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Abstract 

Two verified wind atlases have been developed for South Africa. The first adopted a statistical-dynamical approach and the 

second a novel, fully dynamical approach. We verify the atlases against an observational wind atlas generated from three years of 

data from 10 measurement masts. The statistical-dynamical method underestimates the generalized mean wind speeds at the 

observation sites whereas the fully dynamical method has lower biases and slightly overestimates the generalized mean wind 

speeds. The dynamical method captures thermally forced dynamical processes and also resolves topographically enhanced flows 

the statistical-dynamical method cannot. 
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1. Introduction 

The assessment of wind resource in regions where measurements are sparse usually involves the calculation of a 

generalized wind climate from observations and models to give an indication of the geographical distribution of 

wind resource for feasibility studies and decision-making processes. A number of methods are available to construct 

regional or global wind climates and include simple folklore, measurements only, measure-correlate-predict, 
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reanalysis data, and mesoscale modelling [1]. The observation-based wind atlas (OWA) method has become a 

commonly used method in which microscale modelling produces a generalized regional wind climate based on some 

input data. The generalized wind climate of a region is an idealized wind climate that would exist if the surface had 

no obstacles, was flat, had uniform roughness and were subject to the same atmospheric conditions as the measuring 

position [1].  

In regions with poor observational coverage, the OWA method and some form of mesoscale modelling can be 

combined. One such method uses the Karlsruhe Atmospheric Mesoscale Model (KAMM) [2] and the Wind Atlas 

Analysis and Application Programme (WAsP) microscale model, more commonly known as the KAMM-WAsP 

wind atlas method. This method is fully described in [3] and has been validated [4,5] and used to develop wind 

atlases in a number of regions, e.g. Europe [6,7], Egypt [8] and Finland [9]. More recently, this method has been 

extended to use the output from the Weather, Research and Forecasting (WRF [10]) Model [11,12].  

The Wind Atlas for South Africa project (WASA) has produced two verified wind atlases for parts of South 

Africa using these two methods. An extensive description of the methods and results are available from [12]. The 

KAMM-WAsP method is based on a statistical-dynamical way of running the mesoscale model and combining the 

results, whereas the WRF-WAsP method uses WRF in a fully dynamical mode (see section 1.2). The two methods 

produced what is called Numerical Wind Atlases (NWA). The WASA project includes a measurement campaign 

that erected 10 masts with instruments at four levels; the data from which the observational wind atlas (OWA) was 

developed. A complete description is presented in [13,14].  

The OWA results can be compared to generalized wind climates derived from the KAMM- and WRF-based 

NWA to assess the different mesoscale model methods in a wind energy context – as wind energy is a function of 

the cube of the wind speed, small differences in wind speeds may have large consequence for energy assessment e.g. 

a 5% difference in wind speed means up to a 15% difference in kinetic energy flux. The actual energy assessment 

depends on the wind turbine and its power curve. 

This paper presents the two mesoscale model methods and subsequent microscale results to quantify the error of 

each and wind energy assessment implications. 

2. Mesoscale methods 

2.1. KAMM 

This methodology adopts a statistical-dynamical downscaling approach [15] that assumes a robust relationship 

between meteorological situations at the large-scale and meteorological situations at the small-scale. The NCEP2 

reanalysis data [16] between 1980 and 2009 are used as the large-scale field from which a number of wind classes 

(large-scale wind circulation states) are developed for three domains over South Africa (Fig. 1). Each of the wind 

classes (Fig. 2) is downscaled using the mesoscale model KAMM to capture regional scale topographic modification 

of the wind field. Post-processing of the results from all the simulations yields a wind resource map at the resolution 

of the model (5 km) at any chosen height above ground level, as well as a generalized [3] wind climate map or 

numerical wind atlas.  
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Fig. 1. The surface aerodynamic roughness length for the three modelling domains at a resolution of 5 km. The domain boundaries are marked by 

red lines, and labeled SA2, SA3, SA4. The colour key is given on the right hand side. The roughness data is derived from the United States 

Geological Survey (USGS) Global Land Cover Classification (GLCC). 

 

Fig. 2. The geostrophic wind classes for SA2 (top left – 84 classes), SA3 (top right – 84 classes) and SA4 (bottom – 137 classes) domains based 

on NCEP2 reanalysis data over the period 1980–2009. Each cross represents a forcing wind speed (distance from the centre of the diagram) and 

direction. The speed scale is in ms 1. The size of each cross represents the probability of the wind class. The frequency scale is given in the upper 

right hand corner. The color scale indicating the inverse Froude number squared (IFNS) is given in the lower right hand corner. 
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2.2. WRF 

The WRF model is a mesoscale numerical weather prediction system designed to serve both operational 

forecasting and atmospheric research. It is non-hydrostatic and adopts a nested domain strategy in which 

consecutively high-resolution domains are nested in coarser-resolution domains. It is highly configurable having a 

number sub-grid scale parameterizations, including many of the boundary layer that are critical for wind energy 

applications.  

The WASA numerical wind atlas utilized the Advanced Research WRF (ARW-WRF) version 3.5.1. The 

simulation used 3 domains with horizontal resolutions of 27 km, 9 km and 3 km respectively (Fig. 3). In the vertical, 

the model was configured with 41 levels with model top at 50 hPa. The lowest 12 of these levels are within 1000 m 

of the surface and the first level is located at approximately 14 m above ground level (AGL). The 6-hourly ERA-

Interim reanalysis [17] provided initial and boundary conditions and the simulation spanned October 2009 to 

September 2013.  

Fig. 3. Configuration of the WRF model domains and terrain elevation (m). The inner lines show the position of the 9 km and 3 km domain, 

respectively. The locations of the WASA masts are shown by the dots. 

Sensitivity tests were carried out to determine the optimal model configuration using the OWA for the evaluation. 

The only large sensitivity found was the choice of land surface scheme, both because of the land surface model itself 

and also because of the different treatment of the surface roughness length. Besides this, once a domain 

configuration and horizontal grid spacing is selected, there is very little sensitivity to most physics options with 

respect to the annual mean wind speed at 100 m AGL.  

The final model configuration used the Kain-Fritch convective parameterization (except in the 3 km domain 

where convection is explicitly resolved), Mellor-Yamada-Janjic land-surface and planetary boundary layer scheme, 

the Noah Land Surface Model and the NOAA/NCEP ~10 10 km resolution daily sea surface temperatures [18]. For 

wind energy applications, the use of a constant surface roughness length is necessary to remain consistent with the 

generalization procedure, so the annual cycle available in the WRF model was disabled and the winter (shorter) 

length used throughout the simulation period.  

In the 27 km and 9 km domains (domains 1 and 2) data were output every 3 hours and in domain 3, every hour. 

Additionally, in the lowest 7 levels of domain 3, wind speed data were output every 10 minutes. The model wind 

components were interpolated to the coordinates of the mass grid and then used to compute the wind speed and 

rotated to the true north to derive the wind direction. In the vertical, for a given height, e.g., 100 m, wind speeds are 

interpolated between neighboring model levels using logarithmic interpolation in height.  
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A new procedure was developed to process the WRF-based wind climate [12] so that a proper verification of 

wind climate estimates derived from mesoscale modeling could be carried out. Without this step verification is not 

possible because the land surface description within the model does not agree with reality, and therefore model 

winds will not agree with measured winds. 

To summarize, in the KAMM-WAsP method the mesoscale model is run to obtain a single state for each of the 

wind classes derived from the NCEP2 data whereas in the WRF-based method the mesoscale model simulates a 

time continuous period overlapping with the observation record, and outputs data at corresponding time steps. In the 

KAMM the lower boundary has uniform land temperature (relative to initial air temperature) and sea surface 

temperature whereas in the WRF model simulations the lower boundary has an interactive land surface and time 

varying sea surface temperature (Table 1).  

The generalized winds from both mesoscale methods were evaluated against the observational wind atlas to 

assess error at each measurement site. Additionally, data from each 3 km  3 km WRF grid cell that had a 

measurement site situated in it were evaluated against the observed data to assess the simulated wind speed 

distribution and the diurnal and seasonal cycles. 

Table 1. Fundamental differences between the KAMM and WRF-based NWA methods. 

KAMM WRF 

“Steady state” simulation of each of the 307 

wind classes.  

Time-integrated simulation that 

provides a continuous time series 

for each grid cell 

Each simulation is initialized with a single 

vertical representation of the atmosphere 

Simulation is initialized with the 

3-dimensional state of the 

atmosphere 

Lower boundary condition has uniform land 

and sea surface temperature 

Lower boundary has interactive 

land and time-varying sea 

surface temperatures 

3. Evaluation results 

3.1. KAMM vs. WRF 

The long-term averaged generalized wind speed for the observations and the model simulations are compared 

using the NWA derived from KAMM and WRF with the OWA derived at all the WASA masts (Table 2). The 

generalized winds correspond to a height of 100 m AGL and a roughness length of 0.03 m. The observed mean wind 

speeds are derived from the measurements through microscale modelling. Most OWA values are for the period 1 

October 2010 - 30 September 2013, except for WM04, WM08-WM10 that contain some missing data.  
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Table 2. Comparison of the mean generalized wind speed (h=100 m and z0=0.03 m) for all WASA masts for the observations (UObs), and the NWA 

from KAMM (UKAMM) and WRF (UWRF). The KAMM-derived NWA values are for the period 1 October 2010 to 30 September 2013 for all sites. In 

the WRF-derived NWA values, the time period is 1 October 2010 to 30 September 2013 for most sites, but 1 June 2010 to 31 May 2013 for WM04; 1 

March 2011 to 28 February 2012 and 1 October 2012 to 30 September 2013 for WM10. UObs has been derived using default ( 40 Wm 2) mean heat 

flux over land. 

Station UObs  

(ms 1)

UKAMM  

(ms 1)

UKAMM UObs 

(%)

UWRF  

(ms 1)

UWRF UObs 

(%)

WM01  Alexander Bay 6.83 5.53 19.0 6.73 1.5 

WM02  Calvinia 6.68 7.03     5.2 7.31   9.4 

WM03  Vredendal 7.38 6.70   9.2 6.99 5.3 

WM04  Vredenburg 7.50 7.16   4.5 8.15   8.7 

WM05  Napier 8.98 8.59   4.3 9.08   1.1 

WM06  Sutherland 7.86 7.33   6.7 8.27   5.2 

WM07  Beaufort West 7.78 6.69 14.0 7.39 5.0 

WM08  Humansdorp 8.01 7.61   5.0 8.08   0.9 

WM09  Noupoort 8.33 7.41 11.0 8.45   1.4 

WM10  Butterworth 7.12 6.14 13.8 7.53   5.8 

Mean Error     8.2    2.1 

Mean Absolute Error       9.3    4.4 

 

The biases between generalized wind derived from OWA and NWA vary greatly with model and site. Overall, 

the KAMM-derived mean generalized winds are underestimated for most sites except for WM02. The sites where 

thermal-induced flows are important in determining the wind climate (e.g. WM01, WM03) are the most affected. In 

the WRF-derived NWA, biases are mostly positive, except for WM01, WM03, and WM07, but the absolute value of 

all biases is smaller than 10%. At two of the sites, WM02 and WM10, the bias is quite large, and probably 

attributable to overestimation of winds under stable conditions. The mean error metrics in the WRF-derived NWA 

are at least half those of the KAMM-derived atlas. 

At each site the wind climate of the two NWAs are evaluated against the respective OWA. Selected examples are 

presented here that demonstrate the general results. At Alexander Bay (WM01), a site that experiences thermal wind 

forcing as a result of the pressure gradient between the hot desert and cold Benguela ocean current, the KAMM 

wind climate is over-dominated by southerly flow and the annual mean wind speed is greatly underestimated (Fig. 4, 

top row). The WRF wind climate shows very good agreement with both the observed wind rose and wind speed 

distribution between sectors. At Napier (WM05), a region that is largely dominated by synoptic processes, both 

atlases compare well with the OWA (Fig. 4, centre row). In a more mountainous region (Butterworth, WM10), there 

is no preferred wind sector in the OWA and the mean wind speed is relatively low (Fig. 4, bottom row). The 

KAMM atlas underestimates the wind speed climate here and does not capture the sector distribution well whereas 

the WRF atlas more correctly captures the sector distribution but slightly overestimates the wind speed climate.  

The WRF-derived atlas is consistently more similar to the OWA than the KAMM atlas in terms of error and wind 

climate. 
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Fig. 4. Graphical representation of the WAsP generalized wind climate files as a wind rose at WM01 (top row), WM05 (centre row) and WM10 

(bottom row). In each panel the wind rose on the left shows the frequency each wind sector is mapped to and on the right the wind speed 

distribution for each sector (grey lines) and the combined for all sectors (dark solid line is the emergent distribution and dashed line is the 

combined Weibull frequency distribution. The OWAs and NWAs are based on the period October 2010 to 30 September 2013 except at WM10 

where the OWA is based on the periods 1 March 2011-February 2012 and October 2012-September 2013 as a result of vandalism at the site. In 

the top right corner of the wind speed distribution panel are the Weibull A- and k- parameters, the mean wind speed (U) and power density (P). 

The generalized wind climates are for h=100 m and z0=0.03 m. The OWA uses default heat fluxes in the WAsP models [19]. 

3.2. Evaluating seasonal and diurnal cycles in WRF 

The time continuous WRF simulation allows for qualitative time-series evaluations of the wind output against 

data from the 10 measurement masts. As all the masts are situated in relatively flat areas with homogenous land 

cover, we use the corresponding 3 km square WRF grid cell in which the mast would be situated for the analysis. 

The validation of the WRF wind output is carried out for wind speeds at 62 m A.G.L.  

At WM01, wind speeds are highest in the afternoon and early evening during the austral summer months (Fig. 5). 

The WRF model captures the shape of the mean seasonal cycle very well with only a small over-simulation (under-

simulation) of wind speeds in June and July (August to December). The model also captures the shape of the diurnal 

cycle of wind speed extremely well with a slight phase error; the maximum in wind speed is at 1600 in WRF while 

at 1800 in the observations.  

Highest wind speeds at WM05 are in the austral spring and summer during the early afternoon to early evening 

(Fig. 6). The model generally under-simulates the wind speed in summer and over-simulates wind speed in winter 

but simulates the shape and magnitudes of the diurnal cycle very well. 
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Only one continuous year of complete data was available from WM10, namely 2011. Highest wind speeds were 

generally measured in the afternoon with a maximum in June (Fig. 7). The model captures the shape of seasonal 

cycle (in this year) although it over-simulates autumn and winter wind speeds and under-simulates spring and 

summer wind speeds. The model captures the shape of the diurnal cycle, but the early morning peak in wind speeds 

simulated by WRF (largely a function of over-simulating June early morning wind speeds) in not observed. 

 

 

Fig. 5. Comparison of the wind speed characteristics between the WRF simulation and measurement sites at WM01 at 62 m AGL. Wind speed 

distribution (top left), mean seasonal cycle (top center) and mean diurnal cycle (top right) in the mast measurements (blue) and in the WRF model 

simulations (green). In the bottom row is a heat diagram of mean wind speed (ms 1) as a function of the time of the day (x-axis) and the month of 

the year (y-axis) for the mast observations (bottom left) and the WRF simulations (bottom right). 

4. Summary and Discussion 

Two numerical wind atlases have been created and verified over a region of South Africa, one based on a 

statistical-dynamical method using the KAMM mesoscale model and the other a fully dynamical method using the 

WRF mesoscale model. Compared against an observed wind atlas developed at 10 measurement sites, the KAMM-

derived NWA underestimates and WRF-derived NWA overestimates the generalized mean wind speeds. However, 

the WRF mean error is much lower than the KAMM mean error. The WRF NWA has smaller wind speed biases at 8 

measurement sites and a lower mean error and mean absolute error across the 10 stations. The wind climate in terms 

of speed and direction is generally better reproduced in the WRF NWA although at some sites there was little 

difference between the two NWAs and the OWA. The more simplistic initialization of the large-scale flow in the 

KAMM modeling, is probably responsible for most of the discrepancies. The WRF model, being time synchronous 

and receiving boundary conditions every 6 hours from the driving reanalysis, is better suited to resolve complex 

wind processes and to produce a more realistic regional wind climate. 
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Fig. 6. As for Fig. 5 except at WM05. 

 

Fig. 7. As for Fig. 5 except at WM10. 
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The WRF method, however, is computationally expensive to run and poses challenges in post processing of the 

large data volume produced. Furthermore, uncertainties within this modelling framework that arise from the 

reanalysis data used to force the model, the model configuration, the representativeness of the period used in 

constructing the atlas and errors in the generalization method still need to be considered. 

Despite these considerations, it has been demonstrated that the WRF-derived NWA has much lower biases than 

the KAMM-derived atlas. This is especially relevant where power derived from wind is a function of the cube of the 

wind speed. A fully dynamical wind atlas method provides a superior assessment of wind resource in regions where 

measurements are sparse and provides more accurate wind climate information for decision-making processes.  
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