDERED 149

under nonce misuse (the NAE notion); we refer to these as nonce-based in the following. The
second class consists of modes offering nonce misuse above the NAE notion; we refer to them as
nonce misuse resistant (somewhat abusing the terminology). The modes considered in the former
camp are CCM, GCM, OCB3, OTR, CLOC, COBRA, JAMBU and SILC, while the nonce misuse
resistant modes considered are McOE-G, COPA, POET and Julius.

Table 4.1 gives a comparison of the modes considered in this work. The price to pay for a mode
to offer a security notion stronger than NAE includes extra computation, a higher serialization
degree, or both. One of the fundamental questions we answer in this work is how much one has
to pay, in terms of performance, to maintain some level of security under nonce misuse.

Table 4.1: Overview of the AE modes considered in this paper. The ‖ column indicates
parallelizability; the IF (inverse-free) column indicates whether a mode needs the inverse
of the underlying block cipher in decryption/verification; the E and M columns give the
number of calls, per message block, to the underlying block cipher and multiplications
in F2n , respectively.

Mode Reference ‖ IF E M Description

Nonce-based

CCM [296] Ø 2 – CTR encryption, CBC-MAC authentication
GCM [224] Ø Ø 1 1 CTR mode with chain of multiplications
OCB3 [196] Ø 1 – Gray code-based xor-encrypt-xor (XEX)
OTR [232] Ø Ø 1 – Two-block Feistel structure
CLOC [168] Ø 1 – CFB mode with low overhead
COBRA [26] Ø Ø 1 1 Combining OTR with chain of multiplications
JAMBU [299] Ø 1 – AES in stream mode, lightweight
SILC [169] Ø 1 – CLOC with smaller hardware footprint

Nonce misuse resistant

McOE-G [128] 1 1 Serial multiplication-encryption chain
COPA [21] Ø 2 – Two-round XEX
POET [6] Ø 3 – XEX with two AXU (full AES-128 call) chains
Julius [36] 1 2 SIV with polynomial hashing

In Section 1.2.4, we already introduced the CCM, GCM, OCB3, OTR, and COPA block cipher
modes of operation for AEAD. The description of the remaining modes is beyond the thesis at hand,
and we refer to the relevant references listed in Table 4.1. We clarify that for COBRA we refer
to the FSE 2014 version with its reduced security claims (compared to the withdrawn CAESAR
candidate); with POET we refer to the version where the universal hashing is implemented as
full AES-128 (since it would not otherwise comprise a mode of operation); and with Julius, we
mean the CAESAR candidate regular Julius-ECB.

150 CHAPTER 4. IMPLEMENTATION ASPECTS

4.3 The Intel Instruction Set and Haswell

In this section, we describe theory pertaining to highly optimized implementations of the AES on
high-end CPUs. Our treatment of the topics of special AES instructions, instruction pipelining
and AVX, is made particularly in relation to the recent Haswell microarchitecture.

4.3.1 Instruction Pipelining

When an instruction is being executed on a CPU, the execution happens in different stages.
For example, a classical Reduced Instruction Set Computing (RISC) pipeline works in five stages:
instruction fetch, decoding, execution, memory access and writeback [156, Appendix C]. Naturally,
the stages of a particular instruction need to happen in succession, as they depend on each other
since the initiation of a stage depends on the completion of the former stage. However, if
one considers two or more independent instructions, i.e. instructions working on completely
independent data, then it is theoretically possible to execute the instructions at the same time
but in different stages. This is what is utilized with instruction pipelining. The concepts of serial-
and pipelined execution of instructions are illustrated in Figure 4.1.

A B C D

A B C D

A B C D

A B C D

instr. 1

instr. 2

instr. 3

instr. 4

cycles

(a) Serial execution

A B C D

A B C D

A B C D

A B C D

instr. 1

instr. 2

instr. 3

instr. 4

cycles

(b) Pipelined execution

Figure 4.1: Serial execution (left) and pipelined execution (right) of four instructions
(1 through 4), each executing in four stages (A through D)

In our fictional example, we see from Figure 4.1a, that with serial execution, we require
16 cycles to execute four instructions, each in four stages. However, if the instructions are
independent, we see from Figure 4.1b that several instructions can be executed simultaneously,
so long as they are in different stages. The result is, that we reduce the total number of cycles to
7 to complete the execution of all four instructions. The performance of a pipelined instruction is
characterized by its latency L, the number of cycles to complete one instruction, and throughput
T , the number of instructions that can be issued every clock cycle. For instance, with the
pipelined instructions of Figure 4.1b, we have a latency of L = 4 cycles and a throughput of
T = 1 instruction/cycle.

4.3.2 AES New Instructions

During the 00s, with the increasing number of applications, protocols and standards relying on
the AES, it became clear that it had come to stay as the dominant block cipher of the next few
decades. To that end, Intel proposed in 2008 a set of special instructions for fast AES encryption
and decryption for their CPUs [146]. The instructions are called the AES New Instruction Set
(AES-NI), and have been implemented since their 2010 Westmere microarchitecture. AES-NI

4.3. THE INTEL INSTRUCTION SET AND HASWELL 151

provides instructions for computing one AES round with the aesenc instruction (aesenclast
for the last, special round of the AES), its inverse round function instruction aesdec (again, with
aesdeclast for the last round), and auxiliary instructions for key scheduling. The instructions
do not only offer better performance than other implementations of the AES not using the special
instructions, but security as well, since they are leaking no timing information. In other words,
each instruction is constant-time, so the time to execute the operation does not depend on
the data on which it executes, as opposed to e.g. using a table lookup for a straightforward
implementation of the AES S-box. The AES-NI instructions are supported on a subset of Westmere,
Sandy Bridge, Ivy Bridge and Haswell microarchitectures. A range of AMD processors also support
the instructions under the name AES Instructions, including processors in the Bulldozer, Piledriver
and Jaguar series [159].

In Haswell, the AES-NI encryption and decryption instructions had their latency improved
from L = 8 cycles on Sandy and Ivy Bridge1, down to L = 7 cycles [150]. This is especially
beneficial for sequential modes such as CBC, CCM, McOE-G, CLOC, SILC and JAMBU. Furthermore,
the throughput has been slightly optimized, allowing for better performance in parallel. Table 4.2
gives an overview of the latencies and inverse throughputs measured on our test machine (Core
i5-4300U). The data was obtained using the test suite of Fog [129].

Table 4.2: Experimental latency L (cycles) and inverse throughput T−1 (cycles/instruc-
tion) of AES-NI and pclmulqdq instructions on Intel’s Haswell microarchitecture

Instruction L T−1

aesenc 7 1
aesdec 7 1
aesenclast 7 1
aesdeclast 7 1
aesimc 14 2
aeskeygenassist 10 8
pclmulqdq 7 2

4.3.3 Improvements to Finite Field Multiplications

The pclmulqdq instruction was introduced by Intel along with the AES-NI instructions [148],
but is not part of AES-NI itself. The instruction takes two 128-bit inputs and a byte input imm8,
and performs carry-less multiplication of a combination of one 64-bit half of each operand. The
choice of halves of the two operands to be multiplied is determined by the value of bits 4 and 0
of imm8.

Most practically used AE modes employing multiplication in a finite field use block lengths of
n= 128 bits. As a consequence, multiplications are in the field F2128 . As the particular choice of
finite field does not influence the security proofs, modes use the tried-and-true GCM finite field.
For our performance study, we have used two different implementation approaches for finite field

1We remark that Fog reports a latency of L = 4 cycles for aesenc on Ivy Bridge [129]

152 CHAPTER 4. IMPLEMENTATION ASPECTS

multiplication, which we in general denote gfmul. The first implementation, which we refer
to as the classical method, was introduced in Intel’s white paper [148]. It applies pclmulqdq
three times in a carry-less Karatsuba multiplication followed by modular reduction. The second
implementation variant, which we refer to as the Haswell-optimized method, was proposed by
Gueron [147] with the goal of leveraging the much improved pclmulqdq performance on
Haswell (see Table 4.2) to trade many shifts and XORs for one more multiplication. This is
motivated by the improvements in both latency (7 vs. 14 cycles) and inverse throughput (2 vs. 8
cycles) on Haswell [150].

In modes where the output of a multiplication over F2128 is not directly used, other than
as a part of a chain combined using addition, the aggregated reduction method by Jankowski
and Laurent [171] can be used to gain speed-ups. This method uses the inductive definitions
of chaining values combined with the distributivity law for the finite field to postpone modular
reduction, at the cost of storing powers of an operand. Among the modes we benchmark in this
work, the aggregated reduction method is applicable only to GCM and Julius. We therefore use
this approach for those two modes, but apply the general gfmul implementations to the other
modes.

4.3.4 Classical vs. Haswell Multiplication

Here we compare the classical and Haswell-optimized methods of multiplication in F2128 . We
compare the performance of the AE modes considered that use full F2128 multiplications (as
opposed to aggregated reduction), McOE-G and COBRA, when instantiated using the two different
multiplication methods. Figure 4.2 shows that when processing a single message, the Haswell-
optimized method performs better than the classical implementation of gfmul, while the situation
is the other way around, when processing multiple messages in parallel.

Considering the optimizations made for the pclmulqdq instruction on Haswell, these obser-
vations make perfect sense. When processing only a single message, there is no independent
data available on which to draw parallelism. As such, and since the finite field multiplication
in COBRA and McOE-G is sequential, this becomes a bottleneck for single message processing,
and the optimizations made to the instruction come to their right. On the other hand, when
processing multiple messages, there is enough independent data to draw on to keep the pipeline
filled, so the latency improvement of the instruction vanishes, and in turn the four instruction
calls for the Haswell multiplication method aggravate the overall latency.

4.3.5 Haswell-Optimized Finite Field Doubling

The doubling operation in F2128 is commonly used in AE schemes [28], and indeed among the
schemes we benchmark, it is used by OCB3, OTR, COBRA, COPA and POET. Doubling in this
field consists of left shifting the input by one bit and doing a conditional XOR of a reduction
polynomial if and only if the most significant bit of the input equals one. Neither SSE+ nor
AVX provide an instruction to shift a full xmm register bitwise, nor to directly test only its most
significant bit. As such, these functions have to be emulated with other operations, opening up a
number of implementation choices.

4.3. THE INTEL INSTRUCTION SET AND HASWELL 153

128 2,048 4,096 8,192

4

6

8

Message length (bytes)

Pe
rf

or
m

an
ce

(c
pb

)
COBRA (classical) McOE-G (classical)
COBRA (Haswell) McOE-G (Haswell)

(a) Processing a single message

256 4,096 8,192 16,384

2

2.5

3

3.5

Message length (bytes)
Pe

rf
or

m
an

ce
(c

pb
)

(b) Processing multiple messages

Figure 4.2: Performance of COBRA and McOE-G using the classical- and Haswell
multiplication methods for a single message (left) and 8 multiple messages of equal
length (right)

Listing 4.1: Doubling in F2128

1 __m128i xtime (__m128i v) {
2 __m128i v1 , v2 ;
3 v1 = _mm_sll i_epi64 (v , 1) ;
4 v2 = _mm_sl l i_s i128 (v , 8) ;
5 v2 = _mm_srli_epi64 (v2 , 63) ;
6 i f (msb of v == 1)
7 return _mm_xor_si128
8 (_mm_or_si128 (v1 , v2) , RP) ;
9 else

10 return _mm_or_si128 (v1 , v2) ;
11 }

Table 4.3: Performance of
doubling with different ap-
proaches to MSB testing

Approach Cycles

(i) Extraction 15.4
(ii) Test 15.4
(iii) MSB mask 16.7
(iv) Compare + extract 5.6

We emulate a left shift by one bit by the following procedure, which is optimal with regard to
the number of instructions and cycles: given an input v ∈ F2128 , the value 2v ∈ F2128 is computed
as in Listing 4.1. Consider v = vL‖vR where vL and vR are 64-bit values. In line 3 we set
v1 = (vL � 1)‖(vR� 1) and lines 4 and 5 set first v2 = vR‖064 and then v2 = (vR� 63)‖064. As
such, we have v� 1= v1 | v2. This leaves us with a number of possibilities when implementing
the branching of line 6, which can be categorized as (i) extracting parts from v and testing, (ii)
AVX variants of the test instruction, (iii) extracting a mask with the most significant bit of each
part of v and (iv) comparing against a mask MSB_MASK = 80 · · ·00 and then extracting from
the comparison result. Some of these approaches again leave several possibilities regarding the
number of bits extracted, etc.

154 CHAPTER 4. IMPLEMENTATION ASPECTS

Interestingly, the approach taken to check the most significant bit of v has a substantial impact
on the doubling performance. This is illustrated by Table 4.3 where we give performance of the
doubling operation using various combinations of approaches. The numbers are obtained by
averaging over 108 experiments. Surprisingly, we see that there is a significant speed-up, about
a factor ×3, when using comparison with MSB_MASK combined with extraction, over the other
methods. Thus, we suggest to use this approach, where line 6 of Listing 4.1 can be implemented
as

if (_mm_extract_epi8(_mm_cmpgt_epi8(MSB_MASK, v), 15) == 0).

4.3.6 General Considerations: AVX and AVX2 Instructions

In our Haswell-optimized AE scheme implementations we make heavy use of AVX which has
been present in Intel processors since the Sandy Bridge microarchitecture. AVX can be considered
as an extension of the streaming SIMD extensions (SSE) instructions2, and later versions such as
SSE2 through SSE4, operating on 128-bit registers xmm0 through xmm15. While AVX and AVX2,
the latter which appears first on Haswell, brings mainly support for 256-bit wide registers to the
table, this is not immediately useful in implementing an AES-based modes, as the special AES
instructions as well as the pclmulqdq instruction support only the use of 128-bit xmm registers.
However, a feature of AVX that we use extensively is the three-operand enhancement, due to
the VEX coding scheme, of legacy two-operand SSE2 instructions. This means that, in a single
instruction, one can non-destructively perform binary vector operations on two operands and
store the result in a third operand, rather than overwriting one of the inputs. For example, one
can perform the operation Z = X ⊕Y rather than X = X ⊕Y . This eliminates overhead associated
with mov operations required when overwriting an operand is not acceptable.

A further Haswell feature worth taking into account is the increased throughput for logical
instructions such as vpxor/vpand/vpor on AVX registers: while the latency remains at one
cycle, now up to 3 such instructions can be scheduled simultaneously. Notable exceptions are
algorithms heavily relying on mixed 64/128 bit logical operations such as JAMBU, for which the
inclusion of a fourth 64-bit arithmetic logic unit (ALU) implies that such algorithms will actually
benefit from frequent conversion to 64-bit arithmetic via the vpextrq/vpinsrq instructions,
rather than artificial extension of 64-bit operands to 128 bits for operation on the AVX registers.

On Haswell, the improved memory controller allows two simultaneous 16-byte aligned moves
via vmovdqa from registers to memory, with a latency of one cycle. This implies that on Haswell,
the comparatively large latency of cryptographic instructions such as aesenc or pclmulqdq
allows the implementer to “hide” more memory accesses to the stack when larger internal state of
the algorithm leads to register shortage. This also aids the generally larger working sets induced
by the multiple message strategy described in Section 4.4.1.

4.4 Comb Scheduler: An Efficient Look-Ahead Strategy

A substantial number of block cipher modes of operation for (authenticated) encryption are
inherently sequential in nature. Among the NIST-recommended modes, this includes the classic

2We denote by SSE+ also later versions, including SSE2 through SSE4

4.4. COMB SCHEDULER: AN EFFICIENT LOOK-AHEAD STRATEGY 155

CBC, OFB, CFB and CCM modes as well as CBC derivatives such as CMAC. Also, more recent
designs essentially owe their sequential nature to design goals, e.g allowing lightweight im-
plementations or achieving stricter notions of security, for instance not requiring a nonce for
security (or allowing its reuse). Examples of such include ALE, a design by Bogdanov, Mendel,
Regazzoni, Rijmen, and Tischhauser [78], APE [24], the CLOC mode by Iwata, Minematsu,
Guo, and Morioka [168], the McOE family of algorithms by Fleischmann, Forler, Lucks, and
Wenzel [127, 128], and some variants of the POET mode [6] by Abed, Fluhrer, Forler, List, Lucks,
McGrew, and Wenzel. While being able to perform well in other environments, such algorithms
cannot benefit from the available pipelining opportunities on contemporary general-purpose
CPUs. For instance, as detailed in Section 4.3.2, the AES-NI encryption instructions on Haswell
feature a high throughput of T = 1 instruction/cycle, but a relatively high latency of L = 7 cycles.
Modes of operation that need to process data sequentially will invariably be penalized in such
environments.

>
100

>
200

>
300

>
400
>

500
>

600

>
700

>
800

>
900
>

1000

>
1100

>
1200

>
1300

>
1400

>
1500

0

10

20

30

40

Frame size (bytes)

Pe
rc

en
ta

ge
of

pa
ck

et
s TCP

UDP

Figure 4.3: Distribution of frame sizes for TCP and UDP

Furthermore, even if designed with parallelizability in mind, (authenticated) modes of
operation for block ciphers typically achieve their best performance when operating on somewhat
longer messages, often due to the simple fact that these diminish the impact of potentially
costly initialization phases and tag generation. Equally importantly, only longer messages
allow high-performance software implementations to make full use of the available pipelining
opportunities [11, 147, 196, 223]. In practice, however, one rarely encounters messages which
allow to achieve the maximum performance of an algorithm. Recent studies on packet sizes
on the Internet demonstrate that they basically follow a bimodal distribution [174, 239, 259]:
44% of packets are between 40 and 100 bytes long; 37% are between 1400 and 1500 bytes
in size; the remaining 19% are somewhere in between. Throughout this chapter, we refer to
this as the realistic distribution of message lengths. A distribution of frame sizes in TCP and
UDP from [239] is shown in Figure 4.3. This emphasizes the importance of good performance
for messages up to around 2 KB, as opposed to longer messages. Second, when looking at the
weighted distribution, this implies that the vast majority of data is actually transmitted in packets
of medium size between 1 and 2 KB. Considering the first mode of the distribution, we remark

156 CHAPTER 4. IMPLEMENTATION ASPECTS

that many of the very small packets of Internet traffic comprise TCP ACKs (which are typically not
encrypted), and that the use of authentication and encryption layers such as TLS or IPsec incurs
overhead significant enough to blow up a payload of 1 byte to a 124 byte packet [164]. It is
therefore this range of message sizes (128 to 2048 bytes) that authenticated modes of encryption
should excel at processing, when employed for encryption of Internet traffic.

4.4.1 Filling the Pipeline: Multiple Messages

It follows from the discussion above that the standard approach of considering one message
at a time, while arguably optimizing message processing latency, can not always generate
optimal throughput in high-performance software implementations in most practically relevant
scenarios. This is not surprising for the inherently sequential modes, but even when employing a
parallelizable design, the prevailing distribution of message lengths makes it hard to achieve the
best performance. In order to remedy this, we propose to consider the scheduling of multiple
messages in parallel already in the implementation of the algorithm itself, as opposed to considering
it as a (single-message) black box to the message scheduler. This opens up possibilities of
increasing the performance in the cases of both sequential modes and the availability of multiple
shorter or medium-sized messages. In the first case, the performance penalty of sequential
execution can potentially be hidden by filling the pipeline with a sufficient number of operations
on independent data. In the second case, there is a potential to increase performance by keeping
the pipeline filled also for the overhead operations such as block cipher- or multiplication calls
during initialization or tag generation.

Note that while we consider the processing of multiple messages on a single core, the multiple
message approach naturally extends to multi-core settings. Conceptually, the transition of a
sequential- to a multiple message implementation can be viewed as similar to the transition from
a straightforward to a bit-sliced implementation approach. We note also, that an idealistic view
of multiple-message processing was given in [78] for the dedicated authenticated encryption
algorithm ALE. This consideration was rather rudimentary, did not involve real-world packet size
distributions, and did not treat any modes of operation. It is also important to note, that while
multiple message processing has the potential to increase the throughput of an implementation,
it can also increase its latency (see also Section 4.4.3). The degree of parallelism therefore has
to be chosen carefully and with the required application profile in mind.

4.4.2 Message Scheduling with a Comb

Consider the scenario where a number of messages of varying lengths need to be processed
by a sequential encryption algorithm. As outlined before, blocks from multiple messages have
to be processed in an interleaved fashion in order to make use of the available inter-message
parallelism. Having messages of different lengths implies that generally the pipeline cannot
always be filled completely. At the same time, the goal to schedule the message blocks such that
pipeline usage is maximized has to be weighed against the computational cost of making such
scheduling decisions: in particular, every conditional statement during the processing of the bulk

4.4. COMB SCHEDULER: AN EFFICIENT LOOK-AHEAD STRATEGY 157

data results in a pipeline stall.

Algorithm 10: COMBSCHEDULER

Data: k messages M1, . . . , Mk of lengths `1, . . . ,`k blocks, parallelism degree P
1 L← list of tuples (Mi ,`i), 1≤ i ≤ k, sorted by decreasing `i

2 Denote by L[i] = (Mi ,`i) the ith tuple in L
3 while |L|> 0 do // Loop while messages are still to be processed
4 r ←min{P, |L|}
5 Perform initialization for messages M1, . . . , Mr
6 P ,B ← PRE-COMPUTEWINDOWS(`1, . . . ,`r)
7 completedBlocks← 0
8 for w= 1, . . . , |P | do // Loop over windows
9 for i = 1, . . . ,B[w] do // Loop over blocks in window

10 for j = 1, . . . ,P [w] do // Loop over messages in window
11 Process block (completedBlocks+ i) of message M j
12 end
13 end
14 completedBlocks← completedBlocks+B[w]
15 end
16 Perform finalization for messages M1, . . . , Mr
17 Remove the r first elements from L
18 end

In order to reconcile the goal of exploiting multi-message parallelism for sequential algorithms
with the need for low-overhead scheduling, we propose comb scheduling. Comb scheduling is
based on the observation that ideally, messages processed in parallel have the same length, so
given a desired (maximum) parallelism degree P and a list of message lengths `1, . . . ,`k, we can
subdivide the computation in a number of groups, in each of which we process as many consecutive
message blocks as we can in so-called windows, for as many independent messages as possible,
according to the restrictions based on the given message lengths. Since our scheduling problem
exhibits optimal substructure, this greedy approach yields an optimal solution. Furthermore,
the scheduling decisions of how many blocks are to be processed at which parallelism level can
be pre-computed once the `i, 1 ≤ i ≤ k, are known. This implies that instead of making each
processing step conditional, we only have conditional statements whenever we proceed from one
group to the next. Our proposed comb scheduling method is outlined in Algorithms 10 and 11.

In order to simplify the combing, the messages are pre-sorted by decreasing length. This
sorting step can be implemented via an optimal sorting network for the constant value of P chosen
by the implementation, and can employ pointer swapping only, without copying of data blocks.
Alternatively, a low-overhead algorithm like insertion sort can be used. The sorted messages are
then processed in groups of P. A pre-computation is performed to determine the windows inside
the group, i.e. how many windows are required to process the group, and for each window, how
many messages still have blocks left to be processed (and how many blocks need processing in
the windows). This information is returned in the lists P andB by Algorithm 11. Inside each
group, the processing is window by window according to the pre-computed parallelism levels P

158 CHAPTER 4. IMPLEMENTATION ASPECTS

Algorithm 11: PRE-COMPUTEWINDOWS(`1, . . . ,`r)

Data: r message lengths `1, . . . ,`r in blocks, s.t. `i ≥ `i+1 with 1≤ i < r
Result: List P with P [w] the number of messages to process in parallel in window w and

listB withB[w] the number of blocks to process in window w
1 P ← [], B ← [] // Initialize to empty lists
2 w← 1, qlast ← 0, i← r
3 while i > 1 do // Scan windows right to left
4 q← `i , j← i − 1
5 while j ≥ 1 and ` j = `i do j← j − 1 // Left-extend while lengths are equal
6 P [w]← i
7 B[w]← q− qlast
8 qlast ← q, i← j, w← w+ 1
9 end

10 if i = 1 then // Leftover message
11 P [w]← 1
12 B[w]← `1 − qlast

13 end
14 return P ,B

Message M1 M2 M3 M4 M5 M6 M7 Windows
Length 94 5 5 5 85 94 94 (P [w],B[w])

...
...

...
...

...
...

...

(7,5)

(4,80)

(3,9)

Figure 4.4: Comb scheduling example for 7 messages of lengths (`1, . . . ,`7) =
(94, 5,5, 5,85, 94,94) blocks

and window lengthsB: in window w, the same P [w] messages of the current message group
are processedB[w] blocks further. In the next window, at least one message will be exhausted,
and the parallelism level decreases by at least one. As comb scheduling is processing the blocks by
common (sub-)length from left to right, our method can be considered a symmetric-key variant
of the well-known comb method for (multi-)exponentiation [212].

Example 5. We illustrate comb scheduling in Figure 4.4 with an example where P = k = 7: The

4.4. COMB SCHEDULER: AN EFFICIENT LOOK-AHEAD STRATEGY 159

pre-computation determines that all P [1] = 7 messages can be processed in a pipelined fashion
for the first B[1] = 5 blocks; P [2] = 4 of the 7 messages can be processed further for the next
B[2] = 80 blocks; and finally P [3] = 3 remaining messages are processed for anotherB[3] = 9
blocks.

Choice of Parallelism Degree

In order to make optimal use of the pipeline, the parallelism degree P should be chosen according
to

P = L · T, (4.4)

with L denoting the latency (in cycles) and T the throughput (in instructions/cycle) of the
pipelined instruction. For AES-NI, the latency and throughput of the aesenc instruction vary
from platform to platform. From the summary for the Haswell microarchitecture of Table 4.2 in
Section 4.3.2, this suggests P = 7 for this platform.

4.4.3 Latency vs. Throughput

A point worth discussing is the latency increase one has to pay when using multiple message
processing. Since the speed-up is limited by the parallelization level, one can at most hope for
the same latency as in the sequential processing case. We illustrate this by the example of CBC
mode when implemented in the multiple message setting with comb scheduling. We consider
two distributions for message lenghts: one where all messages are 2048 bytes long, and one
realistic distribution of Internet traffic. The performance data is given in Table 4.4.

Table 4.4: Performance (in cpb) of CBC encryption and relative speed-up for comb
scheduling with different parallelization levels for fixed message lengths of 2048 bytes
(top) and realistic message lengths (bottom)

Parallelization level P

Sequential 2 3 4 5 6 7 8

2048-byte messages 4.38 2.19 1.47 1.11 0.91 0.76 0.66 0.65
Relative speed-up ×1.00 ×2.00 ×2.98 ×3.95 ×4.81 ×5.76 ×6.64 ×6.74

Realistic distribution 4.38 2.42 1.73 1.37 1.08 0.98 0.87 0.85
Relative speed-up ×1.00 ×1.81 ×2.53 ×3.20 ×4.06 ×4.47 ×5.03 ×5.15

What we can see from Table 4.4 is, that for messages of an identical length of 2 KB, the
ideal linear speed-up of a factor P is actually achieved for P ∈ {2, 3, 4} parallel messages: setting
|M | = 2048, instead of waiting 4.38 · |M | cycles in the sequential case, one has a latency of either
2.19 · 2 = 4.38 · |M | cycles when P = 2; when P = 3 the latency is 1.47 · 3 = 4.41 · |M | cycles;
and when P = 4 the latency is 1.11 · 4 = 4.44 · |M | cycles. Starting from P = 5 parallel messages,
the latency slightly increases with the throughput, however remaining at a manageable level
even for P = 7 parallel messages, where it is only around 5% higher than in the sequential case,
while achieving a 6.64 times increase in throughput. For realistic message lengths, using P = 7

160 CHAPTER 4. IMPLEMENTATION ASPECTS

multiple messages, we see an average increase in latency of 39% which has to be contrasted
to (and, depending on the application, weighed against) the significant 5.03 times increase in
throughput.

4.4.4 Patenting

With the potentially substantial performance benefit due to comb scheduling, as we detail in
Sections 4.5 and 4.6, the inventors of the algorithm have, through the Technical University of
Denmark, filed a patent application with the European Patent Office under application number
15157994.3-1870. Possible uses include e.g. employment of comb scheduling in heavily loaded
servers, where a sequential block cipher mode of operation is used to provide encrypted content
to clients.

4.5 Pipelined NIST-recommended Modes

In this section, we present the results of our performance study of the NIST-recommended
encryption- and MAC modes when instantiated with AES as the block cipher, and implemented
with AES-NI and AVX vector instructions. Reminding that some modes covered, such as CBC and
CFB, are sequential in encryption but parallel in decryption, we remark that we only benchmark
encryption in this work.

Experimental Setting

All measurements were taken on a single core of an Intel Core i5-4300U CPU (Haswell) at
1900 MHz. For each combination of parameters, the performance was determined as the median
of 91 averaged timings of 200 measurements each. This method has also been used by Krovetz and
Rogaway in their benchmarking of authenticated encryption modes in [196]. The measurements
are taken over samples from the realistic distribution on message lengths.

Out of the basic NIST-recommended modes, ECB and CTR are inherently parallelizable and
already achieve good performance with trivial sequential message scheduling. Three other
modes, CBC, OFB and CFB, however, are inherently sequential and therefore need to make use
of inter-message parallelism to benefit from the available pipelining. The same holds for the
NIST-recommended CMAC message authentication code. We therefore measure the performance
of all modes with sequential processing, and additionally the performance of the sequential
modes with comb message scheduling.

Discussion

Our performance results for pipelined implementations of NIST-recommended modes are pre-
sented in Table 4.5. It is apparent that the parallel processing of multiple messages using comb
scheduling speeds up encryption performance by a factor of around 5, bringing the sequential
modes within about 10% of the performance of CTR mode. The results also indicate that the
overhead induced by the comb scheduling algorithm itself can be considered negligible compared
to the AES calls.

4.6. PIPELINED AUTHENTICATED ENCRYPTION 161

Table 4.5: Performance comparison (in cpb) of NIST-recommended encryption- and
MAC modes, with trivial sequential processing and with comb scheduling. Message
lengths are sampled from the realistic Internet traffic distribution.

Mode Sequential processing Comb scheduling Speed-up

AES-ECB 0.65 – –
AES-CTR 0.78 – –
AES-CBC 4.47 0.87 ×5.14
AES-OFB 4.48 0.88 ×5.09
AES-CFB 4.45 0.89 ×5.00

CMAC-AES 4.29 0.84 ×5.10

Due to their simple structure with almost no overhead, it comes as no surprise that CBC,
OFB and CFB performance are virtually identical. That CMAC performs slightly better despite
additional initialization overhead can be explained by the fact that there are no ciphertext blocks
to be stored to memory.

4.6 Pipelined Authenticated Encryption

We now turn our attention to the AES-NI software performance of authenticated encryption
modes. We consider the well-established modes CCM, GCM and OCB3 as well as a number of
more recent proposals, many of them being contestants in the ongoing CAESAR competition.

Experimental Setting

The same experimental setup as for the NIST-recommended modes above applies. For our
performance measurements, we are interested in the performance of the various AE modes of
operation during their bulk processing of message blocks, i.e. during the encryption phase. To that
end, we do not measure cycles spent on processing associated data. As some schemes can have a
significant overhead when computing authentication tags for short messages, we do include this
phase in the measurements as well.

4.6.1 Performance in the Real World

Out of the AE modes in consideration, GCM, OCB3, OTR, COBRA, COPA and Julius are paralleliz-
able designs. We therefore only measure their performance with sequential message processing.
On the other hand, CCM, CLOC, SILC, JAMBU, McOE-G and POET are sequential designs and as
such will also be measured in combination with comb scheduling. In all cases, we again measure
the performance using message lengths sampled from the realistic bimodal distribution of typical
Internet traffic.

Table 4.6 lists the results of the performance measurements. For the parallelizable modes
where comb scheduling was implemented, the relative speed-up compared to normal sequential

162 CHAPTER 4. IMPLEMENTATION ASPECTS

Table 4.6: Performance comparison (in cpb) of AES-based AE modes with trivial sequen-
tial processing and comb scheduling. Message lengths are sampled from the realistic
Internet traffic distribution. Proposals from the CAESAR competition are marked by a †.

(a) Nonce-based AE modes

Mode Sequential Comb Speed-up

CCM 5.22 1.64 ×3.18
GCM 1.63 – –
OCB3† 1.51 – –
OTR† 1.91 – –
COBRA 3.56 – –
CLOC† 4.47 1.45 ×3.08
JAMBU† 9.12 2.05 ×4.45
SILC† 4.53 1.49 ×3.04

(b) Nonce misuse resistant modes

Mode Sequential Comb Speed-up

McOE-G 7.41 1.79 ×4.14
COPA† 2.68 – –
POET† 5.85 2.14 ×2.73
Julius† 3.73 – –

processing is indicated in the last column. In this table, the nonce-based AE modes are listed
separately from those offering some level of nonce misuse resistance, in order to provide a better
estimation of the performance penalty one has to pay for achieving a stricter notion of security.

Discussion

The performance data demonstrates that comb scheduling of multiple messages consistently
provides a speed-up of factors between 3 and 4, compared to normal sequential processing.
For typical Internet packet sizes, comb scheduling enables sequential AE modes to run with
performance comparable to the parallelizable designs, in some cases even outperforming them.
This can be attributed to the fact that AE modes typically have heavier initialization and final-
ization than normal encryption modes, consisting of setting up variables and generating the
authentication tag, both implying a penalty in performance for short messages. By using comb
scheduling, however, also the initial and final AES calls can be (at least partially) parallelized
between different messages. The relative speed-up for this will typically reduce with the message
length. The surprisingly good performance of McOE-G is due to the fact that it basically benefits
doubly from multiple message processing: not only the AES calls, but also its sequential finite
field multiplications, can now be pipelined. For the comb scheduling implementation of CCM,
which is two-pass, it is worth noting that all scheduling pre-computations only need to be done
once, since exactly the same processing windows can be used for both passes.

Best Performance Characteristics

From Table 4.6, it is apparent that for encryption of typical Internet packets, the difference
between sequential and parallelizable modes, with respect to performance, somewhat blurs
when comb scheduling is employed. This is especially true for the nonce-based setting, where
CLOC, SILC, CCM, GCM and OCB3 all perform on a very comparable level. For the nonce misuse
resistant modes, our results surprisingly show better performance of the two sequential modes

4.6. PIPELINED AUTHENTICATED ENCRYPTION 163

for this application scenario. This can be attributed to the fact that the additional processing
needed for achieving nonce misuse resistance hampers performance on short messages, which
can be mitigated to some extent by comb scheduling.

4.6.2 Traditional Approach: Sequential Messages of Fixed Lengths

While the previous section analyzed the performance of the various AE modes using a model for
a realistic message lengths, we provide some more detail on the exact performance exhibited
by these modes for a range of fixed message lengths in this section. To that end, we provide
performance measurements for specific message lengths between 128 and 2048 bytes. The
results are summarized in Table 4.7.

Table 4.7: Performance comparison (in cpb) of AE modes for processing a single message
of various fixed message lengths

(a) Nonce-based modes

Message length (bytes)

Mode 128 256 512 1024 2048

CCM 5.35 5.19 5.14 5.11 5.10
GCM 2.09 1.61 1.34 1.20 1.14
OCB3 2.19 1.43 1.06 0.87 0.81
OTR 2.97 1.34 1.13 1.02 0.96
CLOC 4.50 4.46 4.44 4.46 4.44
COBRA 4.41 3.21 2.96 2.83 2.77
JAMBU 9.33 9.09 8.97 8.94 8.88
SILC 4.57 4.54 4.52 4.51 4.50

(b) Nonce misuse resistant modes

Message length (bytes)

Mode 128 256 512 1024 2048

McOE-G 7.77 7.36 7.17 7.07 7.02
COPA 3.37 2.64 2.27 2.08 1.88
POET 6.89 5.74 5.17 4.88 4.74
Julius 4.18 4.69 3.24 3.08 3.03

Discussion

The performance data of Table 4.7 clearly shows the expected difference between sequential
and parallelizable modes when no use of multiple parallel messages can be made. Among the
sequential modes, only initialization-heavy modes such as McOE-G and POET show significant
performance differences between shorter and longer messages, while this effect usually is very
pronounced for the parallelizable modes. It can be seen from Table 4.7, that for the nonce-based
modes, the best performance is generally offered by OCB3, although OTR and GCM provide quite
similar performance on Haswell. Among the nonce misuse resistant modes, COPA has the best
performance for all message sizes.

4.6.3 Exploring the Limits: Upper Bounding the Combing Advantage

Having seen the performance data with comb scheduling for realistic message lengths, it is
natural to consider the question what the performance of the various modes would be for the
ideal scenario where the scheduler is given only messages of a fixed length. In this case, the comb

164 CHAPTER 4. IMPLEMENTATION ASPECTS

pre-computation would result in only one processing window, so essentially no scheduler-induced
branches are needed during the processing of the messages. In a sense, this constitutes an
upper bound for the multi-message performance with comb scheduling for the various encryption
algorithms. Table 4.8 summarizes the performance of the previously considered sequential AE
modes when comb scheduling is combined with fixed message lengths.

Table 4.8: Performance comparison (in cpb) of sequential AE modes when comb schedul-
ing is used for various fixed message lengths

(a) Nonce-based modes

Message length (bytes)

Mode 128 256 512 1024 2048

CCM 1.51 1.44 1.40 1.38 1.37
CLOC 1.40 1.31 1.26 1.24 1.23
JAMBU 2.14 1.98 1.89 1.85 1.82
SILC 1.43 1.33 1.28 1.25 1.24

(b) Nonce misuse resistant modes

Message length (bytes)

Mode 128 256 512 1024 2048

McOE-G 1.91 1.76 1.68 1.64 1.62
POET 2.56 2.23 2.06 1.97 1.93

Discussion

It can be seen that for all modes considered, the performance for longer messages at least slightly
improves compared to the realistic message length mix of Table 4.6, although the differences are
quite small and do not exceed around 0.2 cpb. For shorter messages, the difference can be more
pronounced for a mode with heavy initialization such as POET. Overall, this shows that comb
scheduling for a realistic distribution provides a performance which is very comparable to that of
comb scheduling of messages with an idealized distribution.

Exploring the Parameter Space

Besides the distribution of the message lengths, the parallelization degree influences the per-
formance of the comb scheduler. Even though P = 7 is optimal for Haswell, applications might
choose a lower value if typically only few messages are available simultaneously, in order to
avoid a latency blowup. The dependency of the performance on both individual parameters is
further detailed in Figures 4.5 and 4.6, where the comb scheduling performance is shown for a
range of fixed message lengths ranging from 32 bytes to 2048 bytes, and parallelization degrees
P ∈ {2, . . . , 16}. The horizontal lines in the color key of each plot indicate the integer values in
the interval.

4.6. PIPELINED AUTHENTICATED ENCRYPTION 165

32256512
1,024

2,048

246810121416

0
1
2
3
4
5
6
7

bytes
par. degree

cp
b

1.37

3.42

cpb

(a) CCM

32256512
1,024

2,048

246810121416

0
1
2
3
4
5
6
7

bytes
par. degree

cp
b

1.23

3.47

cpb

(b) CLOC

32256512
1,024

2,048

246810121416

0
1
2
3
4
5
6
7

bytes
par. degree

cp
b

1.82

6.96

cpb

(c) SILC

32256512
1,024

2,048

246810121416

0
1
2
3
4
5
6
7

bytes
par. degree

cp
b

1.82

6.96

cpb

(d) JAMBU

Figure 4.5: Performance of sequential nonce-based AE modes when comb scheduling is
used with different parallelization levels for various fixed message lengths

32256512
1,024

2,048

246810121416

0
1
2
3
4
5
6
7

bytes
par. degree

cp
b

1.62

5.2

cpb

(a) McOE-G

32256512
1,024

2,048

246810121416

0
1
2
3
4
5
6
7

bytes
par. degree

cp
b

1.93

6.49

cpb

(b) POET

Figure 4.6: Performance of sequential nonce misuse resistant AE modes when comb
scheduling is used with different parallelization levels for various fixed message lengths

166 CHAPTER 4. IMPLEMENTATION ASPECTS

Impact of Working Set Sizes

It can be seen from the plots of Figures 4.5 and 4.6 that, as expected, most modes achieve their
best speed-up in the multiple messages scenario for a parallelization level of around 7 messages.
It is worth noting, however, that for each of these messages, a complete working set, i.e. the
internal state of the algorithm, has to be maintained. Since only sixteen 128-bit xmm registers
are available in Haswell, even a working set of three 128-bit words (for instance cipher state,
tweak mask, checksum) for P = 7 simultaneously processed messages will already exceed the
number of available registers. As the parallelization degree P increases, the influence of this
factor increases. This can be seen especially for POET, which has a larger internal state per
instance. By contrast, CCM, JAMBU and McOE-G suffer a lot less from this effect.

The experimental results also confirm the intuition of Section 4.3.6 that Haswell’s improved
memory interface can handle fairly large working set sizes efficiently by hiding the stack access
latency between the cryptographic operations. This allows more multiple messages to be pro-
cessed faster despite the increased register pressure, basically until the number of moves exceeds
the latency of the other operations, or ultimately the limits of the Level-1 cache are reached.

4.7 Discussion and Conclusions

In this chapter, we have discussed the performance of various block cipher-based symmetric
primitives when instantiated with the AES on Intel’s recent Haswell architecture.

As a general technique to speed up both inherently sequential modes, and to deal with the
typical scenario of having many shorter messages, we proposed our comb scheduler, an efficient
algorithm for the scheduling of multiple simultaneous messages, which is based on a look-ahead
strategy within a certain window size. This leads to significant speed-ups for essentially all
sequential modes, even when taking a realistic bimodal Internet traffic distribution into account.
Applied to the NIST-recommended modes CBC, CFB, OFB and CMAC, comb scheduling attains a
significant speed-up of factor at least 5, resulting in a performance of around 0.88 cpb, which
is within about 10% of the performance of the parallelizable CTR mode on the same message
distribution.

We also applied comb scheduling to authenticated encryption modes which typically feature
higher initialization and finalization overhead, thus penalizing performance on the frequently
occurring short messages. With comb scheduling, we attain speed-ups of the inherently sequential
AE modes CCM, CLOC, SILC, JAMBU, McOE-G and POET by factors between 3 and 4.5. This
particularly results in a CCM performance comparable to GCM or OCB3, but without being
afflicted by issues with weak-key classes such as those of GCM, or being encumbered by patents
as OCB3, as discussed in Section 1.2.4.

Our study also establishes that for practitioners wishing to use a nonce misuse resistant AE
mode, the POET design with comb scheduling attains better performance than the completely
parallelizable mode COPA. Since POET furthermore offers some robustness under release of
unverified plaintext (see Section 1.2.4), this suggests that users do not have to choose between
good performance or stricter notions of security.

5
Conclusions

In this thesis, we have studied symmetric primitives from the perspectives of cryptanalysis, design
and implementation aspects. We summarize our contributions, and discuss open problems and
future work below.

5.1 Contributions

With respect to analysis, we applied variants of differential cryptanalysis to the recent lightweight
block cipher SIMON which was proposed by the NSA in 2013. We also described a connection
between differential characteristics and linear trails for SIMON, and discussed the differential
effect in the smallest member of the SIMON family. In the framework of linear cryptanalysis,
we introduced a theoretical model which allows an adversary to distinguish a block cipher in
the key-less setting. Contrary to previous models using differential properties, our model is
the first ever to use linear cryptanalysis. We applied the model to the ISO-standardized block
cipher PRESENT, and show distinguishers on up to 26 rounds of PRESENT-80 and 27 rounds
of PRESENT-128. Finally, we presented structural weaknesses in two authenticated encryption
schemes, AVALANCHE and RBS, and leveraged these weaknesses to present very efficient attacks
that fully recover the secret key in both cases. Our attacks show that one must be careful with
unusual design choices such as having a nonce-dependent encryption key which is the case for
AVALANCHE.

In the area of symmetric primitive design, we studied AES-like ciphers with respect to
diffusion properties and resistance to differential- and linear cryptanalysis. Our focus was on
the ShiftRows-like operation of the round function which, contrary to the linear layer, has not
previously received any systematic analysis. With our work, we moved in a direction to close
this gap. The study consisted of a range of results effectively classifying the possible operations,
allowing for a computer-aided search of significantly lower complexity. As a tangible outcome,

167

168 CHAPTER 5. CONCLUSIONS

we present optimal rotation matrices for AES-like ciphers for a range of geometries, and provide
improved parameters for Rijndael-192 and Rijndael-256, as well as the PRIMATEs-80 and PRØST-
128 permutations. Next, we presented our new permutation-based approach to authenticated
encryption with associated data, called PRØST. The proposal consists of a newly designed and
highly secure permutation, combined with three existing third-party modes of operation. We
presented our own cryptanalytic results of the PRØST permutation, and discussed analyses made
by the cryptographic community. Furthermore, we gave proofs of security for the proposals,
based on the security proofs for the modes of operation. PRØST was submitted to the ongoing
CAESAR competition, but did not advance to the second round.

Finally, motivated by the improved instructions for AES-NI and carry-less multiplication on
Intel’s most recent microarchitecture Haswell, we conduct a thorough benchmarking of several
block cipher modes on this platform. In particular, we implemented several NIST-recommended
modes, as well as authenticated encryption modes from the CAESAR competition, all using AES-
128 as the underlying block cipher. We proposed the comb scheduler, a low-overhead look-ahead
algorithm for scheduling the processing of multiple messages in a pipelined fashion. With this
technique, we saw that especially sequential modes, but also parallelizable modes to a lesser
extent, all benefit from this approach, also in a setting using data packet lengths representative
of typical Internet traffic.

5.2 Open Problems and Future Work

In the timeline of cryptanalysis on SIMON, the results described in this thesis made an early
appearance. As such, our attacks are not close to the best published to this date. Indeed, advances
are made frequently, slightly reducing attack complexities and occasionally breaking one more
round. With that said, we believe that SIMON is a solid block cipher. Most cryptanalytic focus
on SIMON from the community seems to be of the differential- or linear kind. Very few papers
deviate from this trend by studying the choices made in designing the cipher. We believe much
more analysis is required in this area, especially if standardization should be considered.

With respect to the analysis on PRESENT, it will be interesting to see how the approach is
applicable to other block ciphers. One interesting target would be KATAN which, despite its very
different round function, exhibits similar linear properties. In general, we believe that there is
more work to be done on linear distinguishers in the key-less setting. It is an open question
whether it is possible to extend the deterministic phase for PRESENT to cover more rounds. More
research is needed on the relation between sidestepping rounds in an attack, such as in our
deterministic phase or in a rebound attack, and the degrees of freedom spent in doing so. Many
existing works investigate this for differential properties, while in contrast the data points for
linear cryptanalysis are very few.

The wide-trail design strategy, as also employed in PRØST, gives designers a valuable tool
to prove security bounds against e.g. differential- and linear attacks. However, this approach
also implies strong word alignment in the rows. It will be interesting to see what future design
approaches try to trade off this deficiency with the ability to prove good bounds. Along this line,
an open problem from our optimization of the ShiftRows-like operation in AES-like ciphers, is
that of incorporating the rotation matrix normal form into the MILP model itself, rather than

5.2. OPEN PROBLEMS AND FUTURE WORK 169

using the model as a black box solver for a particular rotation matrix.
Finally, it will be interesting to see how approaches such as the comb scheduler find their

use in protocol implementations. With regard to the trending concept of the Internet of Things,
we believe that the increasing volume of clients served by major content providers gives merit
to the approach, with its processing of multiple messages in a pipeline. This is especially true
with respect to the increased throughput for sequential modes of operation, such as the widely
deployed AES-CBC.

A
Truncated Difference Propagations for

SIMON

Table A.1 gives the truncated difference propagations for block sizes n ∈ {96, 128}. The cases for
n ∈ {32, 48,64} are given in Section 2.1.8.

171

172 APPENDIX A. TRUNCATED DIFFERENCE PROPAGATIONS FOR SIMON

Table A.1: Truncated differential pattern propagation for SIMON using block sizes
n ∈ {96, 128}, with an input difference 0 · · ·01‖0 · · ·0

(a) n= 96

Rounds Left halves

0 0001
1 000000000000000000000000000000000000000*000001*0
2 0000000000000000000000000000000*00000**00001**01
3 00000000000000000000000*00000**0000***0*01***0*0
4 000000000000000*00000**0000***0*0******1******01
5 0000000*00000**0000***0*0********************1*0
6 00000**0000***0*0*****************************0*
7 000***0*0**************************************0
8 0***0*
9 **

Rounds Right halves

0 00
1 0001
2 000000000000000000000000000000000000000*000001*0
3 0000000000000000000000000000000*00000**00001**01
4 00000000000000000000000*00000**0000***0*01***0*0
5 000000000000000*00000**0000***0*0******1******01
6 0000000*00000**0000***0*0********************1*0
7 00000**0000***0*0*****************************0*
8 000***0*0**************************************0
9 0***0*

(b) n= 128

Rounds Left halves

0 0001
1 000*000001*0
2 000*00000**00001**01
3 000000000000000000000000000000000000000*00000**0000***0*01***0*0
4 0000000000000000000000000000000*00000**0000***0*0******1******01
5 00000000000000000000000*00000**0000***0*0********************1*0
6 000000000000000*00000**0000***0*0*****************************01
7 0000000*00000**0000***0*0************************************0*0
8 00000**0000***0*0***0*
9 000***0*0**0
10 0***0*
11 **

Rounds Right halves

0 00
1 0001
2 000*000001*0
3 000*00000**00001**01
4 000000000000000000000000000000000000000*00000**0000***0*01***0*0
5 0000000000000000000000000000000*00000**0000***0*0******1******01
6 00000000000000000000000*00000**0000***0*0********************1*0
7 000000000000000*00000**0000***0*0*****************************01
8 0000000*00000**0000***0*0************************************0*0
9 00000**0000***0*0***0*
10 000***0*0**0
11 0***0*

B
Cryptanalysis of PRESENT

B.1 Linear Hull Trail Counts

Table B.1 is the one determined by Ohkuma in [255], giving the number of trails in an optimal hull
for T rounds with T ∈ {1, . . . , 31}. Table B.2 gives values log2 β such that Pr[|CorrEK

| ≥ β] = α
for various α and number of rounds T .

B.2 6-round Deterministic Phase for PRESENT

By combining the 3-round deterministic phase of Section 2.2.5 with another 3 rounds appearing
before, it is possible to construct a 6-round deterministic phase, reminiscent of the rebound
approach described by Mendel, Rechberger, Schläffer, and Thomsen [225] and Lamberger, Mendel,

Table B.1: Number of trails λT in an optimal hull for T -round PRESENT, with T ∈
{1, . . . , 31}

T λT T λT T λT T λT

1 1 9 512 17 1140480 25 2517252696
2 1 10 1344 18 2985984 26 6590254272
3 1 11 3528 19 7817472 27 17253512704
4 3 12 9261 20 20466576 28 45170283840
5 9 13 24255 21 53582633 29 118257341400
6 27 14 63525 22 140281323 30 309601747125
7 72 15 166375 23 367261713 31 810547899975
8 192 16 435600 24 961504803

173

174 APPENDIX B. CRYPTANALYSIS OF PRESENT

Table B.2: Values log2 β s.t. α= Pr[|CorrEK
| ≥ β] for T -round PRESENT

α

T 0.01 0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 0.99

1 −0.63 −1.03 −1.28 −1.64 −1.95 −2.25 −2.57 −2.93 −3.38 −3.98 −4.99 −6.00 −8.32
2 −2.63 −3.03 −3.28 −3.64 −3.95 −4.25 −4.57 −4.93 −5.38 −5.98 −6.99 −8.00 −10.32
3 −4.63 −5.03 −5.28 −5.64 −5.95 −6.25 −6.57 −6.93 −7.38 −7.98 −8.99 −10.00 −12.32
4 −5.84 −6.24 −6.49 −6.85 −7.16 −7.46 −7.78 −8.14 −8.58 −9.19 −10.20 −11.20 −13.53
5 −7.05 −7.44 −7.70 −8.06 −8.36 −8.66 −8.98 −9.35 −9.79 −10.40 −11.41 −12.41 −14.73
6 −8.26 −8.65 −8.90 −9.26 −9.57 −9.87 −10.19 −10.55 −11.00 −11.60 −12.61 −13.62 −15.94
7 −9.55 −9.94 −10.20 −10.56 −10.86 −11.16 −11.48 −11.85 −12.29 −12.90 −13.91 −14.91 −17.23
8 −10.84 −11.24 −11.49 −11.85 −12.16 −12.46 −12.78 −13.14 −13.58 −14.19 −15.20 −16.20 −18.53
9 −12.13 −12.53 −12.78 −13.14 −13.45 −13.75 −14.07 −14.43 −14.88 −15.48 −16.49 −17.50 −19.82
10 −13.44 −13.83 −14.09 −14.45 −14.75 −15.05 −15.37 −15.74 −16.18 −16.78 −17.80 −18.80 −21.12
11 −14.74 −15.14 −15.39 −15.75 −16.06 −16.36 −16.68 −17.04 −17.48 −18.09 −19.10 −20.10 −22.43
12 −16.05 −16.44 −16.69 −17.05 −17.36 −17.66 −17.98 −18.34 −18.79 −19.39 −20.40 −21.41 −23.73
13 −17.35 −17.75 −18.00 −18.36 −18.67 −18.97 −19.29 −19.65 −20.09 −20.70 −21.71 −22.71 −25.04
14 −18.66 −19.05 −19.30 −19.66 −19.97 −20.27 −20.59 −20.95 −21.40 −22.00 −23.01 −24.02 −26.34
15 −19.96 −20.36 −20.61 −20.97 −21.28 −21.58 −21.90 −22.26 −22.70 −23.31 −24.32 −25.32 −27.65
16 −21.27 −21.66 −21.92 −22.28 −22.58 −22.88 −23.20 −23.56 −24.01 −24.61 −25.63 −26.63 −28.95
17 −22.57 −22.97 −23.22 −23.58 −23.89 −24.19 −24.51 −24.87 −25.32 −25.92 −26.93 −27.93 −30.26
18 −23.88 −24.27 −24.53 −24.89 −25.19 −25.49 −25.81 −26.18 −26.62 −27.23 −28.24 −29.24 −31.56
19 −25.19 −25.58 −25.83 −26.19 −26.50 −26.80 −27.12 −27.48 −27.93 −28.53 −29.54 −30.55 −32.87
20 −26.49 −26.89 −27.14 −27.50 −27.80 −28.11 −28.42 −28.79 −29.23 −29.84 −30.85 −31.85 −34.17
21 −27.80 −28.19 −28.44 −28.80 −29.11 −29.41 −29.73 −30.09 −30.54 −31.14 −32.15 −33.16 −35.48
22 −29.10 −29.50 −29.75 −30.11 −30.42 −30.72 −31.04 −31.40 −31.84 −32.45 −33.46 −34.46 −36.79
23 −30.41 −30.80 −31.06 −31.42 −31.72 −32.02 −32.34 −32.71 −33.15 −33.75 −34.77 −35.77 −38.09
24 −31.71 −32.11 −32.36 −32.72 −33.03 −33.33 −33.65 −34.01 −34.46 −35.06 −36.07 −37.07 −39.40
25 −33.02 −33.41 −33.67 −34.03 −34.33 −34.63 −34.95 −35.32 −35.76 −36.37 −37.38 −38.38 −40.70
26 −34.33 −34.72 −34.97 −35.33 −35.64 −35.94 −36.26 −36.62 −37.07 −37.67 −38.68 −39.69 −42.01
27 −35.63 −36.03 −36.28 −36.64 −36.95 −37.25 −37.57 −37.93 −38.37 −38.98 −39.99 −40.99 −43.31
28 −36.94 −37.33 −37.58 −37.94 −38.25 −38.55 −38.87 −39.23 −39.68 −40.28 −41.30 −42.30 −44.62
29 −38.24 −38.64 −38.89 −39.25 −39.56 −39.86 −40.18 −40.54 −40.98 −41.59 −42.60 −43.60 −45.93
30 −39.55 −39.94 −40.20 −40.56 −40.86 −41.16 −41.48 −41.85 −42.29 −42.90 −43.91 −44.91 −47.23
31 −40.85 −41.25 −41.50 −41.86 −42.17 −42.47 −42.79 −43.15 −43.60 −44.20 −45.21 −46.22 −48.54

Schläffer, Rechberger, and Rijmen [204] (see Figure B.1). The idea is, that for rounds 3 through
5, the same approach as in Section 2.2.5 is used. Also, the same approach is used, but going in
the other direction, for rounds 0 through 2.

This describes a construction to independently obtain (i) a set of outputs from round F2, for
which the inputs follow the trail over the first three rounds and (ii) a set of inputs to F3 which
follow the trail over the last three rounds. These two sets meet at the same point: right around
the addition of the round key of round F3. Thus, one can use said round key to determine a
matching between the two sets, to obtain a set which has the desirable property of following the
trail over both the top and bottom part. However, as the approaches are independent, there are
constraints on the round key of round F3 due to both parts, and this loss in degrees of freedom
must be taken into account.

While the technique described here is not directly applicable with our model, as by nature
it needs to use several different keys to match the two sets, it could potentially be useful in
chosen-key models, which allow an adversary to make a statement using multiple different keys.

B.2. 6-ROUND DETERMINISTIC PHASE FOR PRESENT 175

S S S S S S S S S S S S S S SS

F0

S S S S S S S S S S S SS S S S

F1

S S S S S S S S S S S S S S S S

F2

S S S S S S S S S S S S S S S S

F3

S S S S S S S S S S S SS S S S

F4

S S S S S S S S S S S S S S SS

F5

Figure B.1: 6-round deterministic phase for PRESENT using the trail
(e21,e21,e21,e21,e21,e21,e21)

C
Analysis of Permutations in AES-like

Ciphers

C.1 Optimality of the Black-Box Model

One has to make sure that the definition of the tightly guaranteed active S-boxes is independent
of the concrete S-box functions within the AES-like ciphers. This is shown in Lemma 10.

Lemma 10. Let θ : (F2m)M → (F2m)M be a linear automorphism with branch number Bθ . Let v =
(v1, . . . , vM) ∈ (F2m)M\{0} such that θ (v) = w = (w1, . . . , wM). Then for all a1, . . . , a2M ∈ F2m\{0},
one can construct a linear automorphism θ ′ with branch number Bθ such that θ ′(a1v1, . . . , aM vM) =
(aM+1w1, . . . , a2M wM).

Proof. Let G = (I | A) be the generator matrix in standard form of the linear [2M , M , Bθ]m-code
C corresponding to θ , and αi, j , 1≤ i, j ≤ M denote the entry in row i and column j of the M ×M
sub-matrix A. Now one can construct an equivalent code C ′ with the same minimum distance
by multiplying every column of G by non-zero scalars a1, . . . , a2M [295, p. 54–55]. In order
to obtain a generator matrix G′ = (I | A′) of C ′ in standard form, one scales the rows by the
non-zero values a−1

1 , . . . , a−1
M , so we get

G′ =

1 0 · · · 0 a−1
1 aM+1α1,M+1 · · · a−1

1 a2Mα1,2M
0 1 · · · 0 a−1

2 aM+1α2,M+1 · · · a−1
2 a2Mα2,2M

...
...

. . .
...

...
. . .

...
0 0 · · · 1 a−1

M aM+1αM ,M+1 · · · a−1
M a2MαM ,2M

. (C.1)

As stated, G′ generates a code C ′ equivalent to C , and in turn defines the new mixing θ ′(X) = A′·X .
If the matrix A was invertible, then A′ is invertible as well since A′ is obtained from A by scaling
the rows and the columns.

177

178 APPENDIX C. ANALYSIS OF PERMUTATIONS IN AES-LIKE CIPHERS

In order to prove Theorem 6, one will make use of the following two results.

Lemma 11. Let log2(M + 2)< m and let C be a linear [2M , M , M + 1]m-code which is MDS. For
every subset S ⊆ {1, . . . , 2M} with M + 1 ≤]S ≤ 2M, there exists a vector v = (v1, . . . , v2M) ∈ C
such that vi 6= 0 if and only if i ∈ S.

Proof. Define two subsets V, W ⊆ S such that]V =]W = M + 1 and V ∪W = S. This is possible
since]S ≥ M + 1. We use the fact that C , being an MDS code, has a code word of weight M + 1
in any choice of M + 1 coordinates (see e.g. [215, Chapter 11, Theorem 4]). Thus, there exists
two vectors v = (v1, . . . , v2M) and w = (w1, . . . , w2M) in C such that vi 6= 0 if and only if i ∈ V
and wi 6= 0 if and only if i ∈W . Now, one can construct u as a linear combination u = v + cw
with c ∈ F2m as follows. Choose c 6= 0 such that for all non-zero components vi in v the identity

c ·wi 6= −vi (C.2)

holds. This is possible because of the field property of F2m and since 2m > M + 2. The vector u
now has]S non-zero coordinates.

Thus, given a concrete MDS transformation (which has a sufficiently large dimension), every
activity pattern which fulfills the branch number property can be realized. By applying Lemma 10,
one obtains the following result.

Corollary 3. Let log2(M +2)< m . Then for all v, w ∈ (F2m)M , such that hw(ṽ)+hw(w̃)≥ M +1,
where ũ denotes the activity pattern for u ∈ (F2m)M , there exists an MDS matrix A′ ∈ (F2m)M×M

such that w= A′v.

C.2 Experimental Results

Tables C.1 through C.3 provide the results from our search for optimal rotation matrices. For
ρ ∈ {1, 2, 3} and a wide range of dimensions M ×N , number of rounds T and some trail-optimal
choice of σ, we give the number of active S-boxes it tightly guarantees, denoted B . We note
that entries marked with † are results restricted to diffusion-optimal σ due to the complexity of
the model. As such, the optimal bound with respect to trail weights may be even higher.

C.2. EXPERIMENTAL RESULTS 179

Table C.1: Results for (M , N) ∈ {(2,2), (2,4), (2,6), (2,8), (3,3)}

ρ = 1 ρ = 2 ρ = 3

T M N B σ B σ B σ

2 2 2 3 (0,1) 3 (0,1), (0,1) 3 (0,1), (0,1), (0,1)
3 5 (0,1) 5 (0,1), (0,1) 5 (0,1), (0,1), (0,1)
4 9 (0,1) 9 (0,1), (0,1) 9 (0,1), (0,1), (0,1)
5 10 (0,1) 10 (0,1), (0,1) 10 (0,1), (0,1), (0,1)
6 12 (0,1) 12 (0, 1), (0,1) 12 (0,1), (0,1), (0,1)
7 14 (0,1) 14 (0, 1), (0, 1) 14 (0,1), (0,1), (0,1)
8 18 (0,1) 18 (0, 1), (0, 1) 18 (0,1), (0,1), (0,1)

10 21 (0, 1) 21 (0, 1), (0, 1) 21 (0,1), (0,1), (0,1)
12 27 (0, 1) 27 (0, 1), (0, 1) 27 (0,1), (0,1), (0,1)

2 2 4 3 (0,1) 3 (0,1), (0,1) 3 (0,1), (0,1), (0,1)
3 5 (0,1) 5 (0,1), (0,1) 5 (0,1), (0,1), (0,1)
4 9 (0,1) 9 (0,1), (0,1) 9 (0,1), (0,1), (0,1)
5 13 (0,1) 13 (0,1), (0,1) 13 (0,1), (0,1), (0,1)
6 18 (0,1) 18 (0, 1), (0,1) 18 (0,1), (0,1), (0,1)
7 21 (0,1) 22 (0, 1), (0, 2) 21 (0,1), (0,1), (0,1)
8 24 (0,1) 24 (0, 1), (0, 1) 24 (0,1), (0,1), (0,1)

10 30 (0, 1) 30 (0, 1), (0, 1) 30 (0,1), (0,1), (0,1)
12 36 (0, 1) 36 (0, 1), (0, 1) 36 (0,1), (0,1), (0,1)

2 2 6 3 (0,1) 3 (0,1), (0,1) 3 (0,1), (0,1), (0,1)
3 5 (0,1) 5 (0,1), (0,1) 5 (0,1), (0,1), (0,1)
4 9 (0,1) 9 (0,1), (0,1) 9 (0,1), (0,1), (0,1)
5 13 (0,1) 13 (0,1), (0,1) 13 (0,1), (0,1), (0,1)
6 18 (0,1) 21 (0, 1), (0,2) 21 (0,1), (0,2), (0,2)
7 21 (0,1) 29 (0, 2), (0, 1) 28 (0,1), (0,2), (0,2)
8 24 (0,1) 33 (0, 1), (0, 2) 33 (0,1), (0,2), (0,1)

10 30 (0, 1) 39 (0, 1), (0, 2) 42 (0,1), (0,1), (0,2)
12 36 (0, 1) 45 (0, 1), (0, 2) 48 (0,1), (0,1), (0,3)

2 2 8 3 (0,1) 3 (0,1), (0,1) 3 (0,1), (0,1), (0,1)
3 5 (0,1) 5 (0,1), (0,1) 5 (0,1), (0,1), (0,1)
4 9 (0,1) 9 (0,1), (0,1) 9 (0,1), (0,1), (0,1)
5 13 (0,1) 13 (0,1), (0,1) 13 (0,1), (0,1), (0,1)
6 18 (0,1) 21 (0, 1), (0,2) 21 (0,1), (0,2), (0,2)
7 21 (0,1) 29 (0, 1), (0, 3) 29 (0,1), (0,2), (0,3)
8 24 (0,1) 39 (0, 1), (0, 3) 42 (0,1), (0,2), (0,3)

10 30 (0, 1) 51 (0, 1), (0, 3) 54 (0,1), (0,3), (0,2)
12 36 (0, 1) 56 (0, 1), (0, 3) 60 (0,1), (0,2), (0,3)

2 3 3 4 (0, 1,2) 4 (0,1, 2), (0, 1,2) 4 (0,1, 2), (0, 1,2), (0,1, 2)
3 7 (0, 1,2) 7 (0,1, 2), (0, 1,2) 7 (0,1, 2), (0, 1,2), (0,1, 2)
4 16 (0, 1,2) 16 (0,1, 2), (0, 1,2) 16 (0,1, 2), (0, 1,2), (0,1, 2)
5 17 (0, 1,2) 17 (0,1, 2), (0, 1,2) 17 (0,1, 2), (0, 1,2), (0,1, 2)
6 20 (0, 1,2) 20 (0,1, 2), (0, 1,2) 20 (0,1, 2), (0, 1,2), (0,1, 2)
7 23 (0, 1,2) 23 (0,1, 2), (0, 1,2) 23 (0,1, 2), (0, 1,2), (0,1, 2)
8 32 (0, 1,2) 32 (0,1, 2), (0, 1,2) 32 (0,1, 2), (0, 1,2), (0,1, 2)

10 36 (0, 1,2) 36 (0,1, 2), (0, 1,2) 36 (0,1, 2), (0, 1,2), (0,1, 2)
12 48 (0, 1,2) 48 (0,1, 2), (0, 1,2) 48 (0,1, 2), (0, 1,2), (0,1, 2)

180 APPENDIX C. ANALYSIS OF PERMUTATIONS IN AES-LIKE CIPHERS

Table C.2: Results for (M , N) ∈ {(3, 6), (3, 9), (4, 4), (4, 6), (4, 8)}

ρ = 1 ρ = 2 ρ = 3

T M N B σ B σ B σ

2 3 6 4 (0,1, 2) 4 (0, 1,2), (0,1, 2) 4 (0, 1,2), (0,1, 2), (0, 1,2)
3 7 (0,1, 2) 7 (0, 1,2), (0,1, 2) 7 (0, 1,2), (0,1, 2), (0, 1,2)
4 16 (0,1, 2) 16 (0, 1,2), (0,1, 2) 16 (0, 1,2), (0,1, 2), (0, 1,2)
5 20 (0,1, 2) 25 (0, 1,2), (0,1, 3) 25 (0, 1,2), (0,1, 3), (0, 1,2)
6 24 (0,1, 2) 36 (0, 1,2), (0,1, 3) 36 (0, 1,3), (0,1, 2), (0, 2,3)
7 28 (0,1, 2) 38 (0, 1,2), (0,1, 3) 40 (0, 1,3), (0,2, 3), (0, 1,2)
8 32 (0,1, 2) 41 (0, 1,2), (0,1, 3) 44 (0, 1,2), (0,1, 3), (0, 2,3)

10 40 (0,1, 2) 56 (0, 1,2), (0,1, 3) 56 (0, 1,2), (0,1, 3), (0, 2,3)
12 48 (0,1, 2) 72 (0, 1,2), (0,1, 3) 72 (0, 1,2), (0,1, 3), (0, 2,3)

2 3 9 4 (0,1, 2) 4 (0, 1,2), (0,1, 2) 4 (0, 1,2), (0,1, 2), (0, 1,2)
3 7 (0,1, 2) 7 (0, 1,2), (0,1, 2) 7 (0, 1,2), (0,1, 2), (0, 1,2)
4 16 (0,1, 2) 16 (0, 1,2), (0,1, 2) 16 (0, 1,2), (0,1, 2), (0, 1,2)
5 25 (0,1, 3) 25 (0, 1,2), (0,1, 3) 25 (0, 4,8), (0,4, 8), (0, 2,8)
6 36 (0,1, 3) 44 (0, 1,2), (0,2, 5) 44 (0, 1,2), (0,2, 4), (0, 3,6)
7 42 (0,1, 3) 53 (0, 1,2), (0,2, 5) 55 (0, 1,2), (0,2, 4), (0, 3,6)
8 48 (0,1, 3) 60 (0, 1,2), (0,1, 4) 60 (0, 1,2), (0,1, 2), (0, 2,5)

10 60 (0,1, 3) 69 (0, 1,2), (0,1, 4)
12 72 (0,1, 3) 92 (0, 1,2), (0,2, 5) 93 (0, 1,2), (0,2, 4), (0, 3,6)

2 4 4 5 (0,1, 2,3) 5 (0,1, 2,3), (0, 1,2, 3) 5 (0, 1,2, 3), (0, 1,2, 3), (0,1, 2,3)
3 9 (0,1, 2,3) 9 (0,1, 2,3), (0, 1,2, 3) 9 (0, 1,2, 3), (0, 1,2, 3), (0,1, 2,3)
4 25 (0,1, 2,3) 25 (0,1, 2,3), (0, 1,2, 3) 25 (0, 1,2, 3), (0, 1,2, 3), (0,1, 2,3)
5 26 (0,1, 2,3) 26 (0,1, 2,3), (0, 1,2, 3) 26 (0, 1,2, 3), (0, 1,2, 3), (0,1, 2,3)
6 30 (0,1, 2,3) 30 (0,1, 2,3), (0, 1,2, 3) 30 (0, 1,2, 3), (0, 1,2, 3), (0,1, 2,3)
7 34 (0,1, 2,3) 34 (0,1, 2,3), (0, 1,2, 3) 34 (0, 1,2, 3), (0, 1,2, 3), (0,1, 2,3)
8 50 (0,1, 2,3) 50 (0,1, 2,3), (0, 1,2, 3) 50 (0, 1,2, 3), (0, 1,2, 3), (0,1, 2,3)

10 55 (0,1, 2,3) 55 (0,1, 2,3), (0, 1,2, 3) 55 (0, 1,2, 3), (0, 1,2, 3), (0,1, 2,3)
12 75 (0,1, 2,3) 75 (0,1, 2,3), (0, 1,2, 3) 75 (0, 1,2, 3), (0, 1,2, 3), (0,1, 2,3)

2 4 6 5 (0,1, 2,3) 5 (0,1, 2,3), (0, 1,2, 3) 5 (0, 1,2, 3), (0, 1,2, 3), (0,1, 2,3)
3 9 (0,1, 2,3) 9 (0,1, 2,3), (0, 1,2, 3) 9 (0, 1,2, 3), (0, 1,2, 3), (0,1, 2,3)
4 25 (0,1, 2,3) 25 (0,1, 2,3), (0, 1,2, 3) 25 (0, 1,2, 3), (0, 1,2, 3), (0,1, 2,3)
5 34 (0,1, 2,3) 36 (0,1, 2,4), (0, 1,2, 3) 37 (0, 1,2, 3), (0, 1,2, 4), (0,1, 3,4)
6 45 (0,1, 3,4) 45 (0,1, 3,4), (0, 1,3, 4) 45 (0, 1,3, 4), (0, 1,3, 4), (0,1, 3,4)
7 48 (0,1, 3,4) 48 (0,1, 3,4), (0, 1,3, 4) 48 (0, 1,2, 3), (0, 1,2, 3), (0,1, 3,4)
8 57 (0,1, 3,4) 57 (0,1, 3,4), (0, 1,3, 4) 57 (0, 1,3, 4), (0, 1,3, 4), (0,1, 3,4)

10 72 (0,1, 2,3) 73 (0,1, 2,3), (0, 1,2, 4) 74 (0, 1,2, 3), (0, 1,2, 3), (0,1, 3,4)
12 90 (0,1, 3,4) 90 (0,1, 3,4), (0, 1,3, 4) 90 (0, 1,3, 4), (0, 1,3, 4), (0,1, 3,4)

2 4 8 5 (0,1, 2,3) 5 (0,1, 2,3), (0, 1,2, 3) 5 (0, 1,2, 3), (0, 1,2, 3), (0,1, 2,3)
3 9 (0,1, 2,3) 9 (0,1, 2,3), (0, 1,2, 3) 9 (0, 1,2, 3), (0, 1,2, 3), (0,1, 2,3)
4 25 (0,1, 2,3) 25 (0,1, 2,3), (0, 1,2, 3) 25 (0, 1,2, 3), (0, 1,2, 3), (0,1, 2,3)
5 41 (0,1, 2,4) 41 (0,1, 2,3), (0, 1,3, 4)
6 50 (0,1, 2,4) 55 (0,1, 2,3), (0, 1,3, 5)
7 58 (0,1, 3,4) 58 (0,1, 2,3), (0, 2,3, 5)
8 65 (0,1, 2,4) 65 (0,1, 2,3), (0, 1,3, 4)

10 85 (0,1, 2,4) 90 (0,1, 2,3), (0, 2,3, 5)
12 105 (0,1, 2,4) 111 (0,1, 2,3), (0, 2,3, 5)
14 120 (0,1, 2,4)

C.2. EXPERIMENTAL RESULTS 181

Table C.3: Results for (M , N) ∈ {(4, 10), (4,12), (4,16), (4,32), (5,8)}

ρ = 1 ρ = 2

T M N B σ B σ

2 4 10 5 (0,1, 2,3) 5 (0,1, 2,3), (0,1, 2,3)
3 9 (0,1, 2,3) 9 (0,1, 2,3), (0,1, 2,3)
4 25 (0,1, 2,3) 25 (0,1, 2,3), (0,1, 2,3)
5 41 (0,1, 2,4) 41 (0,1, 2,3), (0,1, 3,4)
6 60 (0,1, 2,4) 65 (0,1, 2,3), (0,1, 4,7)
7 70 (0,1, 3,4) 72 (0,1, 2,3), (0, 1, 4,7)
8 80 (0,1, 3,4) 82 (0,1, 5,6), (0, 2,5,7)

2 4 12 5 (0,1, 2,3) 5 (0,1, 2,3), (0,1, 2,3)
3 9 (0,1, 2,4) 9 (0,1, 2,3), (0,1, 2,4)
4 25 (0,1, 2,3)
5 41 (0,1, 3,4)
6 65 (0,1, 4,5)
7 76 (0,1, 4,5)
8 92 (0,1, 4,5)

2 4 16 5 (0,1, 2,3) 5 (0,1, 2,3), (0,1, 2,3)
3 9 (0,1, 2,3) 9 (0,1, 2,3), (0,1, 2,3)
4 25 (0,1, 2,3) 25† (0,1, 2,3), (0,1, 2,3)
5 41 (0,1, 2,4)
6 75 (0,1, 4,6) 90† (0, 4,10,14), (0, 2,11,13)
7 100 (0,1, 4,6) 111† (0,1, 2,3), (0,3, 7,11)
8 120 (0,1, 4,5)

2 4 32 5 (0,1, 2,3) 5† (0,1, 2,3), (0,1, 2,3)
3 9 (0,1, 2,3) 9† (0,1, 2,3), (0,1, 2,3)
4 25 (0,1, 2,3) 25† (0,1, 2,3), (0,1, 2,3)
5 41 (0,1, 2,4)
6 75 (0,1, 4,6)

2 5 8 6 (0,1, 2,3, 4) 6 (0, 1,2, 3,4), (0, 1,2, 3,4)
3 11 (0,1, 2,3, 4) 11 (0, 1,2, 3,4), (0, 1,2, 3,4)
4 36 (0,1, 2,3, 4) 36 (0, 1,2, 3,4), (0, 1,2, 3,4)
5 54 (0,1, 2,3, 5) 56 (0, 1,2, 3,4), (0, 1,3, 5,6)
6 62 (0,1, 2,3, 5) 62 (0, 1,2, 3,4), (0, 1,2, 3,5)
7 67 (0,1, 2,3, 5) 67 (0, 1,2, 3,4), (0, 1,2, 3,5)
8 72 (0,1, 2,3, 4) 72 (0, 1,2, 3,4), (0, 1,2, 3,4)
9 95 (0,1, 2,3, 4), (0, 1,2, 3,5)

D
Pseudo-code for PRØST Proposals

In the following, we give pseudo-code for all PRØST proposals. We refer to Section 3.2 for
the notation. Algorithms 12 and 13 describe the application and removal of padding. The
PRØST-COPA-n proposal is described by Algorithms 14 through 16; PRØST-OTR-n is described by
Algorithms 17 through 21; and PRØST-APE-n[r, c] is described by Algorithms 22 and 23.

Algorithm 12: padb(X)

Data: X ∈ F∗2, b ∈ N
1 return X‖10b−(|X |mod b)−1

Algorithm 13: STRIPPADDING(X)

Data: X ∈ F∗2
1 while X 6= ε and lsb1(X) = 0 do
2 X = X � 1 // Peel off zeroes in the end
3 end
4 if X 6= ε then
5 X ← X � 1 // If X 6= ε remove the 1-bit
6 end
7 return X

183

184 APPENDIX D. PSEUDO-CODE FOR PRØST PROPOSALS

Algorithm 14: PRØST-COPA-n-E (K , N , A, M)

Data: K ∈ Fκ2 , N ∈ Fη2 , A∈ F∗2, M ∈ F∗2
1 (L, V)← PRØST-COPA-n-ProcessAD(A, N) // First process A and N

2 M ← pad2n(M) // Pad M to positive multiple of 2n bits
3 V ← V ⊕ L
4 (∆0,∆1)← (3L,2L)
5 Σ← 02n

6 for i = 1, . . . ,` do
7 V ← P̃n,K(Mi ⊕∆0)⊕ V // Process message blocks
8 Ci ← P̃n,K(V)⊕∆1
9 (∆0,∆1)← (2∆0,2∆1)

10 Σ← Σ⊕Mi

11 end
12 T ← lsbτ(P̃n,K(P̃n,K(Σ⊕ 2`−132 L)⊕ V)⊕ 2`−17L) // Compute tag
13 return (C , T)

Algorithm 15: PRØST-COPA-n-D(K , N , A, C , T)

Data: K ∈ Fκ2 , N ∈ Fη2 , A∈ F∗2, C ∈ (F2n
2)
+, T ∈ Fτ2

1 (L, V)← PRØST-COPA-n-ProcessAD(A, N) // First process A and N

2 V ← V ⊕ L
3 (∆0,∆1)← (3L,2L)
4 Σ← 02n

5 for i = 1, . . . ,` do
6 V ′← P̃−1

n,K(Ci ⊕∆1) // Process ciphertext blocks

7 Mi ← P̃−1
n,K(V

′ ⊕ V)⊕∆0

8 V ← V ′

9 (∆0,∆1)← (2∆0,2∆1)
10 Σ← Σ⊕Mi

11 end
12 T ′← lsbτ(P̃n,K(P̃n,K(Σ⊕ 2`−132 L)⊕ V)⊕ 2`−17L) // Compute verification tag
13 if T ′ = T then
14 return STRIPPADDING(M)
15 else
16 return ⊥
17 end

185

Algorithm 16: PRØST-COPA-n-ProcessAD(A, N)

Data: A∈ F∗2, N ∈ Fη2
1 X ← A‖N // Append N to A

2 L← P̃n,K(02n) // Set initial values
3 ∆← 33 L
4 V ← 02n

5 k←
 |X |

2n

£

6 for i = 1, . . . , k− 1 do
7 V ← V ⊕ P̃n,K(X i ⊕∆) // Process all blocks of X except the last
8 ∆← 2∆
9 end

10 if |Xk|= 2n then
11 V ← P̃n,K(V ⊕ Xk ⊕ 3∆) // Process last block of X if full
12 else
13 V ← P̃n,K(V ⊕ pad2n(Xk)⊕ 32∆) // Process last block of X if partial
14 end
15 return (L, V)

Algorithm 17: PRØST-OTR-n-E (K , N , A, M)

Data: K ∈ Fκ2 , N ∈ Fη2 , A∈ F∗2, M ∈ F∗2
1 (C , T E)← PRØST-OTR-n-Enc(K , N , M)
2 if A 6= ε then TA← PRØST-OTR-n-ProcessAD(K , A)
3 else TA← 02n

4 T ←msbτ(T E ⊕ TA)
5 return (C , T)

Algorithm 18: PRØST-OTR-n-D(K , N , A, C , T)

Data: K ∈ Fκ2 , N ∈ Fη2 , A∈ F∗2, C ∈ (F2n
2)
+, T ∈ Fτ2

1 (M , T E)← PRØST-OTR-n-Dec(K , N , C)
2 if A 6= ε then TA← PRØST-OTR-n-ProcessAD(K , A)
3 else TA← 02n

4 T ′←msbτ(T E ⊕ TA)
5 if T ′ = T then
6 return STRIPPADDING(M)
7 else
8 return ⊥
9 end

186 APPENDIX D. PSEUDO-CODE FOR PRØST PROPOSALS

Algorithm 19: PRØST-OTR-n-ProcessAD(K , A)

Data: K ∈ Fκ2 , A∈ F∗2
1 Ξ← 02n // Set initial values
2 γ← P̃n,K(02n)
3 Q← 4γ
4 for i = 1, . . . , k− 1 do
5 Ξ← Ξ⊕ P̃n,K(Q⊕ Ai) // Process first k− 1 blocks of A

6 Q← 2Q
7 end
8 if |Ak|= 2n then
9 Ξ← Ξ⊕ Ak

10 TA← P̃n,K(Q⊕ 2γ⊕Ξ)
11 else
12 Ξ← Ξ⊕ pad2n(Ak)
13 TA← P̃n,K(Q⊕ γ⊕Ξ)
14 end
15 return TA

Algorithm 20: PRØST-OTR-n-Enc(K , N , M)

Data: K ∈ Fκ2 , N ∈ Fη2 , M ∈ F∗2
1 M ← pad2n(M) // Pad M to positive multiple of 2n bits
2 Σ← 02n // Set initial values
3 δ← P̃n,K(pad2n(N)) // Set δ to the encryption of the padded nonce
4 L← 4δ
5 for i = 1, . . . , b`/2c do
6 C2i−1← P̃n,K(L ⊕M2i−1)⊕M2i // Process M blocks in pairs
7 C2i ← P̃n,K(L ⊕δ⊕ C2i−1)⊕M2i−1
8 Σ← Σ⊕M2i
9 L← 2L

10 end
11 if ` is even then
12 L′← L ⊕δ
13 else
14 L′← L // Handle last block if ` is odd
15 C`← P̃n,K(L′)⊕M`

16 Σ← Σ⊕M`

17 end
18 T E← P̃n,K(3L′ ⊕δ⊕Σ) // Compute encryption part of tag
19 return (C , T E)

187

Algorithm 21: PRØST-OTR-n-Dec(K , N , C)

Data: K ∈ F∗2, N ∈ Fη2 , C ∈ (F2n
2)
+

1 Σ← 02n // Set initial values
2 δ← P̃n,K(pad2n(N)) // Set δ to the encryption of the padded nonce
3 L← 4δ
4 for i = 1, . . . , b`/2c do
5 M2i−1← P̃n,K(L ⊕δ⊕ C2i−1)⊕ C2i // Process C blocks in pairs
6 M2i ← P̃n,K(L ⊕M2i−1)⊕ C2i−1
7 Σ← Σ⊕M2i
8 L← 2L
9 end

10 if ` is even then
11 L′← L ⊕δ
12 else
13 L′← L // Handle last block if ` is odd
14 M`← P̃n,K(L′)⊕ C`
15 Σ← Σ⊕M`

16 end
17 T E← P̃n,K(3L′ ⊕δ⊕Σ) // Compute encryption part of tag
18 return (M , T E)

Algorithm 22: PRØST-APE-n[r, c]-E (K , N , A, M)

Data: K ∈ Fκ2 , N ∈ Fη2 , A∈ F∗2, M ∈ F∗2
1 M ← padr(M) // Pad M to positive multiple of r bits
2 V ← 0r‖K
3 X ← padr(N‖A) // Prepend N to A and pad to positive multiple of r bits
4 for i = 1, . . . , k do
5 V ← Pn((X i ⊕ Vr)‖Vc) // Process nonce and AD
6 end
7 Vc ← Vc ⊕ (0c−1‖1) // Domain separation
8 for i = 1, . . . ,` do
9 V ← Pn((Mi ⊕ Vr)‖Vc) // Process message

10 Ci ← Vr

11 end
12 T ← Vc ⊕ K // Compute tag
13 return (C , T)

188 APPENDIX D. PSEUDO-CODE FOR PRØST PROPOSALS

Algorithm 23: PRØST-APE-n[r, c]-D(K , N , A, C , T)

Data: K ∈ Fκ2 , N ∈ Fη2 , A∈ F∗2, C ∈ (Fr
2)
+, T ∈ Fτ2

1 IV ← 0r‖K
2 X ← padr(N‖A) // Prepend N to A and pad to positive multiple of r bits
3 for i = 1, . . . , k do
4 IV ← Pn((X i ⊕ Vr)‖Vc) // Process nonce and AD
5 end
6 IVc ← IVc ⊕ (0c−1‖1) // Domain separation
7 C0← IVr // Set dummy C0 = IVr for a smoother loop
8 V ← (0r‖(K ⊕ T))
9 for i = `, . . . , 1 do

10 V ← P−1
n (Ci‖Vc) // Process ciphertext

11 Mi ← Vr ⊕ Ci−1

12 end
13 if IVc = Vc then
14 return STRIPPADDING(M)
15 else
16 return ⊥
17 end

Bibliography

[1] Donald Eastlake 3rd. Transport Layer Security (TLS) Extensions: Extension Definitions.
RFC 6066 (Proposed Standard), January 2011.

[2] Mohamed Ahmed Abdelraheem, Javad Alizadeh, Hoda A. Alkhzaimi, Mohammad Reza
Aref, Nasour Bagheri, Praveen Gauravaram, and Martin M. Lauridsen. Improved Linear
Cryptanalysis of Reduced-round SIMON. Cryptology ePrint Archive, Report 2014/681,
2014.

[3] Mohamed Ahmed Abdelraheem, Peter Beelen, Andrey Bogdanov, and Elmar Tischhauser.
Twisted Polynomials and Forgery Attacks on GCM. In Oswald and Fischlin [256], pages
762–786.

[4] Masayuki Abe, editor. Advances in Cryptology - ASIACRYPT 2010 - 16th International
Conference on the Theory and Application of Cryptology and Information Security, Singapore,
December 5-9, 2010. Proceedings, volume 6477 of Lecture Notes in Computer Science, 2010.
Springer.

[5] Farzaneh Abed, Eik List, Stefan Lucks, and Jakob Wenzel. Differential and Linear Crypt-
analysis of Reduced-Round Simon. Cryptology ePrint Archive, Report 2013/526, 2013.

[6] Farzaneh Abed, Scott R. Fluhrer, Christian Forler, Eik List, Stefan Lucks, David A. McGrew,
and Jakob Wenzel. Pipelineable On-line Encryption. In Cid and Rechberger [96], pages
205–223.

[7] Farzaneh Abed, Eik List, Stefan Lucks, and Jakob Wenzel. Differential Cryptanalysis of
Round-Reduced Simon and Speck. In Cid and Rechberger [96], pages 525–545.

[8] National Security Agency. Suite B Cryptography. http://www.nsa.gov/ia/programs/
suiteb_cryptography/. Accessed on May 19, 2015.

[9] Martin Ågren, Martin Hell, Thomas Johansson, and Willi Meier. Grain-128a: a new version
of Grain-128 with optional authentication. IJWMC, 5(1):48–59, 2011.

[10] Zahra Ahmadian, Sahram Rasoolzadeh, Mahmoud Salmasizadeh, and Mohammad Reza
Aref. Automated Dynamic Cube Attack on Block Ciphers: Cryptanalysis of SIMON and
KATAN. Cryptology ePrint Archive, Report 2015/040, 2015.

189

http://www.nsa.gov/ia/programs/suiteb_cryptography/
http://www.nsa.gov/ia/programs/suiteb_cryptography/

190 BIBLIOGRAPHY

[11] Kahraman Akdemir, Martin Dixon, Wajdi Feghali, Patrick Fay, Vinodh Gopal, Jim Guilford,
Erdinc Ozturk, Gil Wolrich, and Ronen Zohar. Breakthrough AES Performance with Intel
AES New Instructions. Intel Corporation, 2010.

[12] Mehdi-Laurent Akkar and Christophe Giraud. An Implementation of DES and AES, Secure
against Some Attacks. In Çetin Kaya Koç, David Naccache, and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems - CHES 2001, Third International Workshop,
Paris, France, May 14-16, 2001, Proceedings, volume 2162 of Lecture Notes in Computer
Science, pages 309–318. Springer, 2001.

[13] Martin R. Albrecht and Gregor Leander. An All-In-One Approach to Differential Cryptanal-
ysis for Small Block Ciphers. In Lars R. Knudsen and Huapeng Wu, editors, Selected Areas
in Cryptography, 19th International Conference, SAC 2012, Windsor, ON, Canada, August
15-16, 2012, Revised Selected Papers, volume 7707 of Lecture Notes in Computer Science,
pages 1–15. Springer, 2012.

[14] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky Thirteen: Breaking the TLS and
DTLS Record Protocols. In 2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley,
CA, USA, May 19-22, 2013, pages 526–540. IEEE Computer Society, 2013.

[15] Javad Alizadeh, Nasour Bagheri, Praveen Gauravaram, Abhishek Kumar, and Somitra Ku-
mar Sanadhya. Linear Cryptanalysis of Round Reduced SIMON. Cryptology ePrint Archive,
Report 2013/663, 2013.

[16] Javad Alizadeh, Hoda A. AlKhzaimi, Mohammad Reza Aref, Nasour Bagheri, Praveen
Gauravaram, Abhishek Kumar, Martin M. Lauridsen, and Somitra Kumar Sanadhya. Crypt-
analysis of SIMON Variants with Connections. In Nitesh Saxena and Ahmad-Reza Sadeghi,
editors, Radio Frequency Identification: Security and Privacy Issues - 10th International
Workshop, RFIDSec 2014, Oxford, UK, July 21-23, 2014, Revised Selected Papers, volume
8651 of Lecture Notes in Computer Science, pages 90–107. Springer, 2014.

[17] Javad Alizadeh, Mohammad Reza Aref, and Nasour Bagheri. Artemia. Submission to the
CAESAR competition, 2014.

[18] Hoda A. Alkhzaimi and Martin M. Lauridsen. SIMON Cryptanalysis Code Repository.
https://github.com/mmeh/simon-speck-cryptanalysis, 2013.

[19] Hoda A. Alkhzaimi and Martin M. Lauridsen. Cryptanalysis of the SIMON Family of Block
Ciphers. Cryptology ePrint Archive, Report 2013/543, 2013.

[20] Basel Alomair. AVALANCHEv1. Submission to the CAESAR competition, 2014.

[21] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar Tischhauser, and
Kan Yasuda. Parallelizable and Authenticated Online Ciphers. In Kazue Sako and Palash
Sarkar, editors, Advances in Cryptology - ASIACRYPT 2013 - 19th International Conference
on the Theory and Application of Cryptology and Information Security, Bengaluru, India,
December 1-5, 2013, Proceedings, Part I, volume 8269 of Lecture Notes in Computer Science,
pages 424–443. Springer, 2013.

https://github.com/mmeh/simon-speck-cryptanalysis

BIBLIOGRAPHY 191

[22] Elena Andreeva, Andrey Bogdanov, and Bart Mennink. Towards Understanding the
Known-Key Security of Block Ciphers. In Moriai [236], pages 348–366.

[23] Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Florian Mendel, Bart Mennink,
Nicky Mouha, Qingju Wang, and Kan Yasuda. PRIMATEs. Submission to the CAESAR
competition, 2014.

[24] Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky Mouha,
and Kan Yasuda. APE: Authenticated Permutation-Based Encryption for Lightweight
Cryptography. In Cid and Rechberger [96], pages 168–186.

[25] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky Mouha, and Kan
Yasuda. How to Securely Release Unverified Plaintext in Authenticated Encryption. In
Sarkar and Iwata [279], pages 105–125.

[26] Elena Andreeva, Atul Luykx, Bart Mennink, and Kan Yasuda. COBRA: A Parallelizable
Authenticated Online Cipher Without Block Cipher Inverse. In Cid and Rechberger [96],
pages 187–204.

[27] Kazumaro Aoki, Tetsuya Ichikawa, Masayuki Kanda, Mitsuru Matsui, Shiho Moriai, Junko
Nakajima, and Toshio Tokita. Camellia: A 128-Bit Block Cipher Suitable for Multiple
Platforms - Design and Analysis. In Douglas R. Stinson and Stafford E. Tavares, editors,
Selected Areas in Cryptography, 7th Annual International Workshop, SAC 2000, Waterloo,
Ontario, Canada, August 14-15, 2000, Proceedings, volume 2012 of Lecture Notes in
Computer Science, pages 39–56. Springer, 2000.

[28] Kazumaro Aoki, Tetsu Iwata, and Kan Yasuda. How Fast Can a Two-Pass Mode Go? A
Parallel Deterministic Authenticated Encryption Mode for AES-NI. In DIAC 2012: Directions
in Authenticated Ciphers, 2012.

[29] Jacob Appelbaum. Conflicting roles: the NSA and cryptography. Invited talk at the Fast
Software Encryption workshop, 2015.

[30] Frederik Armknecht. Improving Fast Algebraic Attacks. In Roy and Meier [274], pages
65–82.

[31] Tomer Ashur. Improved Linear Trails for the Block Cipher Simon. Cryptology ePrint
Archive, Report 2015/285, 2015.

[32] Armen S. Asratian, Tristan M. J. Denley, and Roland Häggkvist. Bipartite Graphs and Their
Applications. Cambridge Tracts in Mathematics. Cambridge University Press, 1998.

[33] Vijayalakshmi Atluri, editor. Proceedings of the 9th ACM Conference on Computer and
Communications Security, CCS 2002, Washington, DC, USA, November 18-22, 2002, 2002.
ACM.

[34] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves. NORX. Submission to the
CAESAR competition, 2014.

192 BIBLIOGRAPHY

[35] Steve Babbage and Laurent Frisch. On MISTY1 Higher Order Differential Cryptanalysis. In
Dongho Won, editor, Information Security and Cryptology - ICISC 2000, Third International
Conference, Seoul, Korea, December 8-9, 2000, Proceedings, volume 2015 of Lecture Notes
in Computer Science, pages 22–36. Springer, 2000.

[36] Lear Bahack. Julius. Submission to the CAESAR competition, 2014.

[37] Achiya Bar-On. Improved Higher-Order Differential Attacks on MISTY1. In Leander [210],
pages 28–47.

[38] Paulo Barreto and Vincent Rijmen. The Anubis Block Cipher. Submission to the NESSIE
project, 2000.

[39] Paulo Barreto and Vincent Rijmen. The Whirlpool Hash Function. Submission to the
NESSIE project, 2000.

[40] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks, and
Louis Wingers. The SIMON and SPECK Families of Lightweight Block Ciphers. Cryptology
ePrint Archive, Report 2013/404, 2013.

[41] Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks, and
Louis Wingers. SIMON and SPECK: Block Ciphers for the Internet of Things. Cryptology
ePrint Archive, Report 2015/585, 2015.

[42] Christof Beierle, Philipp Jovanovic, Martin M. Lauridsen, Gregor Leander, and Christian
Rechberger. Analyzing Permutations for AES-like Ciphers: Understanding ShiftRows. In
Kaisa Nyberg, editor, Topics in Cryptology - CT-RSA 2015, The Cryptographer’s Track at the
RSA Conference 2015, San Francisco, CA, USA, April 20-24, 2015. Proceedings, volume
9048 of Lecture Notes in Computer Science, pages 37–58. Springer, 2015.

[43] Christof Beierle, Philipp Jovanovic, Martin M. Lauridsen, Gregor Leander, and Christian
Rechberger. Code Repository for Analysis of ShiftRows in AES-like Ciphers. https://github.
com/mmeh/understanding-shiftrows, 2015.

[44] Mihir Bellare and Chanathip Namprempre. Authenticated Encryption: Relations among
Notions and Analysis of the Generic Composition Paradigm. In Tatsuaki Okamoto, editor,
Advances in Cryptology - ASIACRYPT 2000, 6th International Conference on the Theory
and Application of Cryptology and Information Security, Kyoto, Japan, December 3-7, 2000,
Proceedings, volume 1976 of Lecture Notes in Computer Science, pages 531–545. Springer,
2000.

[45] Mihir Bellare, Alexandra Boldyreva, Lars R. Knudsen, and Chanathip Namprempre. Online
Ciphers and the Hash-CBC Construction. In Kilian [187], pages 292–309.

[46] Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Authenticated encryption
in SSH: provably fixing the SSH binary packet protocol. In Atluri [33], pages 1–11.

https://github.com/mmeh/understanding-shiftrows
https://github.com/mmeh/understanding-shiftrows

BIBLIOGRAPHY 193

[47] Mihir Bellare, Phillip Rogaway, and David Wagner. The EAX Mode of Operation. In Roy
and Meier [274], pages 389–407.

[48] Ryad Benadjila, Olivier Billet, Henri Gilbert, Gilles Macario-Rat, Thomas Peyrin, Matt
Robshaw, and Yannick Seurin. ECHO. Submission to the SHA-3 competition, 2008.

[49] Daniel J. Bernstein. Cache-timing attacks on AES, 2005.

[50] Daniel J. Bernstein and Peter Schwabe. New AES Software Speed Records. In Dipan-
wita Roy Chowdhury, Vincent Rijmen, and Abhijit Das, editors, Progress in Cryptology -
INDOCRYPT 2008, 9th International Conference on Cryptology in India, Kharagpur, India,
December 14-17, 2008. Proceedings, volume 5365 of Lecture Notes in Computer Science,
pages 322–336. Springer, 2008.

[51] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. The Keccak reference,
version 3.0. http://keccak.noekeon.org/. Accessed on July 17, 2015.

[52] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplexing the
Sponge: Single-Pass Authenticated Encryption and Other Applications. In Ali Miri and
Serge Vaudenay, editors, Selected Areas in Cryptography - 18th International Workshop,
SAC 2011, Toronto, ON, Canada, August 11-12, 2011, Revised Selected Papers, volume 7118
of Lecture Notes in Computer Science, pages 320–337. Springer, 2011.

[53] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and Ronny Van Keer.
Ketje. Submission to the CAESAR competition, 2014.

[54] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and Ronny Van Keer.
Keyak. Submission to the CAESAR competition, 2014.

[55] Eli Biham, editor. Fast Software Encryption, 4th International Workshop, FSE ’97, Haifa,
Israel, January 20-22, 1997, Proceedings, volume 1267 of Lecture Notes in Computer Science,
1997. Springer.

[56] Eli Biham and Adi Shamir. Differential Cryptanalysis of the Data Encryption Standard.
Springer, 1993.

[57] Eli Biham, Ross J. Anderson, and Lars R. Knudsen. Serpent: A New Block Cipher Proposal.
In Serge Vaudenay, editor, Fast Software Encryption, 5th International Workshop, FSE ’98,
Paris, France, March 23-25, 1998, Proceedings, volume 1372 of Lecture Notes in Computer
Science, pages 222–238. Springer, 1998.

[58] Alex Biryukov and Dmitry Khovratovich. Related-Key Cryptanalysis of the Full AES-192
and AES-256. In Matsui [219], pages 1–18.

[59] Alex Biryukov and Dmitry Khovratovich. PAEQ. Submission to the CAESAR competition,
2014.

http://keccak.noekeon.org/

194 BIBLIOGRAPHY

[60] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolic. Distinguisher and Related-Key
Attack on the Full AES-256. In Shai Halevi, editor, Advances in Cryptology - CRYPTO 2009,
29th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 16-20,
2009. Proceedings, volume 5677 of Lecture Notes in Computer Science, pages 231–249.
Springer, 2009.

[61] Alex Biryukov, Orr Dunkelman, Nathan Keller, Dmitry Khovratovich, and Adi Shamir. Key
Recovery Attacks of Practical Complexity on AES-256 Variants with up to 10 Rounds. In
Henri Gilbert, editor, Advances in Cryptology - EUROCRYPT 2010, 29th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, French Riviera, May
30 - June 3, 2010. Proceedings, volume 6110 of Lecture Notes in Computer Science, pages
299–319. Springer, 2010.

[62] Alex Biryukov, Guang Gong, and Douglas R. Stinson, editors. Selected Areas in Cryptography
- 17th International Workshop, SAC 2010, Waterloo, Ontario, Canada, August 12-13, 2010,
Revised Selected Papers, volume 6544 of Lecture Notes in Computer Science, 2011. Springer.

[63] Alex Biryukov, Arnab Roy, and Vesselin Velichkov. Differential Analysis of Block Ciphers
SIMON and SPECK. In Cid and Rechberger [96], pages 546–570.

[64] John Black and Phillip Rogaway. CBC MACs for Arbitrary-Length Messages: The Three-Key
Constructions. In Mihir Bellare, editor, Advances in Cryptology - CRYPTO 2000, 20th Annual
International Cryptology Conference, Santa Barbara, California, USA, August 20-24, 2000,
Proceedings, volume 1880 of Lecture Notes in Computer Science, pages 197–215. Springer,
2000.

[65] John Black and Phillip Rogaway. A Block-Cipher Mode of Operation for Parallelizable
Message Authentication. In Knudsen [190], pages 384–397.

[66] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-Box Analysis of the Block-
Cipher-Based Hash-Function Constructions from PGV. In Moti Yung, editor, Advances
in Cryptology - CRYPTO 2002, 22nd Annual International Cryptology Conference, Santa
Barbara, California, USA, August 18-22, 2002, Proceedings, volume 2442 of Lecture Notes
in Computer Science, pages 320–335. Springer, 2002.

[67] Céline Blondeau and Kaisa Nyberg. New Links between Differential and Linear Cryptanal-
ysis. In Johansson and Nguyen [173], pages 388–404.

[68] Céline Blondeau and Kaisa Nyberg. Links between Truncated Differential and Multidimen-
sional Linear Properties of Block Ciphers and Underlying Attack Complexities. In Nguyen
and Oswald [244], pages 165–182.

[69] Céline Blondeau, Thomas Peyrin, and Lei Wang. Known-Key Distinguisher on Full
PRESENT. In Gennaro and Robshaw [140], pages 455–474.

[70] BlueKrypt. Cryptographic Key Length Recommendation. http://www.keylength.com.
Accessed on July 19, 2015.

http://www.keylength.com

BIBLIOGRAPHY 195

[71] Andrey Bogdanov. On the Differential Trails of Unbalanced Feistel Networks with Con-
tracting MDS Diffusion. In International Workshop on Coding and Cryptography - WCC
2009, 2009.

[72] Andrey Bogdanov. On unbalanced Feistel networks with contracting MDS diffusion. Design,
Codes and Cryptography, 59(1-3):35–58, 2011.

[73] Andrey Bogdanov and Christian Rechberger. A 3-Subset Meet-in-the-Middle Attack:
Cryptanalysis of the Lightweight Block Cipher KTANTAN. In Biryukov et al. [62], pages
229–240.

[74] Andrey Bogdanov and Vincent Rijmen. Linear hulls with correlation zero and linear
cryptanalysis of block ciphers. Design, Codes and Cryptography, 70(3):369–383, 2014.

[75] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann,
Matthew J. B. Robshaw, Yannick Seurin, and Charlotte Vikkelsø. PRESENT: An Ultra-
Lightweight Block Cipher. In Paillier and Verbauwhede [257], pages 450–466.

[76] Andrey Bogdanov, Gregor Leander, Christof Paar, Axel Poschmann, Matthew J. B. Robshaw,
and Yannick Seurin. Hash Functions and RFID Tags: Mind the Gap. In Elisabeth Oswald
and Pankaj Rohatgi, editors, Cryptographic Hardware and Embedded Systems - CHES 2008,
10th International Workshop, Washington, D.C., USA, August 10-13, 2008. Proceedings,
volume 5154 of Lecture Notes in Computer Science, pages 283–299. Springer, 2008.

[77] Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Biclique Cryptanalysis
of the Full AES. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology -
ASIACRYPT 2011 - 17th International Conference on the Theory and Application of Cryptology
and Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings, volume
7073 of Lecture Notes in Computer Science, pages 344–371. Springer, 2011.

[78] Andrey Bogdanov, Florian Mendel, Francesco Regazzoni, Vincent Rijmen, and Elmar
Tischhauser. ALE: AES-Based Lightweight Authenticated Encryption. In Moriai [236],
pages 447–466.

[79] Andrey Bogdanov, Christoph Dobraunig, Maria Eichlseder, Martin M. Lauridsen, Florian
Mendel, Martin Schläffer, and Elmar Tischhauser. Key Recovery Attacks on Recent Authen-
ticated Ciphers. In Diego F. Aranha and Alfred Menezes, editors, Progress in Cryptology -
LATINCRYPT 2014 - Third International Conference on Cryptology and Information Security
in Latin America, Florianópolis, Brazil, September 17-19, 2014, Revised Selected Papers,
volume 8895 of Lecture Notes in Computer Science, pages 274–287. Springer, 2014.

[80] Andrey Bogdanov, Martin M. Lauridsen, and Elmar Tischhauser. Comb to Pipeline: Fast
Software Encryption Revisited. In Leander [210], pages 150–171.

[81] Dan Boneh, editor. Advances in Cryptology - CRYPTO 2003, 23rd Annual International
Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003, Proceedings,
volume 2729 of Lecture Notes in Computer Science, 2003. Springer.

196 BIBLIOGRAPHY

[82] Julia Borghoff, Lars R. Knudsen, and Mathias Stolpe. Bivium as a Mixed-Integer Linear
Programming Problem. In Matthew G. Parker, editor, Cryptography and Coding, 12th IMA
International Conference, Cryptography and Coding 2009, Cirencester, UK, December 15-17,
2009. Proceedings, volume 5921 of Lecture Notes in Computer Science, pages 133–152.
Springer, 2009.

[83] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Knezevic, Lars R.
Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian Rechberger, Peter
Rombouts, Søren S. Thomsen, and Tolga Yalçın. PRINCE - A Low-Latency Block Cipher for
Pervasive Computing Applications - Extended Abstract. In Xiaoyun Wang and Kazue Sako,
editors, Advances in Cryptology - ASIACRYPT 2012 - 18th International Conference on the
Theory and Application of Cryptology and Information Security, Beijing, China, December
2-6, 2012. Proceedings, volume 7658 of Lecture Notes in Computer Science, pages 208–225.
Springer, 2012.

[84] Christina Boura, María Naya-Plasencia, and Valentin Suder. Scrutinizing and Improving
Impossible Differential Attacks: Applications to CLEFIA, Camellia, LBlock and Simon. In
Sarkar and Iwata [279], pages 179–199.

[85] Christina Boura, María Naya-Plasencia, and Valentin Suder. Scrutinizing and Improving
Impossible Differential Attacks: Applications to CLEFIA, Camellia, LBlock and Simon (Full
Version). Cryptology ePrint Archive, Report 2014/699, 2014.

[86] Gilles Brassard, editor. Advances in Cryptology - CRYPTO ’89, 9th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 20-24, 1989, Proceedings,
volume 435 of Lecture Notes in Computer Science, 1990. Springer.

[87] Stanislav Bulygin. More on linear hulls of PRESENT-like ciphers and a cryptanalysis of
full-round EPCBC-96. Cryptology ePrint Archive, Report 2013/028, 2013.

[88] Christophe De Cannière, Orr Dunkelman, and Miroslav Knezevic. KATAN and KTANTAN
- A Family of Small and Efficient Hardware-Oriented Block Ciphers. In Clavier and Gaj
[97], pages 272–288.

[89] Anne Canteaut, editor. Fast Software Encryption - 19th International Workshop, FSE 2012,
Washington, DC, USA, March 19-21, 2012. Revised Selected Papers, volume 7549 of Lecture
Notes in Computer Science, 2012. Springer.

[90] Anne Canteaut and Joëlle Roué. On the Behaviors of Affine Equivalent Sboxes Regarding
Differential and Linear Attacks. In Oswald and Fischlin [256], pages 45–74.

[91] Florent Chabaud and Serge Vaudenay. Links Between Differential and Linear Cryptanalysis.
In Alfredo De Santis, editor, Advances in Cryptology - EUROCRYPT ’94, Workshop on
the Theory and Application of Cryptographic Techniques, Perugia, Italy, May 9-12, 1994,
Proceedings, volume 950 of Lecture Notes in Computer Science, pages 356–365. Springer,
1994.

BIBLIOGRAPHY 197

[92] Huaifeng Chen and Xiaoyun Wang. Improved Linear Hull Attack on Round-Reduced Simon
with Dynamic Key-guessing Techniques. Cryptology ePrint Archive, Report 2015/666,
2015.

[93] Shan Chen and John P. Steinberger. Tight Security Bounds for Key-Alternating Ciphers. In
Nguyen and Oswald [244], pages 327–350.

[94] Zhan Chen, Ning Wang, and Xiaoyun Wang. Impossible Differential Cryptanalysis of
Reduced Round SIMON. Cryptology ePrint Archive, Report 2015/286, 2015.

[95] Joo Yeon Cho. Linear Cryptanalysis of Reduced-Round PRESENT. In Pieprzyk [260], pages
302–317.

[96] Carlos Cid and Christian Rechberger, editors. Fast Software Encryption - 21st International
Workshop, FSE 2014, London, UK, March 3-5, 2014. Revised Selected Papers, volume 8540
of Lecture Notes in Computer Science, 2015. Springer.

[97] Christophe Clavier and Kris Gaj, editors. Cryptographic Hardware and Embedded Systems -
CHES 2009, 11th International Workshop, Lausanne, Switzerland, September 6-9, 2009,
Proceedings, volume 5747 of Lecture Notes in Computer Science, 2009. Springer.

[98] Don Coppersmith. The Data Encryption Standard (DES) and its strength against attacks.
IBM Journal of Research and Development, 38(3):243–250, 1994.

[99] Jean-Sébastien Coron and Louis Goubin. On Boolean and Arithmetic Masking against
Differential Power Analysis. In Çetin Kaya Koç and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems - CHES 2000, Second International Workshop, Worcester,
MA, USA, August 17-18, 2000, Proceedings, volume 1965 of Lecture Notes in Computer
Science, pages 231–237. Springer, 2000.

[100] International Business Machines Corporation. ILOG CPLEX Optimizer, 1997-2014.

[101] Nicolas Courtois. Fast Algebraic Attacks on Stream Ciphers with Linear Feedback. In
Boneh [81], pages 176–194.

[102] Nicolas Courtois and Willi Meier. Algebraic Attacks on Stream Ciphers with Linear Feedback.
In Eli Biham, editor, Advances in Cryptology - EUROCRYPT 2003, International Conference
on the Theory and Applications of Cryptographic Techniques, Warsaw, Poland, May 4-8, 2003,
Proceedings, volume 2656 of Lecture Notes in Computer Science, pages 345–359. Springer,
2003.

[103] Nicolas Courtois, Gregory V. Bard, and David Wagner. Algebraic and Slide Attacks on
KeeLoq. In Nyberg [247], pages 97–115.

[104] Joan Daemen and Vincent Rijmen. AES submission document on Rijndael, June 1998.

198 BIBLIOGRAPHY

[105] Joan Daemen and Vincent Rijmen. The Wide Trail Design Strategy. In Bahram Honary,
editor, Cryptography and Coding, 8th IMA International Conference, Cirencester, UK, Decem-
ber 17-19, 2001, Proceedings, volume 2260 of Lecture Notes in Computer Science, pages
222–238. Springer, 2001.

[106] Joan Daemen and Vincent Rijmen. The Design of Rijndael. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2002.

[107] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The Block Cipher Square. In Biham
[55], pages 149–165.

[108] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. Linear Frameworks for Block Ciphers.
Design, Codes and Cryptography, 22(1):65–87, 2001.

[109] Ivan Damgård. A Design Principle for Hash Functions. In Brassard [86], pages 416–427.

[110] Donald W. Davies and Wyn L. Price. Digital signatures, an update. In Proceedings 5th
international conference on computer communication, pages 845–849, October 1984.

[111] Hüseyin Demirci and Ali Aydin Selçuk. A Meet-in-the-Middle Attack on 8-Round AES. In
Nyberg [247], pages 116–126.

[112] Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. Improved Key Recovery Attacks on
Reduced-Round AES in the Single-Key Setting. In Johansson and Nguyen [173], pages
371–387.

[113] Yvo Desmedt, editor. Advances in Cryptology - CRYPTO ’94, 14th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 21-25, 1994, Proceedings,
volume 839 of Lecture Notes in Computer Science, 1994. Springer.

[114] Tim Dierks and Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246 (Proposed Standard), August 2008.

[115] Itai Dinur, Orr Dunkelman, Masha Gutman, and Adi Shamir. Improved Top-Down Tech-
niques in Differential Cryptanalysis. Cryptology ePrint Archive, Report 2015/268, 2015.

[116] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. Ascon.
Submission to the CAESAR competition, 2014.

[117] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Related-Key Forgeries for
Prøst-OTR. In Leander [210], pages 282–296.

[118] Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved Single-Key Attacks on 8-Round
AES-192 and AES-256. In Abe [4], pages 158–176.

[119] Orr Dunkelman, Nathan Keller, and Adi Shamir. Minimalism in Cryptography: The Even-
Mansour Scheme Revisited. In David Pointcheval and Thomas Johansson, editors, Advances
in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings,
volume 7237 of Lecture Notes in Computer Science, pages 336–354. Springer, 2012.

BIBLIOGRAPHY 199

[120] Morris J. Dworkin. SP 800-38C. Recommendation for Block Cipher Modes of Operation:
The CCM Mode for Authentication and Confidentiality. Technical report, National Institute
of Standards and Technology, Gaithersburg, MD, United States, 2004.

[121] Morris J. Dworkin. SP 800-38D. Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC. Technical report, National Institute of Standards
and Technology, Gaithersburg, MD, United States, 2007.

[122] Shimon Even and Yishay Mansour. A Construction of a Cipher From a Single Pseudorandom
Permutation. In Hideki Imai, Ronald L. Rivest, and Tsutomu Matsumoto, editors, Advances
in Cryptology - ASIACRYPT ’91, International Conference on the Theory and Applications of
Cryptology, Fujiyoshida, Japan, November 11-14, 1991, Proceedings, volume 739 of Lecture
Notes in Computer Science, pages 210–224. Springer, 1991.

[123] Horst Feistel. Cryptography and Computer Privacy. Scientific American, 1973.

[124] Niels Ferguson. Collision attacks on OCB, February 2002.

[125] Niels Ferguson. Authentication weaknesses in GCM, 2005.

[126] Ewan Fleischmann, Christian Forler, Michael Gorski, and Stefan Lucks. Twister- A Frame-
work for Secure and Fast Hash Functions. In Feng Bao, Hui Li, and Guilin Wang, editors,
Information Security Practice and Experience, 5th International Conference, ISPEC 2009,
Xi’an, China, April 13-15, 2009, Proceedings, volume 5451 of Lecture Notes in Computer
Science, pages 257–273. Springer, 2009.

[127] Ewan Fleischmann, Christian Forler, Stefan Lucks, and Jakob Wenzel. McOE: A Family of
Almost Foolproof On-Line Authenticated Encryption Schemes. Cryptology ePrint Archive,
Report 2011/644, 2011.

[128] Ewan Fleischmann, Christian Forler, and Stefan Lucks. McOE: A Family of Almost Foolproof
On-Line Authenticated Encryption Schemes. In Canteaut [89], pages 196–215.

[129] Agner Fog. Software Optimization Resources. http://www.agner.org/optimize. Accessed
on February 17, 2014.

[130] International Organization for Standardization. ISO/IEC 19772:2009: Information tech-
nology – Security techniques – Authenticated encryption, 2009.

[131] International Organization for Standardization. ISO/IEC 10118-2:2010: Information
technology – Security techniques – Hash-functions – Part 2: Hash-functions using an n-bit
block cipher, 2010.

[132] International Organization for Standardization. ISO/IEC 29192-2:2012: Information
technology – Security techniques – Lightweight cryptography – Part 2: Block ciphers,
2012.

[133] Electronic Frontier Foundation. Cracking DES: Secrets of Encryption Research, Wiretap
Politics and Chip Design. O’Reilly & Associates, Inc., Sebastopol, CA, USA, 1998.

http://www.agner.org/optimize

200 BIBLIOGRAPHY

[134] OpenSSL Software Foundation. OpenSSL – Cryptography and SSL/TLS Toolkit. https:
//www.openssl.org. Accessed on July 17, 2015.

[135] Pierre-Alain Fouque and Pierre Karpman. Security Amplification against Meet-in-the-
Middle Attacks Using Whitening. In Martijn Stam, editor, Cryptography and Coding - 14th
IMA International Conference, IMACC 2013, Oxford, UK, December 17-19, 2013. Proceedings,
volume 8308 of Lecture Notes in Computer Science, pages 252–269. Springer, 2013.

[136] Pierre-Alain Fouque, Antoine Joux, Gwenaëlle Martinet, and Frédéric Valette. Authenti-
cated On-Line Encryption. In Mitsuru Matsui and Robert J. Zuccherato, editors, Selected
Areas in Cryptography, 10th Annual International Workshop, SAC 2003, Ottawa, Canada,
August 14-15, 2003, Revised Papers, volume 3006 of Lecture Notes in Computer Science,
pages 145–159. Springer, 2003.

[137] Alan Freier, Philip Karlton, and Paul Kocher. The Secure Sockets Layer (SSL) Protocol
Version 3.0. RFC 6101 (Historic), August 2011.

[138] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. A Series of books in the mathematical sciences. W. H. Freeman
and Company, 1979.

[139] Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel, Christian
Rechberger, Martin Schläffer, and Søren S. Thomsen. Grøstl. Submission to the SHA-3
competition, 2008.

[140] Rosario Gennaro and Matthew Robshaw, editors. Advances in Cryptology - CRYPTO 2015 -
35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceed-
ings, Part I, volume 9215 of Lecture Notes in Computer Science, 2015. Springer.

[141] Henri Gilbert. A Simplified Representation of AES. In Sarkar and Iwata [279], pages
200–222.

[142] Henri Gilbert and Thomas Peyrin. Super-Sbox Cryptanalysis: Improved Attacks for AES-
Like Permutations. In Seokhie Hong and Tetsu Iwata, editors, Fast Software Encryption,
17th International Workshop, FSE 2010, Seoul, Korea, February 7-10, 2010, Revised Selected
Papers, volume 6147 of Lecture Notes in Computer Science, pages 365–383. Springer, 2010.

[143] Brian Gladman. AES Implementations. https://github.com/BrianGladman/AES. Accessed
on August 3, 2015.

[144] Danilo Gligoroski, Hristina Mihajloska, Simona Samardjiska, Håkon Jacobsen, Mohamed
El-Hadedy, and Rune Erlend Jensen. π-Cipher. Submission to the CAESAR competition,
2014.

[145] Jovan Dj. Golic and Christophe Tymen. Multiplicative Masking and Power Analysis of AES.
In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, Cryptographic Hardware
and Embedded Systems - CHES 2002, 4th International Workshop, Redwood Shores, CA, USA,

https://www.openssl.org
https://www.openssl.org
https://github.com/BrianGladman/AES

BIBLIOGRAPHY 201

August 13-15, 2002, Revised Papers, volume 2523 of Lecture Notes in Computer Science,
pages 198–212. Springer, 2002.

[146] Shay Gueron. Intel Advanced Encryption Standard (AES) New Instructions Set. Intel
Corporation, 2010.

[147] Shay Gueron. AES-GCM software performance on the current high end CPUs as a perfor-
mance baseline for CAESAR. In DIAC 2013: Directions in Authenticated Ciphers, 2013.

[148] Shay Gueron and Michael E. Kounavis. Intel Carry-Less Multiplication Instruction and its
Usage for Computing the GCM Mode. Intel Corporation, 2010.

[149] Shay Gueron and Vlad Krasnov. The fragility of AES-GCM authentication algorithm.
Cryptology ePrint Archive, Report 2013/157, 2013.

[150] Sean Gulley and Vinodh Gopal. Haswell Cryptographic Performance. Intel Corporation,
2013.

[151] Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON Family of Lightweight Hash
Functions. In Phillip Rogaway, editor, Advances in Cryptology - CRYPTO 2011 - 31st Annual
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, volume
6841 of Lecture Notes in Computer Science, pages 222–239. Springer, 2011.

[152] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The LED Block
Cipher. In Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic Hardware and Embedded
Systems - CHES 2011 - 13th International Workshop, Nara, Japan, September 28 - October
1, 2011. Proceedings, volume 6917 of Lecture Notes in Computer Science, pages 326–341.
Springer, 2011.

[153] Peter Gutmann. Encrypt-then-MAC for Transport Layer Security (TLS) and Datagram
Transport Layer Security (DTLS). RFC 7366 (Proposed Standard), September 2014.

[154] Helena Handschuh and Bart Preneel. Key-Recovery Attacks on Universal Hash Function
Based MAC Algorithms. In David Wagner, editor, Advances in Cryptology - CRYPTO 2008,
28th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 17-21,
2008. Proceedings, volume 5157 of Lecture Notes in Computer Science, pages 144–161.
Springer, 2008.

[155] Martin E. Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions on Informa-
tion Theory, 26(4):401–406, 1980.

[156] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach.
The Morgan Kaufmann Series in Computer Architecture and Design. Elsevier Science,
2011.

[157] Miia Hermelin, Joo Yeon Cho, and Kaisa Nyberg. Multidimensional Linear Cryptanalysis of
Reduced Round Serpent. In Yi Mu, Willy Susilo, and Jennifer Seberry, editors, Information
Security and Privacy, 13th Australasian Conference, ACISP 2008, Wollongong, Australia, July

202 BIBLIOGRAPHY

7-9, 2008, Proceedings, volume 5107 of Lecture Notes in Computer Science, pages 203–215.
Springer, 2008.

[158] Viet Tung Hoang, Reza Reyhanitabar, Phillip Rogaway, and Damian Vizár. Online
Authenticated-Encryption and its Nonce-Reuse Misuse-Resistance. In Gennaro and Rob-
shaw [140], pages 493–517.

[159] Brent Hollingsworth. New “Bulldozer” and “Piledriver” Instructions. Advanced Micro
Devices, Inc., 2012.

[160] Russel Housley. Using Advanced Encryption Standard (AES) CCM Mode with IPsec
Encapsulating Security Payload (ESP). RFC 4309 (Proposed Standard), December 2005.

[161] Sebastiaan Indesteege, Elena Andreeva, Christophe De Cannière, Orr Dunkelman, Emilia
Käsper, Svetla Nikova, Bart Preneel, and Elmar Tischhauser. The LANE hash function.
Submission to the SHA-3 competition, 2008.

[162] Institute of Electrical and Electronics Engineers. 802.15.1-2002: IEEE Standard for
Telecommunications and Information Exchange Between Systems – LAN/MAN – Specific
Requirements – Part 15: Wireless Medium Access Control (MAC) and Physical Layer (PHY)
Specifications for Wireless Personal Area Networks (WPANs), 2002.

[163] Institute of Electrical and Electronics Engineers. 802.11i-2004: IEEE Standard for infor-
mation technology – Telecommunications and information exchange between systems
– Local and metropolitan area networks-Specific requirements – Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) specifications: Amendment 6:
Medium Access Control (MAC) Security Enhancements, 2004.

[164] Steven Iveson. IPSec Bandwidth Overhead Using AES. http://packetpushers.net/
ipsec-bandwidth-overhead-using-aes. Accessed on February 17, 2014.

[165] Tetsu Iwata and Kaoru Kurosawa. OMAC: One-Key CBC MAC. In Thomas Johansson,
editor, Fast Software Encryption, 10th International Workshop, FSE 2003, Lund, Sweden,
February 24-26, 2003, Revised Papers, volume 2887 of Lecture Notes in Computer Science,
pages 129–153. Springer, 2003.

[166] Tetsu Iwata and Kaoru Kurosawa. Stronger Security Bounds for OMAC, TMAC, and XCBC.
In Thomas Johansson and Subhamoy Maitra, editors, Progress in Cryptology - INDOCRYPT
2003, 4th International Conference on Cryptology in India, New Delhi, India, December 8-10,
2003, Proceedings, volume 2904 of Lecture Notes in Computer Science, pages 402–415.
Springer, 2003.

[167] Tetsu Iwata, Keisuke Ohashi, and Kazuhiko Minematsu. Breaking and Repairing GCM
Security Proofs. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology
- CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August
19-23, 2012. Proceedings, volume 7417 of Lecture Notes in Computer Science, pages 31–49.
Springer, 2012.

http://packetpushers.net/ipsec-bandwidth-overhead-using-aes
http://packetpushers.net/ipsec-bandwidth-overhead-using-aes

BIBLIOGRAPHY 203

[168] Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, and Sumio Morioka. CLOC: Authenticated
Encryption for Short Input. In Cid and Rechberger [96], pages 149–167.

[169] Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, Sumio Morioka, and Eita Kobayashi. SILC.
Submission to the CAESAR competition, 2014.

[170] Thomas Jakobsen and Lars R. Knudsen. The Interpolation Attack on Block Ciphers. In
Biham [55], pages 28–40.

[171] Krzysztof Jankowski and Pierre Laurent. Packed AES-GCM Algorithm Suitable for AES/P-
CLMULQDQ Instructions. IEEE Transactions on Computers, 60(1):135–138, 2011.

[172] Zahra Jeddi, Esmaeil Amini, and Magdy Bayoumi. A Novel Authenticated Cipher for RFID
Systems. In International Journal on Cryptography and Information Security, volume 4,
2014.

[173] Thomas Johansson and Phong Q. Nguyen, editors. Advances in Cryptology - EUROCRYPT
2013, 32nd Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Athens, Greece, May 26-30, 2013. Proceedings, volume 7881 of Lecture Notes in
Computer Science, 2013. Springer.

[174] Wolfgang John and Sven Tafvelin. Analysis of internet backbone traffic and header
anomalies observed. In Constantine Dovrolis and Matthew Roughan, editors, Proceedings
of the 7th ACM SIGCOMM Internet Measurement Conference, IMC 2007, San Diego, California,
USA, October 24-26, 2007, pages 111–116. ACM, 2007.

[175] Thomas R. Johnson. American Cryptology during the Cold War, 1945-1989: Book III:
Retrenchment and Reform (declassified document). http://nsarchive.gwu.edu/NSAEBB/
NSAEBB260/nsa-6.pdf. Accessed on July 23, 2015.

[176] Antoine Joux. Authentication Failures in NIST version of GCM, 2006.

[177] Burton S. Kaliski Jr. and Matthew J. B. Robshaw. Linear Cryptanalysis Using Multiple
Approximations. In Desmedt [113], pages 26–39.

[178] Jorge Nakahara Jr. 3D: A Three-Dimensional Block Cipher. In Matthew K. Franklin,
Lucas Chi Kwong Hui, and Duncan S. Wong, editors, Cryptology and Network Security, 7th
International Conference, CANS 2008, Hong-Kong, China, December 2-4, 2008. Proceedings,
volume 5339 of Lecture Notes in Computer Science, pages 252–267. Springer, 2008.

[179] David Kahn. The Codebreakers: The Comprehensive History of Secret Communication from
Ancient Times to the Internet. Scribner, 1996.

[180] Pierre Karpman. From Related-Key Distinguishers to Related-Key-Recovery on Even-
Mansour Constructions. Cryptology ePrint Archive, Report 2015/134, 2015.

[181] Elif Bilge Kavun, Martin M. Lauridsen, Gregor Leander, Christian Rechberger, Peter
Schwabe, and Tolga Yalçın. Prøst. Submission to the CAESAR competition, 2014.

http://nsarchive.gwu.edu/NSAEBB/NSAEBB260/nsa-6.pdf
http://nsarchive.gwu.edu/NSAEBB/NSAEBB260/nsa-6.pdf

204 BIBLIOGRAPHY

[182] Stephen Kent and Karen Seo. Security Architecture for the Internet Protocol. RFC 4301
(Proposed Standard), December 2005.

[183] Dmitry Khovratovich. PPAE: Parallelizable Permutation-based Authenticated Encryption.
In DIAC 2013: Directions in Authenticated Ciphers, 2013.

[184] Dmitry Khovratovich, María Naya-Plasencia, Andrea Röck, and Martin Schläffer. Crypt-
analysis of Luffa v2 Components. In Biryukov et al. [62], pages 388–409.

[185] Dmitry Khovratovich, Ivica Nikolic, and Christian Rechberger. Rotational Rebound Attacks
on Reduced Skein. In Abe [4], pages 1–19.

[186] Dmitry Khovratovich, Christian Rechberger, and Alexandra Savelieva. Bicliques for Preim-
ages: Attacks on Skein-512 and the SHA-2 Family. In Canteaut [89], pages 244–263.

[187] Joe Kilian, editor. Advances in Cryptology - CRYPTO 2001, 21st Annual International
Cryptology Conference, Santa Barbara, California, USA, August 19-23, 2001, Proceedings,
volume 2139 of Lecture Notes in Computer Science, 2001. Springer.

[188] Lars R. Knudsen. Truncated and Higher Order Differentials. In Preneel [261], pages
196–211.

[189] Lars R. Knudsen. DEAL - A 128-bit Block Cipher, February 1998.

[190] Lars R. Knudsen, editor. Advances in Cryptology - EUROCRYPT 2002, International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Amsterdam, The Nether-
lands, April 28 - May 2, 2002, Proceedings, volume 2332 of Lecture Notes in Computer
Science, 2002. Springer.

[191] Lars R. Knudsen and Vincent Rijmen. Known-Key Distinguishers for Some Block Ciphers.
In Kaoru Kurosawa, editor, Advances in Cryptology - ASIACRYPT 2007, 13th International
Conference on the Theory and Application of Cryptology and Information Security, Kuching,
Malaysia, December 2-6, 2007, Proceedings, volume 4833 of Lecture Notes in Computer
Science, pages 315–324. Springer, 2007.

[192] Lars R. Knudsen and Matthew J. B. Robshaw. The Block Cipher Companion. Information
Security and Cryptography. Springer-Verlag Berlin Heidelberg, 2011.

[193] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In Michael J.
Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings, volume 1666
of Lecture Notes in Computer Science, pages 388–397. Springer, 1999.

[194] Hugo Krawczyk. Communication on TLS mailing list. http://www.ietf.org/mail-archive/
web/tls/current/msg12766.html. Accessed on May 18, 2015.

[195] Hugo Krawczyk. The Order of Encryption and Authentication for Protecting Communica-
tions (or: How Secure Is SSL?). In Kilian [187], pages 310–331.

http://www.ietf.org/mail-archive/web/tls/current/msg12766.html
http://www.ietf.org/mail-archive/web/tls/current/msg12766.html

BIBLIOGRAPHY 205

[196] Ted Krovetz and Phillip Rogaway. The Software Performance of Authenticated-Encryption
Modes. In Antoine Joux, editor, Fast Software Encryption - 18th International Workshop,
FSE 2011, Lyngby, Denmark, February 13-16, 2011, Revised Selected Papers, volume 6733
of Lecture Notes in Computer Science, pages 306–327. Springer, 2011.

[197] Sandeep S. Kumar, Christof Paar, Jan Pelzl, Gerd Pfeiffer, and Manfred Schimmler. Breaking
Ciphers with COPACOBANA - A Cost-Optimized Parallel Code Breaker. In Louis Goubin
and Mitsuru Matsui, editors, Cryptographic Hardware and Embedded Systems - CHES 2006,
8th International Workshop, Yokohama, Japan, October 10-13, 2006, Proceedings, volume
4249 of Lecture Notes in Computer Science, pages 101–118. Springer, 2006.

[198] Emilia Käsper and Peter Schwabe. Faster and Timing-Attack Resistant AES-GCM. In Clavier
and Gaj [97], pages 1–17.

[199] Stefan Kölbl, Gregor Leander, and Tyge Tiessen. Observations on the SIMON Block Cipher
Family. In Gennaro and Robshaw [140], pages 161–185.

[200] Xuejia Lai. On the design and security of block ciphers. PhD thesis, Swiss Federal Institute
of Technology, 1992.

[201] Xuejia Lai. Higher Order Derivatives and Differential Cryptanalysis. In Richard E. Blahut,
Daniel J. Costello Jr., Ueli Maurer, and Thomas Mittelholzer, editors, Communications
and Cryptography, volume 276 of The Springer International Series in Engineering and
Computer Science, pages 227–233. Springer US, 1994.

[202] Xuejia Lai, James L. Massey, and Sean Murphy. Markov Ciphers and Differential Crypt-
analysis. In Donald W. Davies, editor, Advances in Cryptology - EUROCRYPT ’91, Workshop
on the Theory and Application of of Cryptographic Techniques, Brighton, UK, April 8-11,
1991, Proceedings, volume 547 of Lecture Notes in Computer Science, pages 17–38. Springer,
1991.

[203] Mario Lamberger, Florian Mendel, Christian Rechberger, Vincent Rijmen, and Martin
Schläffer. Rebound Distinguishers: Results on the Full Whirlpool Compression Function.
In Matsui [219], pages 126–143.

[204] Mario Lamberger, Florian Mendel, Martin Schläffer, Christian Rechberger, and Vincent
Rijmen. The Rebound Attack and Subspace Distinguishers: Application to Whirlpool. J.
Cryptology, 28(2):257–296, 2015.

[205] Adam Langley. Overclocking SSL. https://www.imperialviolet.org/2010/06/25/
overclocking-ssl.html. Accessed on August 25, 2015.

[206] Martin M. Lauridsen. Security Proofs for Prøst. http://proest.compute.dtu.dk/proofs.pdf,
2015.

[207] Martin M. Lauridsen and Christian Rechberger. Linear Distinguishers in the Key-less
Setting: Application to PRESENT. In Leander [210], pages 217–240.

https://www.imperialviolet.org/2010/06/25/overclocking-ssl.html
https://www.imperialviolet.org/2010/06/25/overclocking-ssl.html
http://proest.compute.dtu.dk/proofs.pdf

206 BIBLIOGRAPHY

[208] Martin M. Lauridsen and Christian Rechberger. PRESENT Cryptanalysis Code Repository.
https://github.com/mmeh/present-keyless, 2015.

[209] Gregor Leander. On Linear Hulls, Statistical Saturation Attacks, PRESENT and a Cryptanal-
ysis of PUFFIN. In Kenneth G. Paterson, editor, Advances in Cryptology - EUROCRYPT 2011
- 30th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings, volume 6632 of Lecture Notes
in Computer Science, pages 303–322. Springer, 2011.

[210] Gregor Leander, editor. Fast Software Encryption - 22nd International Workshop, FSE 2015,
Istanbul, Turkey, March 8-11, 2015, Revised Selected Papers, volume 9054 of Lecture Notes
in Computer Science, 2015. Springer.

[211] Chae Hoon Lim and Tymur Korkishko. mCrypton - A Lightweight Block Cipher for Security
of Low-Cost RFID Tags and Sensors. In JooSeok Song, Taekyoung Kwon, and Moti Yung,
editors, Information Security Applications, 6th International Workshop, WISA 2005, Jeju
Island, Korea, August 22-24, 2005, Revised Selected Papers, volume 3786 of Lecture Notes in
Computer Science, pages 243–258. Springer, 2005.

[212] Chae Hoon Lim and Pil Joong Lee. More Flexible Exponentiation with Precomputation.
In Desmedt [113], pages 95–107.

[213] Helger Lipmaa, Phillip Rogaway, and David Wagner. Comments to NIST concerning AES
Modes of Operations: CTR-Mode Encryption, 2000.

[214] Jiqiang Lu. On the Security of the COPA and Marble Authenticated Encryption Algorithms
against (Almost) Universal Forgery Attack. Cryptology ePrint Archive, Report 2015/079,
2015.

[215] Florence J. MacWilliams and Neil J. A. Sloane. The Theory of Error-Correcting Codes.
North-Holland Publishing Company, 2nd edition, 1978.

[216] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks: Revealing
the Secrets of Smart Cards. Advances in information security. Springer US, 2008.

[217] Mitsuru Matsui. Linear Cryptanalysis Method for DES Cipher. In Tor Helleseth, editor,
Advances in Cryptology - EUROCRYPT ’93, Workshop on the Theory and Application of of
Cryptographic Techniques, Lofthus, Norway, May 23-27, 1993, Proceedings, volume 765 of
Lecture Notes in Computer Science, pages 386–397. Springer, 1993.

[218] Mitsuru Matsui. New Block Encryption Algorithm MISTY. In Biham [55], pages 54–68.

[219] Mitsuru Matsui, editor. Advances in Cryptology - ASIACRYPT 2009, 15th International
Conference on the Theory and Application of Cryptology and Information Security, Tokyo,
Japan, December 6-10, 2009. Proceedings, volume 5912 of Lecture Notes in Computer
Science, 2009. Springer.

https://github.com/mmeh/present-keyless

BIBLIOGRAPHY 207

[220] Mitsuru Matsui and Junko Nakajima. On the Power of Bitslice Implementation on Intel
Core2 Processor. In Paillier and Verbauwhede [257], pages 121–134.

[221] Stephen M. Matyas, Carl H. Meyer, and Jeffrey Oseas. Generating strong one-way functions
with cryptographic algorithm. In IBM Technical Disclosure Bulletin, volume 27(10A), pages
5658–5659, 1985.

[222] David A. McGrew and Daniel V. Bailey. AES-CCM Cipher Suites for Transport Layer Security
(TLS). RFC 6655 (Proposed Standard), July 2012.

[223] David A. McGrew and John Viega. The Security and Performance of the Galois/Counter
Mode (GCM) of Operation. In Anne Canteaut and Kapalee Viswanathan, editors, Progress
in Cryptology - INDOCRYPT 2004, 5th International Conference on Cryptology in India,
Chennai, India, December 20-22, 2004, Proceedings, volume 3348 of Lecture Notes in
Computer Science, pages 343–355. Springer, 2004.

[224] David A. McGrew and John Viega. The Galois/Counter Mode of Operation (GCM), 2004.

[225] Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen. The
Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl. In Orr Dunkelman,
editor, Fast Software Encryption, 16th International Workshop, FSE 2009, Leuven, Belgium,
February 22-25, 2009, Revised Selected Papers, volume 5665 of Lecture Notes in Computer
Science, pages 260–276. Springer, 2009.

[226] Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen. Rebound
Attacks on the Reduced Grøstl Hash Function. In Pieprzyk [260], pages 350–365.

[227] Florian Mendel, Bart Mennink, Vincent Rijmen, and Elmar Tischhauser. A Simple Key-
Recovery Attack on McOE-X. In Josef Pieprzyk, Ahmad-Reza Sadeghi, and Mark Manulis,
editors, Cryptology and Network Security, 11th International Conference, CANS 2012, Darm-
stadt, Germany, December 12-14, 2012. Proceedings, volume 7712, pages 23–31. Springer,
2012.

[228] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1997.

[229] Bart Mennink. XPX: Generalized Tweakable Even-Mansour with Improved Security Guar-
antees. Cryptology ePrint Archive, Report 2015/476, 2015.

[230] Ralph C. Merkle. Secrecy, Authentication, and Public Key Systems. PhD thesis, Department
of Electrical Engineering, Stanford University, 1979.

[231] Ralph C. Merkle. A Certified Digital Signature. In Brassard [86], pages 218–238.

[232] Kazuhiko Minematsu. Parallelizable Rate-1 Authenticated Encryption from Pseudorandom
Functions. In Nguyen and Oswald [244], pages 275–292.

208 BIBLIOGRAPHY

[233] Shoji Miyaguchi. The FEAL Cipher Family. In Alfred Menezes and Scott A. Vanstone, editors,
Advances in Cryptology - CRYPTO ’90, 10th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 11-15, 1990, Proceedings, volume 537 of Lecture
Notes in Computer Science, pages 627–638. Springer, 1990.

[234] Shoji Miyaguchi, Masahiko Iwata, and Kazuo Ohta. New 128-bit hash function. In
Proceeding of 4th international joint workshop on computer communications, pages 279–
288, July 1989.

[235] Paweł Morawiecki, Kris Gaj, Ekawat Homsirikamol, Krystian Matusiewicz, Josef Pieprzyk,
Marcin Rogawski, Marian Srebrny, and Marcin Wójcik. ICEPOLE. Submission to the
CAESAR competition, 2014.

[236] Shiho Moriai, editor. Fast Software Encryption - 20th International Workshop, FSE 2013,
Singapore, March 11-13, 2013. Revised Selected Papers, volume 8424 of Lecture Notes in
Computer Science, 2014. Springer.

[237] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. Differential and Linear Crypt-
analysis Using Mixed-Integer Linear Programming. In Chuankun Wu, Moti Yung, and
Dongdai Lin, editors, Information Security and Cryptology - 7th International Conference,
Inscrypt 2011, Beijing, China, November 30 - December 3, 2011. Revised Selected Papers,
volume 7537 of Lecture Notes in Computer Science, pages 57–76. Springer, 2011.

[238] Theodosis Mourouzis, Guangyan Song, Nicolas Courtois, and Michalis Christofii. Advanced
Differential Cryptanalysis of Reduced-Round SIMON64/128 Using Large-Round Statistical
Distinguishers. Cryptology ePrint Archive, Report 2015/481, 2015.

[239] David Murray and Terry Koziniec. The state of enterprise network traffic in 2012. In
Communications (APCC), 2012 18th Asia-Pacific Conference on Communications, pages
179–184. IEEE, 2012.

[240] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. This POODLE Bites: Exploiting The
SSL 3.0 Fallback. https://www.openssl.org/~bodo/ssl-poodle.pdf. Accessed on May 18,
2015.

[241] Mridul Nandi. XLS is Not a Strong Pseudorandom Permutation. In Sarkar and Iwata [279],
pages 478–490.

[242] Mridul Nandi. Revisiting Security Claims of XLS and COPA. Cryptology ePrint Archive,
Report 2015/444, 2015.

[243] National Institute of Standards and Technology. NIST Computer Security Division –
The SHA-3 Cryptographic Hash Algorithm Competition, November 2007 - October 2012.
http://csrc.nist.gov/groups/ST/hash/sha-3. Accessed on July 17, 2015.

[244] Phong Q. Nguyen and Elisabeth Oswald, editors. Advances in Cryptology - EUROCRYPT
2014 - 33rd Annual International Conference on the Theory and Applications of Cryptographic

https://www.openssl.org/~bodo/ssl-poodle.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3

BIBLIOGRAPHY 209

Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, volume 8441 of Lecture
Notes in Computer Science, 2014. Springer.

[245] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold Implementations
Against Side-Channel Attacks and Glitches. In Peng Ning, Sihan Qing, and Ninghui Li,
editors, Information and Communications Security, 8th International Conference, ICICS
2006, Raleigh, NC, USA, December 4-7, 2006, Proceedings, volume 4307 of Lecture Notes in
Computer Science, pages 529–545. Springer, 2006.

[246] Kaisa Nyberg. S-boxes and Round Functions with Controllable Linearity and Differential
Uniformity. In Preneel [261], pages 111–130.

[247] Kaisa Nyberg, editor. Fast Software Encryption, 15th International Workshop, FSE 2008,
Lausanne, Switzerland, February 10-13, 2008, Revised Selected Papers, volume 5086 of
Lecture Notes in Computer Science, 2008. Springer.

[248] Kaisa Nyberg and Lars R. Knudsen. Provable Security Against a Differential Attack. J.
Cryptology, 8(1):27–37, 1995.

[249] Philippe Oechslin. Making a Faster Cryptanalytic Time-Memory Trade-Off. In Boneh [81],
pages 617–630.

[250] European Network of Excellence in Cryptology. eSTREAM: the ECRYPT Stream Cipher
Project. http://www.ecrypt.eu.org/stream/. Accessed on May 13, 2015.

[251] National Institute of Standards and Technology. FIPS PUB 46-3: Data Encryption Standard
(DES). NIST, 1995.

[252] National Institute of Standards and Technology. FIPS PUB 197: Announcing the ADVANCED
ENCRYPTION STANDARD (AES). NIST, 2001.

[253] National Institute of Standards and Technology. FIPS PUB 180-4: Secure Hash Standard
(SHS). NIST, 2012.

[254] National Institute of Standards and Technology. FIPS PUB 202: SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions. NIST, 2015.

[255] Kenji Ohkuma. Weak Keys of Reduced-Round PRESENT for Linear Cryptanalysis. In
Michael J. Jacobson Jr., Vincent Rijmen, and Reihaneh Safavi-Naini, editors, Selected Areas
in Cryptography, 16th Annual International Workshop, SAC 2009, Calgary, Alberta, Canada,
August 13-14, 2009, Revised Selected Papers, volume 5867 of Lecture Notes in Computer
Science, pages 249–265. Springer, 2009.

[256] Elisabeth Oswald and Marc Fischlin, editors. Advances in Cryptology - EUROCRYPT 2015
- 34th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, volume 9056 of Lecture
Notes in Computer Science, 2015. Springer.

http://www.ecrypt.eu.org/stream/

210 BIBLIOGRAPHY

[257] Pascal Paillier and Ingrid Verbauwhede, editors. Cryptographic Hardware and Embedded
Systems - CHES 2007, 9th International Workshop, Vienna, Austria, September 10-13, 2007,
Proceedings, volume 4727 of Lecture Notes in Computer Science, 2007. Springer.

[258] Jacques Patarin. The “Coefficients H” Technique. In Roberto Maria Avanzi, Liam Keliher,
and Francesco Sica, editors, Selected Areas in Cryptography, 15th International Workshop,
SAC 2008, Sackville, New Brunswick, Canada, August 14-15, Revised Selected Papers, volume
5381 of Lecture Notes in Computer Science, pages 328–345. Springer, 2008.

[259] Kostas Pentikousis and Hussein G. Badr. Quantifying the deployment of TCP options - a
comparative study. IEEE Communications Letters, 8(10):647–649, 2004.

[260] Josef Pieprzyk, editor. Topics in Cryptology - CT-RSA 2010, The Cryptographers’ Track at
the RSA Conference 2010, San Francisco, CA, USA, March 1-5, 2010. Proceedings, volume
5985 of Lecture Notes in Computer Science, 2010. Springer.

[261] Bart Preneel, editor. Fast Software Encryption: Second International Workshop. Leuven,
Belgium, 14-16 December 1994, Proceedings, volume 1008 of Lecture Notes in Computer
Science, 1995. Springer.

[262] Bart Preneel, René Govaerts, and Joos Vandewalle. Cryptographically secure hash func-
tions: an overview. ESAT Internal Report. KU Leuven, 1989.

[263] Gordon Procter and Carlos Cid. On Weak Keys and Forgery Attacks Against Polynomial-
Based MAC Schemes. In Moriai [236], pages 287–304.

[264] Christian Rechberger. On Bruteforce-Like Cryptanalysis: New Meet-in-the-Middle Attacks
in Symmetric Cryptanalysis. In Taekyoung Kwon, Mun-Kyu Lee, and Daesung Kwon,
editors, Information Security and Cryptology - ICISC 2012 - 15th International Conference,
Seoul, Korea, November 28-30, 2012, Revised Selected Papers, volume 7839 of Lecture Notes
in Computer Science, pages 33–36. Springer, 2012.

[265] Thomas Ristenpart and Phillip Rogaway. How to Enrich the Message Space of a Cipher. In
Alex Biryukov, editor, Fast Software Encryption, 14th International Workshop, FSE 2007,
Luxembourg, Luxembourg, March 26-28, 2007, Revised Selected Papers, volume 4593 of
Lecture Notes in Computer Science, pages 101–118. Springer, 2007.

[266] Ronald Rivest. The MD5 Message-Digest Algorithm. RFC 1321 (Informational), April
1992.

[267] Dorothy Elizabeth Robling Denning. Cryptography and Data Security. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1982.

[268] Phillip Rogaway. OCB – An Authenticated-Encryption Scheme – Licensing. http://web.cs.
ucdavis.edu/~rogaway/ocb/license.htm. Accessed on May 19, 2015.

[269] Phillip Rogaway. Authenticated-encryption with associated-data. In Atluri [33], pages
98–107.

http://web.cs.ucdavis.edu/~rogaway/ocb/license.htm
http://web.cs.ucdavis.edu/~rogaway/ocb/license.htm

BIBLIOGRAPHY 211

[270] Phillip Rogaway. Efficient Instantiations of Tweakable Blockciphers and Refinements to
Modes OCB and PMAC. In Pil Joong Lee, editor, Advances in Cryptology - ASIACRYPT 2004,
10th International Conference on the Theory and Application of Cryptology and Information
Security, Jeju Island, Korea, December 5-9, 2004, Proceedings, volume 3329 of Lecture Notes
in Computer Science, pages 16–31. Springer, 2004.

[271] Phillip Rogaway and Thomas Shrimpton. A Provable-Security Treatment of the Key-Wrap
Problem. In Serge Vaudenay, editor, Advances in Cryptology - EUROCRYPT 2006, 25th
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings, volume 4004 of Lecture Notes in
Computer Science, pages 373–390. Springer, 2006.

[272] Phillip Rogaway and David Wagner. A Critique of CCM. Cryptology ePrint Archive, Report
2003/070, 2003.

[273] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: a block-cipher mode
of operation for efficient authenticated encryption. In Michael K. Reiter and Pierangela
Samarati, editors, CCS 2001, Proceedings of the 8th ACM Conference on Computer and
Communications Security, Philadelphia, Pennsylvania, USA, November 6-8, 2001., pages
196–205. ACM, 2001.

[274] Bimal K. Roy and Willi Meier, editors. Fast Software Encryption, 11th International Work-
shop, FSE 2004, Delhi, India, February 5-7, 2004, Revised Papers, volume 3017 of Lecture
Notes in Computer Science, 2004. Springer.

[275] Markku-Juhani O. Saarinen. Cycling Attacks on GCM, GHASH and Other Polynomial
MACs and Hashes. In Canteaut [89], pages 216–225.

[276] Markku-Juhani O. Saarinen. CBEAM. Submission to the CAESAR competition, 2014.

[277] Markku-Juhani O. Saarinen. STRIBOB. Submission to the CAESAR competition, 2014.

[278] Joseph Salowey, Abhijit Choudhury, and David A. McGrew. AES Galois Counter Mode
(GCM) Cipher Suites for TLS. RFC 5288 (Proposed Standard), August 2008.

[279] Palash Sarkar and Tetsu Iwata, editors. Advances in Cryptology - ASIACRYPT 2014 - 20th
International Conference on the Theory and Application of Cryptology and Information
Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I, volume
8873 of Lecture Notes in Computer Science, 2014. Springer.

[280] Yu Sasaki, Yosuke Todo, Kazumaro Aoki, Yusuke Naito, Takeshi Sugawara, Yumiko Mu-
rakami, Mitsuru Matsui, and Shoichi Hirose. Minalpher. Submission to the CAESAR
competition, 2014.

[281] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall, and Niels Ferguson.
Twofish: a 128-bit block cipher. In Proceedings of the first AES candidate conference, 1998.

212 BIBLIOGRAPHY

[282] Kai Schramm and Christof Paar. Higher Order Masking of the AES. In David Pointcheval,
editor, Topics in Cryptology - CT-RSA 2006, The Cryptographers’ Track at the RSA Conference
2006, San Jose, CA, USA, February 13-17, 2006, Proceedings, volume 3860 of Lecture Notes
in Computer Science, pages 208–225. Springer, 2006.

[283] Pascale Serf. The degrees of completeness, of avalanche effect, and of strict avalanche
criterion for MARS, RC6, Rijndael, Serpent, and Twofish with reduced number of rounds,
2000.

[284] Claude E. Shannon. Communication Theory of Secrecy Systems. Bell System Technical
Journal, 28(4):656–715, 1949.

[285] Danping Shi, Lei Hu, Siwei Sun, Ling Song, Kexin Qiao, and Xiaoshuang Ma. Improved
Linear (hull) Cryptanalysis of Round-reduced Versions of SIMON. Cryptology ePrint
Archive, Report 2014/973, 2014.

[286] Nigel P. Smart, Vincent Rijmen, Benedikt Gierlichs, Kenneth G. Paterson, Martijn Stam,
Bogdan Warinschi, and Gaven Watson. ENISA: Algorithms, Key Sizes and Parameters
Report, November 2014.

[287] Gurobi Software. Gurobi Optimizer. http://www.gurobi.com. Accessed on July 31, 2015.

[288] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song. Automatic
Security Evaluation and (Related-key) Differential Characteristic Search: Application to
SIMON, PRESENT, LBlock, DES(L) and Other Bit-Oriented Block Ciphers. In Sarkar and
Iwata [279], pages 158–178.

[289] Siwei Sun, Lei Hu, Meiqin Wang, Peng Wang, Kexin Qiao, Xiaoshuang Ma, Danping Shi,
Ling Song, and Kai Fu. Constructing Mixed-integer Programming Models whose Feasible
Region is Exactly the Set of All Valid Differential Characteristics of SIMON. Cryptology
ePrint Archive, Report 2015/122, 2015.

[290] Yosuke Todo and Kazumaro Aoki. FFT Key Recovery for Integral Attack. In Dimitris
Gritzalis, Aggelos Kiayias, and Ioannis G. Askoxylakis, editors, Cryptology and Network
Security - 13th International Conference, CANS 2014, Heraklion, Crete, Greece, October
22-24, 2014. Proceedings, volume 8813 of Lecture Notes in Computer Science, pages 64–81.
Springer, 2014.

[291] Harshal Tupsamudre, Shikha Bisht, and Debdeep Mukhopadhyay. Differential Fault
Analysis on the families of SIMON and SPECK ciphers. Cryptology ePrint Archive, Report
2014/267, 2014.

[292] Serge Vaudenay. Security Flaws Induced by CBC Padding - Applications to SSL, IPSEC,
WTLS ... In Knudsen [190], pages 534–546.

[293] Ning Wang, Xiaoyun Wang, Keting Jia, and Jingyuan Zhao. Differential Attacks on Reduced
SIMON Versions with Dynamic Key-guessing Techniques. Cryptology ePrint Archive, Report
2014/448, 2014.

http://www.gurobi.com

BIBLIOGRAPHY 213

[294] Qingju Wang, Zhiqiang Liu, Kerem Varici, Yu Sasaki, Vincent Rijmen, and Yosuke Todo.
Cryptanalysis of Reduced-Round SIMON32 and SIMON48. In Willi Meier and Debdeep
Mukhopadhyay, editors, Progress in Cryptology - INDOCRYPT 2014 - 15th International
Conference on Cryptology in India, New Delhi, India, December 14-17, 2014, Proceedings,
volume 8885 of Lecture Notes in Computer Science, pages 143–160. Springer, 2014.

[295] Dominic J. A. Welsh. Codes and Cryptography. Clarendon Press, 1988.

[296] Doug Whiting, Russel Housley, and Niels Ferguson. Counter with CBC-MAC (CCM). RFC
3610 (Informational), September 2003.

[297] Robert S. Winternitz. Producing a One-Way Hash Function from DES. In David Chaum,
editor, Advances in Cryptology, Proceedings of CRYPTO ’83, Santa Barbara, California, USA,
August 21-24, 1983., pages 203–207. Plenum Press, New York, 1983.

[298] Robert S. Winternitz. A Secure One-Way Hash Function Built from DES. In Proceedings
of the 1984 IEEE Symposium on Security and Privacy, Oakland, California, USA, April 29 -
May 2, 1984, pages 88–90. IEEE Computer Society, 1984.

[299] Hongjun Wu and Tao Huang. JAMBU. Submission to the CAESAR competition, 2014.

[300] Shengbao Wu and Mingsheng Wang. Security Evaluation against Differential Cryptanalysis
for Block Cipher Structures. Cryptology ePrint Archive, Report 2011/551, 2011.

	Abstract
	Resumé
	Acknowledgments
	Notation
	Contents
	Introduction
	Cryptographic Goals
	Symmetric Primitives
	Block Ciphers
	Stream Ciphers
	Message Authentication Codes
	Authenticated Encryption
	Cryptographic Hash Functions

	Cryptanalysis
	Adversarial Models
	Adversarial Goals
	Complexity Metrics
	Brute-Force Attacks
	Differential Cryptanalysis
	Linear Cryptanalysis
	Meet-in-the-Middle Attacks
	Algebraic Attacks

	Cryptanalysis of Symmetric Primitives
	Cryptanalysis of Simon
	Specification of Simon
	Differential Attacks
	Round Function Differentials
	Search Heuristic for Differentials
	Differential Effect in Simon
	Generic Extension by Two Rounds on Top
	Key Recovery
	Impossible Differentials
	Connections to Linear Trails
	Timeline of Cryptanalysis on Simon
	Discussion and Conclusions

	Cryptanalysis of Present
	Motivation
	A Model for Linear Distinguishers in the Key-less Setting
	Specification of Present
	Keys and Linear Hulls in Present
	Application to Present
	Discussion and Conclusions

	Forgery and Key Recovery on Selected Authenticated Encryption Schemes
	Cryptanalysis of Avalanche
	Cryptanalysis of Rbs
	Discussion and Conclusions

	Design of Symmetric Primitives
	Permutations and Rotations in AES-like Ciphers
	Introduction and Motivation
	The AES and AES-like Ciphers
	Bounding Differential- and Linear Hull Probabilities
	Equivalent Permutations
	Mixed-Integer Linear Programming and Experimental Results
	Optimal Solutions
	Discussion and Conclusions

	Prøst: Permutation-Based Authenticated Encryption
	Introduction and Motivation
	The Prøst Permutation
	Cryptanalysis of Permutation
	Prøst-based CAESAR Proposals
	Features
	Security Goals and Proofs
	External Analysis
	Discussion and Conclusions

	Implementation Aspects
	Motivation
	Timeline of AES Implementations

	Schemes Considered
	NIST-recommended Modes
	Authenticated Encryption Modes and CAESAR

	The Intel Instruction Set and Haswell
	Instruction Pipelining
	AES New Instructions
	Improvements to Finite Field Multiplications
	Classical vs. Haswell Multiplication
	Haswell-Optimized Finite Field Doubling
	General Considerations: AVX and AVX2 Instructions

	Comb Scheduler: An Efficient Look-Ahead Strategy
	Filling the Pipeline: Multiple Messages
	Message Scheduling with a Comb
	Latency vs. Throughput
	Patenting

	Pipelined NIST-recommended Modes
	Pipelined Authenticated Encryption
	Performance in the Real World
	Traditional Approach: Sequential Messages of Fixed Lengths
	Exploring the Limits: Upper Bounding the Combing Advantage

	Discussion and Conclusions

	Conclusions
	Contributions
	Open Problems and Future Work

	Truncated Difference Propagations for Simon
	Cryptanalysis of Present
	Linear Hull Trail Counts
	6-round Deterministic Phase for Present

	Analysis of Permutations in AES-like Ciphers
	Optimality of the Black-Box Model
	Experimental Results

	Pseudo-code for Prøst Proposals
	Bibliography

