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Free Material Optimization (FMO)

• The design variable is the entire material tensor E

σij(x) = Eijkl(x)ekl(x)

• allowed to vary freely at each point of the design domain
• the only requirement is that the material tensors should be symmetric and
positive semidefinite

• obtains conceptual optimal structures regarded as ultimately best designs.
• can be used to generate benchmark solutions for other models and besides
to propose novel ideas for new design situations.

M. P. Bendsøe, J. M. Guedes, R. B. Haber, P. Pedersen, and J. E. Taylor. An analytical model to predict optimal material
properties in the context of optimal structural design. Journal of Applied Mechanics, 61:930–937, 1994.
U. T. Ringertz. On finding the optimal distribution of material properties. Structural Optimization, 5:265–267, 1993.
M. Koc̆vara, M. Stingl, and J. Zowe. Free material optimization: recent progress. Optimization, 57(1):79–100, 2008.
J. Haslinger, M. Koc̆vara, G. Leugering, and M. Stingl. Multidisciplinary free material optimization. SIAM Journal on Applied
Mathematics, 70(7):2709–2728, 2010.
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Motivation

FMO problems
• demand fine finite element discretization, hence large problems

• involve matrix inequities/variables

• are modeled as nonlinear (mostly non convex) semidefinite programming

• are computationally expensive and more difficult than standard optimization
problems.

Most today’s methods are based on first-order method leading to many
iterations.
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Objective

• To develop special purpose second order interior point method that can robustly
and efficiently solve large-scale FMO problems.

• To investigate numerically the performance of
• some equivalent FMO problem formulations
• the most common directions (AHO, HRVW/KSH/M, and NT directions)
for solving FMO problems.
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Primal problems (SAND)

Minimum compliance

minimize
u`∈Rn,E∈E

∑
`∈L

w`f
T
` u`

subject to A(E)u` = f`, ` ∈ L,
m∑
i=1

Tr(Ei) ≤ V.

Minimum weight

minimize
u`∈Rn,E∈E

m∑
i=1

Tr(Ei)

subject to A(E)u` = f`, ` ∈ L,∑
`∈L

w`f
T
` u` ≤ γ,

where the discrete set of admissible materials

E :=
{
E ∈ (Rdm×d)|Ei = ET

i � 0, ρ ≤ Tr(Ei) ≤ ρ̄, i = 1, . . . ,m
}
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Primal problems (Nested)

Minimum compliance

minimize
E∈E

∑
`∈L

w`f
T
` A

−1(E)f`

subject to
m∑
i=1

Tr(Ei) ≤ V.

Minimum weight

minimize
E∈E

m∑
i=1

Tr(Ei)

subject to
∑
`∈L

w`f
T
` A−1(E)f` ≤ γ

where the discrete set of admissible materials

E :=
{
E ∈ (Rdm×d)|Ei = ET

i � 0, ρ ≤ Tr(Ei) ≤ ρ̄, i = 1, . . . ,m
}
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Primal problems (Linear)

Primal problems (Linear)

Minimum compliance

minimize
E∈E,%`≥0

∑
`∈L

w`%`

subject to
m∑
i=1

Tr(Ei) ≤ V,(
%` fT`
f` A(E)

)
� 0, ∀` ∈ L.

Minimum weight

minimize
E∈E,τ`≥0

m∑
i=1

Tr(Ei)

subject to
∑
`∈L

w`τ` ≤ γ̄,(
τ` fT`
f` A(E)

)
� 0, ∀` ∈ L.

E :=
{
E ∈ (Rdm×d)|Ei = ET

i � 0, ρ ≤ Tr(Ei) ≤ ρ̄, i = 1, . . . ,m
}

Very large-scale matrix inequalities which are difficult to deal within
computations.
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Dual problems
The minimum compliance primal problem

minimize
u`∈Rn,E

∑
`∈L

w`f
T
` u`

subject to A(E)u` = f`, ` ∈ L,
Ei = ET

i � 0, i = 1, . . . ,m,
ρ ≤ Tr(Ei) ≤ ρ̄, i = 1, . . . ,m,

m∑
i=1

Tr(Ei) ≤ V.

has the dual problem given by

maximize
u1,...,unL∈R

n

α∈R,β̄∈Rm,β∈Rm

− αV̄ + 2
∑
`∈L

w`f
T
` u` + ρ

m∑
i=1

β
i

− ρ̄

m∑
i=1

β̄i

subject to
∑
`∈L

nG∑
k=1

w`B
T
i,ku`u

T
` Bi,k − (α− β

i
+ β̄i)I � 0 , i = 1, . . . ,m

α ≥ 0, β̄ ≥ 0, β ≥ 0.
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Primal and dual problems
Minimum complinace problems (SAND, Nested, and Dual)

minimize
u`∈Rn,E∈E

∑
`∈L

w`f
T
` u`

subject to A(E)u` = f`, ` ∈ L,
m∑

i=1
Tr(Ei) ≤ V.

minimize
E∈E

∑
`∈L

w`f
T
` A

−1(E)f`

subject to
m∑

i=1
Tr(Ei) ≤ V.

maximize
u1,...,unL∈Rn
α∈R,β̄∈Rm,β∈Rm

− αV̄ + 2
∑
`∈L

w`f
T
` u` + ρ

m∑
i=1

β
i
− ρ̄

m∑
i=1

β̄i

subject to
∑
`∈L

nG∑
k=1

w`B
T
i,ku`u

T
` Bi,k − (α− β

i
+ β̄i)I � 0 , i = 1, . . . ,m

α ≥ 0, β̄ ≥ 0, β ≥ 0.

Minimum weight problems (SAND and Nested)

minimize
u`∈Rn,E∈E

m∑
i=1

Tr(Ei)

subject to A(E)u` = f`, ` ∈ L,∑
`∈L

w`f
T
` u` ≤ γ,

minimize
E∈E

m∑
i=1

Tr(Ei)

subject to
∑
`∈L

w`f
T
` A

−1(E)f` ≤ γ
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Primal-dual interior point method
Consider the nonlinear semidefinite problem

minimize
X∈S,u∈Rn

f(X,u)

subject to gj(X,u) ≤ 0, j = 1, . . . , k,
Xi � 0, i = 1, . . .m,

(P)

where, S = Sd1 × Sd2 × · · · × Sdm and (d1, d2, . . . , dm) ∈ Nm,.

We introduce the slack variables s ∈ Rk and barrier parameter µ > 0 and
formulate the associated barrier problem as

minimize
X∈S+,u∈Rn,s∈Rk

+

f(X,u)− µ
m∑
i=1

ln(det(Xi))− µ
k∑
j=1

ln(sj)

subject to gj(X,u) + sj = 0, j = 1, . . . , k.

(BP)

The central idea in interior point methods is that to solve the barrier
problem (BP) for a sequence of barrier parameter µk → 0
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Optimality conditions

The first-order optimality conditions of the barrier problem (BP) are
∇Xf(X,u)−Z +∇X(g(X,u)Tλ)
∇uf(X,u) +∇ug(X,u)Tλ

SΛe− µe
g(X,u) + s
XZ − µI

 =


0
0
0
0
0



• P = I, AHO direction

• P = Z1/2, HRVW/KSH/M direction (H.K.M.)

• P = X−1/2, dual HRVW/KSH/M direction

• P = W−1/2, NT direction
W = X1/2(X1/2ZX1/2)−1/2X1/2
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Applying Newton’s method we solve the reduced system(
G A
AT B

)(
∆u
∆λ

)
=
(
r̃d
r̃p

)

G = G(H̃−1),A = A(H̃−1),B = B(H̃−1)

r̃d = r̃d(H̃−1), r̃p = r̃p(H̃−1)

H̃ = ∇2
XXLµ(X,u, s,λ) + F−1E

nz = 576
0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

90

The other search directions (∆X,∆s, ∆Z) are then determined
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Problem formulations
Minimum complinace problems (SAND, Nested, and Dual)

minimize
u`∈Rn,E∈E

∑
`∈L

w`f
T
` u`

subject to A(E)u` = f`, ` ∈ L,
m∑

i=1
Tr(Ei) ≤ V.

minimize
E∈E

∑
`∈L

w`f
T
` A

−1(E)f`

subject to
m∑

i=1
Tr(Ei) ≤ V.

maximize
u1,...,unL∈Rn
α∈R,β̄∈Rm,β∈Rm

− αV̄ + 2
∑
`∈L

w`f
T
` u` + ρ

m∑
i=1

β
i
− ρ̄

m∑
i=1

β̄i

subject to
∑
`∈L

nG∑
k=1

w`B
T
i,ku`u

T
` Bi,k − (α− β

i
+ β̄i)I � 0 , i = 1, . . . ,m

α ≥ 0, β̄ ≥ 0, β ≥ 0.Minimum weight problems (SAND and Nested)

minimize
u`∈Rn,E∈E

m∑
i=1

Tr(Ei)

subject to A(E)u` = f`, ` ∈ L,∑
`∈L

w`f
T
` u` ≤ γ,

minimize
E∈E

m∑
i=1

Tr(Ei)

subject to
∑
`∈L

w`f
T
` A

−1(E)f` ≤ γ
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2D problems

(a) (b)

(c) (d)

Figure: Design domains, boundary conditions, and
external loads for the Cantilever benchmark problem (a),
the Michell beam problem (b), the L-shape problem (c),
and the two load case problem (d).

Problem instances

Problems No. of finite No. of design
elements variables

Cantilever I 7500 45000
Cantilever II 30000 180000
Cantilever III 120000 720000
Cantilever IV 480000 2880000
Michell I 5000 30000
Michell II 20000 120000
Michell III 80000 480000
Michell IV 320000 1920000
L-shape I 1875 11250
L-shape II 7500 45000
L-shape III 30000 180000
L-shape IV 120000 720000
Two Loads case I 5000 30000
Two Loads case II 20000 120000
Two Loads case III 80000 480000
Two Loads case IV 320000 1920000
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Optimal designs and numerical results

(a) (b)

(c) (d)

Figure: Optimal density distributions
obtained by solving the minimum
compliance problem for the Cantilever
IV benchmark problem (a), the Michell
IV beam problem (b), the L-shape IV
problem (c), and the two load case IV
problem (d).
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Optimal designs and numerical results
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Optimal designs and numerical results
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Numerical results/problem formulations
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(b) CPU time as performance measure

Figure: Performance profiles for the minimum compliance problem.
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Figure: Performance profiles for the minimum weight problem.
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Numerical results/problem formulations
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Figure: Performance profiles for the minimum compliance problem.
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Figure: Performance profiles for the minimum weight problem.
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Numerical results/search directions
Moreover, we compare the numerical performance of the
• AHO direction

• HRVW/KSH/M direction

• NT direction

for solving the minimum compliance problem of the SAND formulation.
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Figure: Performance profiles for the search directions.
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Conclusions

• Efficient second order primal-dual interior point for FMO is developed.

• The method requires modest number of iterations and almost independent of
problem size.

• The method has obtained solutions of good quality to the largest FMO
problems to date.

• There is no clear distinction in the performance of the standard FMO problem
formulations.

• We recommend the NT direction for solving FMO problems for its efficiency and
robustness .

A. G. Weldeyesus and M. Stolpe. A primal-dual interior point method for
large-scale free material optimization. Computational Optimization and
Applications, 61(2):409–435, 2015.

18 DTU Wind Energy WCSMO-11, 7-12 June 2015, Sydney, Australia



Thank you for your attention!
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