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Free Material Optimization (FMO)

e The design variable is the entire material tensor £

‘ oij(x) = Eijr(x)en () ‘

e allowed to vary freely at each point of the design domain
e the only requirement is that the material tensors should be symmetric and
positive semidefinite

M. P. Bendsge, J. M. Guedes, R. B. Haber, P. Pedersen, and J. E. Taylor. An analytical model to predict optimal material
properties in the context of optimal structural design. Journal of Applied Mechanics, 61:930-937, 1994.

U. T. Ringertz. On finding the optimal distribution of material properties. Structural Optimization, 5:265-267, 1993.

M. Kotvara, M. Stingl, and J. Zowe. Free material optimization: recent progress. Optimization, 57(1):79-100, 2008.

J. Haslinger, M. Ko&vara, G. Leugering, and M. Stingl. Multidisciplinary free material optimization. SIAM Journal on Applied

Mathematics, 70(7):2709-2728, 2010. .
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Free Material Optimization (FMO)

e The design variable is the entire material tensor £
|0i(2) = Byju(v)en() |

e allowed to vary freely at each point of the design domain
e the only requirement is that the material tensors should be symmetric and
positive semidefinite

e obtains conceptual optimal structures regarded as uItlmater best designs.
e can be used to generate benchmark solutions for other models and besides
to propose novel ideas for new design situations.

M. P. Bendsge, J. M. Guedes, R. B. Haber, P. Pedersen, and J. E. Taylor. An analytical model to predict optimal material
properties in the context of optimal structural design. Journal of Applied Mechanics, 61:930-937, 1994.

U. T. Ringertz. On finding the optimal distribution of material properties. Structural Optimization, 5:265-267, 1993.

M. Kogvara, M. Stingl, and J. Zowe. Free material optimization: recent progress. Optimization, 57(1):79-100, 2008.

J. Haslinger, M. Kogvara, G. Leugering, and M. Stingl. Multidisciplinary free material optimization. SIAM Journal on Applied

Mathemat/cs 70 :2709-2728, 2010.
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Motivation

FMO problems

e demand fine finite element discretization, hence large problems

e involve matrix inequities/variables

e are modeled as nonlinear (mostly non convex) semidefinite programming

e are computationally expensive and more difficult than standard optimization
problems.

Most today's methods are based on first-order method leading to many
iterations.

3 DTU Wind Energy WCSMO-11, 7-12 June 2015, Sydney, Australia
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Objective

e To develop special purpose second order interior point method that can robustly
and efficiently solve large-scale FMO problems.

4 DTU Wind Energy WCSMO-11, 7-12 June 2015, Sydney, Australia
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Objective

e To develop special purpose second order interior point method that can robustly
and efficiently solve large-scale FMO problems.

e To investigate numerically the performance of

e some equivalent FMO problem formulations
e the most common directions (AHO, HRVW/KSH/M, and NT directions)
for solving FMO problems.

4 DTU Wind Energy WCSMO-11, 7-12 June 2015, Sydney, Australia



Primal problems (SAND)

Minimum compliance

L T
minimize wefr u
ur€R" Bk Z efi
lel
subject to A(E)uy= f;, L € L,

> Tr(E;)<V.
=1

where the discrete set of admissible materials

E:={E¢e®R"™E=E =0,p<Tr(E)<pi=1.,m}
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Primal problems (SAND) =
Minimum compliance Minimum weight

minimize ngffug o = ‘

w R EEE 4 uTelﬂréLr%é% ;TT(EZ)

subject to A(E)ug = fo, £ € L, subject to  A(E)uy = fo, L € L,
m
> Tr(E;) < V. > weffue <,
i=1 teL

where the discrete set of admissible materials

E:={E¢e®R"™E=E =0,p<Tr(E)<pi=1.,m}
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Primal problems (Nested) =
Minimum compliance Minimum weight
L T -1 m
m'%'m'ze Zw€f£ AT(E)fe minimize ZT?"(EL-)
€k ECE
leL i=1
m . T A—1
subject to ZTT<E%') <V subject to ZIUZ,fz AT (E)fe<~y
el
i=1

where the discrete set of admissible materials

E:= {E e R H\E;, = EF = 0,p < Tr(E;) < p,i = 1m}

6 DTU Wind Energy WCSMO-11, 7-12 June 2015, Sydney, Australia
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Primal problems (Linear) =
Primal problems (Linear)
Minimum compliance Minimum weight
rEie?Eing wag minimize iTr(E-)
0=t e BeEr>0 !
o =
subject to ZT’I“(Ei) <V, subject to Z wery < 7,
i=1 teL
o fl O\ A
0, V¢ € L. ~0,VleL.
(fe A(E)> - fe A(E)

E:={E¢c®R"™E=E =0,p<Tr(E)<pi=1,.,m}

Very large-scale matrix inequalities which are difficult to deal within
computations.
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Dual problems
The minimum compliance primal problem

minimie D vkl

subject to A(E)uy = fo, L € L,
E,=El'>0,i=1,...,m,
p<Tr(E;)<p, i=1,...,m,

i Tr(E;) <V.
i=1

has the dual problem given by

m m

maximize —a\_/—I—QZwefeTue +BZ§¢_ﬁZBi
i=1

UL, Up ER™ .
aER,BER™ , BERTM £eL i=1

ng
subject to Z ngBiT,kuzueTBi,k — (a— éi +B)I<0,i=1,...

el k=1
a>0,3>0,8>0.

WCSMO-11, 7-12 June 2015, Sydney, Australia
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Primal and dual problems
Minimum complinace problems (SAND, Nested, and Dual)

DTU

. . . T

s, 2wl -
tel minimize ngfe AYE)f,

subject to  A(E)ug = fo, L€ L, EcE L
ZTT(Ei) <V subject to ZTT(EZ') <V
i=1 i=1

maximiz%§ fav+22wgffu[+p25.f5251

UL,ye.ny Un,; ER™ <L - = —1 p

a€ER,BER™ ,BER™

subject to

9 DTU Wind Energy

ng
ZngBZkugugBi,k —(a—p, +B8)=<0,i=1,...,m
teL k=1
a>0,3>0,>0.
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Primal and dual problems
Minimum complinace problems (SAND, Nested, and Dual)

minimize E we f wg
w €™ BEE £~ L T A1
minimize we fo (E)fe

€

subject to  A(E)u; = fy, ¢ € L, el

> Tr(E)<V. subject to > Tr(E;) <V.
=1

i=1

m m
maximize —ozf/Jr?ZweszW*BZ@i*pZBi
=1 1=1

UL ,enns unLGR” el —
a€R,BER™, BER™ € ¢

nag

ZngBZkUgu;{Bi,kf(a7§i+5i)IjO,z‘: 1,....m
(el k=1

subject to

Minimum weight problems (SAND and Nested)

A Tr(E,
mhime, 2B 2
i=1 minimize ZTT(EZ‘)

subject to  A(E)uy = fi, L € L, Bek i=1

subject to szngAfl(E)fé <7

WCSMO-11, 7-£1r§gune 2015, Sydney, Australia
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Primal-dual interior point method

Consider the nonlinear semidefinite problem

where,

10

DTU Wind Energy

minimize X, u
X S, uckn F(X,u)

subject to  g;j(X,u) <0, j=1,...,k,
X; = 0, i=1,...m,

S=8% x 8% x ... xS and (dy,da,...,dy,) € N,

WCSMO-11, 7-12 June 2015, Sydney, Australia
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Primal-dual interior point method
Consider the nonlinear semidefinite problem

minimize X, u
X S, uckn F(X,u)

subject to  g;j(X,u) <0, j=1,...,k, (P
X; >0, i=1,...m,

~—

where, S=S8% xS% x ... xS% and (dy,do,...,dy,) € N,
We introduce the slack variables s € R¥ and barrier parameter 1 > 0 and
formulate the associated barrier problem as

minimize Zln det(X. Zln (s5)

k
XeS+,ue]Rn,seIR+

(BP)

subject to gj(X,u)—i—sj:O, ]zl,...,k.

The central idea in interior point methods is that to solve the barrier

problem (BP) for a sequence of barrier parameter pj, — 0
10 DTU Wind Energy WCSMO-11, 7-12 June 2015, Sydney, Australia



Optimality conditions

The first-order optimality conditions of the barrier problem (BP) are

11

DTU Wind Energy

fo(X,U) -Z+ VX(g(X,’u)T)\)
Vauf(X,u) + Vaug(X, u)"A
SAe — e =
9(X,u)+s
XZ —ul

o O O OO

WCSMO-11, 7-12 June 2015, Sydney, Australia
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Optimality conditions
The first-order optimality conditions of the barrier problem (BP) are

va(Xvu) - Z+ VX(g(Xvu)TA)
Vaf (X, ) + Vag(X, u)TA
SAe — ue =
9(X,u)+s
Hp(XZ) —ul

o O O O O

where
Hp : R™" — S", defined by Hp(Q) = % (PQP*1 + (PQP”)T)-
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Optimality conditions
The first-order optimality conditions of the barrier problem (BP) are

va(Xvu) - Z+ VX(g(Xvu)TA)
Vaf (X, ) + Vag(X, u)TA
SAe — ue =
9(X,u)+s
Hp(XZ) —ul

o O O O O

where
Hp : R™" — S", defined by Hp(Q) = % (PQP*1 + (PQP”)T)-

e P =TI, AHO direction
e P = Z'2 HRVW/KSH/M direction (H.K.M.)
e P = X~'/2, dual HRVW/KSH/M direction

e P =W /2 NT direction
W = Xl/2(x1/2ZX1/2)—1/2X1/2

11 DTU Wind Energy WCSMO-11, 7-12 June 2015, Sydney, Australia
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Applying Newton's method we solve the reduced system

12

DTU Wind Energy

G A
AT B

)

Au
AN

)

-()

G=GH ), A= AH Y, B=BH")
7q = Tq(H ™), 7y = 7,(H ™)

H=V%xL.(X,u,8\) +F €

WCSMO-11, 7-12 June 2015, Sydney, Australia
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Applying Newton's method we solve the reduced system

[ 5)(3)- ()

G=GH ), A= AH Y, B=BH")
7q = Tq(H ™), 7y = 7,(H ™)

H =VixL,(X,u,s ) +F '€

The other search directions (AX, As, AZ) are then determined

12 DTU Wind Energy WCSMO-11, 7-12 June 2015, Sydney, Australia

=
—
=

M



DTU
Problem formulations =

Minimum complinace problems (SAND, Nested, and Dual)

o T
minimize, 2 wefl 4
el minimize Zwe.fg AT(E)fe
subject to  A(E)uy = fi, L € L, Bek Lel
m m
ZTT(Ei) <V. subject to ZTT(Ei) <V
i=1 =1
B m mo
maximize —aV—l—QZwlfeTuf""BZgi_ﬁZﬁi
ul";”u"LE ’ el i=1 =1
(zGR,BGR"”,EER""

ng
subject to ZngBiT,kugugTBLk — (« —ﬁi +B8)I=<0,i=1,...,m
(el k=1

Minimum weight problems (SAND and Nested)

I Tr(E
Jmigimize, ) Tr(E) n
=1 minimize ZTT(Ei)
subject to  A(E)u; = fo, L€ L, E€E Pt
> weffu <7, subject to Y _wiff ATN(E)f <
13 DTU Wind EnergyZGL
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2D problems

(a) (b)

() (d)

Figure: Design domains, boundary conditions, and

external loads for the Cantilever benchmark problem (a),

the Michell beam problem (b), the L-shape problem (c),
and the two load case problem (d).

14 DTU Wind Energy

Problem instances

Problems No. of finite No. of qesign

elements variables
Cantilever | 7500 45000
Cantilever Il 30000 180000
Cantilever 11 120000 720000
Cantilever IV 480000 2880000
Michell | 5000 30000
Michell 1l 20000 120000
Michell 11 80000 480000
Michell IV 320000 1920000
L-shape | 1875 11250
L-shape Il 7500 45000
L-shape Il 30000 180000
L-shape IV 120000 720000
Two Loads case | 5000 30000
Two Loads case |l 20000 120000
Two Loads case Il 80000 480000
Two Loads case IV 320000 1920000

WCSMO-11, 7-12 June 2015, Sydney, Australia
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Optimal designs and numerical results

(a) (b)
() (d)

Figure: Optimal density distributions
obtained by solving the minimum
compliance problem for the Cantilever
IV benchmark problem (a), the Michell
IV beam problem (b), the L-shape IV
problem (c), and the two load case IV
problem (d).

15 DTU Wind Energy WCSMO-11, 7-12 June 2015, Sydney, Australia
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Optimal designs and numerical results

(a) (b)
() (d)

Figure: Optimal density distributions
obtained by solving the minimum
compliance problem for the Cantilever
IV benchmark problem (a), the Michell
IV beam problem (b), the L-shape IV
problem (c), and the two load case IV
problem (d).
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Number of iterations

—+ minComp-NESTED]
-+ minComp-SAND
-+ minComp-DUAL
~#- minVol-NESTED

minVol-SAND
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L

LShape

Michell

45

5 55
Problem Size(logl0)
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Optimal designs and numerical results

(a) (b)
V i L
() (d)

Figure: Optimal density distributions
obtained by solving the minimum
compliance problem for the Cantilever
IV benchmark problem (a), the Michell
IV beam problem (b), the L-shape IV
problem (c), and the two load case IV
problem (d).

15 DTU Wind Energy

Number of iterations

CPU time in sec(log10)

60
201
~#* minComp-NESTED|
15F |-+ minComp-SAND
1ol |+ mincomp-DUAL
-*-minVol-NESTED
sk minVol-SAND N Michel
1 1 1 s Il 1
4 45 5 55 6
Problem Size(log10)
45
~+ minComp-NESTED)|
~#* minComp-SAND
4l |-+ minComp-DUAL
~* minVol-NESTED
minVol-SAND
35
3
25
2

15
4

L
55

5
Problem Size(log10)
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Numerical results/problem
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°
=

Fraction of problems solved
o o
IS -

NESTED)]
—SAND
DUAL

(a) Number of iterations as performance measure

DTU Wind Energy

formulations

° ° °
= > ®

Fraction of problems solved
o
S

NESTED)
—SAND
DUAL

(b) CPU time as performance measure

Figure: Performance profiles for the minimum compliance problem.
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Numerical results/problem formulations
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16 18 2

o ° °
b > ® N

Fraction of problems solved
°
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NESTED)
—SAND

=

12 14 16 18 2

(b) CPU time as performance measure

Figure: Performance profiles for the minimum weight problem.
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Numerical results/search directions
Moreover, we compare the numerical performance of the

e AHO direction
e HRVW/KSH/M direction

o NT direction

for solving the minimum compliance problem of the SAND formulation.

°
&
°
®

°
IS
°
IS

Fraction of problems solved
8 S
Fraction of problems solved
°
b4

°

AHO
| —HRVW/KSVIM|
NT

35 4 45 5

AHO
| —HRVW/KSVIM|
NT

1 15 2 25 3 35 4 45 5

~
»
@

(a) Number of iterations as performance measure (b) CPU time as performance measure

Figure: Performance profiles for the search directions.
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Conclusions

o Efficient second order primal-dual interior point for FMO is developed.

e The method requires modest number of iterations and almost independent of
problem size.

e The method has obtained solutions of good quality to the largest FMO
problems to date.

e There is no clear distinction in the performance of the standard FMO problem
formulations.

e We recommend the NT direction for solving FMO problems for its efficiency and

robustness .

A. G. Weldeyesus and M. Stolpe. A primal-dual interior point method for
large-scale free material optimization. Computational Optimization and
Applications, 61(2):409-435, 2015.
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Thank you for your attention!
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